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Abstract

When facing an unsatisfactory prediction from001
a machine learning model, it is crucial to inves-002
tigate the underlying reasons and explore the003
potential for reversing the outcome. We ask:004
To flip the prediction on a test point xt, how005
to identify the smallest training subset St we006
need to relabel? We propose an efficient pro-007
cedure to identify and relabel such a subset via008
an extended influence function. We find that009
relabeling fewer than 2% of the training points010
can always flip a prediction. This mechanism011
can serve multiple purposes: (1) providing an012
approach to challenge a model prediction by013
altering training points; (2) evaluating model014
robustness with the cardinality of the subset015
(i.e., |St|); we show that |St| is highly related016
to the noise ratio in the training set and |St| is017
correlated with but complementary to predicted018
probabilities; (3) revealing training points lead019
to group attribution bias. To the best of our020
knowledge, we are the first to investigate iden-021
tifying and relabeling the minimal training sub-022
set required to flip a given prediction. 1023

1 Introduction024

The interpretability of machine learning systems025

is a crucial research area as it aids in understand-026

ing model behavior, facilitating debugging, and027

enhancing performance (Adebayo et al., 2020; Han028

et al., 2020; Pezeshkpour et al., 2022; Teso et al.,029

2021; Marx et al., 2019). A common approach030

involves analyzing the model’s predictions by trac-031

ing back to the training data (Hampel, 1974; Cook032

and Weisberg, 1980, 1982). Particularly, when a033

machine learning model produces an undesirable034

result, users might be interested in identifying the035

training points to modify to overturn the outcome.036

If the identified training points are wrongly labeled,037

the related determination should be overturned.038

For instance, consider a scenario where a machine039

1Code and data to reproduce all experiments will be avail-
able on the GitHub.

Figure 1: The question we seek to answer is: which is
the smallest subset of the training data that needs to be
relabeled in order to flip a specific prediction from the
model?

learning model evaluates research papers and gives 040

decisions. If an author receives a rejection and dis- 041

agrees with the result, they might request insight 042

into the specific papers examples used to train the 043

model. If it turns out that correcting a few misla- 044

beled training examples can change the prediction, 045

then the original decision might need reconsider- 046

ation, possibly accepting the paper instead. This 047

concept is referred to contesting the predictions 048

made by automatic models (Hirsch et al., 2017; 049

Vaccaro et al., 2019). When using such models, 050

users should have the right and ability to question 051

and challenge results, especially when these results 052

impact them directly (Almada, 2019). Our research 053

is geared towards offering a mechanism for users 054

to challenge these predictions by tracing back to 055

the training data. 056

In this paper, we study the question (visualized in 057

Figure 1): Given a test point xt and its associated 058

predicted label ŷt by a model, how can we find 059

the minimal training subset St, if relabeled before 060
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Test point
|St|

Training points in St

Text Label Prediction Text True Label Labeled as

The people who can stop it
are the ones who pay their
wages.

Non-hate Hate 1 Worker. Non-hate Hate

We will never forget their
heroism.

Non-hate Hate 1 TRUTH NO LIE. Non-hate Hate

Cossack: There are no
Russians with hook nose and
dark hair in Russia, except
for the jews.

Non-hate Hate
2 All of Ukraine is Rus-

sia/Poland/Romania, you
fake Ukrainians.

Hate Non-hate

The rest is Tatar. Non-hate Hate

Table 1: Examples showcase misclassified test points alongside the identified training set St. For each test point, if
those training points are relabeled prior to training, the test point can be correctly classified. These training points
are intentional noise we manually introduced into the dataset.

training, would lead to a different prediction? 2061

Identifying St by enumerating all possible sub-062

sets of training examples, re-training under each,063

and then observing the resultant prediction would064

be inefficient and impractical. We thus introduce065

an algorithm for finding such sets efficiently using066

the extended influence function, which allow us to067

approximate changes in predictions expected as a068

result of relabeling subsets of training data (Koh069

et al., 2019; Warnecke et al., 2021; Kong et al.,070

2021).071

The identified subset St can be harnessed for072

a variety of downstream applications. Firstly, we073

discover that |St| can be less than 5%, suggesting074

that relabeling a small fraction of the training data075

can markedly influence the test prediction. Sec-076

ondly, we observe a correlation between |St| and077

the noise ratio in the training set. As the noise ra-078

tio increases from 0 to 0.5, |St| tends to decrease079

obviously. Thirdly, we find that |St| can be small080

when the model is high confident in a test predic-081

tion, so |St| serve as a measure of robustness that082

complements to the predicted probability. Lastly,083

our approach can light on points containing group084

attribution bias that caused biased determinations.085

We demonstrate that when such bias exists in the086

training set, the corresponding St will significantly087

overlap with the biased training data.088

The contributions of this work are summarized089

as follows. (1) We introduce the problem: iden-090

tifying the minimal subset St of training data, if091

2We provide a way to investigate the training points instead
of retraining the model.

