
RECURSIVE INTROSPECTION: Teaching
Foundation Model Agents How to Self-Improve

Yuxiao Qu
Carnegie Mellon University

Tianjun Zhang
UC Berkeley

Naman Garg
MultiOn Inc.

Aviral Kumar
Carnegie Mellon University

Abstract

A central piece in enabling intelligent agentic behavior in foundation models is to
make them capable of introspecting upon their behavior, to reason and correct their
mistakes. Even strong proprietary large language models (LLMs) do not exhibit
the ability of continually improving their responses sequentially, even in scenarios
where they are explicitly told that they are making a mistake. In this paper, we
develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to
introduce this ability. Our approach prescribes an iterative fine-tuning procedure,
which attempts to teach the model how to alter its response after having seen
previously unsuccessful attempts to solve a problem with additional environment
feedback. RISE poses fine-tuning for a single-turn problem as solving a multi-turn
Markov decision process (MDP), where the initial state is the prompt. Inspired
by principles in online imitation learning, we derive effective strategies to dictate
multi-turn data collection and training so as to imbue an LLM with the capability
to recursively detect and correct its previous mistakes in subsequent iterations. Our
experiments show that RISE enables 7B Llama2 and Mistral models to improve
themselves with more turns on math reasoning tasks, outperforming several single-
turn strategies given an equal amount of inference-time computation. Our analysis
shows that RISE makes meaningful improvements to responses to arrive at the
correct solution for challenging prompts, without disrupting one-turn abilities.

1 Introduction

A promising approach for utilizing and deploying foundation models, and in particular, large language
models (LLMs) is to treat them as general-purpose decision-making machines, or ”agents”, as it is
commonly referred to in literature. To be successful, an LLM agent must not just provide plausible
completions for input text, but rather it must exhibit interactive, goal-directed behavior to accomplish
a given task. This requires mastering two qualities: (a) producing responses that explicitly seek out
information about the task, followed by (b) making decisions and improving them by ”thinking” and
verifying them, by accounting for external input. For instance, to succeed at using a new coding
library, an effective LLM agent should first synthesize programs, then try the most promising subset
against a compiler, use the resulting feedback to improve the program, and repeat the process for
multiple turns. Being able to successfully improve a response over multiple turns is equivalent to a
form of ”self-improvement”, over the course of interaction with the external world.

To enable inference-time self-improvement, recent approaches attempt to re-purpose the knowledge
already stored in pre-trained models via few-shot prompting [6, 15, 29, 47, 59]. While prompt tuning
in conjunction with feedback is effective in eliciting improved responses from capable models, it falls
short in producing models that can succeed in complex tasks by correcting their own mistakes, such
as those that require logical reasoning [20, 50]. To address this issue, some work fine-tunes LLMs

Work done entirely at Carnegie Mellon University. Corresponding author(s): yuxiaoq@andrew.cmu.edu

Figure 1: Recursive Introspection (RISE). Using iterative multi-round training on on-policy rollouts and
supervision from a reward function, RISE trains models that are capable of improving themselves over multiple
turns. At inference, we run majority voting on candidate outputs from different turns to obtain the final response.

with data from the downstream task [5, 27, 37]. While fine-tuning does utilize ”oracle” responses to
in-domain prompts, it still does not induce an improvement strategy (see Section 6).

Can we train models to be capable of improving their own responses? If done correctly and on
a diverse set of problems and scenarios, this could introduce in an LLM, a general procedure for
test-time self-improvement. While one straightforward approach to do to induce this into a model
would be to generate data showcasing improvements over multiple sequential turns (potentially from
highly capable models), we find that simply imitating this data is not sufficient at enabling this
capability (Section 6.3). Largely, this is due to two reasons: first, multi-turn interaction from different
models does not showcase improvements on the kinds of errors that the learner would make thereby
being irrelevant or undecipherable to the learner [23], and second, proprietary models are typically
not good at proposing meaningful improvements to their own errors [20], but can still provide useful
responses to the problem at hand. Therefore, we need a different strategy to endow models with
a self-improvement capability. Our key insight is to supervise improvements to the learner’s own
responses in an iterative fashion, taking inspiration from methods in online imitation learning [34].
This supervision can be oracle responses to the prompt, or be generated from the learner itself.

Our contribution is an algorithm, RISE: Recursive Introspection, that utilizes these insights to
improve the self-improvement ability of an LLM over the course of multiple turns of interaction. In
each iteration, our approach bootstraps on-policy rollouts from the learner with better responses at the
next turn obtained by running best-of-N (using a success indicator on the task) on multiple revision
candidates obtained by sampling from the learner itself or using responses from a capable model,
whichever is more convenient. This way, we are able to construct rollouts that demonstrate the learner
how it can improve its responses under its own distribution. Then, we fine-tune the learner on this
data using a reward-weighted regression (RWR [33]) objective, that is able to learn from both high-
and low-quality parts of such rollouts. By iteratively repeating this procedure, we are able to instill a
general self-improvement algorithm into an LLM. Our results show that LLMs trained via RISE can
produce correct responses on more prompts, improving over turns for more challenging prompts.

Even though we find that strong LLMs [22, 53] often fail to revise their own responses over mul-
tiple turns of interaction, RISE successfully endows similarly-sized LLMs with self-improvement
capabilities, resulting in monotonically increasing task performance after each turn. Specifically, on
a common mathematical reasoning benchmark, GSM8K [10], RISE improves the performance of
a fine-tuned LLaMa2-7B model by 17.7% over the course of 5-turn introspection, improving over
parallel sampling at the first turn; a Mistral-7B model by 23.9%; whereas GPT-3.5 only improves
by 4.6% over five turns. Similar trends hold on MATH [17], where RISE improves the LLaMa2-7B
model by 4.6% and a Mistral-7B model by 11.1% over five turns, with no oracle guidance.

2 Related Work
Several prior works build techniques to improve reasoning and thinking capabilities of foundation
models for downstream applications. Typically these works focus on building prompting techniques
for effective multi-turn interaction with external tools [4, 6, 13, 30, 44, 49, 51], sequentially refining
predictions by reflecting on actions [6, 15, 58], asking the model to verbalize its thoughts [31, 47, 60],
asking the model to critique and revise itself [29, 38] or by using other models to critique a primary
model’s responses [2, 11, 19, 49]. While a subset of this work does improve self-improvement
abilities, this self-correction ability often requires access to detailed error traces (e.g., execution
traces from code compilers [6, 29]) in order to succeed. In fact, [20] and Table 1 both indicate that

2

self-improvement guided by the LLM itself (i.e., “intrinsic self-correction”) is often infeasible for
off-the-shelf LLMs, but fine-tuning with RISE induces this capability as we show in this paper.

Beyond prompting, prior works also attempt to fine-tune LLMs to obtain self-improvement capabili-
ties [5, 37, 57]. These works attempt to improve reasoning performance by training on self-generated
responses [28, 41, 52, 53, 55]. To achieve this, these works use a combination of learned veri-
fiers [26, 42, 45], search [12, 24, 31, 36], contrastive prompting on negative data [8, 43], and iterated
supervised or reinforcement learning (RL) [7, 35, 54]. While our approach also trains on model-
generated data, we aim to introduce a complementary capability of improving performance over
sequential turns of interaction, instead of improving single-turn performance alone. Other work
fine-tunes LLMs for multi-turn interaction directly via RL [39, 61]: while this is indeed related to us,
single-turn problems posed in multi-turn scenarios require addressing distinct challenges than generic
multi-turn RL: (i) sample-efficiency is not a concern since the entire MDP is fully characterized
by the training dataset of prompts and oracle answers, and (ii) we need to generalize to novel test
prompts. Multi-turn RL focuses on sample efficiency, which is not critical in our setting. More
generally, our main focus is to show that it is possible to train models for self-improvement via
appropriately designing multi-turn fine-tuning objectives. This is orthogonal from the choice of RL,
contrastive or supervised learning approach used for optimizing the said objective.

Perhaps the most related to our work, are GLoRE [16] and Self-Correct [48], which train separate
models to identify errors and refine incorrect answers of other LLMs. Unlike these works, our
approach trains a single model to produce answers and improve them over more than two turns, which
is the maximal number of turns studied in these works. We show that doing so successfully requires a
careful design choices: an iterative (i.e., STaR [56]-like) on-policy data generation strategy along
with a training objective that can learn from both successful and unsuccessful rollouts.

