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ABSTRACT

Explaining multivariate time series is a compound challenge, as it requires iden-
tifying important locations in the time series and matching complex temporal
patterns. Although previous saliency-based methods addressed the challenges,
their perturbation may not alleviate the distribution shift issue, which is inevitable
especially in heterogeneous samples. We present ContraLSP, a locally sparse
model that introduces counterfactual samples to build uninformative perturba-
tions but keeps distribution using contrastive learning. Furthermore, we incor-
porate sample-specific sparse gates to generate more binary-skewed and smooth
masks, which easily integrate temporal trends and select the salient features par-
simoniously. Empirical studies on both synthetic and real-world datasets show
that ContraLSP outperforms state-of-the-art models, demonstrating a substantial
improvement in explanation quality for time series data. The source code is avail-
able at https://github.com/zichuan-liu/ContraLSP.

1 INTRODUCTION

Providing reliable explanations for predictions made by machine learning models is of paramount
importance, particularly in fields like finance (Mokhtari et al., 2019), games (Liu et al., 2023), and
healthcare (Amann et al., 2020), where transparency and interpretability are often ethical and legal
prerequisites. These domains frequently deal with complex multivariate time series data, yet the
investigation into methods for explaining time series models remains an underexplored frontier (Ro-
jat et al., 2021). Besides, adapting explainers originally designed for different data types presents
challenges, as their inductive biases may struggle to accommodate the inherently complex and less
interpretable nature of time series data (Ismail et al., 2020). Achieving this requires the identification
of crucial temporal positions and aligning them with explainable patterns.

In response, the predominant explanations involve the use of saliency methods (Baehrens et al.,
2010; Tjoa & Guan, 2020), where the explanatory distinctions depend on how they interact with
an arbitrary model. Some works establish saliency maps, e.g., incorporating gradient (Sundararajan
et al., 2017; Lundberg et al., 2018) or constructing attention (Garnot et al., 2020; Lin et al., 2020),
to better handle time series characteristics. Other surrogate methods, including Shapley (Castro
et al., 2009; Lundberg & Lee, 2017) or LIME (Ribeiro et al., 2016), provide insight into the predic-
tions of a model by locally approximating them through weighted linear regression. These methods
mainly provide instance-level saliency maps, but the feature inter-correlation often leads to notable
generalization errors (Yang et al., 2022).

The most popular class of explanation methods is to use samples for perturbation (Fong
et al., 2019; Leung et al., 2023; Lee et al., 2022), usually through different styles to
make non-salient features uninformative. Two representative perturbation methods in time
series are Dynamask (Crabbé & Van Der Schaar, 2021) and Extrmask (Enguehard, 2023).
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Figure 1: Illustrating different styles of perturba-
tion. The red line is a sample belonging to class
1 within the two categories, while the dark back-
ground indicates the salient features, otherwise
non-salient. Other perturbations could be either
not uninformative or not in-domain, while ours
is counterfactual that is toward the distribution of
negative samples.

Dynamask utilizes meaningful perturbations to
incorporate temporal smoothing, while Extr-
mask generates perturbations of less sense close
to zero through neural network learning. How-
ever, due to shifts in shape (Zhao et al., 2022),
perturbed time series may be out of distribution
for the explained model, leading to a loss of
faithfulness in the generated explanations. For
example, a time series classified as 1 and its dif-
ferent forms of perturbation are shown in Fig-
ure 1. We see that the distribution of all classes
moves away from 0 at intermediate time, while
the 0 and mean perturbations shift in shape. In
addition, the blur and learned perturbations are
close to the original feature and therefore contain
information for classification 1. It may result in
a label leaking problem (Jethani et al., 2023), as
informative perturbations are introduced. This
causes us to think about counterfactuals, i.e., a
contrasting perturbation does not affect model
inference in non-salient areas.

To address these challenges, we propose a Contrastive and Locally Sparse Perturbations (Con-
traLSP) framework based on contrastive learning and sparse gate techniques. Specifically, our
ContraLSP learns a perturbation function to generate counterfactual and in-domain perturbations
through a contrastive learning loss. These perturbations tend to align with negative samples that are
far from the current features (Figure 1), rendering them uninformative. To optimize the mask, we
employ ℓ0-regularised gates with injected random noises in each sample for regularization, which
encourages the mask to approach a binary-skewed form while preserving the localized sparse expla-
nation. Additionally, we introduce a smooth constraint with a trend function to allow the mask to
capture temporal patterns. We summarize our contributions as below:

• We propose ContraLSP as a stronger time series model explanatory tool, which incorporates coun-
terfactual samples to build uninformative in-domain perturbation through contrastive learning.

• ContraLSP integrates sample-specific sparse gates as a mask indicator, generating binary-skewed
masks on time series. Additionally, we enforce a smooth constraint by considering temporal
trends, ensuring consistent alignment of the latent time series patterns.

• We evaluate our method through experiments on both synthetic and real-world time series datasets.
These datasets comprise either classification or regression tasks and the synthetic one includes
ground-truth explanatory labels, allowing for quantitative benchmarking against other state-of-
the-art time series explainers.

2 RELATED WORK

Time series explainability. Recent literature has delved into the realm of eXplainable Artificial In-
telligence (XAI) for multivariate time series (Bento et al., 2021; Ismail et al., 2020; Zhu et al., 2023).
Among them, gradient-based methods (Shrikumar et al., 2017; Sundararajan et al., 2017; Lundberg
et al., 2018) translate the impact of localized input alterations to feature saliency. Attention-based
methods (Lin et al., 2020; Choi et al., 2016) leverage attention layers to produce importance scores
that are intrinsically based on attention coefficients. Perturbation-based methods, as the most com-
mon form in time series, usually modify the data through baseline (Suresh et al., 2017), gener-
ative models (Tonekaboni et al., 2020; Leung et al., 2023), or making the data more uninforma-
tive (Crabbé & Van Der Schaar, 2021; Enguehard, 2023). However, these methods provide only
an instance-level saliency map, while the inter-sample saliency maps have been studied little in the
existing literature (Gautam et al., 2022). Our investigation performs counterfactual perturbations
through inter-sample variation, which goes beyond the instance-level saliency methods by focusing
on understanding both the overall and specific model’s behavior across groups.
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Model sparsification. For a better understanding of which part of the features are most influential
to the model’s behavior, the existing literature enforcing sparsity (Fong et al., 2019) to constrain the
model’s focus on specific regions. A typical approach is LASSO (Tibshirani, 1996), which selects
a subset of the most relevant features by adding an ℓ1 constraint to the loss function. Based on
this, several works (Feng & Simon, 2017; Scardapane et al., 2017; Louizos et al., 2018; Yamada
et al., 2020) are proposed to employ distinct forms of regularization to encourage the input features
to be sparse. All these methods select global informative features that may neglect the underlying
correlation between them. To cope with it, local stochastic gates (Yang et al., 2022) consider an
instance-wise selector to heterogeneous samples, accommodating cases where salient features vary
among samples. Lee et al. (2022) takes a self-supervised way to enhance stochastic gates that
encourage the model’s sparse explainability meanwhile. However, most of these sparse methods
are utilized in tabular feature selection. Different from them, our approach reveals crucial features
within the temporal patterns of multivariate time series data, offering local sample explanations.

Counterfactual explanations. Perturbation-based methods are known to have distribution shift
problems, leading to abnormal model behaviors and unreliable explanation (Hase et al., 2021; Hsieh
et al., 2021). Previous works (Goyal et al., 2019; Teney et al., 2020) have tackled generating reason-
able counterfactuals for perturbation-based explanations, which searches pairwise inter-class pertur-
bations in the sample domain to explain the classification models. In the field of time series, Delaney
et al. (2021) builds counterfactuals by adapting label-changing neighbors. To alleviate the need for
labels in model interpretation, Chuang et al. (2023) uses triplet contrastive representation learning
with disturbed samples to train an explanatory encoder. However, none of these methods explored
label-free perturbation generation aligned with the sample domain. On the contrary, our method
yields counterfactuals with contrastive sample selection to sustain faithful explanations.