relabeled, would result in a different prediction on 092

test point xt.; (2) We provide a computationally 093

efficient algorithm for this task and report perfor- 094

mance in binary classification problems; (3) We 095

demonstrate that the size of the subset (|St|) can be 096

used to assess the robustness of the model and the 097

training set. (4) We show that the composition of 098

St can explain group attribution bias. 099

2 Methods 100

This section first demonstrates the algorithm to find 101

the minimal relabel set and shows a case to use the 102

algorithm to challenge the model’s prediction. 103

2.1 Algorithm 104

Consider a binary classification problem with a 105

training set denoted as Z tr = {z1, ..., zN}. Each 106

data point zi = (xi, yi) comprises features xi ∈ X 107

and a label yi ∈ Y . We train a classification 108

model fw : X → Y by minimizing the em- 109

pirical risk, which yields the estimated parame- 110

ter ŵ, as defined by: ŵ := argminwR(w) = 111

argminw
1
N

∑N
i=1 L(zi, w) + λ

2w
Tw. Here, λ 112

serves as the hyperparameter for regularization. 113

We assume that R is twice-differentiable and 114

strongly convex in w, with Hŵ := ∇2
wR(ŵ) = 115

1
N

∑N
i=1∇2

wL(zi, ŵ) + λI . Suppose we relabel a 116

subset of training points S ⊂ Z tr by relabeling yi 117

to y′i for (xi, yi) ∈ S and re-estimate w, yielding 118

new parameters ŵS : 119

ŵS =argminw{R(w) +
1

N

∑
(xi,yi)∈S

l}, (1) 120
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where l = −L(xi, yi, w) + L(xi, y′i, w).121

Due to the large number of possible subsets in122

the training set, it is computationally impractical123

to relabel and retrain models for each subset to124

observe prediction changes. Warnecke et al. (2021);125

Kong et al. (2021) derived the influence exerted by126

relabeling a training set S on the loss incurred for127

a test point t as:128

∇wL(zt, ŵ)⊺∆iw, (2)129

where ∆iw = 1
NH−1

ŵ

∑
(xi,yi)∈S ∇wl is the130

change of parameters after relabeling training131

points in S. Instead, we estimate the influence on132

predicted probability result by relabeling training133

subset S as:134

∆tf := ∇wfŵ(xt)
⊺∆iw, (3)135

which is named as IP-relabel. Based on this metric136

and adopt the algorithm proposed by Broderick137

et al. (2020); Yang et al. (2023), we propose the138

Algorithm 1 to find a training subset St to relabel,139

which would result in flipping the test prediction140

ŷt on xt. Our approach initiates by approximating141

the change in predicted probability ∆tf for a test142

point xt, which results from the relabeling of each143

training point. Subsequently, we iterate through all144

the training points in a descending order of their145

influence—starting with the most decisive to the146

least. During each iteration, we accumulate the147

change in predicted probability ∆tf . When the148

cumulative change causes the output ŷt to cross a149

predefined threshold, the algorithm identifies St.150

If, however, the output fails to cross the threshold151

even after examining the entire training set, the152

algorithm is unable to find the set St.153

2.2 Case Study154

In this section, we present an example to demon-155

strate how our method can be used to challenge156

the predictions of machine learning models. We157

employ the Hate Speech dataset (de Gibert et al.,158

2018), which encompasses instances of hate com-159

munication that target specific groups based on160

characteristics such as race, color, ethnicity, etc.161

On social media platforms, users found engaging162

in hate speech are typically banned.163

We implement a linear regression model to clas-164

sify hate speech on the internet. We intentionally165

introduced noise into the training dataset by mis-166

labeling 1,000 data points (out of 9632, switching167

labels from 1 to 0 and vice versa). This deliber- 168

ate noise in the training set can result in additional 169

misclassifications during testing. 170

As demonstrated in Table 1, for each test in- 171

stance, Algorithm 1 pinpoints the specific training 172

data points that, when relabeled before training, 173

could change the prediction of the test point. The 174

table showcases three instances where the model 175

misclassified test points. The corresponding train- 176

ing sets, St, consist of training points that closely 177

resemble the test cases but were erroneously la- 178

beled. Given that the classifications can be altered 179

by relabeling a small subset of mislabeled training 180

data, determinations based on these classifications, 181

such as banning users, warrant careful reconsidera- 182

tion. 183

Algorithm 1: An algorithm to find a mini-
mal subset to flip a test prediction
Input: f : Model; Z tr: Full training set; N :

number of total training points; Z tr′ :
Relabeled full training set; ŵ:
Parameters estimated Z tr; L: Loss
function; xt: A test point; τ :
Classification threshold (e.g., 0.5)