From an algorithmic standpoint, our work is similar to online imitation learning [34, 40], in that
it queries expert supervision on states attained by on-policy rollouts. On-policy distillation for
LLMs [1, 3] utilizes this principle, but queries an expert to provide completions on partially-generated
responses instead of sequentially proposing revisions with the reward signal that we utilize. We also
emphasize that our goal is not necessarily to propose a novel learning objective, but to show that even
the simple reward-weighted RL can endow the model with self-improvement capabilities.

3 Problem Setup and Preliminaries
The goal of our work is to improve LLM performance over sequential turns. Concretely, given a
dataset D = {(xi,y

∗
i)}Ni=1 of problems xi and oracle responses y∗

i , our goal is to obtain an LLM
πθ(·|[x, ŷ1:t, p1:t]) that, given the problem x, previous model attempts ŷ1:t at the problem, and
auxiliary prompts p1:t (e.g., instruction to find a mistake and improve the response; or additional
compiler feedback from the environment) solves the problem in the fewest number of turns. Formally,

max
πθ

L∑
i=1

Ex,y∗∼D,ŷi∼πθ(·|[x,ŷ1:i−1,p1:i−1]) [I (ŷi == y∗)] . (3.1)

Note that, unlike standard supervised fine-tuning that trains the model π to produce a single response
ŷ given x, Equation 3.1 trains π to also appropriately react to a given history of responses coming
its own previous attempts ŷ1:i−1. Equation 3.1 most closely resembles an RL objective and we will
indeed develop our approach by converting a single-turn problem into a multi-turn MDP. Finally note
that prompting-based methods such as Self-Refine [29] can still be viewed as training π to optimize
π(y∗|x) but when only allowed to modulate the prompt pi to optimize Equation 3.1. Naturally, since
the parameters θ are unchanged, this would not be effective at optimizing the objective fully.

4 RISE: Recursive Introspection for Self-Improvement

Having seen that even strong off-the-shelf models do not exhibit an effective ability of improving
themselves when provided with sequential attempts at a given problem, a natural next step is to ask
how to train for a self-improvement ability. In this section, we will develop our approach, RISE,
for fine-tuning foundation models towards improving their own predictions over multiple turns. Our
approach will first convert a problem into a multi-turn MDP, then collect data, and finally run offline
reward-weighted supervised learning in this multi-turn MDP to induce this capability.

3

4.1 Converting Single-Turn Problems into a Multi-Turn Markov Decision Process (MDP)
The first step in building our approach RISE involves procedurally constructing a multi-turn MDP
using a single-turn dataset of prompts and oracle responses. Given a dataset, D = {(xi,y

∗
i)},

consisting of prompts xi and corresponding oracle responses y∗
i (e.g., math questions and natural

language responses to those questions), we will construct an induced MDP M from D, and then learn
policies that optimize multi-step return in this MDP. An initial state in this MDP is a possible prompt
xi ∈ D. We denote the output response from the foundation model as action a. Given a state s, the
next state can be obtained by concatenating the tokens representing s with the action a proposed by
the model, and an additional fixed prompt f that asks the model to introspect, e.g., “this response
is not correct, please introspect and correct your answer.”. The reward function is a sparse binary
indicator of success for a state s, r([xi, · · ·],a) = 1 if and only if a = y∗

i . The discount factor γ can
be adjusted based on the number of turns T in the conversation. This construction is shown below:

D = {(xi,y
∗
i)} → M : ρ(s0) = Unif(x1,x2, · · · ,xN) (4.1)

P (s′|s,a) = δ (s′ = concat[s,a,f]) (4.2)
r(s,a) = 1 (a = y∗

i if xi ∈ s) . (4.3)

This approach of converting single-turn problems into a multi-turn MDP resembles the approach of
converting standard classification problems into a sequential guessing game [14]. We will discuss the
connection between this line of work and our approach in Section 5.

4.2 Learning in the Multi-Turn MDP
With the MDP construction in place, the next step involves training a model to improve itself over the
course of a rollout. We subscribe to an offline approach for learning that we describe below.

Step 1: Data collection for self-improvement. To ensure that the offline rollout data from this
multi-turn MDP is useful for imbuing a self-improvement capability into the model, it must satisfy a
few desiderata: (1) it must illustrate the mistakes that the learner makes and showcase how to improve
upon them in the next turn, (2) the data must illustrate responses that are relevant to the model given
the problem and previous attempts in context, and (3) it must not contain any rollout that degrades in
a subsequent turn. Our data collection strategy that satisfies these desiderata.

At a given round k, for a given problem xi, we unroll the current model πθk(·|·) to produce multiple
sequential attempts, denoted by yi

t ∼ πθk(·|sit). In problems, where external input is available, we
also observe a variable-length, natural language external input, f i

t (e.g., in math problems we ask the
model to correct itself). We also observe a scalar reward value r(sit,y

i
t), denoted as rit in short. Let

us denote this dataset of “on-policy” model rollouts as Don-policy := {(sit,yi
t, f

i
t , r

i
t)

T
t=1}.

For each time-step, we construct an improved version of the response yi
t that we will denote by

ỹi
t. We also record the reward score associated with this improved response as r(sit, ỹ

i
t), or r̃it in

short. To obtain an improved version of a response yi
t, we can employ several strategies. Perhaps the

most straightforward approach is to query an off-the-shelf more capable model to provide a correct
response given the prompt xi, previous response yi

t, and an optional external feedback f i
t . We refer

to this as the distillation variant of our approach, since it uses a strong “teacher” model to guide
self-improvement (and hence, distills knowledge from this teacher model into the learner).

D̃on-policy + distill :=
{{(

sit, ỹ
i
t, f

i
t , r̃

i
t

)}T

t=1

}|D|

i=1
. (4.4)

The second variant of our approach which alleviates the need for a teacher model, involves con-
structing an improved response by sampling multiple times from the learner itself. Concretely, for
each state in the dataset, sit ∈ Don-policy, we sample N responses ỹi

t[0], ỹ
i
t[1], · · · , ỹi

t[N] ∼ πθ(·|sit),
and use the best response from these N candidates (as measured by the associated reward values
r̃it[0], · · · , r̃it[N]) to relabel the model response at the next step t+ 1 in an improvement trajectory.
Formally, say ỹi

t[m] = argmaxj∈[N] r(si, ỹ
i
t[j]), then, we relabel the responses in the dataset

Don-policy at step t+ 1 with the improved response and its associated reward value r̃it[m]:

D̃on-policy + self-improvement :=
{{(

sit+1, ỹ
i
t[m], f i

t+1, r̃
i
t[m]

)}T−1

t=0

}|D|

i=1
. (4.5)

Step 2: Policy improvement. With the aforementioned data construction schemes, we can now train
a model on these datasets. While in general, any offline RL approach can be used to train on this data,

4

in our experiments we adopt an approach based on weighted supervised learning [33] due to ease of
experimentation. In particular, we run weighted imitation learning, where weights are given by the
exponential transformation of the reward values in either D̃.

Reward-weighted RL: max
θ

Exi∼D̃

[
T∑

t=1

log πθ(ỹ
i
t|sit) · exp(rti/τ)

]
, (4.6)

where τ is a temperature parameter to further expand or narrow the difference between good and bad
actions. In our preliminary experiments we found that Equation 4.6 can often induce a bias towards
increasing log likelihoods of responses where rewards are high, prioritizing updates on easy problems
where rewards are already high. To address this issue, we apply a slight modification to Equation 4.6
and center the exponentiated rewards around the mean value averaged across all attempts on a given
prompt, akin to advantage-weighted regression [32]. We find that the use of advantages in place of
rewards helps us avoid the “rich-gets-richer” phenomenon with easy problems.

4.3 Inference at Deployment Time
RISE can be run in two modes at inference time. Perhaps most straightforward to run the policy πθ(·|·)
trained by RISE is within a multi-turn rollout, where the model samples a new response conditioned on
the past context (i.e., state in the multi-turn MDP). This past context consists of the external feedback
ptest
i concerning the response ytest

i and the rollout terminates as soon as r(x,ytest
i) = r(x,y∗). This

protocol invokes queries to the reward function after each turn in the rollout. Since several reward
function queries are performed, we refer to this approach as “with oracle”.