3 PROBLEM FORMULATION

Let {(xi, yi)}Ni=1 be a set of multi-variate time series, where xi ∈ RT×D is a sample with T time
steps and D observations, yi ∈ Y is the ground truth. xi[t, d] denotes a feature of xi in time step t
and observation dimension d, where t ∈ [1 : T ] and d ∈ [1 : D]. We let x ∈ RN×T×D, y ∈ YN be
the set of all the samples and that of the ground truth, respectively. We are interested in explaining
the prediction ŷ = f(x) of a pre-trained black-box model f . More specifically, our objective is to
pinpoint a subset S ⊆ [N × T × D], in which the model uses the relevant selected features x[S]
to optimize its proximity to the target outcome. It can be rewritten as addressing an optimization
problem: argminS L (ŷ, f(x[S])), where L represents the cross-entropy loss for C-classification
tasks (i.e., Y = {1, . . . , C}) or the mean squared error for regression tasks (i.e., Y = R).

To achieve this goal, we consider finding masks m = 1S ∈ {0, 1}N×T×D by learning the samples
of perturbed features through Φ(x,m) = m ⊙ x + (1 −m) ⊙ xr, where xr = φθ1(x) is the
counterfactual explanation obtained from a perturbation function φθ1 : RN×T×D → RN×T×D,
and θ1 is a parameter of the function φ(·) (e.g., neural networks). Thus, existing literature (Fong
& Vedaldi, 2017; Fong et al., 2019; Crabbé & Van Der Schaar, 2021) propose to rewrite the above
optimization problem by learning an optimal mask as

argmin
m,θ1

L (f(x), f ◦ Φ(x,m)) +R(m) +A(m), (1)

which promotes proximity between the predictions on the perturbed samples and the original ones
in the first term, and restricts the number of explanatory features in the second term (e.g., R(m) =
∥m∥1). The third term enforces the mask’s value to be smooth by penalizing irregular shapes.

Challenges. In the real world, particularly within the healthcare field, two primary challenges are
encountered: (i) Current strategies (Fong & Vedaldi, 2017; Louizos et al., 2018; Lee et al., 2022;
Enguehard, 2023) of learning the perturbation φ(·) could be either not counterfactual or out of
distributions due to unknown data distribution (Jethani et al., 2023). (ii) Under-considering the
inter-correlation of samples would result in significant generalization errors (Yang et al., 2022).
During training, cross-sample interference among masks {mi}Ni=1 may cause ambiguous sample-
specific predictions, while local sparse weights can remove the ambiguity (Yamada et al., 2017).
These challenges motivate us to learn counterfactual perturbations that are adapted to each sample
individually with localized sparse masks.
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Figure 2: The architecture of ContraLSP. A sample of features xi ∈ RT×D is fed simultaneously to
a perturbation function φ(·) and to a trend function τ(·). The perturbation function φ(·) uses xi to
generate counterfactuals xr

i that are closer to other negative samples (but within the sample domain)
through contrastive learning. In addition, τ(·) learns to predict temporal trends, which together with
a set of parameters µi depicts the smooth vectors µ′

i. It acts on the locally sparse gates by injecting
noises ϵi to get the mask mi. Finally, the counterfactuals are replaced with perturbed features and
the predictions are compared to the original results to determine which features are salient enough.

4 OUR METHOD

We now present the Contrastive and Locally Sparse Perturbations (ContraLSP), whose overall archi-
tecture is illustrated in Figure 2. Specifically, our ContraLSP learns counterfactuals by means of con-
trastive learning to augment the uninformative perturbations but maintain sample distribution. This
allows perturbed features toward a negative distribution in heterogeneous samples, thus increasing
the impact of the perturbation. Meanwhile, a mask selects sample-specific features in sparse gates,
which is learned to be constrained with ℓ0-regularization and temporal trend smoothing. Finally,
comparing the perturbed prediction to the original prediction, we subsequently backpropagate the
error to learn the perturbation function and adapt the saliency scores contained in the mask.

4.1 COUNTERFACTUALS FROM CONTRASTIVE LEARNING

Counter.
𝜑(𝒙𝒊)
Anchor

Positives

Negatives
Negatives

Positives

Optimizing

triplet loss
𝜑(𝒙𝒊)

Figure 3: Illustration of the impact of
triplet loss to generate counterfactual
perturbations. The anchor is closer to
negatives but farther from positives.

To obtain counterfactual perturbations, we train the per-
turbation function φθ1(·) through a triplet-based con-
trastive learning objective. The main idea is to make
counterfactual perturbations more uninformative by in-
versely optimizing a triplet loss (Schroff et al., 2015),
which adapts the samples by replacing the masked unim-
portant regions. Specifically, we take each counterfactual
perturbation xr

i = φθ1(xi) as an anchor, and partition all
samples xr into two clusters: a positive cluster Ω+ and
negative one Ω−, based on the pairwise Manhattan simi-
larities between these perturbations. Following this parti-
tioning, we select the K+ nearest positive samples from
the positive cluster Ω+, denoted as {xr+

i,k}K
+

k=1, which ex-
hibits similarity with the anchor features. In parallel, we randomly select K− subsamples from the
negative cluster Ω−, denoted as {xr−

i,k}K
−

k=1, where K+ and K− represent the numbers of positive
and negative samples selected, respectively. The strategy of triple sampling is similar to Li et al.
(2021), and we introduce the details in Appendix B.

To this end, we obtain the set of triplets T with each element being a tuple Ti =(
xr
i , {xr+

i,k}K
+

k=1, {xr−

i,k}K
−

k=1

)
. Let the Manhattan distance between the anchor with negative samples

be Dan = 1
K−

∑K−

k=1 |xr
i − xr−

i,k |, and that with positive samples be Dap = 1
K+

∑K+

k=1 |xr
i − xr+

i,k|.
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As shown in Figure 3, we aim to ensure that Dan is smaller than Dap with a margin b, thus making
the perturbations counterfactual. Therefore, the objective of optimizing the perturbation function
φθ1(·) with triplet-based contrastive learning is given by

Lcntr(xi) = max(0,Dan −Dap − b) + ∥xr
i ∥1 , (2)

which encourages the original sample xi and the perturbation xr
i to be dissimilar. The second regu-

larization limits the extent of counterfactuals. In practice, the margin b is set to 1 following (Balntas
et al., 2016), and we discuss the effects of different distances in Appendix E.1.

4.2 SPARSE GATES WITH SMOOTH CONSTRAINT

Logical masks preserve the sparsity of feature selection but introduce a large degree of variance in
the approximated Bernoulli masks due to their heavy-tailedness (Yamada et al., 2020). To address
this limitation, we apply a sparse stochastic gate to each feature in each sample i, thus approximating
the Bernoulli distribution for the local sample. Specifically, for each feature xi[t, d], a sample-
specific mask is obtained based on the hard thresholding function by

mi[t, d] = min (1,max(0,µ′
i[t, d] + ϵi[t, d])) , (3)

0.0

0.2

0.4

0.6

0.8

1.0 hard-mask
smooth-mask ( = 5.0)
smooth-mask ( = 2.0)
smooth-mask ( = 0.0)
smooth-mask ( = -2.0)
smooth-mask ( = -5.0)
smooth-mask (  is learned)

Figure 4: Different temperatures for the
sigmoid-weighted unit. The learned trend
function τ(·) can be better adapted to
smooth vectors (red) to hard masks (black).

where ϵi[t, d] ∼ N (0, δ2) is a random noise injected
into each feature. We fix the Gaussian variance δ2 dur-
ing training. Typically, µ′

i[t, d] is taken as an intrinsic
parameter of the sparse gate. However, as a binary-
skewed parameter, µ′

i[t, d] does not take into account
the smoothness, which may lose the underlying trend
in temporal patterns. Inspired by Elfwing et al. (2018)
and Biswas et al. (2022), we adopt a sigmoid-weighted
unit with the temporal trend to smooth µ′

i. Specifi-
cally, we construct the smooth vectors µ′

i as

µ′
i = µi ⊙ σ(τθ2(xi)µi) =

µi

1 + e−τθ2 (xi)µi
, (4)

where τθ2(·) : RN×T×D → RN×T×D is a trend func-
tion parameterized by θ2 that plays a role in the sig-
moid function as temperature scaling, and µi is a set of parameters initialized randomly. In practice,
we use a neural network (e.g., MLP) to implement the trend function τθ2(·), whose details are shown
in Appendix D.4. Note that employing a constant temperature may render the mask continuous.
However, for a valid mask interpretation, adherence to a discrete property is appropriate (Queen
et al., 2023). We illustrate in Figure 4 that a learned temperature (red solid) makes the hard mask
smoother and keeps its skewed binary, in contrast to other constant temperatures.