Output: St: minimal train subset identified
to flip the prediction (∅ if
unsuccessful)

1 H ← ∇2
wL(Z tr, ŵ)

2 ∇wl← −∇wL(Z tr, w′) +∇wL(Z tr′ , w′)
3 ∆w ← 1

NH−1∇wl
4 ∆tf ← ∇wfŵ(xt)

⊺∆w
5 ŷt ← f(xt) > τ // Binary prediction
// Sort instances (and estimated

output differences) in order of
the current prediction

6 direction← {↑ if ŷt else ↓}
7 indices← argsort(∆tf, direction)
8 ∆tf ← sort(∆tf, direction)
9 for k = 1 ... |Z tr| do

10 ŷ′t = (f(xt) + sum(∆tf [: k])) > τ
11 if ŷ′t ̸= ŷt then
12 return Z tr[indices[: k]]

13 return ∅

3 Experiments 184

We provide an overview of our experiments: 185

1. We introduce our experimental setup and then 186

validate Algorithm 1 in Sec 3.1 and 3.2. Our 187
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Dataset Features Found St Flip successful
Loan BoW 61% 49%

Movie reviews BoW 100% 72%
BERT 100% 73%

Essays BoW 77% 40%
BERT 76% 39%

Hate speech BoW 99% 87%
BERT 99% 86%

Tweet sentiment BoW 100% 75%
BERT 100% 68%

Table 2: Percentages of text examples for which Algo-
rithm 1 successfully identified a set St (center) and for
which upon flipping these instances and retraining the
prediction indeed flipped (right).