RISE can also be run in a mode that avoids the need for querying the reward function within a
rollout. In this case, we run full-length rollouts and utilize a self-consistency mechanism [46] based
on majority voting to decide the candidate response at the end of each turn. Concretely, at the end of
each turn j, we identify the response by running a majority vote over all response candidates from
the previous turns (maj

(
ytest
0 ,ytest

1 , · · · ,ytest
j

)
), including turn j. We call this “without oracle”.

4.4 Practical Algorithm and Implementation Details
We trained 7B models via RISE and found that these models often could not adhere to response
style and instructions for improving their responses when generating on-policy data. As a result,
before running on-policy data collection, we find it often useful to run an initial phase of supervised
fine-tuning on in-domain, multi-turn rollouts generated from a capable model to provide style and
instruction-following information to the learner. We call this the “knowledge boosting” stage. We
then run on-policy rollouts starting from a boosted model. In each iteration, we generate 1 trajectory
for each unique problem. We then run fine-tuning, with hyperparameters and details in Appendix C.
We adopt the scheme of Zelikman et al. [56] and iteratively fine-tune starting from the base model.

5 When and Why is Self-Improvement Over Turns Possible?

Figure 2: Fraction of problems unsolved by
pass@B at the first turn that sequential 5-turn
sampling from RISE solves, where B = 5× k
(k is the x-axis). RISE can solve several chal-
lenging problems that sampling at the first turn
with much larger budgets cannot solve.

A natural question to ask is why is self-improvement
with RISE even possible. One might surmise that the
model may simply not have enough knowledge to cor-
rect its own mistakes if it is unable to correctly answer
the problem in the first turn. Then, why is it possi-
ble to teach the model to correct its own mistakes? In
this section, we provide two reasons why this kind of
self-improvement is possible, supported with empirical
evidence to justify our hypotheses.

Reason 1: Bounded-capacity models & flexible test-
time computation. Iteratively teaching a model how
to make updates on a given response is important when
representing the target distribution p∗(y|x) requires
more capacity than what the model πθ has. In this case,
learning a sequence of conditionals, πθ(yi+1|x,y0:i)
followed by marginalization is expected to induce a
more flexible marginal distribution over yT given x.
We tracked the training perplexity (loss) of directly fitting oracle answers and compared it to the

5

perplexity of fitting a sequence of answers in Figure 8, and found that the latter indeed does reduce the
loss more then the oracle response directly, thus supporting our hypothesis. Of course, in problems
which require “knowledge-based” question answering, it is not be possible for the model to produce
any meaningful improvements because learning p∗(y|x) is not bounded by insufficient capacity of
πθ(y|x), but rather due to the absence of features that are critical to learn a mapping from x to y. We
expect that training with RISE would only incentivize hallucinations in this case [23]. However, this
is not the failure mode on reasoning problems [25], where maj@K rates at turn 1 tend to be higher
than pass@1. In fact, Figure 2 shows that the sequential procedure learned by RISE can even solve a
significant fraction of problems that were unsolved by pass@B for much larger B in the first turn.

Reason 2: Implicitly learning a model of correctness. Unlike Huang et al. [20], the reason why
self-improvement over turns is possible for us is because training with RISE can implicitly instill a
verification procedure into the learner: training on data in Equation 4.4 should in principle make the
model capable of deducing whether or not a given input response is correct using simple heuristics, for
example, evaluating the edit distance between the input and output. The emergence of such test-time
elimination or verification strategies by training on on-policy data has been conceptualized under the
notion of learning generalizable strategies in the multi-turn MDP [14], and indeed, such test-time
procedures learned by RISE can generalize to out-of-distribution prompts (see Appendix A.2).

6 Experimental Evaluation
The goal of our experiments is to demonstrate the efficacy of RISE in imbuing language models
with the ability to self-improve their responses over turns. Our experiments answer the following
questions: (1) How effectively can RISE improve performance over turns? (2) Does the self-
improvement behavior learned by RISE generalize to novel problems that are out of the training
domain? (3) Does the performance of RISE improve with iterative training? and finally, (4) How to
best collect data to train RISE? To this end, we compare RISE to other approaches on GSM8K [10]
and MATH [17].

Baselines, comparisons, and evaluation. We compare RISE to several prior methods that attempt to
induce similar self-improvement capabilities: (a) GloRE [16], which trains a separate reward model
to locate errors and a refinement model to improve responses of a base LLM; (b) self-refine [20, 29]
that prompt a base model to critique and revise its mistakes, and (c) self-consistency [46] on multiple
responses from the first turn. We tried to construct fair comparisons between RISE and these works by
using a similar-sized model [22, 53], but differences in the base model, training data, and evaluation
setups prohibit us from performing an apples-to-apples comparison. Nonetheless, we can still hope
to understand the ballpark of improvement by contextualizing our results with these prior works. We
also compare to V-STaR [18], but since this is not an fair comparison, we defer it to Appendix A.

We evaluate RISE in both modes at inference time: with and without an oracle (Section 4.3), at
the end of five turns: while the run with the oracle terminates a rollout as soon as the response is
correct (“p1@t5”), w/o oracle does not terminate a rollout earlier than five turns (“m1@t5”). We also
compare maj@K performance at the first turn for all the models we train (“m1@t1”, “m5@t1”).

6.1 Does RISE improve performance over multiple turns compared to other approaches?
We present the comparisons in Table 1. First, note that RISE (“Iteration 1” and “Iteration 2”) boosts
up the LLama2-based model’s five-turn performance by 15.1% and 17.7% respectively on GSM8K
and 3.4% and 4.6% on MATH w/o any oracle. Interestingly, we found using prompting-only Self-
Refine [29] largely degrades performance across the board, even with a strong proprietary model,
GPT-3.5. The strongest 7B base models, Mistral-7B and Eurus-7B-SFT [53], when coupled with
standard prompting are also only able to improve their performance, but only by 5.3% / 11.6% and
0.9% / 4.0% respectively on GSM8K and MATH, which is significantly lower than our approach. The
performance of GLoRE improves by only 3.4% on GSM8K (over two turns), but this is still lower
than our approach that improves by 6.3% in two turns and 13.4% in three turns (see Appendix A.1).
This indicates that RISE is effective in attaining in teaching models how to improve their own errors.

Can RISE effectively make use of mistakes and correct them? One concern that arises in prior
works is whether the model can truly correct itself over turns or whether the improvement comes from
the effect of sampling more answers and picking the best one. In Table 1, we see that sequentially
improving responses via RISE (“maj@1@turn5”) outperforms sampling 5 responses in parallel at
the 1-turn and applying a majority vote on them (“maj@5@turn1”). In particular, comparing maj@5
performance at the end of ‘1-turn and ‘5-turn, we observe a consistent 4% to 8% improvement on

6

Approach
GSM8K [9] MATH [17]

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5 m1@t1 → m5@t1 → m1@t5 p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

7B SoTA [53]
Eurus-7B-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine [29] → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Iteration 2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7B-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE [16] → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) Not studied in [16]
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

Table 1: RISE vs. other approaches (Self-Refine, GLoRE) and baselines. Observe that RISE attains the
biggest performance improvement (in brown) between 1-turn (m5@t1) and 5-turn (m1@t5) performance w/o an
oracle on both GSM8K and MATH. This performance gap is even larger when oracle early termination is allowed
(p1@t5 w/ oracle). Self-Refine [29] largely degrades performance across the board. GLoRE trains a separate
refinement model, but still performs worse than RISE; more details about it are in Appendix A. Using RISE on
top of a better base model (Mistral-7B) is also effective (positive improvements with multiple turns), and note
the m1@t5 performance of Mistral-7B exceeds even state-of-the-art math models such as Eurus-7B-SFT [53].
Color coding indicates performance and improvement numbers that can be compared to each other.

GSM8K and an 6.5% improvement on MATH (with Mistral-7B model). This means that RISE can
imbue models with a self-improvement ability while the simple SFT, followed by parallel sampling
cannot endow the same ability. In addition, we also observe that running multiple iterations of RISE
still preserves the first turn performance while improving the 5-turn performance.

