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Abstract001

Recent advances in reasoning language mod-002
els have witnessed a paradigm shift from short003
to long CoT pattern. Given the substantial004
computational cost of rollouts in long CoT005
models, maximizing the utility of fixed train-006
ing datasets becomes crucial. Our analysis re-007
veals that negative responses contain valuable008
components such as self-reflection and error-009
correction steps, yet primary existing meth-010
ods either completely discard negative sam-011
ples (RFT) or apply equal penalization across012
all tokens (RL), failing to leverage these po-013
tential learning signals. In light of this, we014
propose Behavior Constrained Policy Gradient015
with Negative Sample Augmentation (BCPG-016
NSA), a fine-grained offline RL framework017
that encompasses three stages: 1) sample seg-018
mentation, 2) consensus-based step correct-019
ness assessment combining LLM and PRM020
judgers, and 3) policy optimization with NSA021
designed to effectively mine positive steps022
within negative samples. Experimental re-023
sults show that BCPG-NSA outperforms base-024
lines on several challenging math/coding rea-025
soning benchmarks using the same training026
dataset, achieving improved sample efficiency027
and demonstrating robustness and scalability028
when extended to multiple iterations.029

1 Introduction030

Reasoning capabilities are a critical aspect of eval-031

uating the intelligence of large language mod-032

els (LLMs). Recent advances have witnessed a033

paradigm shift from short to long chain-of-thought034

(CoT) reasoning, particularly after the release of035

OpenAI’s o1 series (OpenAI, 2024) and Deepseek036

R1 (Guo et al., 2025). However, generating037

lengthy CoT responses incurs substantial compu-038

tational costs. In the online learning paradigm, the039

periodic rollout process has become the bottleneck040

of post-training system (Luo et al., 2025), signifi-041

cantly reducing training efficiency. Consequently,042

maximizing the utility of fixed training datasets 043

under offline learning paradigm becomes increas- 044

ingly crucial. 045

Motivated by this, a natural question arises: 046

How can we better utilize negative samples, partic- 047

ularly those from long CoT model? Currently, self- 048

improvement algorithms for enhancing LLMs’ 049

reasoning capabilities fall into two categories: re- 050

jection sampling fine-tuning (RFT (Zhang et al.; 051

Tian et al., 2025)) and reinforcement learning (RL 052

(Rafailov et al., 2023; Roux et al., 2025; Team, 053

2025)), yet neither fully exploits the potential of 054

negative samples. For RFT methods, negative sam- 055

ples are entirely discarded. While RL methods like 056

DPO (Rafailov et al., 2023), GRPO (Shao et al., 057

2024), and GPG (Chu et al., 2025) attempt to lever- 058

age negative samples, they simply apply equal pe- 059

nalization to all tokens without fine-grained dis- 060

crimination. 061

We argue that while treating all steps in nega- 062

tive samples as flawed is reasonable for short CoT 063

responses due to their brevity and directness, the 064

situation differs significantly in long reasoning tra- 065

jectories. Even when the final answer is incorrect, 066

many intermediate steps can be valuable (Li et al., 067

2025; Ahmad et al., 2025). As illustrated in Fig- 068

ure 1(a), we observe that model responses often ex- 069

hibit intrinsic behaviors such as verification, error- 070

correction, and self-reflection (Min et al., 2024; 071

Ahmad et al., 2025), with these patterns occurring 072

more frequently than in positive samples, partly 073

due to the typically longer response length of neg- 074

ative samples (Fatemi et al., 2025). Therefore, in 075

the long CoT pattern, simply rejecting all steps of 076

negative samples is not sound, potentially under- 077

mining beneficial reasoning steps. PPO (Schul- 078

man et al., 2017) attempts token-level credit as- 079

signment through value model. Nevertheless, its 080

effectiveness is limited by the exponentially grow- 081

ing action space under the long CoT paradigm, 082

requiring substantial data for accurate token-level 083
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value estimation.084