results confirm that we can effectively change188

the test predictions by relabeling revealed189

points and subsequent model retraining.190

2. Sec 3.3 analyzes the magnitude of |St| across191

various datasets and models, emphasizing192

its correlation with predicted probability and193

noise ratio. This showcases its utility in an-194

alyzing the robustness of training points and195

models.196

3. We further delve into the integration of subset197

St in Sec 3.4, demonstrating its potential to198

highlight biased training data.199

4. In Sec 3.5, we compare our method against200

other methods to alter training points to flip201

test prediction, illustrating that our method202

revealed a smaller training subset.203

3.1 Experimental Setting204

Datasets. We use a tabular dataset: Loan default205

classification (Surana, 2021), and text datasets:206

Movie review sentiment (Socher et al., 2013);207

Essay grading (Foundation, 2010); Hate speech208

(de Gibert et al., 2018); and Twitter sentiment (Go209

et al., 2009) to evaluate our method.210

Models. We consider the ℓ2 regularized logistic211

regression to fit the assumption on influence func-212

tion. As features, we consider both bag-of-words213

and neural embeddings induced via BERT (Devlin214

et al., 2018) for text datasets. We report basic statis-215

tics describing our datasets and model performance216

in Section A.1.217

3.2 Algorithm Validation218

How effective our algorithm find St and flip the219

corresponding prediction? As shown in Table 2,220

the frequency of finding St varies greatly among 221

datasets. For the movie reviews and tweet datasets, 222

Algorithm 1 returns a set St for approximately 223

100% of test points. On the other hand, for the 224

simpler loan data, it only returns St for approxi- 225

mately 60% of instances. Results for other datasets 226

fall between these two extremes. When the al- 227

gorithm successfully finds a set St, relabeling all 228

(xi, yi) ∈ St almost enables the re-trained model to 229

flip the prediction ŷt (as indicated in the right-most 230

column of Table 2). 231

Comparision with other methods. We draw 232

comparisons between IP-relabel and several other 233

methods (Pezeshkpour et al., 2021), including IP- 234

remove (Yang et al., 2023), influence function (Koh 235

and Liang, 2017), and three gradient-based instance 236

attribution methods on a logistic regression model 237

to the movie review dataset (Barshan et al., 2020; 238

Charpiat et al., 2019): 239

1. RIF = cos(H− 1
2∇wL(xt), H− 1

2∇wL(xi)) 240

2. GD = ⟨∇wL(xt),∇wL(xi)⟩ 241

3. GC = cos(∇θL(xt),∇θL(xi)) 242

We also randomly select subsets of training data 243

and relabel them. We graph the average change in 244

predicted probability for 100 randomly chosen test 245

points in Figure 2. These probabilities are from 246

the model trained before and after relabeling the 247

top k training points ranked on the scores above. 248

Our analysis indicates that IP-relabel shows a more 249

significant impact in the test predicted probability 250

compared to the impact of removing training points 251

as ranked by other methods. 252

Running time of Algorithm 1. We recorded the 253

average running time of Algorithm 1 to find St 254

for test points in different datasets in Table 3 on 255

Apple M1 Pro CPUs. For one test point, it just 256

takes milliseconds to go through the whole training 257

set (the training set sizes are provided in A.1) to 258

find St. 259

Dataset BoW (ms) BERT (ms)
Movie Reviews 19.04 140.51

Essays 160.01 265.09
Hate speech 103.70 299.46

Tweet 58.42 260.75
Loan 63.97 /

Table 3: Average running time (in milliseconds) of Al-
gorithm 1 to find St for a test point in different datasets.
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Figure 2: The relationship between the average of absolute difference on predicted probabilities for sampled test
points results from relabeled k = |St| training points, using different methods on movie review dataset.
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Figure 3: The histogram shows the distribution of k =
|St| on the hate speech dataset, i.e. the minimal number
of points that need to be relabeled from the training data
to change the prediction ŷt of a specific test example xt.

3.3 |St| Quantifies Model Robustness260

Relabel less than 2% training data can usually261

flip a prediction. The empirical distributions of262

k values for subsets St identified by Algorithm 1263

can be seen in Figure 3 for the representative hate264

speech datasets (full results are in the Appendix). 265

The key observation is that when St is found, its 266

size is often relatively small compared to the total 267

number of training instances. In fact, for many 268

test points, relabeling less than 2% instances would 269

have resulted in a flipped prediction. 270

BERT demonstrates greater robustness than LR 271

based on |St|measures. For a proficiently trained 272

model, the need to relabel a larger subset of train- 273

ing data in order to alter a correct test prediction 274

suggests greater model robustness. In Figure 4, we 275

present a comparison of the average values of |St| 276

for common test data points where both BERT and 277

LR model predictions were successfully altered us- 278

ing our method. The results indicate that BERT 279

typically demands the relabeling of more training 280

data points than the LR models do. This observa- 281

tion supports the utility of our method in gauging 282

the relative robustness of different models. 283

Correlation between k and the predicted proba- 284

bility. Does the size of St tell us anything beyond 285

what we might infer from the predicted probability 286

p(yt = 1)? In Fig 5 we show a scatter of k = |St| 287

against the distance of the predicted probability 288

from 0.5 on speech dataset. There are test instances 289

of the model being confident, but relabeling a small 290

set of training instances would overturn the predic- 291

tion. In Sec A.3, there are datasets where the k can 292

be highly correlated with probability. 293

How is |St| correlated with the noise ratio? Fig- 294

ure 6 shows how |St| and the model’s accuracy vary 295

when we increase the noise ratio from 0 to 0.9. We 296
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Figure 4: Comparison of the average k = |St| values
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Figure 5: The correlation between the predicted prob-
abilities of certain test examples and k = |St| on the
hate speech dataset. For test examples where the model
is highly certain about its prediction, the prediction can
be flipped by relabeling a small number of data points
from the training set.