How does the base model affect RISE? The performance of RISE with Llama2-7B on an absolute
scale is lower than the best models specifically fine-tuned on math data (e.g., Eurus-7B-SFT or
Mistral-7B). However, we find that RISE is still effective on top of Mistral-7B base model. In fact,
our performance at the end of 5-turns outperforms one of the best 7B SFT models, customized to
reasoning. Compare the m1@t5 performance of Eurus-7B-SFT and Mistral-7B in RISE (ours).

RISE (Self) w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 p1@t5

Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2)
+ Iteration 1 36.8 44.4 (+7.6) 39.5 (+6.6) 48.7 (+15.9)

Table 2: RISE with self-generated data on GSM8K. RISE is able
to improve 5-turn maj@1 performance of the model with entirely
self-generated data and supervision, despite the base Mistral-7B
model not producing correct answers for several problems.

Self-improvement version of RISE.
We also compare the performance of
RISE with entirely self-generated data
and supervision (Equation 4.4, N =
16) after one iteration directly on top
of the more capable Mistral-7B model
on GSM8K in Table 2, without any
boosting phase. We find that this vari-
ant is also able to improve five-turn
performance of the base Mistral-7B
model. Though, with no boosting, this approach is limited by its ability to generate sufficiently diverse
rollouts since the base Mistral-7B model is unable to answer more than 66% of the GSM8K train-
ing questions correctly. Nonetheless, training via RISE does enhance multi-turn self-improvement
capabilities, entirely on its own.

6.2 Does the Performance of RISE Improve with Iterative Training?
Next, we attempt to understand if RISE improves with multiple rounds of training on on-policy data.
As shown in Tables 1 and 2, the performance of RISE improves from iteration to iteration constantly.
The 5-turn performance of RISE, both with and without an oracle, exhibits a clear improvement with

7

more rounds across all domains and models. This implies that iterative self-training procedures of the
form of STaR [56] can also be combined with RISE for training models for self-improvement.

6.3 What Data Compositions and Data Quantity are Crucial for RISE?

We now study how different data compositions affect the performance of RISE: should we collect on-
policy error correction data like DAgger [34] or should we bias towards high-quality off-policy data.

Figure 3: Left: The importance of multi-turn interaction history and
unweighted objectives for training RISE. Note that training with multi-
turn data leads to better self-improvement performance at the end of 5
turns, than one-turn data obtained from the original dataset with human
answers or with oracle answers from another model; also observe that
using a weighted objective performs better. Right: The importance of
using all rollouts for learning, instead of only successful rollouts or only
successful responses in the data. Using all data performs best.

There are three key aspects: (a)
use multi-turn rollout data for
fine-tuning, (b) use weighted su-
pervised fine-tuning compared
to naı̈ve supervised learning,
which only utilizes successful
rollouts for fine-tuning; and (c)
use on-policy rollouts and self-
generated or oracle data. We will
study these aspects one by one.

(a) Data composition for fine-
tuning. We first study the neces-
sity of using the interaction of
error correction history for train-
ing RISE in Figure 3 (Left). We
compare two approaches: model
trained with oracle answers shown right after the first turn and oracle answers shown after intermedi-
ate failed attempts in Figure 3 (Left). Even though the latter trains on intermediate responses that may
not always be correct, it attains a higher performance than simply training on the correct response
for a given prompt. This highlights the importance of training on contexts that include a multi-turn
interaction history depicting mistakes from the learner to improve self-improvement capabilities.

(b) Weighted supervised learning vs unweighted supervised learning. Next, we investigate the
effect of reward-weighted RL on multi-turn data in RISE as opposed to simply imitating filtered
successful data. We find that using all the data leads to improved performance over simply filtering
good datain Figure 3 (Right), which reduces sample size. In Figure 3 (Left), we find that reward-
weighted training improves performance, allowing us to better leverage all the sub-optimal data.

Figure 4: Left: The importance of the data sources used for training.
We study the performance of the iteration 1 of RISE on GSM8K with
different data sources. “Expert” refers to the use of an oracle model,
“On-policy” corresponds to sampling from the learner, and “Best-of-N”
means using the best sample out of N from the learner (here N = 16).
Right: Comparing RISE with oracle error feedback (pass@1 @ turn
k; solid lines) to parallel sampling of 5 responses at turn 1 (pass@k @
turn 1; dashed lines) over number of turns k on the x-axis on GSM8K.
Observe that sequential sampling with Iteration 1 and Iteration 2 RISE
models consistently outperforms parallel sampling for all values of turn
k; and the gap grows as the number of iterations increases. In contrast,
this trend is absent for base and SFT models.

(c) On-policy vs off-policy data;
self-generated vs expert data.
RISE runs on-policy rollouts
and seeks improvements on re-
sponses that the learner produces.
As shown in Figure 4 (Left),
a “DAgger [34]”-style approach
that seeks improvements on re-
sponses appearing in on-policy
rollouts improves performance
(orange) compared to using the
expert data alone (blue/pink).
Conceptually, this addresses the
train-test mismatch between the
distribution of context tokens, en-
abling imitation learning meth-
ods to now target the correct
distribution. In addition, recent
work [23] has shown that LLMs
often memorize “unfamiliar” ex-
amples generated by oracle models; by training on on-policy rollouts, we are able to eliminate such
cases. Thus, while the model trained via offline imitation is able to reduce loss, these improvements
do not generalize to new problems. In addition, we find in Figure 4 (Left) that while utilizing oracle
responses from an expert is the most effective, training on self-generated data (“best-of-n”) is also
effective. Even with N = 16, we are able to improve multi-turn performance of the learner.

8

6.4 Pass@N vs Sequential Sampling via RISE
We now study the performance of sequential sampling with oracle feedback in GSM8K, unlike relying
on the model’s notion of self-consistency as in Table 1. Specifically, we compare the performance of
RISE with early termination of evaluation rollouts against pass@5 performance of the RISE model
at the first turn (which makes an equal number of queries to the ground-truth correctness indicator).
Access to ground-truth correctness indicator is expected to improve performance for both parallel
and sequential sampling as expected, but we see in Figure 4 (Right) that RISE is able to improve
performance more beyond simply sampling more samples at the first turn and computing pass@K.

6.5 Error Analysis of RISE over Turns
Following the protocol of Huang et al. [20], in this section, we perform an error analysis of the
improvement performed by RISE (without any oracle feedback) to understand how the fraction of
incorrect and correct responses changes over turns, when no oracle is used for early termination. We
demonstrate this in the form of Venn diagrams in Figure 5. First note that there is a consistent increase
in the portion of problems that stay correct and a consistent decrease in the portion of problems that
stay incorrect, which means that the model is able to answer more and more problems as we increase
the number of turns. Second, there is a consistent decrease in the number of problems that transition
from being correct to incorrect, which is often also not the case for strong proprietary LLMs such
as GPT in Huang et al. [20]. Finally, while we also note that there is a decrease in the total number
of incorrect problems that become correct in the subsequent turn, this is a direct consequence of
the size of the incorrect response set shrinking as more problems become correct over turns. This
indicates that one can induce “intrinsic” self-improvement (per the terminology of Huang et al. [20])
via fine-tuning with RISE, even though no external environment input is provided during evaluation.

Figure 5: Change in the fraction of responses that transition their correctness values over the course of
multi-turn rollouts from RISE, w/o oracle. Observe that in general, the fraction of Correct → Correct responses
increases; Incorrect → Incorrect responses decreases; and the fraction of Correct → Incorrect responses also
decreases, indicating that RISE (w/o any oracle) is able to iteratively improve its responses.

Qualitative examples. We also inspect several examples from the GSM8K test set to qualitatively
understand the behavior of RISE over turns and observe different behavior patterns, that we show in
Appendix B. For instance, the trained model may choose to completely rewrite its previous response if
it is totally incorrect in order to get to the correct answer or make small edits if the previous response
is mostly correct. Another interesting pattern we note is that the model implicitly has the ability to
locate errors in previous responses and only refine the erroneous steps. Additionally, the model is
tolerant of noisy environmental feedback when there is no oracle-assisted early termination.