To make the mask more informative in Eq. (1), we follow Yang et al. (2022) by replacing the ℓ1-
regularization into an ℓ0-like constraint. Consequently, the regularization termR(·) can be rewritten
using the Gaussian error function (erf) as

R(xi,mi) = ∥mi∥0 =

T∑
t=1

D∑
d=1

(
1

2
+

1

2
erf

(
µ′

i[t, d]√
2δ

))
, (5)

where µ′
i is obtained from Eq.( 4). The full derivations are given in Appendix A. We calculate the

empirical expectation over mi for all samples. Thus, masks m are learned by the objective

argmin
µ,θ2

L (f(x), f ◦ Φ(x,m)) +
α

N

N∑
i=1

R(xi,mi), (6)

where α is the regular strength. Note that the smooth vectors µ′
i restrict the penalty term A(·) in

Eq. (1) for jump saliency over time.
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Table 1: Performance on Rare-Time and Rare-Observation experiments w/o different groups.

RARE-TIME RARE-TIME (DIFFGROUPS)
METHOD AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓ AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓
FO 1.00±0.00 0.13±0.00 0.46±0.01 47.20±0.61 1.00±0.00 0.16±0.00 0.53±0.01 54.89±0.70

AFO 1.00±0.00 0.15±0.01 0.51±0.01 55.60±0.85 1.00±0.00 0.16±0.00 0.54±0.01 57.76±0.72

IG 1.00±0.00 0.13±0.00 0.46±0.01 47.61±0.62 1.00±0.00 0.15±0.00 0.53±0.01 54.62±0.85

SVS 1.00±0.00 0.13±0.00 0.47±0.01 47.20±0.61 1.00±0.00 0.15±0.00 0.52±0.02 54.28±0.84

DYNAMASK 0.99±0.01 0.67±0.02 8.68±0.11 37.24±0.48 0.99±0.01 0.51±0.00 5.75±0.13 47.33±1.02

EXTRMASK 1.00±0.00 0.88±0.00 16.40±0.13 13.10±0.78 1.00±0.00 0.83±0.03 13.37±0.78 27.44±3.68

CONTRALSP 1.00±0.00 0.97±0.01 19.51±0.30 4.65±0.71 1.00±0.00 0.94±0.01 18.92±0.37 4.40±0.60

RARE-OBSERVATION RARE-OBSERVATION (DIFFGROUPS)
METHOD AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓ AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓
FO 1.00±0.00 0.13±0.00 0.46±0.00 47.39±0.16 1.00±0.00 0.14±0.00 0.50±0.01 52.13±0.96

AFO 1.00±0.00 0.16±0.00 0.55±0.01 56.81±0.39 1.00±0.00 0.16±0.01 0.54±0.02 56.92±1.24

IG 1.00±0.00 0.13±0.00 0.46±0.00 47.82±0.15 1.00±0.00 0.13±0.00 0.47±0.00 49.90±0.88

SVS 1.00±0.00 0.13±0.00 0.46±0.00 47.39±0.16 1.00±0.00 0.13±0.00 0.47±0.01 49.53±0.84

DYNAMASK 0.97±0.00 0.65±0.00 8.32±0.06 22.87±0.58 0.98±0.00 0.52±0.01 6.12±0.10 30.88±0.70

EXTRMASK 1.00±0.00 0.76±0.00 13.25±0.07 9.55±0.39 1.00±0.00 0.70±0.04 10.40±0.54 32.81±0.88

CONTRALSP 1.00±0.00 1.00±0.00 20.68±0.03 0.32±0.16 1.00±0.00 0.99±0.00 20.51±0.07 0.57±0.20

4.3 LEARNING OBJECTIVE

In our method, we utilize the preservation game (Fong & Vedaldi, 2017), where the aim is to maxi-
mize data masking while minimizing the deviation of predictions from the original ones. Thus, the
overall learning objective is to train the whole framework by minimizing the total loss

argmin
µ,θ1,θ2

L (f(x), f ◦ Φ(x,m)) +
α

N

N∑
i=1

R(xi,mi) +
β

N

N∑
i=1

Lcntr(xi), (7)

where {µ, θ1, θ2} are learnable parameters of the whole framework and {α, β} are hyperparameters
adjusting the weight of losses to learn the sparse masks. Note that during the inference phase, we
remove the random noises ϵi from the sparse gates and set mi = min(1,max(0,µi ⊙ σ(τ(xi)µi))
for deterministic masks. We summarize the pseudo-code of the proposed ContraLSP in Appendix C.

5 EXPERIMENTS

In this section, we evaluate the explainability of the proposed method on synthetic datasets (where
truth feature importance is accessible) for both regression (white-box) and classification (black-box),
as well as on more intricate real-world clinical tasks. For black-box and real-world experiments, we
use 1-layer GRU with 200 hidden units as the target model fθ to explain. All performance results
for our method, benchmarks, and ablations are reported using mean ± std of 5 repetitions. For each
metric in the results, we use ↑ to indicate a preference for higher values and ↓ to indicate a preference
for lower values, and we mark bold as the best and underline as the second best. More details of
each dataset and experiment are provided in Appendix D.

5.1 WHITE-BOX REGRESSION SIMULATION

Datasets and Benchmarks. Following Crabbé & Van Der Schaar (2021), we apply sparse white-
box regressors whose predictions depend only on the known sub-features S = ST × SD ⊂ [:
, 1 : T ] × [:, 1 : D] as salient indices. Besides, we extend our investigation by incorporating het-
erogeneous samples to explore the influence of inter-samples on masking. Specifically, we con-
sider the subset of samples from two unequal nonlinear groups {S1,S2} ⊂ S, denoted as Diff-
Groups. Here, S1 and S2 collectively constitute the entire set S , with each subset having a size of
|S1| = |S2| = |S|/2 = 50. The salient features are represented mathematically as

[f(x)]t =

{∑
[:,t,d]∈S (x[t, d])

2 if in S
0 else,

and [f(x)]t =


∑

[i,t,d]∈S1
(xi[t, d])

2 if in S1(∑
[j,t,d]∈S2

xj [t, d]
)2

elif in S2
0 else.

6



Published as a conference paper at ICLR 2024

0 20 40
T

ContraLSP perturb. in 1

0 20 40
T

Extrmask perturb. in 1

0 20 40
T

ContraLSP perturb. in 2

0 20 40
T

Extrmask perturb. in 2

Sum of perturbed observations for each time Sum of original observations for each time

Figure 5: Differences between ContraLSP and Extrmask perturbations on the Rare-Observation
(Diffgroups) experiment. We randomly select a sample in each of the two groups and sum all
observations. The background color represents the mask value, with darker colors indicating higher
values. ContraLSP provides counterfactual information, yet Extrmask’s perturbation is close to 0.