introduce noise to the training set by incrementally297

relabeling a portion of training points, from 0 to 0.9298

in steps of 0.1. When the noise ratio increases from299

0 to 0.5, we observe a decline in |St|. However,300

as the noise ratio rises from 0.5 to 0.9, |St| starts301

to increase. Interestingly, within the noise ratio 302

interval of 0 to 0.3, the model’s accuracy does not 303

demonstrate a noticeable decline. This suggests 304

that |St| can be an additional metric for assessing 305

the model’s robustness complementary to accuracy 306

under different noise ratios. 307

3.4 Composition of St Contributes Bias 308

Explanation 309

Group attribution bias in machine learning refers 310

to a model’s inclination to link specific attributes 311

to a particular group, potentially resulting in bi- 312

ased predictions. We show that the integration of 313

St is associated with group attribution biased in 314

training data. As a case, we manually introduce 315

group attribution bias into the loan default dataset 316

(Surana, 2021), designed to predict potential de- 317

faulters for a consumer loan product. We augment 318

a dataset containing basic consumer features with 319

a manually added discrete "tag" feature, arbitrar- 320

ily assigning 40% as "tag X" and 60% as "tag Y " 321

We then introduce bias by relabeling 90% of the 322

qualified "tag X" as "default." This biased set is de- 323

fined as B, where the wrong label tightly links with 324

the feature "tag X ." A logistic regression model is 325

subsequently trained with this modified dataset. 326

We apply Algorithm 1 to misclassified test points 327

and compute the proportion in each resulting sub- 328

set St belonging to B. The average proportions 329

are 60% for "tag X" and 23% for "tag Y " mis- 330

classified data. The higher proportion in "tag X" 331

suggests that the misclassification of eligible "tag 332

X" individuals mainly results from the biased train- 333

ing set B, whereas for "tag Y " individuals may be 334

due to other reasons like model oversimplification. 335

Thus, our approach can highlight training points 336

contributing to group attribution bias. 337

3.5 Comparison between Removal and 338

Relabeling 339

In this section, we compare two ways to alter train- 340

ing points such that the alternation can result in 341

the flipping of a test point: relabeling and removal. 342

We show that the relabeling mechanism can reveal 343

a smaller training subset, thus saving the cost of 344

investigating suspicious training points. 345

Kong et al. (2021) firstly propose an algorithm 346

to find the training subset to remove to flip a test 347

prediction for economy models, which we denote 348

as "Removal Alg1" in Table 7. Yang et al. (2023) 349

employ the same algorithm on machine learning 350
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Figure 6: Average of k = |St| (solid line) and model’s accuracy (dashed line) for the test dataset with noise ratio
from 0 to 0.9. When the noise ratio increases from 0 to 0.3, k decreases apparently, while the model’s accuracy does
not demonstrate a noticeable decline.

Noisy points in St1 Normal points in St2
Loan Movie reviews Speech Loan Movie reviews Speech

Removal Alg1 47.9 1.8 146.8 30.6 2.1 31.9
Removal Alg2 45.6 1.8 104.2 27.0 2.1 21.0
Relabeling (ours) 11.6 0.8 55.8 22.9 1.3 8.2

Table 4: Average number of points to relabel and remove to flip a test prediction, categorized by noisy and normal
points. Relabeling consistently leads to smaller sets of both noisy and normal points being altered.

models and improve it to return a smaller training351

set, denoted as "Removal Alg2".352

We aim to show that when noise is present in the353

training set, the relabeling mechanism consistently354

uncovers a smaller subset of influential points from355

the noisy training set while affecting fewer standard356

points. To demonstrate this, we introduced a 30%357

noise factor into the training set by flipping labels358

of normal points, denoted as N , which increased359

misclassified test points. We identified the training360

set St using the three methods for these misclassi-361

fied test points. We divided the identified training362

points St into two categories: training points be-363

longing to the noise set St1 = St ∩ N , and those364

that do not belong to the noise set St2 = St \ N .365

The results presented in Table 4 demonstrate that366

both the S1 and S2 subsets identified through the367

relabeling process are smaller than those identified368

through removal. This suggests that considering369

relabeling training points can more effectively dis-370

cern fewer noisy and regular training points, saving371

the cost to investigate more suspicious points. We372

also show the conclusion holds when there is no 373

noise in the training set in Sec A.2. 374

4 Related Work 375

The holding of model predictions. Several stud- 376

ies have explored the changes of a model behavior 377

and its factors. Ilyas et al. (2022) analyzed model 378

behavior changes based on different training data. 379

Harzli et al. (2022) studied the change of a specific 380

prediction by finding a smallest informative feature 381

set to analize economy models. Additionally, re- 382

search on counterfactual examples aims to explain 383

predicted outcomes by identifying the feature val- 384

ues that caused the given prediction (Kaushik et al., 385

2019). Recent studies investigated the influence 386

function in machine learning to answer the ques- 387

tion of "How many and which training points need 388

to be removed to alter a specific prediction?" (Brod- 389

erick et al., 2020; Yang et al., 2023). We follow 390

these two works and propose an alternative way to 391

alter the training points by asking, "How many and 392

which training points would need to be relabeled 393
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to change this prediction?"394