7 Discussion, Future Directions, and Limitations
We presented RISE, an approach for fine-tuning LLMs to be able to improve their own responses over
multiple turns sequentially. RISE prescribes an iterative RL recipe on top of on-policy rollout data,
with expert or self-generated supervision to steer self-improvement. RISE significantly improves
self-improvement abilities of 7B models on reasoning tasks (GSM8K and MATH), attaining an
improvement over turns that past work [20] has not observed in strong proprietary models. In addition,
while RISE outperforms prior approaches that attempt to tackle similar problems of refinements
and correction, it is simpler in that it does not require running multiple models at once and can
work well with just one model. Despite these good results, there are still many open questions and
limitations. Due to computational constraints, we were not able to perform more than two iterations
of training with RISE, and no more than one iteration when the supervision comes from the learner
itself. Improving with self-generated supervision will likely require compute. RISE requires running
manual iterations and hence, a more “online” variant of RISE is likely the solution in the long run.
Our work has no special societal implications than any other work attempting to build learning
methods for fine-tuning LLMs. That said, very capable LLMs can have significant implications on
society and human life, and hence must be deployed cautiously, though this is not unique to our work.

9

References
[1] Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier

Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. arXiv
preprint arXiv:2306.13649, 2023.

[2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai:
Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

[3] Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D
Lee, and Wen Sun. Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495,
2024.

[4] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine Ferrag,
and Lucas C Cordeiro. A new era in software security: Towards self-healing software via large
language models and formal verification. arXiv preprint arXiv:2305.14752, 2023.

[5] Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning, 2023.

[6] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[7] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[8] Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Soujanya Poria, and Lidong Bing. Contrastive
chain-of-thought prompting. arXiv preprint arXiv:2311.09277, 2023.

[9] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[11] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

[12] Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

[13] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764–10799. PMLR, 2023.

[14] Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine.
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability.
NeurIPS, 2021.

[15] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large Language Models can Self-Correct with Tool-Interactive Critiquing. arXiv
preprint arXiv:2305.11738, 2023.

[16] Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhu-
ravinskyi, Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm
reasoning via global and local refinements. arXiv preprint arXiv:2402.10963, 2024.

10

[17] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

[18] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint
arXiv:2402.06457, 2024.

[19] Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation. arXiv preprint
arXiv:2312.13010, 2023.

[20] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

[21] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118–9147. PMLR, 2022.

[22] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[23] Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamiliar
finetuning examples control how language models hallucinate, 2024.

[24] Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian.
Beyond a*: Better planning with transformers via search dynamics bootstrapping. arXiv
preprint arXiv:2402.14083, 2024.

[25] Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

[26] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[27] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[28] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical rea-
soning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

[29] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[30] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn
Program Synthesis. ICLR, 2023.

[31] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

[32] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

11

[33] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for
operational space control. In Proceedings of the 24th international conference on Machine
learning, pages 745–750. ACM, 2007.

[34] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and
Miroslav Dudı́k, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages
627–635, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL http://proceedings.
mlr.press/v15/ross11a.html.

[35] Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with
general preferences. arXiv preprint arXiv:2404.03715, 2024.

[36] Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li.
Branch-solve-merge improves large language model evaluation and generation. arXiv preprint
arXiv:2310.15123, 2023.

[37] Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

[38] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[39] Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

[40] Liting Sun, Cheng Peng, Wei Zhan, and Masayoshi Tomizuka. A fast integrated planning and
control framework for autonomous driving via imitation learning. In Dynamic Systems and
Control Conference, volume 51913, page V003T37A012. American Society of Mechanical
Engineers, 2018.

[41] Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

[42] Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-and outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

[43] Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan
Sun. Towards understanding chain-of-thought prompting: An empirical study of what matters.
arXiv preprint arXiv:2212.10001, 2022.

[44] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023.

[45] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

[46] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

[47] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
NeurIPS, 2022.

12

http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html

[48] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

[49] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

[50] Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem Proving with Retrieval-
Augmented Language Models. arXiv preprint arXiv:2306.15626, 2023.

[51] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

[52] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

[53] Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference
trees. arXiv preprint arXiv:2404.02078, 2024.

[54] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[55] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning. arXiv
preprint arXiv:2309.05653, 2023.

[56] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[57] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang.
Agenttuning: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823,
2023.

[58] Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
Test-time prompting via reinforcement learning. arXiv preprint arXiv:2211.11890, 2022.

[59] Tianjun Zhang, Aman Madaan, Luyu Gao, Steven Zheng, Swaroop Mishra, Yiming Yang,
Niket Tandon, and Uri Alon. In-context principle learning from mistakes. arXiv preprint
arXiv:2402.05403, 2024.

[60] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
Language agent tree search unifies reasoning acting and planning in language models. arXiv
preprint arXiv:2310.04406, 2023.

[61] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

13

https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO

Appendices
A Additional Results

A.1 Complete Comparisons and Discussion: Extended Version of Table 1

We provide an extended version of Table 1, with a clear explanation of how we implement baselines
and a discussion of comparisons.

Approach
GSM8K [9] MATH [17]

w/o oracle w/ oracle w/o oracle w/ oracle

m1@t1 → m5@t1 → m1@t5 → p1@t5 m1@t1 → m5@t1 → m1@t5 → p1@t5

RISE (Ours)
Llama2 Base 10.5 22.8 (+12.3) 11.1 (+0.6) 13.9 (+3.4) 1.9 5.1 (+3.2) 1.4 (-0.5) 2.3 (+0.4)
+Boost 32.9 45.4 (+12.5) 39.2 (+6.3) 55.5 (+22.6) 5.5 6.8 (+1.3) 5.5 (+0.0) 14.6 (+9.1)
+Iteration 1 35.6 49.7 (+14.1) 50.7 (+15.1) 63.9 (+28.3) 6.3 8.8 (+2.5) 9.7 (+3.4) 19.4 (+13.1)
+Iteration 2 37.3 51.0 (+13.7) 55.0 (+17.7) 68.4 (+31.1) 5.8 10.4 (+4.6) 10.4 (+4.6) 19.8 (+14.0)

RISE (Ours)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
+ Iteration 1 35.3 50.6 (+15.3) 59.2 (+23.9) 68.6 (+33.3) 6.7 9.5 (+2.8) 18.4 (+11.1) 29.7 (+22.4)

Baselines
GPT-3.5 66.4 80.6 (+14.2) 71.0 (+4.6) 74.7 (+8.3) 39.7 47.8 (+8.1) 45.1 (+5.4) 54.3 (+14.6)
Mistral-7B 33.7 49.4 (+15.7) 39.0 (+5.3) 46.9 (+13.2) 7.5 13.0 (+5.5) 8.4 (+0.9) 13.0 (+5.5)
Eurus-7b-SFT 36.3 66.3 (+30.0) 47.9 (+11.6) 53.1 (+16.8) 12.3 19.8 (+7.5) 16.3 (+4.0) 22.9 (+10.6)

Self-Refine → m1@t3 → p1@t3 → m1@t3 → p1@t3
Base 10.5 22.4 (+11.9) 7.1 (-3.4) 13.0 (+2.5) 1.9 5.1 (+3.2) 1.9 (0.0) 3.1 (+1.2)
+Boost 32.9 45.3 (+12.4) 26.5 (-6.4) 40.9 (+8.0) 5.5 6.5 (+1.0) 2.9 (-2.6) 7.2 (+1.7)
+Iteration1 35.6 49.5 (+13.9) 31.7 (-3.9) 43.7 (+8.1) 6.3 8.7 (+2.4) 5.9 (-0.4) 9.9 (+3.6)
+Iteration2 37.3 50.5 (+13.2) 33.3 (-4.0) 44.5 (+7.2) 5.8 9.4 (+3.6) 5.7 (-0.1) 9.5 (+3.7)
GPT-3.5 66.4 80.2 (+13.8) 61.0 (-5.4) 71.6 (+5.2) 39.7 46.5 (+6.8) 36.5 (-3.2) 46.7 (+7.0)
Mistral-7B 33.7 48.5 (+14.8) 21.2 (-12.5) 37.9 (+4.2) 7.5 12.3 (+4.8) 7.1 (-0.4) 11.4 (+3.9)
Eurus-7b-SFT 36.3 65.9 (+29.6) 26.2 (-10.1) 42.8 (+6.5) 12.3 19.4 (+7.1) 9.0 (-3.3) 15.1 (+2.8)

GloRE → m1@t3 → p1@t3
+ORM 48.2 49.5 (+1.3) 57.1 (+8.9)
+SORM 48.2 51.6 (+3.4) 59.7 (+11.5) N/A
+Direct 48.2 47.4 (-0.8) 59.2 (+11.0)

V-STaR → m64@t1
+STaR 28.0 46.1 (+18.1)
+Verification 28.0 56.2 (+28.2) N/A
+V-STaR 28.0 63.2 (+35.2)

Table 3: Comparing RISE with other approaches (Self-Refine, GLoRE, and V-STaR) and other baseline
approaches. Observe that RISE attains the biggest performance improvements between 1-turn and 5-turn
performance without the use of an oracle on both GSM8K and MATH. This performance gap is even larger
when oracle early termination is allowed (5-turn w/ oracle). Self-Refine largely degrades performance across the
board. GLoRE trains a separate refinement model, but still performs worse than RISE.