In our experiments, we separately examine two scenarios with and without DiffGroups: where set-
ting |ST | ≪ N × T is called Rare-Time and setting |SD| ≪ N × D is called Rare-Observation.
These scenarios are recognized in saliency methods due to their inherent complexity (Ismail et al.,
2019). In fact, some methods are not applicable to evaluate white-box regression models, e.g.,
DeepLIFT (Shrikumar et al., 2017) and FIT (Tonekaboni et al., 2020). To ensure a fair comparison,
we compare ContraLSP with several baseline methods, including Feature Occlusion (FO) (Suresh
et al., 2017), Augmented Feature Occlusion (AFO) (Tonekaboni et al., 2020), Integrated Gradi-
ent (IG) (Sundararajan et al., 2017), Shapley Value Sampling (SVS) (Castro et al., 2009), Dyna-
mask (Crabbé & Van Der Schaar, 2021), and Extrmask (Enguehard, 2023). The implementation
details of all algorithms are available in Appendix D.5.

Metrics. Since we know the exact cause, we utilize it as the ground truth important for evaluating
explanations. Observations causing prediction label changes receive an explanation of 1, otherwise
it is 0. To this end, we evaluate feature importance with area under precision (AUP) and area under
recall (AUR). To gauge the information of the masks and the sharpness of region explanations, we
also use two metrics introduced by Crabbé & Van Der Schaar (2021): the information Im(a) =
−
∑

[i,t,d]∈a ln(1−mi[t, d]) and mask entropy Sm(a) = −
∑

[i,t,d]∈a mi[t, d] ln(mi[t, d])+ (1−
mi[t, d]) ln(1−mi[t, d]), where a represents true salient features.

Results. Table 1 summarizes the performance results of the above regressors with rare salient fea-
tures. AUP does not work as a performance discriminator in sparse scenarios. We find that for all
metrics except AUP, our method significantly outperforms all other benchmarks. Moreover, Con-
traLSP identifies a notably larger proportion of genuinely important features in all experiments,
even close to precise attribution, as indicated by the higher AUR. Note that when different groups
are present within the samples, the performance of mask-based methods at the baseline significantly
deteriorates, while ContraLSP remains relatively unaffected. We present a comparison between
the perturbations generated by ContraLSP and Extrmask, as shown in Figure 5. This suggests that
employing counterfactuals for learning contrastive inter-samples leads to less information in non-
salient areas and highlights the mask more compared to other methods. We display the saliency
maps for rare experiments, which are shown in the Appendix G. Our method accurately captures the
important features with some smoothing in this setting, indicating that the sparse gates are working.
We also explore in Appendix F whether different perturbations keep the original data distribution.

5.2 BLACK-BOX CLASSIFICATION SIMULATION

Datasets and Benchmarks. We reproduce the Switch-Feature and State experiments from Tonek-
aboni et al. (2020). The Switch-Feature data introduces complexity by altering features using a Gaus-
sian Process (GP) mixture model. For the State dataset, we introduce intricate temporal dynamics
using a non-stationary Hidden Markov Model (HMM) to generate multivariate altering observations
with time-dependent state transitions. These alterations influence the predictive distribution, high-
lighting the importance of identifying key features during state transitions. Therefore, an accurate
generator for capturing temporal dynamics is essential in this context. For a further description of the
datasets, see Appendix D.2. For the benchmarks, in addition to the previous ones, we also use FIT,
DeepLIFT, GradSHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016), and RETAIN (Choi
et al., 2016).
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Table 2: Performance on Switch Feature and State data.

SWITCH-FEATURE STATE
METHOD AUP ↑ AUR ↑ Im/104 ↑ Sm/103 ↓ AUP ↑ AUR ↑ Im/104 ↑ Sm/103 ↓
FO 0.89±0.03 0.37±0.02 1.86±0.14 15.60±0.28 0.90±0.05 0.30±0.01 2.73±0.15 28.07±0.54

AFO 0.82±0.06 0.41±0.02 2.00±0.14 17.32±0.29 0.84±0.08 0.36±0.03 3.16±0.27 34.03±1.10

IG 0.91±0.02 0.44±0.03 2.21±0.17 16.87±0.52 0.93±0.02 0.34±0.03 3.17±0.28 30.19±1.22

GRADSHAP 0.88±0.02 0.38±0.02 1.92±0.13 15.85±0.40 0.88±0.06 0.30±0.02 2.76±0.20 28.18±0.96

DEEPLIFT 0.91±0.02 0.44±0.02 2.23±0.16 16.86±0.52 0.93±0.02 0.35±0.03 3.20±0.27 30.21±1.19

LIME 0.94±0.02 0.40±0.02 2.01±0.13 16.09±0.58 0.95±0.02 0.32±0.03 2.94±0.26 28.55±1.53

FIT 0.48±0.03 0.43±0.02 1.99±0.11 17.16±0.50 0.45±0.02 0.59±0.02 7.92±0.40 33.59±0.17

RETAIN 0.93±0.01 0.33±0.04 1.54±0.20 15.08±1.13 0.52±0.16 0.21±0.02 1.56±0.24 25.01±0.57

DYNAMASK 0.35±0.00 0.77±0.02 5.22±0.26 12.85±0.53 0.36±0.01 0.79±0.01 10.59±0.20 25.11±0.40

EXTRMASK 0.97±0.01 0.65±0.05 8.45±0.51 6.90±1.44 0.87±0.01 0.77±0.01 29.71±1.39 7.54±0.46

CONTRALSP 0.98±0.00 0.80±0.03 24.23±1.27 0.91±0.26 0.90±0.03 0.81±0.01 50.09±0.78 0.50±0.05

Table 3: Effects of contrastive perturbations (using the triplet loss) and smoothing constraint (using
the trend function) on the Switch-Feature and State datasets.

SWITCH-FEATURE STATE
METHOD AUP ↑ AUR ↑ Im/104 ↑ Sm/103 ↓ AUP ↑ AUR ↑ Im/104 ↑ Sm/103 ↓
CONTRALSP W/O BOTH 0.92±0.01 0.79±0.02 22.08±1.43 0.78±0.16 0.76±0.02 0.74±0.01 42.26±0.45 0.14±0.02

CONTRALSP W/O TRIPLET LOSS 0.97±0.01 0.79±0.02 22.99±0.84 1.00±0.21 0.88±0.03 0.80±0.01 49.04±0.75 0.76±0.07

CONTRALSP W/O TREND FUNCTION 0.92±0.01 0.80±0.01 24.16±0.69 0.65±0.10 0.77±0.02 0.80±0.01 42.22±0.50 0.15±0.02

CONTRALSP 0.98±0.00 0.80±0.03 24.23±1.27 0.91±0.26 0.90±0.03 0.81±0.01 50.09±0.78 0.50±0.05

FO

AFO

IG

GradShap

DeepLift

LIME

FIT

RETAIN

Dynamask

Extrmask

ContraLSP

Label

Figure 6: Saliency maps produced by various meth-
ods for Switch-Feature data.

Metrics. We maintain consistency with the
ones previously employed.

Results. The performance results on simu-
lated data are presented in Table 2. Across
Switch-Feature and State settings, ContraLSP
is the best explainer on 7/8 (4 metrics in two
datasets) over the strongest baselines. Specif-
ically, when AUP is at the same level, our
method achieves high AUR results from its
emphasis on producing smooth masks over
time, favoring complete subsequence patterns
over sparse portions, aligning with human in-
terpretation needs. The reason why Dyna-
mask has a high AUR is that the failure pro-
duces a smaller region of masks, as shown in Figure 6. ContraLSP also has an average 94.75%
improvement in the information content Im and an average 90.24% reduction in the entropy Sm

over the strongest baselines. This indicates that the contrastive perturbation is superior to perturba-
tion by other means when explaining forecasts based on multivariate time series data.