Trustworthy machine learning is important in to-395

day’s era, given the pervasive adoption of artificial396

intelligence systems in our everyday lives. Previous397

work emphasizes contestability as a key facet of398

trustworthiness, advocating for individuals’ right to399

challenge AI predictions (Vaccaro et al., 2019; Al-400

mada, 2019). This may involve providing evidence401

or alternative perspectives to challenge AI-derived402

conclusions (Hirsch et al., 2017). Our mechanism403

offers a way to draw upon training data as evi-404

dence when contest AI determination. In line with405

advancing model fairness, it’s crucial to address406

training data related to noise (Wang et al., 2018;407

Kuznetsova et al., 2020) and biases (Osoba and408

Welser IV, 2017; Howard and Borenstein, 2018).409

Our research shows that, despite different noise410

ratios, the model’s accuracy remains relatively con-411

sistent, yet there is a significant variation in the size412

of the subset St. Furthermore, we demonstrate that413

in scenarios where group attribution bias is present,414

our method can aid in identifying the associated415

training points.416

Influence function offers tools for identifying417

training data most responsible for a particular test418

prediction (Hampel, 1974; Cook and Weisberg,419

1980, 1982). By uncovering mislabeled training420

points and/or outliers, influence can be used to421

debug training data and provide insight for the re-422

sult generated by neural networks (Koh and Liang,423

2017; Adebayo et al., 2020; Han et al., 2020;424

Pezeshkpour et al., 2022; Teso et al., 2021). War-425

necke et al. (2021) extend influence function to426

measure the influence of alternation in training427

points’ feature and label and apply it to machine428

unlearning. Furthermore, Kong et al. (2021) also429

extended influence on the effect of relabeling train-430

ing points but utilized this measure to identify and431

recycle noisy training samples, leading to enhanced432

model performance at the training stage. Our re-433

search emphasizes utilizing this measure to deter-434

mine which training subsets should be relabeled to435

question machine learning model predictions, and436

we delve into the factors influencing the integration437

and size of the identified subsets.438

5 Discussion and Future Work439

In today’s landscape dominated by large language440

models (LLMs), researchers are trying to integrate441

machine learning models into various decision-442

making processes, ranging from medical diagnoses 443

(Shaib et al., 2023) to legal judgments (Jiang and 444

Yang, 2023) and academic paper reviews (Liang 445

et al., 2023). However, LLMs are black and hard 446

to explain despite their immense capabilities. They 447

are prone to challenges including, but not limited to, 448

social biases (Hutchinson et al., 2020; Bender et al., 449

2021; Abid et al., 2021; Weidinger et al., 2021; 450

Bommasani et al., 2022) and the spread of misinfor- 451

mation (Evans et al., 2021; Lin et al., 2022). These 452

immediate issues might be precursors to more pro- 453

found, long-term risks for making decisions based 454

on AI systems. 455

As we harness these models to make critical de- 456

cisions, it becomes imperative to delve into the 457

root causes of any erroneous determinations. As 458

outlined in our research, our proposed method of- 459

fers a pathway to trace the origins of such errors 460

back to specific training data points. As the first 461

to state this problem, we primarily focus on lin- 462

ear regression and BERT with a classifier. In the 463

future, we envision our methodology applying to 464

even more complex models. A recent study ex- 465

tends the influence function to LLMs to understand 466

how training data alterations can impact model pre- 467

dictions (Grosse et al., 2023). Building upon this 468

foundation, adapting our approach for LLMs is 469

promising for future exploration. 470

6 Conclusions 471

In this work, we introduce the problem of identify- 472

ing a minimal subset of training data, St, which, if 473

relabeled before training, would result in a differ- 474

ent test prediction. We introduce a computationally 475

efficient algorithm to address this task and eval- 476

uate its performance within binary classification 477

problems. In the experiment, we illustrate that the 478

size of the subset |St| can serve as a measure of 479

the model and the training set’s robustness. Lastly, 480

we indicate that the composition of St can reveal 481

training points that cause group attribution bias. 482

7 Limitations and Risks 483

In our study, we’ve extensively used influence func- 484

tions to solve the problem. However, being aware 485

of fundamental limitations is crucial: they tend to 486

be only effective in convex loss. The overarching 487

goal of pinpointing a minimal subset within the 488

training data, such that a change in labels leads to a 489

reversal in prediction, isn’t exclusively achievable 490

via approximations rooted in influence functions. 491

8



This approach is favored in our work due to its492

intuitive nature and wide use. In addition, while493

Algorithm 1 currently shows less than optimal per-494

formance on the essay dataset, this presents an495

opportunity for further investigation. Specific char-496

acteristics unique to this dataset might influence497

the performance, opening up a valuable avenue for498

future research.499

There exists an inherent risk wherein the same500

approach could be exploited to engender biased501

determinations. Specifically, by intentionally mis-502

labeling genuine training data and subsequently503

retraining the model, actors with malicious intent504

might be able to invert just determinations, thereby505

compromising the model’s integrity and fairness.506

To counteract this risk, strategies such as regular507

data integrity checks, stringent access control, and508

employing model robustness techniques can be inte-509

grated, thereby ensuring the preservation of model510

authenticity and shielding against adversarial ex-511

ploits.512
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Kamilė Lukošiūtė, Karina Nguyen, Nicholas Joseph,611
Sam McCandlish, Jared Kaplan, and Samuel R. Bow-612
man. 2023. Studying large language model general-613
ization with influence functions.614

Frank R Hampel. 1974. The influence curve and its615
role in robust estimation. Journal of the american616
statistical association, 69(346):383–393.617

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov.618
2020. Explaining black box predictions and unveil-619
ing data artifacts through influence functions. arXiv620
preprint arXiv:2005.06676.621

Ouns El Harzli, Bernardo Cuenca Grau, and Ian Hor-622
rocks. 2022. Minimal explanations for neural net-623
work predictions. arXiv preprint arXiv:2205.09901.624

Tad Hirsch, Kritzia Merced, Shrikanth Narayanan,625
Zac E Imel, and David C Atkins. 2017. Design-626
ing contestability: Interaction design, machine learn-627
ing, and mental health. In Proceedings of the 2017628
Conference on Designing Interactive Systems, pages629
95–99.630