Comparison with Self-Refine [29]. To build a self-refine baseline [29] evaluation, we slightly
modified our evaluation pipeline following the self-refine approach. In this setup (Figure 6), the
model generates an initial response, and then the environment prompts the model to locate errors in
the generated solution and refine its answer based on the initial response and the identified error.

However, our experiments show that without any oracle hint from the environment or human feedback,
the self-refine approach leads to a degradation in performance across all models. Only when oracle
feedback is available to assist with early termination does the self-refine approach provide a slight
performance boost. This highlights the limitation of the self-refine structure in effectively improving
model performance without external guidance, which is also observed in [21].

In contrast, the model trained with RISE can attain consistent performance improvements without
relying on an oracle. By training the model to iteratively refine its responses, our method enables
the model to self-correct and improve its performance over multiple turns. This showcases the

14

Self-Refine

System: You are an AI language model designed to assist with math problem-solving. In this
task, I will provide you with math problems. Your goal is to solve the problem step-by-step,
showing your reasoning at each step. After you have finished solving the problem, present your
final answer as \boxed{Your Answer}.

<One-shot Example 14>

User: <Query>

Agent: <Initial Answer>

User: There is an error in the solution above because of lack of understanding of the question.
What is the error? To find the error, go through each step of the solution, and check if everything
looks good.

Agent: <Critic>

User: Now, rewrite the solution in the required format:

Agent: <Refined Answer>

Figure 6: Prompt for Self-Refine: We follow the standard pipeline of the original paper, prompt the
LLM to refine and correct its previous mistakes.

effectiveness of our approach in comparison to the self-refine baseline, as it allows for more robust
and consistent performance gains without the need for the oracle assistance.

Comparison with GLoRE [16]. GLoRE is a multi-model system that relies on a student model
to propose drafts, an Outcome-based Reward Model (ORM) or Step-wise ORM to locate errors
at different granularity levels, and a Global or Local Refinement Model for adjusting these errors.
Since no code was openly available for this approach, in our experiments, we compared to the
numbers from the main paper Havrilla et al. [16]. While the comparison against GLoRE is already
apples-to-oranges since our method only trains a single end-to-end model, while GLoRE trains
multiple models. Performance-wise, GLoRE’s global and local refinement models show little to no
improvement in overall accuracy without an oracle, and even exhibit decreasing accuracy in some
cases. However, when an oracle is used to guide the refinement process, GLoRE demonstrates a 10%
improvement on the 7B model in the GSM8K dataset.

As anticipated, since we run RISE from a less advanced base model (Llama2 7B), we observe a slightly
lower absolute performance compared to GLoRE. However, RISE demonstrates its effectiveness
in self-improvement by sequentially enhancing its performance by an impressive 13.4% within
just 3 turns without an oracle feedback, and by a remarkable 23.4% with an oracle on GSM8K.
This showcase of RISE’s capabilities is particularly noteworthy considering that GLoRE utilizes 3
independent models - one for generating candidate solutions, one reward model for locating errors,
and one refinement model for refinement.

Comparison with V-STaR [18]. V-STaR requires training an additional verifier model to rank
candidate answers generated by the targeted model, but it does not make any sequential revisions
or improvements to a response. While comparing RISE to using a verifier for re-ranking the top 5
responses at the first turn (as a base comparison) would have been informative, we were unable to
find this specific result in the original V-STaR paper. The results presented in the official table 3
for V-STaR correspond to running 64 samples, which improves the base model’s performance by
35.2% for each prompt during evaluation. In contrast, our method, RISE, after the same amount of
finetuning iterations (3 iterations) and using only 5 samples, improves upon the base model by 44.5%
(calculated as 55.0% - 10.5% = 44.5%). This comparison highlights RISE’s efficiency in achieving
significant improvements with fewer samples and iterations compared to V-STaR’s approach of using
a large number of samples without sequential refinement.

15

Moreover, V-STaR’s performance is inherently bounded by the candidate generator’s performance.
As discussed in Section 5, if there is no correct response among the generated candidates, the problem
remains unsolved. In contrast, we show in Figure 2 that RISE can also solve problems that were not
solved by majority voting with a much higher budget in the first turn. Furthermore, we believe that
combining V-STaR with RISE could lead to even better performance, as RISE can generate better
models and a verifier can be complementarily used for filtering.

Comparison with other base models. Mistral-7B [22] and Eurus-7B-SFT [53] are models that
exhibit comparable performance to our method in terms of the absolute maj@5 performance. However,
it is crucial to note that these base models are fine-tuned using a vast amount of data, including data
specifically tuned for math reasoning performance [53], while our model is fine-tuned on a single
domain. That said, we do show that fine-tuning with RISE can still enhance the performance of
Mistral-7B models.

To summarize, our method offers several advantages over GLoRE and V-STaR, such as end-to-end
error correction with a single model, superior performance with fewer samples, and the ability to
solve problems that cannot be solved by random sampling in the first turn. Although our maj@1
performance is lower than GLoRE’s base model EI, which is an apples-to-oranges comparison our
ultimate 5-turn performance surpasses their best absolute performance in both oracle and non-oracle
scenarios. Compared to other base models like Mistral-7B and Eurus-7B-SFT, our method achieves
comparable performance while being fine-tuned on a single domain, and it can be generalized to
further enhance the performance of better base models.

A.2 Does the Self-Improvement Strategy Learned by RISE Generalize to Novel Problems?
An important aspect we study is whether the learned LLM can generalize to novel problems. In
Figure 7, we demonstrate the generalizability of the self-improvement procedure learned by RISE.
Specifically, we compare the performance of the RISE model trained on MATH when evaluated to the
test subset of the GSM8K dataset (Figure 7 Left); RISE model trained on GSM8K when evaluated on
the test subset of the MATH dataset (Figure 7 Center); and the RISE model trained on both MATH
and GSM8K datasets when evaluated on the SVAMP dataset (Figure 7 Right). We observe that
the model trained on one dataset is still able to improve the base model’s performance on another
dataset. Notably, more iterations of RISE training (i.e., from Boost → Iteration 1 → Iteration 2) not
only improve performance at the first turn but also produce more effective improvements (compare
“Iteration 2” against the “Boost” model from the training data), including a higher rate of improvement
from turn to turn) as the number of turns grows on the x-axis. This means that even though these
models have not seen queries similar to the evaluation dataset, simply training with RISE on some
kind of mathematical prompts still boosts the efficacy of the self-improvement strategy on a new
distribution of test prompts. This finding suggests that RISE is capable of instilling self-improvement
procedures that can generalize effectively beyond the distribution of prompts in the fine-tuning data.

Figure 7: Performance of models fine-tuned in GSM8K / MATH tasks on GSM8K, MATH, and SVAMP
datasets. We evaluate model fine-tuned on MATH on the GSM8K test set (Left); model fine-tuned GSM8K on
MATH (Center); and the model fine-tuned on a mixture of GSM8K and MATH on the SVAMP (Right) data.
Observe that with more iterations of RISE training, as the number of turns increases, the models are able to
produce more effective improvements.

A.3 Iterative Training with RISE Fits the Training Distribution Flexibly

In this section, we elaborate a hypothesis posed in in Section 5 that RISE perhaps more effective
because it is able to represent more flexible distributions, as it models conditionals π(yi|x,y0:i−1)
instead of attempting to model the target distribution p(y∗|x) directly. To verify if this hypothesis is
true, we track the training un-weighted, negative log likelihood loss over the course of training on
multi-turn data and compare it against the negative log likelihood loss attained by directly attempting

16

to predict the final response in Figure 8. We find that for any given number of epochs (including
fractional number of epochs on the x-axis), the training loss is lower when training on multi-turn data
that RISE generates in comparison with oracle responses to the prompts obtained from an expert.
This suggests that indeed the learning problem posed by RISE is easier.