Ablation study. We further explore these two datasets with the ablation study of two crucial com-
ponents of the model: (i) let Lcntr to cancel contrastive learning with the triplet loss and (ii) without
the trend function τθ2(·) so that µ′ = µ. As shown in Table 3, the ContraLSP with both components
performs best. Whereas without the use of triplet loss, the performance degrades as the method
fails to learn the mask with counterfactuals. Such perturbations without contrastive optimization are
not sufficiently uninformative, leading to a lack of distinction among samples. Moreover, equipped
with the trend function, ContraLSP improves the AUP by 0.06 and 0.13 on the two datasets, respec-
tively. It indicates that temporal trends introduce context as a smoothing factor, which improves the
explanatory ability of our method. To determine the values of α and β in Eq. (7), we also show
different values for parameter combination, which are given in more detail in the Appendix E.2.

5.3 MIMIC-III MORTALITY DATA

Dataset and Benchmarks. We use the MIMIC-III dataset (Johnson et al., 2016), which is a com-
prehensive clinical time series dataset encompassing various vital and laboratory measurements. It
is extensively utilized in healthcare and medical artificial intelligence-related research. For more
details, please refer to Appendix D.3. We use the same benchmarks as before the classification.
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Table 4: Performance report on MIMIC-III mortality by masking 20% data.

AVERAGE SUBSTITUTION ZERO SUBSTITUTION
METHOD ACC ↓ CE ↑ SUFF∗102 ↓ COMP∗102 ↑ ACC ↓ CE ↑ SUFF∗102 ↓ COMP∗102 ↑
FO 0.988±0.001 0.094±0.005 0.455±0.076 −0.229±0.059 0.971±0.003 0.121±0.008 −0.539±0.169 −0.523±0.274

AFO 0.989±0.002 0.097±0.005 0.185±0.122 0.008±0.077 0.972±0.004 0.120±0.008 −0.546±0.322 −0.169±0.240

IG 0.988±0.002 0.096±0.005 0.273±0.098 −0.080±0.150 0.971±0.004 0.122±0.006 −0.474±0.228 −0.385±0.268

GRADSHAP 0.987±0.003 0.095±0.005 0.400±0.103 −0.219±0.058 0.968±0.005 0.128±0.015 0.066±0.460 −0.628±0.377

DEEPLIFT 0.987±0.002 0.095±0.004 0.303±0.104 −0.115±0.140 0.972±0.004 0.119±0.005 −0.427±0.193 −0.482±0.246

LIME 0.997±0.001 0.094±0.005 0.116±0.122 −0.028±0.050 0.988±0.003 0.099±0.004 1.688±0.472 0.254±0.241

FIT 0.996±0.01 0.098±0.004 −0.139±0.139 0.375±0.067 0.987±0.004 0.108±0.07 −0.745±0.450 1.053±0.224

RETAIN 0.988±0.001 0.092±0.005 0.788±0.046 −0.425±0.096 0.971±0.004 0.119±0.008 0.072±0.394 −0.984±0.266

DYNAMASK 0.990±0.001 0.099±0.005 −0.083±0.089 0.354±0.064 0.976±0.004 0.114±0.007 −0.422±0.501 0.609±0.170

EXTRMASK 0.982±0.003 0.118±0.007 −1.157±0.362
1.538±0.395 0.943±0.007 0.318±0.051 −6.942±0.531 10.847±2.055

CONTRALSP 0.980±0.002 0.127±0.007 −1.792±0.095 2.386±0.175 0.928±0.020 0.357±0.044 −6.636±0.315
17.442±2.544
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Figure 7: Quantitative results on the MIMIC-III mortality experiment, focusing on Accuracy ↓,
Cross Entropy ↑, Sufficiency ↓, and Comprehensiveness ↑. We mask a varying percentage of the
data (ranging from 10% to 60%) for each patient and replace the masked data with the overall
average over time for each feature: xi[t, d] =

∑T
t=1 xi[t, d]. Since some curves are similar, we

show representative baselines for clarity.

Metrics. Due to the absence of real attribution features in MIMIC-III, we mask certain portions
of the features to assess their importance. We report that performance is evaluated using top mask
substitution, as is done in Enguehard (2023). It replaces masked features either with an average over
time of this feature (xi[t, d] =

1
T

∑T
t=1 xi[t, d]) or with zeros (xi[t, d] = 0). The metrics we select

are Accuracy (Acc, lower is better), Cross-Entropy (CE, higher is better), Sufficiency (Suff, lower is
better), and Comprehensiveness (Comp, higher is better), where the details are in Appendix D.3.

Results. The performance results on MIMIC-III mortality by masking 20% data are presented in
Table 4. We can see that our method outperforms the leading baseline Extrmask on 7/8 metrics
(across 4 metrics in two substitutions). Compared to other methods on feature-removal (FO, AFO,
FIT) and gradient (IG, DeepLift, GradShap), the gains are greater. The reason could be that the
local mask produced by ContraLSP is sparser than others and is replaced by more uninformative
perturbations. We show the details of hyperparameter determination for the MIMIC-III dataset,
which is deferred to Appendix E.2. Considering that replacement masks different proportions of the
data, we also show the average substitution using the above metrics in Figure 7, where 10% to 60%
of the data is masked for each patient. Our results show that our method outperforms others in most
cases. This indicates that perturbations using contrastive learning are superior to those using other
perturbations in interpreting forecasts for multivariate time series data.

6 CONCLUSION

We introduce ContraLSP, a perturbation-base model designed for the interpretation of time series
models. By incorporating counterfactual samples and sample-specific sparse gates, ContraLSP not
only offers contractive perturbations but also maintains sparse salient areas. The smooth constraint
applied through temporal trends further enhances the model’s ability to align with latent patterns
in time series data. The performance of ContraLSP across various datasets and its ability to reveal
essential patterns make it a valuable tool for enhancing the transparency and interpretability of time
series models in diverse fields. However, generating perturbations by the contrasting objective may
not bring counterfactuals strong enough, since it is label-free generation. Besides, an inherent lim-
itation of our method is the selection of sparse parameters, especially when dealing with different
datasets. Addressing this challenge may involve the implementation of more parameter-efficient
tuning strategies, so it would be interesting to explore one of these adaptations to salient areas.
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Thomas Rojat, Raphaël Puget, David Filliat, Javier Del Ser, Rodolphe Gelin, and Natalia Dı́az-
Rodrı́guez. Explainable artificial intelligence (xai) on timeseries data: A survey. arXiv preprint
arXiv:2104.00950, 2021.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse regu-
larization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, pp. 815–823, 2015.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In ICML, pp. 3145–3153, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
ICML, pp. 3319–3328, 2017.

Harini Suresh, Nathan Hunt, Alistair Johnson, Leo Anthony Celi, Peter Szolovits, and Marzyeh
Ghassemi. Clinical intervention prediction and understanding with deep neural networks. In
MLHC, pp. 322–337, 2017.

Damien Teney, Ehsan Abbasnedjad, and Anton van den Hengel. Learning what makes a difference
from counterfactual examples and gradient supervision. In ECCV, pp. 580–599, 2020.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (xai): Toward medical
xai. IEEE Transactions on Neural Networks and Learning Systems, 32(11):4793–4813, 2020.

Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and Anna Goldenberg.
What went wrong and when? Instance-wise feature importance for time-series black-box models.
In NeurIPS, pp. 799–809, 2020.

Makoto Yamada, Takeuchi Koh, Tomoharu Iwata, John Shawe-Taylor, and Samuel Kaski. Localized
lasso for high-dimensional regression. In AISTATS, pp. 325–333, 2017.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
stochastic gates. In ICML, pp. 10648–10659, 2020.

Junchen Yang, Ofir Lindenbaum, and Yuval Kluger. Locally sparse neural networks for tabular
biomedical data. In ICML, pp. 25123–25153, 2022.