Ayanna Howard and Jason Borenstein. 2018. The ugly631
truth about ourselves and our robot creations: the632
problem of bias and social inequity. Science and633
engineering ethics, 24(5):1521–1536.634

Ben Hutchinson, Vinodkumar Prabhakaran, Emily Den-635
ton, Kellie Webster, Yu Zhong, and Stephen Denuyl.636
2020. Social biases in nlp models as barriers for637
persons with disabilities.638

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-639
laume Leclerc, and Aleksander Madry. 2022. Data-640
models: Understanding predictions with data and641
data with predictions. In Proceedings of the 39th642
International Conference on Machine Learning, vol-643
ume 162 of Proceedings of Machine Learning Re-644
search, pages 9525–9587. PMLR.645

Cong Jiang and Xiaolei Yang. 2023. Legal syllogism646
prompting: Teaching large language models for legal647
judgment prediction. In Proceedings of the Nine-648
teenth International Conference on Artificial Intelli-649
gence and Law, pages 417–421.650

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.651
2019. Learning the difference that makes a differ-652
ence with counterfactually-augmented data. arXiv653
preprint arXiv:1909.12434.654

Pang Wei Koh and Percy Liang. 2017. Understanding 655
black-box predictions via influence functions. In 656
International conference on machine learning, pages 657
1885–1894. PMLR. 658

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and 659
Percy S Liang. 2019. On the accuracy of influence 660
functions for measuring group effects. Advances in 661
neural information processing systems, 32. 662

Shuming Kong, Yanyan Shen, and Linpeng Huang. 663
2021. Resolving training biases via influence-based 664
data relabeling. In International Conference on 665
Learning Representations. 666

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Ui- 667
jlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, 668
Stefan Popov, Matteo Malloci, Alexander Kolesnikov, 669
et al. 2020. The open images dataset v4. Inter- 670
national Journal of Computer Vision, 128(7):1956– 671
1981. 672

Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu 673
Wang, Daisy Ding, Xinyu Yang, Kailas Vodrahalli, 674
Siyu He, Daniel Smith, Yian Yin, Daniel McFarland, 675
and James Zou. 2023. Can large language models 676
provide useful feedback on research papers? a large- 677
scale empirical analysis. 678

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. 679
Truthfulqa: Measuring how models mimic human 680
falsehoods. 681

Charles Marx, Richard Phillips, Sorelle Friedler, Carlos 682
Scheidegger, and Suresh Venkatasubramanian. 2019. 683
Disentangling influence: Using disentangled repre- 684
sentations to audit model predictions. Advances in 685
Neural Information Processing Systems, 32. 686

Osonde A Osoba and William Welser IV. 2017. An 687
intelligence in our image: The risks of bias and errors 688
in artificial intelligence. Rand Corporation. 689

Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and 690
Byron Wallace. 2022. Combining feature and in- 691
stance attribution to detect artifacts. In Findings of 692
the Association for Computational Linguistics: ACL 693
2022, pages 1934–1946, Dublin, Ireland. Association 694
for Computational Linguistics. 695

Pouya Pezeshkpour, Sarthak Jain, Byron C Wallace, and 696
Sameer Singh. 2021. An empirical comparison of 697
instance attribution methods for nlp. arXiv preprint 698
arXiv:2104.04128. 699

Chantal Shaib, Millicent L Li, Sebastian Joseph, Iain J 700
Marshall, Junyi Jessy Li, and Byron C Wallace. 2023. 701
Summarizing, simplifying, and synthesizing medical 702
evidence using gpt-3 (with varying success). arXiv 703
preprint arXiv:2305.06299. 704

Richard Socher, Alex Perelygin, Jean Wu, Jason 705
Chuang, Christopher D Manning, Andrew Y Ng, and 706
Christopher Potts. 2013. Recursive deep models for 707
semantic compositionality over a sentiment treebank. 708

10

https://doi.org/https://www.kaggle.com/competitions/asap-aes/overview
https://doi.org/https://www.kaggle.com/competitions/asap-aes/overview
https://doi.org/https://www.kaggle.com/competitions/asap-aes/overview
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2005.00813
http://arxiv.org/abs/2005.00813
http://arxiv.org/abs/2005.00813
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
http://arxiv.org/abs/2310.01783
http://arxiv.org/abs/2310.01783
http://arxiv.org/abs/2310.01783
http://arxiv.org/abs/2310.01783
http://arxiv.org/abs/2310.01783
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
http://arxiv.org/abs/2109.07958
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153


In Proceedings of the 2013 conference on empiri-709
cal methods in natural language processing, pages710
1631–1642.711