Figure 8: The training perplexity (loss) of fitting only the oracle answer or a sequence of answers. Observe
that fitting a sequence of answers (orange) reduces the loss more than fitting only the oracle answer (green).

17

B Qualitative Examples from RISE
In this section, we provide some qualitative examples showing the nature of edits made by RISE on
various datasets that we train on. We utilize the model from iteration 2 of RISE.

RISE Example (Small Edits)

Query: Mike plays ping pong for 40 minutes. In the first 20 minutes, he scores 4 points. In the
second 20 minutes, he scores 25% more points. How many total points did he score?
Turn-1 Response:
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20
minutes. So, Mike scores 4 + 4 = 8 points in the second 20 minutes.
Step 3: To find the total points, we need to add the points scored in the first and second 20
minutes. total points = 4 + 8 = 12.
Answer: 12 ✗

Turn-2 Response:
I apologize for the mistake. Let’s solve the problem step by step.
Step 1: In the first 20 minutes, Mike scores 4 points.
Step 2: In the second 20 minutes, Mike scores 25% more points than he did in the first 20
minutes. This means he scores 4 + 4 * 25% = 4 + 1 = 5 points in the second 20 minutes.
Step 3: To find the total points, we add the points scored in the first and second 20 minutes: 4 +
5 = 9 points.
Answer: 9 ✓

RISE Example (Big Edits)

Query: In a candy machine, there are 22 more than four times the number of pink gumballs as
there are blue gumballs. If there are 12 blue gumballs how many pink ones are there?

Turn-1 Response:
Step 1: Let’s assume the number of blue gumballs as x. Step 2: According to the given
information, there are 22 more than four times the number of pink gumballs as there are blue
gumballs. So, the number of pink gumballs can be expressed as 4x + 22. Step 3: We are given
that there are 12 blue gumballs, so let’s substitute x with 12 in the equation.
Answer: 54 ✗

Turn-2 Response:
Let’s solve the problem step by step: Step 1: Let’s denote the number of blue gumballs as x.
Step 2: We are given that the number of pink gumballs is 22 more than four times the number
of blue gumballs. So, the number of pink gumballs can be expressed as 4x + 22. Step 3: We are
also given that there are 12 blue gumballs, so we can substitute x = 12 into the expression for
the number of pink gumballs: 4 * 12 + 22 = 48 + 22 = 70 Therefore, there are
boxed70 pink gumballs.
Answer: 70 ✓

Figure 9: Examples of RISE correct its previous behavior in different modes. Some only make changes to a
small part (small edits), some may directly rewrite most of its previous answers (big edits) because the first step
in the previous answer is wrong. The mistaken steps of different turns are highlighted in red, and the correct are
highlighted in green. This demonstrates shows how RISE can correct its previous answers and finally get to a
correct answer.

18

RISE Example (Noise Tolerance)

Query: Ryan plants 2 flowers a day in his garden. After 15 days, how many flowers does he
have if 5 did not grow?

Turn-1 Response:
Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a total of 2 flowers/day * 15 days
= 30 flowers in his garden. Step 2: However, 5 flowers did not grow, so we need to subtract
these non-growing flowers from the total count. Step 3: Calculate the number of flowers that
actually grew in Ryan’s garden. flowers grew = 30 flowers - 5 flowers = 25 flowers.
Answer: 25 ✓

Turn-2 Response:
Apologies for the mistake. Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers
a day, so he plants a total of 2 flowers/day * 15 days = 30 flowers in his garden. Step 2: Since
5 flowers did not grow, we need to subtract these non-growing flowers from the total count.
Step 3: Calculate the number of flowers that actually grew in Ryan’s garden. flowers grew = 30
flowers - 5 flowers = 25 flowers.
Answer: 25 ✓

Turn-3 Response:
Let’s reevaluate the solution. Step 1: Ryan plants 2 flowers a day for 15 days, so he plants a
total of 2 flowers/day * 15 days = 30 flowers in his garden. Step 2: However, 5 flowers did not
grow, so we need to add these flowers to the total count, as they were planted but did not grow.
Step 3: Calculate the total number of flowers in Ryan’s garden. total flowers = 30 flowers + 5
flowers = 35 flowers.
Answer: 35 ✗

Turn-4 Response
Let’s correct the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, so he plants a total
of 2 flowers/day * 15 days = 30 flowers in his garden. Step 2: Since 5 flowers did not grow,
we need to subtract these non-growing flowers from the total count. Step 3: Calculate the total
number of flowers in Ryan’s garden after subtracting the non-growing flowers. total flowers =
total planted flowers - non growing flowers = 30 flowers - 5 flowers=
boxed25 flowers.
Answer: 25 ✓

Turn-5 Response
Let’s reevaluate the solution. Step 1: In 15 days, Ryan plants 2 flowers a day, which is 2
flowers/day * 15 days = 30 flowers in total. Step 2: However, 5 flowers did not grow, so we
have to subtract these 5 flowers from the total. Step 3: Therefore, the total number of flowers
Ryan has is 30 flowers (total planted) - 5 flowers (did not grow) =
boxed25 flowers.
Answer: 25 ✓

Figure 10: Examples of RISE’s tolerance of noisy feedback. In the evaluation where there is no oracle, we use
a verifier that always tells the model, ”The answer is incorrect. Please try again. Here’s the question: <Query>”.
We observe that from turn 2 to turn 5, the model is still able to output the correct answer in 3 out of 4 turns.
In the response at turn 4, the model performs half of the solution correctly, and only the last step is wrong. In
addition, in the turns where the model still outputs the correct answer, it doesn’t directly copy the answer from
the previous turn but instead comes up with a new paraphrase. This demonstrates that RISE provides the model
with tolerance to noisy feedback and does not randomly change its behavior upon receiving a revisiting request.
The mistaken steps of different turns are highlighted in red

19

RISE Example (Error Localization)

Query: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he
make?
Turn-1 Response:
Step 1: Josh buys a house for $80,000. Step 2: He puts in $50,000 in repairs, which increases
the value of the house by 150%. Step 3: To calculate the increase in value, we multiply the cost
of the house by 150% and add it to the cost of the house. increase in value = $80,000 * 150%
= $120,000. Step 4: To calculate the profit, we subtract the cost of the house from its new value.
profit = increase in value - $80,000 = $120,000 - $80,000 = $40,000.
Answer: 40, 000 ✗

Turn-2 Response:
Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000. Step 2: He puts in
$50,000 in repairs, and this increases the value of the house by 150%. Step 3: The percentage
increase in value is 150% of $80,000, which is $120,000 (80,000 * 1.5 = $120,000). Step 4:
To find the actual amount that would be added to the house’s value after repairs, we need to
subtract the amount he spent on repairs from the increased value, which is $120,000 - $50,000
= $70,000. Step 5: The profit Josh would make is the difference between the cost of buying the
house and the increased value after repairs, which is $70,000 - $80,000 = -$10,000 ($10,000
less than the initial cost).
Answer: 0 ✗

Turn-3 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000.
Step 2: He puts in $50,000 in repairs. Step 3: This increases the value of the house by 150%.
Step 4: To find the increase in value, we calculate 150% of the original price of the house:
150% of $80,000 = $120,000. Step 5: The increase in value after repairs is the original price
plus 150% of the original price: $80,000 + $120,000 = $200,000. Step 6: Josh sells the house
for $200,000 and made a profit of $200,000 - $80,000 = $120,000.
Answer: 120, 000 ✗

Turn-4 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000.
Step 2: He puts in $50,000 in repairs, increasing the value of the house by 150%. Step 3: The
increase in value is 150% of $80,000, which is $120,000 (80,000 * 1.5 = $120,000). Step 4: The
total amount spent, including the purchase of the house and the repairs, is $80,000 + $50,000
= $130,000. Step 5: The profit Josh made is the increase in value after repairs minus the total
amount spent, which is $120,000 - $130,000 = -$10,000. Therefore, Josh made a
boxed0 profit.
Answer: 0 ✗