To better utilize negative samples, we propose085

a fine-grained offline RL framework named Be-086

havior Constrained Policy Gradient with Negative087

Sample Augmentation (BCPG-NSA). Our frame-088

work first employs a semantic segmentation model089

to divide negative samples into multiple steps.090

These steps are then evaluated for correctness us-091

ing an LLM judger and/or a process reward model092

(PRM) (Zheng et al., 2024). Finally, we introduce093

a novel token-level policy optimization objective094

that enables fine-grained leveraging of negative095

samples, where the penalization for valuable steps096

is reduced or even reversed to encourage their gen-097

eration, with this adjustment strength controlled098

by the mining coefficient.099

Experimental results demonstrate that BCPG-100

NSA achieves the best performance and improved101

sample efficiency compared to baselines on chal-102

lenging math reasoning benchmarks AIME24103

and AIME25 and o.o.d coding benchmark Live-104

CodeBench. In addition, our ablation studies show105

that the consensus-based LLM-PRM annotation106

approach yields the best results compared to LLM-107

only and PRM-only approaches, indicating the im-108

portance of precise step correctness assessment109

in negative samples. We also demonstrate that110

BCPG-NSA is robust across different mining co-111

efficient values, maintains stability over extended112

training epochs, and scales effectively to multiple113

iterations. Our contributions are summarized as114

follows:115

• To the best of our knowledge, we are among116

the first to empirically validate the value of117

negative samples through experimental analy-118

sis and case studies, and propose mining cor-119

rect reasoning steps from these samples to en-120

hance long CoT reasoning.121

• We introduce BCPG-NSA, an effective of-122

fline RL training framework that integrates123

reasoning step segmentation, consensus-124

based LLM-PRM annotation, and a policy125

optimization objective with negative sample126

augmentation. Across several challenging127

math and coding benchmarks, BCPG-NSA128

achieves improved performance and sample129

efficiency compared with baselines.130

• We conduct extensive analyses to demon-131

strate the robustness and scalability of BCPG-132

NSA, providing insights into its effectiveness133

under various conditions. 134

2 Related Work 135

Long Chain-of-Thought Reasoning Language 136

Models LLMs have demonstrated remarkable rea- 137

soning capabilities in complex tasks. CoT is one 138

of the significant methods to encourage and en- 139

hance the reasoning ability of LLMs, which guides 140

LLMs to break down problems and solve them 141

step by step. OpenAI o1 (OpenAI, 2024) is the 142

first to introduce inference time scaling law, which 143

employs large-scale RL to enable autonomous op- 144

timization of CoT during training and overcome 145

challenging tasks by generating more reasoning 146

tokens. Several efforts (Team, 2024a; Guo et al., 147

2025; Team, 2025; Zhang et al., 2025a; Hu et al., 148

2025) have successfully replicated the inference 149

time scaling law, demonstrating the powerful ca- 150

pabilities of this new inference paradigm. 151

Process Reward Models in Mathematical 152

Reasoning Mathematical reasoning in LLMs has 153

made significant strides with the introduction of 154

reward models. Reward models are primarily 155

divided into two categories: Outcome Reward 156

Model (ORM) and Process Reward Model (PRM). 157

ORMs only score the final answer of the LLMs’ 158

responses, while PRMs assign scores to each rea- 159

soning step, providing granular feedback. Conse- 160

quently, PRMs can not only guide search (Park 161

et al., 2024b; Zhang et al.) but also offer dense 162

rewards in RL training (Gao et al., 2024). 163

Benefits from Negative Data Many RL meth- 164

ods for LLMs, such as GRPO (Shao et al., 2024) 165

and GPG (Chu et al., 2025), consider every step 166

in a negative sample incorrect, and use the same 167

strength to push down the likelihood of all to- 168

kens in incorrect responses. Prior research on 169

learning from negative samples primarily focus on 170

training data construction. Recent works on DPO 171

(Rafailov et al., 2023; Setlur et al., 2024) proposes 172

constructing training pairs with shared prefixes be- 173

tween positive and negative samples, aiming to im- 174

prove the model’s decision-making at critical in- 175

termediate steps. Another research targeting SFT 176

data construction (Wang et al., 2024) additionally 177

add a prefix to indicate whether the current gener- 178

ation is a successful trajectory, helping the model 179

better distinguish between correct and incorrect re- 180

sponses. The most closely related work (Li et al., 181

2024b) leverages valuable signals from negative 182

samples in short CoT reasoning, through a special- 183
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ized dual-LoRA framework for model distillation.184

Under the long CoT paradigm, incorrect and cor-185

rect steps more frequently alternate throughout the186

reasoning process. Therefore, fine-grained mining187

of the value of negative samples is a promising di-188

rection.189

3 Preliminary Analysis: The Value of190

Negative Samples191

In this section, we investigate two fundamental192

questions: 1) Can supervised fine-tuning on neg-193

ative samples bring performance benefits? and if194

so, 2) To what extent can these benefits be real-195

ized?196

Specifically, we construct two distinct training197

datasets from the open-source R1 dataset (Yang198

et al., 2025): SFT-pos and SFT-neg, to compare199

their respective performance gains when train-200

ing the base model Qwen2.5-14B-Base (Team,201

2024b). Both datasets share identical prompts202

and contain an equal number of samples (19,000203

each). The key difference lies in their composi-204

tion: SFT-pos consists exclusively of responses205

with correct final answers, while SFT-neg contains206

only responses with incorrect answers.207

AIME24 AIME25

Qwen2.5-14B-Instruct 10.00 13.33
- trained on SFT-pos 52.75 39.42
- trained on SFT-neg 41.67 34.00

Table 1: Performance improvement under different
training set curations.