Bingchen Zhao, Shaozuo Yu, Wufei Ma, Mingxin Yu, Shenxiao Mei, Angtian Wang, Ju He, Alan
Yuille, and Adam Kortylewski. Ood-cv: a benchmark for robustness to out-of-distribution shifts
of individual nuisances in natural images. In ECCV, pp. 163–180, 2022.

Zhaoyang Zhu, Weiqi Chen, Rui Xia, Tian Zhou, Peisong Niu, Bingqing Peng, Wenwei Wang,
Hengbo Liu, Ziqing Ma, Xinyue Gu, et al. Energy forecasting with robust, flexible, and explain-
able machine learning algorithms. AI Magazine, 44(4):377–393, 2023.

12



Published as a conference paper at ICLR 2024

A REGULARIZATION TERM

Let erf be the Gaussian error function defined as erf(x) = 2√
π

∫ x

0
e−t2dt, and let the mask mi

be obtained with the sigmoid gate output µ′
i and an injected noise ϵi from N (0, δ2). Thus, the

regularization term for each sampleR(i) can be expressed by

R(i)(xi,mi) = E [α ∥mi∥0]

= α
∑T

t=1

∑D
d=1 P (µ′

i[t, d] + ϵi[t, d] > 0)

= α
∑T

t=1

∑D
d=1 [1− P (µ′

i[t, d] + ϵi[t, d] ≤ 0)]

= α
∑T

t=1

∑D
d=1

[
1−Ψ

(
−µ′

i[t,d]
δ

)]
= α

∑T
t=1

∑D
d=1 Ψ

(
µ′

i[t,d]
δ

)
= α

∑T
t=1

∑D
d=1

(
1
2 −

1
2 erf(−

µ′
i[t,d]√
2δ

)
)

= α
∑T

t=1

∑D
d=1

(
1
2 + 1

2 erf(
µ′

i[t,d]√
2δ

)
)
,

(8)

where Ψ(·) is the cumulative distribution function, and µ′
i[t, d] is computed by Eq. (4).

B TRIPLE SAMPLES SELECTED

In this section, we describe how to generate positive and negative samples for contrastive learning.
For each sample xi, our goal is to generate the counterfactuals xr

i via the perturbation function
φ(·), optimized to be counterfactual for an uninformative perturbed sample. The pseudo-code of
the triplet sample selection is shown in Algorithm 1 and elaborated as follows. (i) We start by
clustering samples in each batch into the positives Ω+ and the negatives Ω− with 2-kmeans, (ii) we
select the current sample from each cluster as an anchor, along with K+ nearest samples from the
same cluster as the positive samples, (iii) and we select K− random samples from the other cluster
yielding negative samples. Note that we use Sp and Sn as auxiliary variables representing two sets
to select positive and negative samples, respectively.

Algorithm 1 Selection of a triplet sample

Input: The set of perturbation time series Ω = {xr
i }

N
i=1 and the current perturbation xr

i .
Output: Triple sample Ti = (xr

i , {xr+

i,k}K
+

k=1, {xr−

i,k}K
−

k=1)

Initialize a positive set Sp = {} and a negative set Sn = {}
Clustering positive and negative samples {Ω+,Ω−} ← 2-kmeans(Ω)
for Ω∗ in {Ω+,Ω−} do

Select Anchor xr
i ∈ Ω∗

Ω∗ ← Ω∗ \ {xr
i }

for k ← 1 to K+ do
xr+

i,k = Ω∗.Top(xr
i )

Ω∗ ← Ω∗ \ {xr+

i,k}, Sp ← Sp ∪ xr+

i,k

end for
for k ← 1 to K− do
xr−

i,k = random(Ω \ Ω∗)

Ω∗ ← Ω∗ \ {xr−

i,k}, Sn ← Sn ∪ xr−

i,k

end for
end for
Output: Triple sample (xr

i , {xr+

i,k}K
+

k=1, {xr−

i,k}K
−

k=1)
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C PSEUDO CODE

Algorithm 2 The pseudo-code of our ContraLSP

Input: Multi-variate time series {xi}Ni=1, black-box model f , sparsity hyper-parameters {α, β},
Gaussian noise δ, total training epochs E, learning rate γ
Output: Masks m to explain
Training:
Initialize the indicator vectors µ = {µi}Ni=1 of sparse perturbation
Initialize a perturbation function φθ1(·) and a trend function τθ2(·)
for e← 1 to E do

for i← 1 to N do
Get time treads {τθ2(xi[:, d])}Dd=1 in each observations xi[:, d]
Compute µ′

i ← µi ⊙ σ(τ(xi)µi)
Sample ϵi from the Gaussian distribution N (0, δ)
Compute instance-wise masks mi ← min (1,max(0,µ′

i + ϵi))
Get counterfactual features xr

i ← φθ1(xi)
Compute the triplet loss Lcntr via Alg. 1 and Eq. (2)
Compute the regularization termR(xi,mi) via Eq. (5)

end for
Get perturbations Φ(x,m)←m⊙ x+ (1−m)⊙ xr

Construct the total loss function:
L̃ = L (f(x), f ◦ Φ(x,m)) + α

N

∑N
i=1R(xi,mi) +

β
N

∑N
i=1 Lcntr(xi)

Update µ← µ− γ∇µL̃, θ1 ← θ1 − γ∇θ1L̃, θ2 ← θ2 − γ∇θ2L̃
end for
Store µ, φθ1(·), τθ2(·)
Inference: Compute final masks m← min(1,max(0,µ⊙ σ(τ(x)µ))
Return: Masks m

D EXPERIMENTAL SETTINGS AND DETAILS

D.1 WHITE-BOX REGRESSION DATA

As this experiment relies on a white-box approach, our sole responsibility is to create the input
sequences. As detailed by Crabbé & Van Der Schaar (2021), each feature sequence is generated
using an ARMA process:

xi[t, d] = 0.25xi[t− 1, d] + 0.1xi[t− 2, d] + 0.05xi[t− 3, d] + ϵ′i, (9)

where ϵ′i ∼ N (0, 1). We generate 100 sequence samples for each observation d within the range
of d ∈ [1 : 50] and time t within the range of t ∈ [1 : 50], and set the sample size |S1| = |S1| =
|S|/2 = 50 in different group experiments.

In the experiment involving Rare-Time, we identify 5 time steps as salient in each sample, where
consecutive time steps are randomly selected and differently for different groups. The salient ob-
servation instances are defined as SD = [:, 13 : 38] without different groups and as SD1 = [:, 1 :
25],SD2 = [:, 13 : 38] with different groups.

In the experiment involving Rare-Observation, we identify 5 salient observations in each sample
without replacement from [1 : 50], whereas in different groups SD1 and SD2 are 5 different obser-
vations randomly selected respectively. The salient time instances are defined as ST = [:, 13 : 38]
without different groups, and as ST1 = [:, 1 : 25],ST2 = [:, 13 : 38] with different groups.

D.2 BLACK-BOX CLASSIFICATION DATA

Data generation on the Switch-Feature experiment. We generate this dataset closely following
Tonekaboni et al. (2020), where the time series states are generated via a two-state HMM with equal
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initial state probabilities of [ 13 ,
1
3 ,

1
3 ] and the following transition probabilities[

0.95 0.02 0.03
0.02 0.95 0.03
0.03 0.02 0.95

]
.

The emission probability is a GP mixture, which is governed by an RBF kernel with 0.2 and uses
means µ1 = [0.8,−0.5,−0.2], µ2 = [0.0,−1.0, 0.0], µ3 = [−0.2,−0.2, 0.8] in each state. The
output yi at every step is designed as

pi[t] =


1

1+e−xi[t,1]
, if si[t] = 0

1
1+e−xi[t,2]

, elif si[t] = 1
1

1+e−xi[t,3]
, elif si[t] = 2

, and yi[t] ∼ Bernoulli(pi[t]),

where si[t] is a single state at each time that controls the contribution of a single feature to the output,
and we set 100 states: t ∈ [1 : 100]. We generate 1000 time series samples using this approach.
Then we employ a single-layer GRU trained using the Adam optimizer with a learning rate of 10−4

for 50 epochs to predict yi based on xi.