Ssubham Surana. 2021. Loan prediction based on cus-712
tomer behavior.713

Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia,714
and Andrea Passerini. 2021. Interactive label clean-715
ing with example-based explanations. Advances in716
Neural Information Processing Systems, 34:12966–717
12977.718

Kristen Vaccaro, Karrie Karahalios, Deirdre K Mulligan,719
Daniel Kluttz, and Tad Hirsch. 2019. Contestability720
in algorithmic systems. In Conference Companion721
Publication of the 2019 on Computer Supported Co-722
operative Work and Social Computing, pages 523–723
527.724

Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie725
Chen, Chen Qian, and Chen Change Loy. 2018. The726
devil of face recognition is in the noise. In Proceed-727
ings of the European Conference on Computer Vision728
(ECCV), pages 765–780.729

Alexander Warnecke, Lukas Pirch, Christian Wress-730
negger, and Konrad Rieck. 2021. Machine un-731
learning of features and labels. arXiv preprint732
arXiv:2108.11577.733

Laura Weidinger, John Mellor, Maribeth Rauh, Conor734
Griffin, Jonathan Uesato, Po-Sen Huang, Myra735
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,736
Zac Kenton, Sasha Brown, Will Hawkins, Tom737
Stepleton, Courtney Biles, Abeba Birhane, Julia738
Haas, Laura Rimell, Lisa Anne Hendricks, William739
Isaac, Sean Legassick, Geoffrey Irving, and Iason740
Gabriel. 2021. Ethical and social risks of harm from741
language models.742

Jinghan Yang, Sarthak Jain, and Byron C Wallace. 2023.743
How many and which training points would need to744
be removed to flip this prediction? arXiv preprint745
arXiv:2302.02169.746

A Appendix747

A.1 Datasets and model details748

We present basic statistics describing our text clas-749

sification datasets in Table 5. We set the threshold750

for the hate speech data as 0.25 (τ = 0.25) to max-751

imize the F1 score on the training set. For other752

datasets, we set the threshold as 0.5. For reference,753

we also report the hyperparameters and predictive754

performance realized by the models considered on755

the test sets of datasets in Table 6.756

A.2 Comparison between removal and757

relabeling on clean training set758

When there is no noise in the training set, we run759

Removal Alg1, Removal Alg2, and Algorithm 1 to760

Dataset # Train # Test % Pos
Loan 21120 2800 0.50
Movie reviews 6920 872 0.52
Essay 11678 1298 0.10
Hate speech 9632 1071 0.11
Tweet sentiment 18000 1000 0.50

Table 5: Dataset information.

Models Accuracy F1-score AUC l2
Loan

LR 0.79 0.80 0.88 100
Movie reviews

BoW 0.79 0.80 0.88 1000
BERT 0.82 0.83 0.91 500

Essay
BoW 0.97 0.80 0.99 1
BERT 0.98 0.87 0.99 10

Hate speech
BoW 0.87 0.40 0.81 10
BERT 0.89 0.63 0.88 10

Tweet sentiment
BoW 0.70 0.70 0.75 500
BERT 0.75 0.76 0.84 1000

Table 6: The model performance under different
datasets.

compare the average returned training set size in 761

Table 7. It shows that considering training points 762

to relabel can result in smaller training sets than 763

removing them. 764

Loan Reviews Speech
Removal Alg1 965.4 712.8 768.6
Removal Alg2 440.4 636.8 411.6
Relabeling (ours) 67.0 138.5 49.3

Table 7: The comparison of average on k = |St| values
over a random subset of test points xt, result by removal
(Algorithm 1 and Algorithm 2 (Yang et al., 2023)) and
relabel. Relabel always finds a smaller St compared
with removal.

A.3 Full Plots 765

We present the distribution of St across various 766

datasets in Tables 7 and 9. Additionally, the corre- 767

lation between predicted probability and the size of 768

St, denoted by |St|, for different datasets is show- 769

cased in Tables 8 and 10. 770
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Figure 7: The histogram shows the distribution of k =
|St|, i.e. the number of points that need to be relabeled
from the training data to change the prediction ŷt of a
specific test example xt.
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Figure 8: The plot displays the correlation between
the predicted probabilities of certain test examples and
k = |St| .There are some test examples where the model
is reasonably or highly certain about its prediction, yet
by removing a limited number of data points from the
training set, the prediction can be altered.
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Figure 9: The histogram shows the distribution of k =
|St|, i.e. the number of points that need to be relabeled
from the training data to change the prediction ŷt of a
specific test example xt.
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Figure 10: The plot displays the correlation between the
predicted probabilities of certain test examples and k =
|St| . Thethere are some test examples where the model
is reasonably or highly certain about its prediction, yet
by removing a limited number of data points from the
training set, the prediction can be altered.
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