We draw two conclusions from the results pre-208

sented in Table 1. Firstly, fine-tuning on nega-209

tive samples yields substantial performance gains,210

with the SFT-neg model outperforming the base211

Qwen2.5-14B-Instruct by 31.67% on AIME24.212

This suggests the presence of valuable compo-213

nents within incorrect responses. Through hu-214

man investigation, we find that long CoT models215

often exhibit self-reflection and propose alterna-216

tive problem-solving approaches during reasoning.217

We illustrate a representative example in Figure 1218

(with complete details provided in Section A).219

Secondly, while SFT-neg significantly im-220

proves upon the base model, it still underperforms221

compared to SFT-pos by 5-10% across bench-222

marks, due to the presence of flawed reasoning223

steps in negative samples. This observation mo-224

tivates us to design a mechanism that efficiently 225

distinguishes and leverages valuable steps within 226

negative samples to maximize performance gains. 227

4 Method 228

Our method BCPG-NSA encompasses three 229

stages: thinking process segmentation, consensus- 230

based step correctness annotation, and policy opti- 231

mization with negative sample augmentation. The 232

overall framework of BCPG-NSA is shown in Fig- 233

ure 1(b). 234

4.1 Segmenting Thinking Process into Steps 235

To enable a more fine-grained analysis of the neg- 236

ative sample thinking process, we first need to 237

segment the thinking process into multiple steps. 238

Previous approaches to segment the CoT process 239

mainly fall into two categories: rule-based meth- 240

ods, such as splitting using double line breaks 241

(Zhang et al.), and automatic segmentation using 242

LLMs (Zhang et al., 2025b; Zheng et al., 2024). 243

Rule-based methods can lead to semantic disconti- 244

nuity, such as incomplete reasoning steps or mix- 245

ing multiple independent logical segments within 246

a single step. On the other hand, automatic seg- 247

mentation with LLMs may result in content loss 248

after segmentation. Therefore, we choose to use 249

the SAT model (Frohmann et al., 2024). The SAT 250

model not only automatically segments text based 251

on semantics, but also ensures consistency of the 252

text content before and after segmentation. We use 253

a binary search method to find an appropriate seg- 254

mentation threshold and make the number of steps 255

after segmentation within a reasonable range. 256

Specifically, for each prompt x, we use a fixed 257

reference policy πref to generate G responses 258

{yi}Gi=1. The rollout process of πref that auto- 259

regressively generates the i-th response yi can be 260

formulated as: 261

πref(yi|x) =
|yi|∏
j=1

πref(yi,j |x, yi,<j), (1) 262

where yi,j denotes the j-th token in response yi. 263

Given the ground truth y∗, the correctness of yi 264

is labeled by a verifier (e.g., the well-established 265

math_verify (Kydlíek and Face, 2025) for math 266

reasoning tasks), yielding a binary reward ri = 267

r(x, yi, y
∗) ∈ {0, 1}. For negative samples (where 268

ri = 0), each response yi is segmented by the SAT 269
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Question: 
What is the 
sum of all of 
the multiples 
of 7 between 
100 and 200?

Segmented reasoning steps 

offline RL 
training data

offline RL 
training data

Segmentation 
by SAT

Consensus
filtering

LLM judger 
annotation

PRM judger 
annotation

Ro
llo

ut

+1

-1

+1

-� -1 -1

RFT BCPG BCPG-NSA

(a) (b)

training 
data

Step1: Hmm, okay. Let me think about this step by 
step. ... Wait, arithmetic series? Yes, because each 
term increases by a constant difference, which in this 
case is 7. So, I can use the formula for the sum of an 
arithmetic series, S = n/2 ∗ (first term + last term) ... 
————————————————————————
Human Judge Result: 
Reason: Identifies to use the correct formula.

Step2: So, that would be S = 14/2 ∗ (105 + 196). 
Calculating that, 14 divided by 2 is 7, and 105 plus 196 
is 299. So, 7 multiplied by 299. Hmm, 7*300 is 2100, so 
7*299 is 2100 minus 7, which is 2093. 
————————————————————————
Human Judge Result: 
Reason: Miscalculates the sum by incorrectly adding 
the first and last terms (105 + 196 = 299 instead of 301).

Step3: Wait, maybe I miscalculated one of the sums. 
Let me compute the sum from 105 to 196 manually. ...
105 + 112 + 119 + ... = 2107.
————————————————————————
Human Judge Result: 
Reason: Correctly makes reflection and verifies the 
sum as 2107 through a different method.

Step4. ... We then use the arithmetic series sum 
formula: S = n/2 ∗ (first term + last term). Substituting 
the values, we get: S =14/2 * (105+196)= 7 * 299 = 
2093. Thus, the answer is 2093.
————————————————————————
Human Judge Result: 
Reason: Concludes with the incorrect sum of 2093 
instead of the correct 2107.

Negative sample 
augmentation

-�

Positive/Negative response 
labeled by verifier

Positive steps annotated by 
LLM and/or PRM judger

�

��

Augmented steps (strength 
controlled by � ∈ [−1,1])

Figure 1: (a): Case study: presence of correct steps (via human judgments) within incorrect response. (b): Overall
framework of BCPG-NSA.

model into K consecutive steps:270

yi
SAT
= STEPi,1||STEPi,2|| · · · ||STEPi,K ,

STEPi,k ≜ yi,startk || · · · ||yi,endk ,
(2)271

where || is the concatenation operator, and startk272

and endk represent the indices of the starting and273

ending tokens of the k-th step, respectively.274

4.2 Consensus-based Annotation by LLM275

and PRM Judgers276

After performing segmentation on the negative277

samples, we use a LLM judger and a discrimina-278

tive PRM to jointly annotate each step in the rea-279

soning process as correct/incorrect.280

In designing the LLM judger, we first estab-281

lish a taxonomy of context-agnostic reasoning er-282

rors, encompassing calculation mistakes, deriva-283

tion errors, logical flaws, problem misinterpre-284

tations, and similar issues. However, our pre-285

liminary experiments reveal that these context-286

agnostic rules alone are insufficient for compre-287

hensive evaluation. This limitation stems from the288

distinctive characteristic of long CoT LLMs: their289

capability to engage in self-reflection and error-290

correction during the reasoning process, often re-291

sulting in alternating sequences of correct and in-292

correct steps. Consequently, the assessment of a293

step’s correctness cannot be performed indepen- 294

dently, but rather depends on its relationship with 295

the preceding context. 296

Therefore, we augment the annotation criteria 297

with two context-aware rules: 298

Definition 1 (Error Propagation). A reasoning 299

step is classified as incorrect if it satisfies two 300

conditions: 1) it follows an incorrect step, or 2) 301

it continues the reasoning based on the previous 302

step without introducing new problem-solving ap- 303

proaches. 304

Definition 2 (Error Termination). A reasoning 305

step is classified as correct if it follows an in- 306

correct step and either: 1) successfully rectifies 307

the previous error, or 2) introduces an alternative 308

problem-solving approach. 309

Formally, we inject these annotation criteria 310

into the prompt template (see Figure 6) and in- 311

struct the LLM judger ϕLLM(·) to assess the cor- 312

rectness of each step: 313

ILLMi,k = ϕLLM(x, STEPi,:k) ∈ {0, 1}, (3) 314

where ILLMi,k = 1 denotes STEPi,k is annotated as 315

correct. 316

Similarly, we use a discriminative PRM 317

ϕPRM(·) to annotate each reasoning step. The 318

PRM first predicts the score σi,k for STEPi,k, and 319
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then applies a threshold λ to determine the annota-320