Turn-5 Response: Let’s solve the problem step-by-step: Step 1: Josh buys a house for $80,000.
Step 2: He puts in $50,000 in repairs. Step 3: The repairs increase the value of the house
by 150%. Step 4: The increase in value is $50,000, which is 150% of $33,333 (50,000 / 1.5
= $33,333). Step 5: The repairs cost $50,000, and the increase in value is $33,333. Step 6:
Therefore, Josh’s profit is $33,333 - $50,000 = -$16,667. Therefore, Josh made a 16676 profit.
Answer: 16676 ✗

Figure 11: Examples of RISE not being able to correct its error within 5 steps but demonstrating meaningful
error localization behavior. Even in turn 2, it has already solved the problem at step 4 but mistakenly takes
another step and reaches the wrong answer. The following turns are unable to correct this small error. Though
this problem remains unsolved, we observe that (1) the model is able to stick to the correct steps, where all
responses reach an intermediate step of 12000 correctly, except for the last response, where the model tries to
modify the answer from one step ahead; (2) the model doesn’t repeat its responses, which is a behavior we notice
when evaluating some off-the-shelf models; and (3) the model is making meaningful changes to the incorrect
steps. In summary, although the final answer is still incorrect, we observe that through RISE, the model is able
to locate the error and perform local computation correctly. The mistaken steps of different turns are highlighted
in red, and the correct steps in turn 2 is highlighted in green.

20

C Experimental Details

C.1 Hyperparameters for Fine-Tuning with RISE

For finetuning, we utilize the FastChat codebase, but we customize the loss function to be weighted
by reward. The base models are directly loaded from Hugging Face: hrefhttps://huggingface.co/meta-
llama/Llama-2-7b-hfLlama-2-7b-chat-hf and Mistral-7B-Instruct-v0.2. The hyperparameters used for
finetuning are specified in Table 4.

Hyperparameter Values
bf16 True
epochs 2
per device train batch size 1
gpus 4xA40
gradient accumulation steps 16
learning rate 1e-5
weighted decay 0
warmup ratio 0.04
learning rate scheduler trype cosince
tf32 True
model max length 2048

Table 4: Hyperparameters used for RISE

C.2 Inference Hyperparameters

For API-based models, such as GPT-3.5, we directly query the official web API provided by OpenAI.
In the case of open-source models, we utilize FastChat to serve the model as a web API and interact
with the environment through API calls. Serving a 7B model requires a single A100 or A40 GPU. To
control the randomness and length of answers generated by the LLMs, we employ the hyperparameters
specified in Table 5.

Hyperparameters/Description Open-source GPT
temperature 1.0 0.7
top p 1.0 1
max new tokens 1000 512

Table 5: The hyperparameter settings used for generating responses from open-source and the GPT
models.

C.3 Datasets

The GSM8K dataset consists of 7,473 problems in the training portion and 1,319 problems in the
testing portion. Similarly, the MATH dataset is divided into 7,500 problems for training and 1,000
problems for testing. The training portions of both datasets are used to generate trajectories in each
iteration of the RISE method, while the testing portions are held out for evaluating the performance
of the models. Additionally, the SVAMP dataset, containing 1,000 problems, is used solely for
evaluation purposes to demonstrate the generalizability of our method.

For generating training trajectories, at iteration i, the current model is rolled out for a maximum of i
steps. Subsequently, an expert model, such as GPT-3.5, is employed to take the conversation history
between the current model and the environment and sample 5 responses. Among these responses, the
one with the highest reward is chosen, with arbitrary tie-breaking in case of multiple responses with
the same highest reward.

C.4 Prompts used for seeding RISE on the GSM8K and MATH tasks

Here we show the prompt we used for data generation and model evaluation:

21

https://github.com/lm-sys/FastChat
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://github.com/lm-sys/FastChat

RISE

System: You are an AI language model designed to assist with math problem-solving. In this
task, I will provide you with math problems. Your goal is to solve the problem step-by-step,
showing your reasoning at each step. After you have finished solving the problem, present your
final answer as \boxed{Your Answer}.

<One-shot Example 13>

User: <Query>

Agent: <Answer>

User: The answer is incorrect. Please try again. Here’s the question: <Query>

Agent: <Answer>

· · ·

Figure 12: Prompt for RISE: We follow the standard pipeline of math problem solving, prompt the
LLM to solve the problem and retry untill exceeds the maximum number of turns

C.5 One-shot Example

RISE One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20
students take both mathematics and physics. How many drama club students take neither
mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor
physics, we first need to determine the number of students taking only math, only physics, and
both math and physics.

Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and
20 students take both mathematics and physics.

Step 3: To calculate the number of students taking only math, we subtract the number of
students taking both from the total taking math: $36 - 20 = 16$.

Step 4: Similarly, to calculate the number of students taking only physics, we subtract the
number of students taking both from the total taking physics: $27 - 20 = 7$.

Step 5: Now, to find the number of students taking neither math nor physics, we subtract the
total number of students taking only math, only physics, and both from the total number of
students in the drama club. This gives us $60 - 16 - 7 - 20 = \boxed{17}$ students taking neither.

Answer: \boxed{17}

Figure 13: One-shot Example: Demonstrates how to solve a math problem step-by-step and the
expected answer format.

22

Self-Refine One-shot example

User: Of the 60 students in the drama club, 36 take mathematics, 27 take physics and 20
students take both mathematics and physics. How many drama club students take neither
mathematics nor physics?

Agent: Step 1: To find the number of drama club students who take neither mathematics nor
physics, we first need to determine the number of students taking only math, only physics, and
both math and physics.

Step 2: Out of the 60 students in the drama club, 36 take mathematics and 27 take physics, and
20 students take both mathematics and physics.

Step 3: To calculate the number of students taking only math, we subtract the number of
students taking both from the total taking math: $36 - 20 = 16$.

Step 4: Similarly, to calculate the number of students taking only physics, we subtract the
number of students taking both from the total taking physics: $27 - 20 = 7$.

Step 5: Now, to find the number of students taking neither math nor physics, we add the number
of students taking only math and only physics, then subtract this sum from the total number of
students in the drama club. This gives us $60 - (16 + 7) = \boxed{37}$ students taking neither.

Answer: \boxed{37}
User: There is an error in the solution above because of lack of understanding of the question.
What is the error? To find the error, go through each step of the solution, and check if everything
looks good.

Agent: Step 1: Correct. We need to find the number of students taking neither math nor
physics.

Step 2: Correct. The given information is accurately stated.

Step 3: Correct. The calculation of students taking only math is correct.

Step 4: Correct. The calculation of students taking only physics is correct.

Step 5: Incorrect. The solution adds the number of students taking only math and only physics,
but this does not account for the students taking both subjects. By subtracting this sum from
the total number of students, the solution double-counts the students who take both math and
physics.

User: Now, rewrite the solution in the required format:
Agent: <Same as 13>

Figure 14: One-shot Example: Demonstrates the process of self-critique and error correction based
on the self-critique.

23

	Introduction
	Related Work
	Problem Setup and Preliminaries
	RISE: Recursive Introspection for Self-Improvement
	Converting Single-Turn Problems into a Multi-Turn Markov Decision Process (MDP)
	Learning in the Multi-Turn MDP
	Inference at Deployment Time
	Practical Algorithm and Implementation Details

	When and Why is Self-Improvement Over Turns Possible?
	Experimental Evaluation
	Does RISE improve performance over multiple turns compared to other approaches?
	Does the Performance of RISE Improve with Iterative Training?
	What Data Compositions and Data Quantity are Crucial for RISE?
	Pass@N vs Sequential Sampling via RISE
	Error Analysis of RISE over Turns

	Discussion, Future Directions, and Limitations
	Additional Results
	Complete Comparisons and Discussion: Extended Version of Table 1
	Does the Self-Improvement Strategy Learned by RISE Generalize to Novel Problems?
	Iterative Training with RISE Fits the Training Distribution Flexibly

	Qualitative Examples from RISE
	Experimental Details
	Hyperparameters for Fine-Tuning with RISE
	Inference Hyperparameters
	Datasets
	Prompts used for seeding RISE on the GSM8K and MATH tasks
	One-shot Example