Data generation on the State experiment. We generate this dataset following Tonekaboni et al.
(2020) and Enguehard (2023). The random states of the time series are generated using a two-state
HMM with π = [0.5, 0.5] and the following transition probabilities[

0.1 0.9
0.1 0.9

]
.

The emission probability is a multivariate Gaussian, where means are µ1 = [0.1, 1.6, 0.5] and µ2 =
[−0.1,−0.4,−1.5]. The label yi[t] is generated only using the last two observations, while the first
one is irrelevant. Thus, the output yi at every step is defined as

pi[t] =

{
1

1+e−xi[t,1]
if si[t] = 0

1
1+e−xi[t,2]

elif si[t] = 1
, and yi[t] ∼ Bernoulli(pi[t]),

where si[t] is either 0 or 1 at each time, and we generate 200 states: t ∈ [1 : 200]. We also generate
1000 time series samples using this approach and employ a single-layer GRU with 200 units trained
by the Adam optimizer with a learning rate of 10−4 for 50 epochs to predict yi based on xi.

D.3 MIMIC-III DATA

For this experiment, we opt for adult ICU admission data sourced from the MIMIC-III dataset (John-
son et al., 2016). The objective is to predict in-hospital mortality of each patient based on 48 hours of
data (T = 48), and we need to explain the prediction model (the true salient features are unknown).
For each patient, we used features and data processing consistent with Tonekaboni et al. (2020).
We summarize all the observations in Table 5, with a total of D = 31. Patients with complete
48-hour blocks missing for specific features are excluded, resulting in 22,988 ICU admissions. The
predicted model we train is a single-layer RNN consisting of 200 GRU cells. It undergoes training
for 80 epochs using the Adam optimizer with a learning rate of 0.001.

Table 5: List of clinical observations at each time for the risk predictor model.

DATA CLASS NAME

STATIC OBSERVATIONS AGE, GENDER, ETHNICITY, FIRST ADMISSION TO THE ICU
LAB OBSERVATIONS LACTATE, MAGNESIUM, PHOSPHATE, PLATELET,

POTASSIUM, PTT, INR, PT, SODIUM, BUN, WBC

VITAL OBSERVATIONS HEARTRATE, DIASBP, SYSBP, MEANBP, RESPRATE, SPO2, GLUCOSE, TEMP

In this task, we introduce the same metrics as Enguehard (2023), which are detailed as follows:
(i) Accuracy (Acc) means the prediction accuracy while salient features selected by the model are
removed, so a lower value is preferable. (ii) Cross-Entropy (CE) represents the entropy between
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Table 6: Experimental settings for ContraLSP across all datasets.

PARAMETER RATE-TIME RATE-OBSERVATION SWITCH-FEATURE STATE MIMIC-III

LEARNING RATE γ 0.1 0.1 0.01 0.01 0.1
OPTIMIZER ADAM ADAM ADAM ADAM ADAM

MAX EPOCHS E 200 200 500 500 200
α 0.1 0.1 1.0 2.0 0.005
β 0.1 0.1 2.0 1.0 0.01
δ 0.5 0.5 0.8 0.5 0.5

K+ |Ω+|/5 |Ω+|/5 |Ω+|/5 |Ω+|/5 50
K− |Ω−|/5 |Ω−|/5 |Ω−|/5 |Ω−|/5 50

Table 7: The specific structure of the trend function.

NO. STRUCTURE

1ST OBS. MLP[LINEAR(T , 32), RELU, LINEAR(32, T )]
2ND OBS. MLP[LINEAR(T , 32), RELU, LINEAR(32, T )]
· · · · · ·
DTH OBS. MLP[LINEAR(T , 32), RELU, LINEAR(32, T )]

the predictions of perturbed features with the original features. It quantifies the information loss
when crucial features are omitted, with a higher value being preferable. (iii) Sufficiency (Suff) is
the average change in predicted class probabilities relative to the original values, with lower values
being preferable. (iv) Comprehensiveness (Comp) is the average difference of target class prediction
probability when most salient features are removed. It reflects how much the removal of features
hinders the prediction, so a higher value is better.

D.4 DETAILS OF OUR METHOD

We list hyperparameters for each experiment performed in Table 6, and for the triplet loss, the
marginal parameter b is consistently set to 1. The size of K+ and K− are chosen to depend on the
number of positive and negative samples (|Ω+| and |Ω−|). In the perturbation function φθ1(·), we
use a single-layer bidirectional GRU, which corresponds to a generalization of the fixed perturbation.
In the trend function τθ2(·), we employ an independent MLP for each observation d to find its trend,
whose details are shown in Table 7. Please refer to our codebase1 for additional details on these
hyperparameters and implementations.

D.5 DETAILS OF BENCHMARKS

We compare our method against ten popular benchmarks, including FO (Suresh et al., 2017),
AFO (Tonekaboni et al., 2020), IG (Sundararajan et al., 2017), GradSHAP (Lundberg & Lee, 2017)
(SVS (Castro et al., 2009) in regression), FIT (Tonekaboni et al., 2020), DeepLIFT (Shrikumar
et al., 2017), LIME (Shrikumar et al., 2017), RETAIN (Choi et al., 2016), Dynamask (Crabbé &
Van Der Schaar, 2021), and Extrmask (Enguehard, 2023), whereas the implementation of bench-
marks is based on open source codes time interpret2 and DynaMask3. All hyperparameters follow
the code provided by the authors.

E ADDITIONAL ABLATION STUDY

E.1 EFFECT OF DISTANCE TYPE IN CONTRASTIVE LEARNING.

For the instance-wise similarity, we can consider various losses to maximize the distance between
the anchor with positive or negative samples in Eq. (2). We evaluate three typical distance metrics
in Rare-Time and Rare-Observation datasets: Manhattan distance, Euclidean distance, and cosine

1https://github.com/zichuan-liu/ContraLSP
2https://github.com/josephenguehard/time_interpret
3https://github.com/JonathanCrabbe/Dynamask
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Table 8: Performance of ContraLSP with different contrastive loss types on rare experiments.

RARE-TIME RARE-OBSERVATION
DISTANCE TYPE IN Lcntr AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓ AUP ↑ AUR ↑ Im/104 ↑ Sm/102 ↓
MANHATTAN DISTANCE 1.00±0.00 0.97±0.01 19.51±0.30 4.65±0.71 1.00±0.00 1.00±0.00 20.68±0.03 0.32±0.16

EUCLIDEAN DISTANCE 1.00±0.00 0.97±0.02 19.67±0.52 4.97±0.55 1.00±0.00 1.00±0.01 20.72±0.06 0.69±0.17

COSINE SIMILARITY 1.00±0.00 0.96±0.02 18.41±0.64 5.87±0.74 1.00±0.00 0.98±0.01 19.22±0.06 0.98±0.23

similarity. The results presented in Table 8 indicate that the Manhattan distance is slightly better
than the other evaluated losses.

E.2 EFFECT OF REGULARIZATION FACTOR.

We conduct ablations on the black-box classification data using our method to determine which
values of α and β should be used in Eq. (7). For each parameter combination, we employed five
distinct seeds, and the experimental results for Switch-Feature and State are presented in Table 9
and Table 10, respectively. Higher values of AUP and AUR are preferred, and the underlined values
represent the best parameter pair associated with these metrics. Those Tables indicate that the ℓ-
regularized mask m is most appropriate when α is set to 1.0 and 2.0 for both Switch-Feature and
State data, allowing for the retention of a small but highly valuable subset of features. Moreover, to
force φθ1(·) to learn counterfactual perturbations from other distinguishable samples, β is best set
to 2.0 and 1.0, respectively. Otherwise, the perturbation may contain crucial features of the current
sample, thereby impacting the classification.