tion outcome:321

σi,k = ϕPRM(x, STEPi,:k) ∈ [0, 1],

IPRM
i,k = 1σi,k>λ ∈ {0, 1},

(4)322

where 1(·) is the indicator function. In our exper-323

iments, λ is determined through grid search, with324

the selection criterion being to maximize the con-325

sistency between LLM and PRM annotating re-326

sults.327

Finally, we introduce a consensus filtering ap-328

proach, in which a reasoning step is considered329

correct only when both the LLM judger and PRM330

deem it correct:331

Ii,k = ILLMi,k ∧ IPRM
i,k . (5)332

4.3 Policy Optimization with Negative333

Sample Augmentation334

Drawing from classical offline RL work (Park335

et al., 2024a), we propose a novel objective func-336

tion that combines policy improvement with be-337

havior constraint (i.e., KL regularization), while338

introducing a mechanism to leverage valuable339

components within negative samples. Our ob-340

jective function BCPG-NSA is formulated as fol-341

lows:342

JBCPG−NSA(πθ) =343

1

G

G∑
i=1

1

|yi|

[ |yi|∑
j=1

logπθ(yi,j |x, yi,<j)βi,j(ri − r)344

− τ

2

(
log

πθ(yi|x)
πref(yi|x)

)2]
, (6)345

where r = mean({ri}Gi=1) is the average reward346

for the group, τ is the behavior constraint factor.347

Notably, the value of βi,j is given by348

βi,j =


β if yi,j ∈ STEPi,k and Ii,k = 1

and ri = 0

1, otherwise,

(7)349

where the “if” condition indicates that token yi,j350

appears in a correct step within an incorrect re-351

sponse. The mining coefficient β ∈ [−1, 1] is a hy-352

perparameter that controls the degree of augmenta-353

tion for correct steps within negative samples. The354

smaller values of β indicate stronger augmenta-355

tion of correct steps in negative samples, and in-356

tuitively, the penalization for valuable tokens is re-357

duced (when β ∈ [0, 1)) or even reversed to en-358

courage their generation (when β < 0). Specifi-359

cally, when β = 1, BCPG-NSA reduces to vanilla360

BCPG, which penalizes all tokens in negative sam- 361

ples equally. In this case, the objective function re- 362

sembles the loss formulation of Kimi k1.5 (Team, 363

2025). A detailed procedure of BCPG-NSA is il- 364

lustrated in Algorithm 1. 365

Algorithm 1 BCPG-NSA (single iteration)

Input: Reference model πref
/* Offline training data construction */
for x in prompt set do

Rollout by Equation (1)
if ri = 0 then

Response segmentation by Equation (2)
Step annotation by Equation (3) (4) (5)

end if
end for
/* Training */
Initialize policy model πθ ← πref , mining coef-
ficient β
for epoch in 1, 2, · · · ,Epochs do

Update πθ by Equation (6)
end for
Output: πθ

5 Experiments 366

5.1 Experiment Setting 367

5.1.1 Training Dataset Construction 368

For the offline RL training dataset, we build the 369

prompt seed set based on open-source data col- 370

lected by the Open-Reasoner-Zero project (Hu 371

et al., 2025), comprising AIME (up to 2023), 372

OpenR1-Math-220k (Ben Allal et al., 2025) and 373

various other open-source datasets (Li et al., 374

2024a; Lambert et al., 2025; Hendrycks et al., 375

2021). During data filtering, we exclude multiple- 376

choice and true/false questions to prevent cases 377

where the model might occasionally derive the 378

correct answer through incorrect reasoning steps, 379

which could result in false positives and introduce 380

noise into the training process. 381

Subsequently, we employ DeepSeek-R1-Distill- 382

Qwen-14B (DS-R1-14B) to generate responses. 383

For each question, we sample 32 responses to en- 384

sure sufficient coverage of the response space. We 385

set the maximum response length as 22,000 tokens. 386

The sampling temperature is set to 0.7 to maintain 387

a balance between response diversity and quality. 388

After generation, we use the open-source veri- 389

fier tool math_verify (Kydlíek and Face, 2025) 390

to check whether the model’s final answer is cor- 391
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Question
Count

Total
Samples

Negative
Samples

Total
Tokens

2069 66208 14896 470M

Table 2: Statistics of the offline RL dataset.

rect, and then remove questions for which all re-392

sponses are either entirely correct or entirely in-393

correct, following (Wen et al., 2025). After filter-394

ing, the statistics of our final offline RL dataset are395

summarized in Table 2.396

5.1.2 Evaluation Details397

For evaluation, we choose the highly challeng-398

ing benchmarks AIME24 (MAA, 2024) and399

AIME25, along with MATH500 (Hendrycks et al.,400

2021), to demonstrate the model’s mathemati-401

cal reasoning performance. We also incorporate402

LiveCodeBench (Jain et al., 2024) (2024/8/1 -403

2025/2/1) to show the generalization capabilities404

to coding tasks. Following DeepSeek-AI (Guo405

et al., 2025), long CoT models are commonly de-406

ployed with a sampling temperature. In our evalu-407

ation, we set the temperature to 0.7 (identical to408

the temperature used in rollout). We report the409

pass@1 averaged over 40 runs on AIME24 and410

AIME25. For MATH500 and LiveCodeBench, we411

average over 10 runs, as these benchmarks exhibit412

relatively small variance between test runs. This413

ensures statistical robustness and mitigates ran-414

domness in sampling, better reflecting the model’s415

true capabilities.416

5.1.3 Models417

Base Model. We initialize our training from the418

DS-R1-14B. The reasons for choosing it as the419

starting model are as follows: 1) DS-R1-14B has420

undergone large-scale SFT training and exhibits421

a stable long CoT pattern with frequent alterna-422

tion between correct and incorrect steps, making423

it an ideal starting model to validate the effective-424

ness of NSA. 2) Based on R1 results (Guo et al.,425

2025), the 14B model achieves comparable perfor-426

mance to the 32B variant, offering more generaliz-427

able findings than the 7B model while being more428

computationally efficient than the 32B model.429

LLM Judger. We employ Claude-3.7-430

Sonnet(thinking) (Anthropic, 2025), one of the lat-431

est slow-thinking models, as the judger model.432

PRM. We utilize Qwen-Math-PRM-7B (Zhang433

et al., 2025b) as the PRM for step-wise annotation.434

This choice is motivated by its outstanding perfor- 435

mance on the ProcessBench (Zheng et al., 2024) 436

Benchmark, demonstrating its robust capability in 437

process evaluation tasks. We set the threshold λ as 438

0.6. 439

5.1.4 Baselines 440

We choose the following methods as baselines: 441

• RFT (Yuan et al., 2023): It exclusively uti- 442

lizes positive samples from the offline RL 443

dataset and updates the model parameters 444

through SFT loss. 445

• DPO (Rafailov et al., 2023): It is a prominent 446

approach in offline RL settings and directly 447

optimizes the preference objectives without 448

explicit reward modeling. This method 449

has demonstrated remarkable effectiveness in 450

preference-based learning tasks. 451

• TOPR (Roux et al., 2025): As an offline 452

RL variant, it combines truncated importance 453

sampling for negative samples with RFT- 454

style optimization for positive samples, and 455

removes KL regularization. 456

• GRPO-offline (Shao et al., 2024): It applies 457

the GRPO loss consistently throughout the of- 458

fline RL training process, eliminates the need 459

for periodic online data resampling. 460

The training details of all algorithms can be 461

found in Section C. 462

5.2 Main Results 463

Negative samples play a crucial role in enhanc- 464

ing the performance of long CoT model. As 465

shown in Table 3, all offline RL methods consis- 466

tently outperform RFT. Notably, RFT performs 467

even worse than the original DS-R1-14B, exhibit- 468

ing a significant 7.5% drop on AIME24. These 469

results indicate that positive samples alone are in- 470

sufficient to improve a distilled model that has al- 471

ready undergone SFT on a large-scale dataset. The 472

negative gradient from negative samples can re- 473

duce the probability of wrong reasoning content, 474

which is crucial for advancing model performance 475

in long CoT reasoning. We hypothesize that the 476

reason for the decline in RFT performance is that 477

a substantial proportion of questions in our train- 478

ing dataset have already been utilized in the dis- 479

tillation phase. For the same questions, the an- 480

swers generated by DS-R1-14B are not as good as 481
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DS-R1-14B RFT DPO TOPR GPRO-offline BCPG BCPG-NSA

AIME24 70.58 62.92 69.83 69.75 70.50 70.50 72.17
AIME25 49.58 50.75 49.00 52.67 50.90 52.00 54.42

MATH500 91.80 92.20 92.88 93.12 92.08 93.98 93.36
LiveCodeBench 52.40 52.69 51.61 52.90 52.97 53.26 53.84

Average 66.09 64.64 65.83 67.11 66.61 67.44 68.45

Table 3: Evaluation results of BCPG-NSA and baselines on different benchmarks (β is set to 0.5 for BCPG-NSA).