We also perform ablation on the MIMIC-III dataset for parameters α and β using our method. We
employ Accuracy and Cross-Entropy as metrics and show the average substitution in Table 11. This
Table shows that β is best set to 0.01 to learn counterfactual perturbations. Note that the results are
better when lower values of α are used, but over-regularizing m close to 0 may not be beneficial.
Notably, lower values of α yield superior results, but excessively regularizing m toward 0 may prove
disadvantageous (Enguehard, 2023). Therefore, we select α = 0.005 and β = 0.01 as deterministic
parameters on the MIMIC-III dataset.

Table 9: Effects of α and β on the Switch-Feature data. Underlining is the best.

α = 0.1 α = 0.5 α = 1.0 α = 2.0 α = 5.0

AUP AUR AUP AUR AUP AUR AUP AUR AUP AUR

β = 0.1 0.53±0.05 0.28±0.18 0.26±0.07 0.01±0.00 0.18±0.07 0.01±0.00 0.12±0.05 0.01±0.00 0.14±0.06 0.01±0.00

β = 0.5 0.56±0.03 0.97±0.01 0.91±0.06 0.44±0.28 0.52±0.20 0.02±0.01 0.19±0.05 0.02±0.00 0.16±0.09 0.01±0.00

β = 1.0 0.55±0.02 0.97±0.01 0.89±0.02 0.87±0.02 0.98±0.01 0.56±0.10 0.71±0.27 0.09±0.09 0.28±0.12 0.02±0.00

β = 2.0 0.54±0.02 0.97±0.01 0.86±0.02 0.89±0.02 0.98±0.01 0.80±0.03 0.99±0.00 0.68±0.06 0.50±0.32 0.05±0.07

β = 5.0 0.54±0.02 0.97±0.01 0.87±0.02 0.89±0.02 0.97±0.01 0.80±0.03 0.99±0.00 0.69±0.05 0.99±0.00 0.37±0.09

Table 10: Effects of α and β on the State data. Underlining is the best.

α = 0.1 α = 0.5 α = 1.0 α = 2.0 α = 5.0

AUP AUR AUP AUR AUP AUR AUP AUR AUP AUR

β = 0.1 0.54±0.01 0.99±0.00 0.67±0.03 0.79±0.05 0.69±0.05 0.01±0.00 0.32±0.14 0.01±0.00 0.53±0.08 0.01±0.00

β = 0.5 0.52±0.01 0.96±0.00 0.66±0.01 0.90±0.01 0.77±0.02 0.85±0.01 0.88±0.03 0.79±0.03 0.77±0.11 0.08±0.14

β = 1.0 0.52±0.02 0.96±0.00 0.66±0.01 0.91±0.00 0.77±0.03 0.87±0.01 0.90±0.02 0.82±0.01 0.88±0.09 0.23±0.29

β = 2.0 0.52±0.01 0.96±0.00 0.65±0.02 0.92±0.00 0.77±0.02 0.88±0.01 0.89±0.02 0.82±0.01 0.97±0.01 0.70±0.01

β = 5.0 0.52±0.01 0.96±0.00 0.65±0.01 0.91±0.00 0.76±0.02 0.88±0.01 0.89±0.03 0.82±0.01 0.97±0.01 0.70±0.02

F DISTRIBUTION ANALYSIS OF PERTURBATIONS

To investigate whether the perturbed samples are within the original dataset’s distribution, we first
compute the distribution of the original samples by kernel density estimation4 (KDE). Subsequently,

4https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KernelDensity.html

17

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html


Published as a conference paper at ICLR 2024

Table 11: Effects of α and β on MIMIC-III mortality. We mask 20% data and replace the masked
data with the overall average over time for each feature. Underlining is the best.

α = 0.001 α = 0.005 α = 0.01 α = 0.1 α = 1.0

Acc CE Acc CE Acc CE Acc CE Acc CE

β = 0.001 0.982±0.003 0.124±0.007 0.983±0.003 0.122±0.007 0.984±0.002 0.120±0.006 0.993±0.001 0.094±0.004 0.997±0.001 0.087±0.004

β = 0.005 0.981±0.002 0.123±0.007 0.984±0.002 0.123±0.006 0.984±0.003 0.121±0.007 0.993±0.002 0.095±0.006 0.996±0.001 0.087±0.005

β = 0.01 0.980±0.003 0.124±0.007 0.980±0.002 0.127±0.007 0.984±0.002 0.121±0.007 0.994±0.002 0.094±0.004 0.996±0.001 0.087±0.004

β = 0.1 0.980±0.002 0.127±0.007 0.980±0.003 0.127±0.007 0.983±0.003 0.123±0.007 0.992±0.002 0.098±0.006 0.997±0.001 0.087±0.005

β = 1.0 0.981±0.002 0.127±0.006 0.981±0.003 0.128±0.008 0.983±0.002 0.123±0.007 0.989±0.002 0.106±0.007 0.996±0.001 0.088±0.005

Table 12: Difference between the distribution of different perturbations and the original distribution.

RARE-TIME RARE-OBSERVATION
PERTURBATION TYPE KDE-SCORE ↑ KL-DIVERGENCE ↓ KDE-SCORE ↑ KL-DIVERGENCE ↓
ZERO PERTURBATION −25.242 0.0523 −23.377 0.0421
MEAN PERTURBATION −30.805 0.0731 −26.421 0.0589
EXTRMASK PERTURBATION −22.532 0.0219 −19.102 0.0104
CONTRALSP PERTURBATION −23.290 0.0393 −22.732 0.0386

FO AFO IG SVS

Dynamask Extrmask ContraLSP Label

Figure 8: Saliency maps produced by various methods for Rare-Time experiment.

we assess the log-likelihood of each perturbed sample under the original distribution, called as KDE-
score, where closer to 0 indicates a higher likelihood of perturbed samples originating from the orig-
inal distribution. Additionally, we quantify the KL-divergence between the distribution of perturbed
samples and original samples, where a smaller KL means that the two distributions are closer. We
conduct experiments on the Rare-Time and Rare-Observation datasets and the results are shown in
Table 12. It demonstrates that our ContraLSP’s perturbation is more akin to the original distribu-
tion compared to the zero and mean perturbation. Furthermore, Extrmask performs best because it
generates perturbations only from current samples, and therefore the generated perturbations are not
guaranteed to be uninformative. This conclusion aligns with the visualization depicted in Figure 1.

G ILLUSTRATIONS OF SALIENCY MAPS

Saliency maps represent a valuable technique for visualizing the significance of features, and pre-
vious works (Alqaraawi et al., 2020; Tonekaboni et al., 2020; Leung et al., 2023), particularly in
multivariate time series analysis, have demonstrated their utility in enhancing the interpretative as-
pects of the results. We also demonstrate the saliency maps of the benchmarks and our method for
each dataset: (i) the saliency maps for the rare experiments are shown in Figure 8, 9, 11, and 10, (ii)
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Figure 9: Saliency maps produced by various methods for Rare-Observation experiment.
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Figure 10: Saliency maps produced by various methods for Rare-Time (Diffgroups) experiment.

the Switch-Feature and State saliency maps are shown in Figure 12 and Figure 13, respectively, (iii)
and the saliency maps for the MIMIC-III mortality are in Figure 14.
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Figure 11: Saliency maps produced by various methods for Rare-Observation (Diffgroups) experi-
ment.
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Figure 12: Saliency maps produced by various methods for Switch-Feature data.
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Figure 13: Saliency maps produced by various methods for State data.

FO AFO IG DeepLift LIME

FIT RETAIN Dynamask Extrmask ContraLSP

Figure 14: Saliency maps produced by various methods for MIMIC-III Mortality data.
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