those generated by R1. Therefore, during RFT, the482

model memorizes the poorer responses and forgets483

the better ones from the distillation phase.484

Vanilla BCPG sets a competitive foundation.485

Despite its simplicity, BCPG achieves a 1.4% av-486

erage improvement across all benchmarks com-487

pared to DS-R1-14B, outperforming other offline488

RL methods. Given its superior performance, we489

select BCPG as the foundation to validate the ef-490

fectiveness of NSA.491

Negative sample augmentation leads to sig-492

nificant performance gain. Compared to BCPG,493

BCPG-NSA achieves a remarkable 2.5% improve-494

ment on AIME25 and a 1% improvement on aver-495

age performance. Since DS-R1-14B already per-496

forms very well on the AIME24 benchmark, previ-497

ous work (Wen et al., 2025) has shown that achiev-498

ing further improvements on AIME24 is quite499

challenging. However, our BCPG-NSA algorithm500

successfully achieves an accuracy exceeding 72%.501

These results validate that the correct steps within502

negative samples are of great value and can signif-503

icantly enhance the models reasoning ability.504

6 Ablation Studies505

6.1 Different Annotation Methods506

In this section, we investigate the impact of the507

annotation quality on the performance of BCPG-508

NSA. We conduct experiments where negative509

samples are annotated using PRM only and the510

LLM judger only, respectively, and compare with511

the performance obtained by consensus filtering512

that integrates both LLM and PRM annotations.513

Table 4 shows the number of tokens in correct514

steps and incorrect steps among negative samples515

under different annotation methods. In all three516

experiments mentioned above, β is set to 0.5.517

Results are demonstrated in Table 5. Com-518

pared to the base model DS-R1-14B and the519

vanilla BCPG, negative sample augmentation con-520

sistently improves performance across all 3 anno-521

tation methods, demonstrating the robustness of 522

NSA’s benefits regardless of the choice of judgers. 523

Moreover, the LLM-PRM approach, despite min- 524

ing the smallest number of correct tokens (only 525

26M in total) from negative samples, achieves 526

the best performance. We hypothesize that the 527

consensus-based filtering implements more strin- 528

gent selection criteria, ensuring higher quality of 529

retained correct steps and avoiding potential false 530

positives from individual judgers. 531

Correct tokens Incorrect tokens

PRM-only 38M 80M
LLM-only 65M 53M
LLM-PRM 26M 92M

Table 4: Number of tokens in correct/incorrect steps of
negative samples under different annotation methods.

AIME24 AIME25 Avg.

DS-R1-14B 70.58 49.58 60.08
BCPG 70.50 52.00 61.25

PRM-only 70.58 55.58 63.08
LLM-only 72.17 53.33 62.75
LLM-PRM 72.17 54.42 63.30

Table 5: Performance under different annotation meth-
ods.

6.2 Different Values of Mining Coefficient 532

Mining coefficient β is the key hyperparameter 533

in NSA, used to control the strength of the aug- 534

mentation. Therefore, we test the performance 535

of the model under different β values within the 536

range [−1, 1] to demonstrate the robustness of 537

NSA. When β = 1, BCPG-NSA reduces to the 538

vanilla BCPG method. 539

Results in Figure 2 demonstrate that: 1) As β de- 540

creases (indicating more aggressive negative sam- 541

ple augmentation), BCPG-NSA’s performance ex- 542
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Figure 2: Average performance of AIME24 and
AIME25 across different β values.

hibits an initial increase followed by a decline. 2)543

BCPG-NSA outperforms vanilla BCPG across a544

wide range of β values, including at the relatively545

aggressive setting of β = −0.5. This robust per-546

formance across different β values suggests that547

NSA is not overly sensitive to this hyperparameter548

and can consistently deliver performance improve-549

ments.550

7 Further Analysis551

7.1 Training Dynamics552

In offline RL, the data in the training set is of-553

ten used multiple times for updates. Therefore,554

we track the average performance of AIME24555

and AIME25 under different update steps dur-556

ing training. We conduct experiments with β ∈557

[0.25, 0.5, 0.75]. The experimental results in558

Table 3 show that as the number of training559

epochs increases, the models performance im-560

proves steadily. Therefore, conducting multiple561

rounds of updates is essential to fully leverage the562

rollout data and achieve higher sample efficiency.563

7.2 The Performance of Multiple Iterations564

To investigate the scalability of our proposed565

method when extended to multiple training itera-566

tions, we further evaluate both BCPG-NSA and567

BCPG in a second iteration. Given the enhanced568

model capabilities after the first iteration, we sam-569

ple 1,000 problems from the 13k hard dataset (Hu570

et al., 2025) derived from the Open-Reasoner-Zero571

project for the second iteration. Using the model572

checkpoint from the end of iteration 1, we per-573

form rollouts on these problems and generate 32574

responses per problem. As shown in Table 6,575

Figure 3: Average performance of AIME24 and
AIME25 under different update steps (single iteration).

BCPG-NSA achieves an additional 1.3% improve- 576

ment on AIME25 and obtains best average perfor- 577

mance in iteration 2, demonstrating its ability to 578

continuously benefit from multiple iterations. No- 579

tably, BCPG’s performance in iteration 2 remains 580

below that of BCPG-NSA in iteration 1, further 581

validating the effectiveness of NSA. 582

AIME24 AIME25 Avg.

DS-R1-14B 70.58 49.58 60.08

BCPG (iteration 1) 70.50 52.00 61.25
BCPG-NSA (iteration 1) 72.17 54.42 63.30

BCPG (iteration 2) 71.42 53.42 62.42
BCPG-NSA (iteration 2) 72.00 55.75 63.88

Table 6: Performance under multiple iterations.

8 Conclusion 583

In this paper, we present BCPG-NSA, a novel of- 584

fline RL framework designed to effectively lever- 585

age valuable components within negative samples 586

for LLMs’ long CoT reasoning. Unlike existing 587

methods that either discard negative samples or ap- 588

ply equal penalization, our approach enables fine- 589

grained treatment of negative samples through 590

three key components: semantic step segmenta- 591

tion, consensus-based step correctness assessment, 592

and policy optimization with negative sample aug- 593

mentation. Experimental results on challenging 594

reasoning benchmarks demonstrate that BCPG- 595

NSA achieves superior performance, and exhibits 596

great robustness and scalability when extended to 597

multiple iterations. 598
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9 Limitations599

Although our proposed negative sample augmenta-600

tion framework has demonstrated its effectiveness601

on multiple challenging mathematical and code602

reasoning benchmarks, there are still several lim-603

itations to be addressed. 1) More fine-grained604

credit assignment. Currently, our method assigns605

equal credit to all correct steps in negative sam-606

ples. A potential improvement would be to enable607

LLM or PRM judger to output continuous values608

instead of binary decisions, which could then be609

used to compute a weighted final score, allowing610

for more precise credit assignment for each step.611

2) While the consensus-based LLM-PRM annota-612

tion method achieves strong performance, the an-613

notation process could be optimized by training a614

dedicated model on the labeled data, potentially615

improving both efficiency and speed. These im-616

provements will be explored in future work.617

References618

Wasi Uddin Ahmad, Sean Narenthiran, Somshubra619
Majumdar, Aleksander Ficek, Siddhartha Jain, Jo-620
celyn Huang, Vahid Noroozi, and Boris Ginsburg.621
2025. Opencodereasoning: Advancing data dis-622
tillation for competitive coding. arXiv preprint623
arXiv:2504.01943.624

Anthropic. 2025. Claude 3.7 sonnet. Accessed: 2025.625

Loubna Ben Allal, Lewis Tunstall, Anton Lozhkov,626
Elie Bakouch, Guilherme Penedo, Gabriel Martín627
Blázquez, and Hynek Kydlicek. 2025. Open r1:628
Evaluating llms on uncontaminated math competi-629
tions. https://huggingface.co/blog/open-r1.630
Online resource.631

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei,632
and Yong Wang. 2025. Gpg: A simple and strong633
reinforcement learning baseline for model reasoning.634
arXiv preprint arXiv:2504.02546.635

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and636
Kartik Talamadupula. 2025. Concise reason-637
ing via reinforcement learning. arXiv preprint638
arXiv:2504.05185.639

Markus Frohmann, Igor Sterner, Ivan Vulić, Benjamin640
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A Case Study: A negative response that812

incorporates positive steps813

Figure 4 and Figure 5 present a detailed case to814

more specifically demonstrate the results of seg-815

mentation and annotation of the negative samples.816

Model’s response is segmented into 15 steps. The817

content field contains the model’s reasoning pro-818

cess in each step. A score of 1 and 0 indicate the819

step is correct and incorrect, respectively. The rea-820

son field provides the rationale for the scoring.821

B Prompt Template for LLM Judger822

The prompt template for LLM judger in Section823

5.1.3 is shown in Figure 6.824

C Training Details825

The detailed hyperparameters of the RFT method826

are shown in Table 7.827

Parameter Value

Max Learning Rate 2.5× 10−6

Min Learning Rate 1× 10−7

Warmup Fraction 0.01
Epochs 6
Batch Size 64
Seq Length 32k

Table 7: Training hyperparameters of RFT.

For other RL methods, the shared hyperparame-828

ter settings are shown in Table 8. All experiments829

are conducted using 64 NVIDIA H800/H100830

GPUs. The training of BCPG-NSA takes approxi-831

mately 14 hours.

Parameter Value

Max Learning Rate 5× 10−7

Min Learning Rate 2.5× 10−7

Epochs 8
Batch Size 512
Seq Length 32k

Table 8: Training hyperparameters of offline RL meth-
ods.

832

For both the BCPG and BCPG-NSA, τ is set to833

1×10−3. For the DPO algorithm (Equation 8), we834

set βDPO to 0.5. 835

JDPO(πθ;πref) = −E(x,yw,yl)∼D

[
836

log σ

(
βDPO

(
log

πθ(yw | x)
πref(yw | x)

(8) 837

− log
πθ(yl | x)
πref(yl | x)

))]
(9) 838

For the objective of TOPR algorithm (Equation 839

10), the upper bound of the clip a is set to 1, and 840

the lower bound b is set to 0. 841

JTOPR(πθ) = −Ey∼πref

[
ρ(x, y) logπθ(y|x)

]
.

(10) 842

In the equation above, ρ(x, y) is defined as: 843

ρ(x, y) =


[

πθ(y|x)
πref (y|x)

]a
b
, if r(x, y, y∗) < 0

1, otherwise.
(11) 844

For the GRPO algorithm (Equation 12), we set 845

ϵ = 0.2 and βGRPO = 1× 10−3. 846

JGRPO(πθ) = −Ex∼D,{yi}Gi=1∼πref

[
847

1

G

G∑
i=1

(
min

( πθ(yi|x)
πref(yi|x)

Ai, 848

clip(
πθ(yi|x)
πref(yi|x)

), 1− ϵ, 1 + ϵ
)
Ai

)
849

− βGRPODKL(πθ||πref)
]

(12) 850
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Problem: What is the sum of all of the multiples of 7 between 100 and 200?
Solution:

• Step 1

– Content: Hmm, okay. Let me think about this step by step. Maybe I can start by
recalling how to find the sum of an arithmetic series because multiples of 7 should
form an arithmetic sequence. Wait, arithmetic series? Yes, because each term
increases by a constant difference, which in this case is 7. So, I can use the formula
for the sum of an arithmetic series. ... Then, dividing both sides by 7, I get 13 = n -
1. Adding 1 to both sides, n = 14. So, there are 14 terms in this sequence.

– Score: 1.
– Reason: Correctly identifies the first term (105), last term (196), and number of

terms (14) in the arithmetic sequence.

• Step 2

– Content: Wait, let me verify that. Let’s list out some terms to be sure. Starting at
105: 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196. Yeah,
that’s 14 terms. Okay, so n = 14. Now, plugging these values into the sum formula:
S = n/2 ∗ (first term + last term). So, that would be S = 14/2 ∗ (105 + 196).
Calculating that, 14 divided by 2 is 7, and 105 plus 196 is 299. So, 7 multiplied by
299.Hmm, 7*300 is 2100, so 7*299 is 2100 minus 7, which is 2093.Wait, really? ...

– Score: 0.
– Reason: Miscalculates the sum by incorrectly adding the first and last terms (105 +

196 = 299 instead of 301) and incorrectly computes the sum up to 200 using the
wrong first term (105 instead of 7).

• Step 3

– Content: Wait, that’s a different number. So, which one is correct? ...
Alternatively, since all these numbers form an arithmetic progression, I can use the
formula again. So, S = n/2 ∗ (first term + last term). So, n is 14, first is 105, last
is 196. So, 14/2 is 7, times (105 + 196) is 7*299=2093. ...

– Score: 0.
– Reason: Continues based on STEP 2s errors (299 instead of 301 and incorrect sum

up to 200) without correction or a new correct approach.

• Step 4

– Content: Wait, that’s a different number. So, which one is correct? ...
Alternatively, since all these numbers form an arithmetic progression, I can use the
formula again. So, S = n/2 ∗ (first term + last term). So, n is 14, first is 105, last
is 196. So, 14/2 is 7, times (105 + 196) is 7*299=2093. ...

– Score: 0.
– Reason: Continues based on STEP 2s errors (299 instead of 301 and incorrect sum

up to 200) without correction or a new correct approach.

Figure 4: An example of negative response that incorporates positive steps (part 1).
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• Step 5

– Content: ... Wait, maybe I miscalculated one of the sums. Let me compute the
sum from 105 to 196 manually, but that would be time-consuming, but let me try a
few terms. 105 + 112 + 119 + 126 + 133 + 140 + 147 + 154 + 161 + 168 + 175 +
182 + 189 + 196. Let me add them step by step. Start with 105. 105 + 112 = 217.
217 + 119 = 336. 336 + 126 = 462. 462 + 133 = 595. 595 + 140 = 735. 735 +
147 = 882. 882 + 154 = 1036. 1036 + 161 = 1197. 1197 + 168 = 1365. 1365 +
175 = 1540. 1540 + 182 = 1722. 1722 + 189 = 1911. 1911 + 196 = 2107.

– Score: 1.
– Reason: Correctly verifies the sum as 2107 through manual addition and the

difference method, despite repeating an earlier incorrect calculation.

• Step 6

– Content: ...... Wait, so the manual addition gives me 2107, same as 2842 - 735.But
when I used the arithmetic series formula, I got 2093. So, that’s the problem. Why
is there a discrepancy? Wait, let me check the arithmetic series formula again. I
think the issue is with the number of terms.Wait, the first term is 105, which is
15*7, and the last term is 196, which is 28*7.

– Score: 1.
– Reason: Correctly applies the alternative arithmetic series formula to get 2107,

confirming the correct sum.

• Step 7

– Content: Wait, earlier when I did the arithmetic series formula correctly, I think I
messed up. Wait, no. If I use S = n/2 ∗ (first + last), which is
(14/2× (105 + 196) = 7× 299 = 2093. But when we I used the correct formula
S = n/2 ∗ (2a+ (n− 1)d), it gave me 2107. Wait, that’s a contradiction. So,
what’s happening here. Wait, perhaps I made an error in the number of terms. ...
So, n=14, first term 105, last term 196. So, the sum is
14/2 ∗ (105 + 196) = 7 ∗ 299 = 2093 ...

– Score: 0.
– Reason: Reintroduces the incorrect sum (2093) alongside the correct 2107 without

resolving the error.

• Step 8-14. A series of deductions based on false premises.

• Step 15

– Content: So, there are 14 terms in this sequence. We then use the arithmetic series
sum formula: S = n

2 × (first term + last term). Substituting the values, we get:
S = 14

2 × (105 + 196) = 7× 299 = 2093. Thus, the sum of all multiples of 7
between 100 and 200 is 2093 .

– Score: 0.
– Reason: Concludes with the incorrect sum of 2093 instead of the correct 2107.

Figure 5: An example of negative response that incorporates positive steps (part 2).
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You are an expert in evaluating mathematical problem-solving processes. The user will pro-
vide a math problem, a step-by-step solution and ground truth. Your tasks are as follows:

1. First, extract a concise final answer (Short Answer) from the ground truth.

2. Then, carefully review the user’s step-by-step solution, assigning a score to each step
(either 0 or 1). For each step, provide a brief explanation of your judgement result.

Scoring rules:

• If a step contains an explicit error, such as a reasoning error, calculation mistake, logical
flaw, or misunderstanding of the problem, it should be scored 0.

• If a step does not contain any errors, score it according to the following rules:

1. Error Propagation: If a previous step contains an error and the current step
continues the analysis based on that error without introducing a new, correct
approach or making a proper correction, the current step should also be scored 0.

2. Error Termination: If a previous step contains an error, but the current step either
corrects the previous mistake or introduces a new and correct approach, the current
step should be scored 1. For example:

– STEP K contains an error.
– STEP K+1 continues the analysis based on the error.
– STEP K+2 corrects the previous error or introduces a new and correct approach.

In this case, STEP K and STEP K+1 should be scored 0, and STEP K+2 should be
scored 1.

Your response format should be in json format:
[

{
"STEP 0": 1(int),
"Reason": xxxx(str)

},
{

"STEP 1": 1(int),
"Reason": xxxx(str)

}
...

]

Note: When analyzing the solution, remain objective and rational. Do not be misled by the
way the user’s solution is described.

Figure 6: Prompt template for LLM judger.
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