
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING NEURAL NETWORKS ON DATA SOURCES
WITH UNKNOWN RELIABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

When data is generated by multiple sources, conventional training methods update
models assuming equal reliability for each source and do not consider their indi-
vidual data quality during training. However, in many applications, sources have
varied levels of reliability that can have negative effects on the performance of a
neural network. A key issue is that often the quality of data for individual sources is
not known during training. Focusing on supervised learning, we aim to train neural
networks on each data source for a number of steps proportional to the source’s
estimated relative reliability, by using a dynamic weighting. This way, we allow
training on all sources during the warm-up, and reduce learning on less reliable
sources during the final training stages, when it has been shown models overfit to
noise. We show through diverse experiments, this can significantly improve model
performance when trained on mixtures of reliable and unreliable data sources, and
maintain performance when models are trained on reliable sources only.

1 INTRODUCTION

Data sources can have differing levels of noise but in many applications, are merged together to
form a single dataset. In healthcare, for example, data sources (such as different devices or sites) are
often combined together (Tomar & Agarwal, 2013; Baro et al., 2015), but may not provide the same
level of data quality and could contain noisy features, incorrect labelling, or missing values. These
problems, if unaddressed, can have detrimental effects on the performance and robustness of machine
learning models (Zhang et al., 2021; Arpit et al., 2017; Neyshabur et al., 2017).

In this work, we consider the supervised learning case, in which a neural network is trained on
data from multiple sources that are (ideally) producing unique features and labels from the same
distribution, but where some sources are producing noisy features or labels at an unknown rate1.

Two possible solutions for this context naturally arise: Preprocessing can be used to remove out-
of-distribution observations from training (Gamberger et al., 2000; Thongkam et al., 2008; Delany
et al., 2012) but, this requires the user to define “out-of-distribution” for the features and labels, and
eliminating data assumes nothing can be learnt from noisy examples (Wang et al., 2018). Secondly,
techniques for training neural networks on noisy data can be applied, of which many exist (Han
et al., 2020; Song et al., 2022). In this case however, we are not utilising the information gained
from knowing an observation’s data source – which we show is useful, especially within settings of
considerable noise.

We therefore propose Loss Adapted Plasticity (LAP); inspired by ideas from the literature, and loss
tempering, it is a general method for training neural networks on multi-source data with mixed
reliability. As we do not know the sources’ true noise level a priori, we maintain a history of the
empirical risk on data from each source that is used to temper the likelihood during training. This
is done such that the number of steps a model is trained on a source is proportional to its estimated
reliability. Hence, a model trained with LAP will benefit from seeing examples from all sources
during early training, and reduce learning on less reliable data later in training, when the model is
prone to memorising noisy data points (Zhang et al., 2021; Arpit et al., 2017; Liu et al., 2020; Xia
et al., 2021). To illustrate our method’s effectiveness, we present results on diverse settings and

1Training with missing data using our method could be achieved by randomly generating features or labels in
place of missing values, but this is not a focus of our work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

datasets, in which we implemented or adapted baseline code from Han et al. (2018); Wang et al.
(2021); Li et al. (2021) and Li et al. (2022). We find: (1) The proposed method, LAP, improves the
performance of a neural network trained on data generated by sources with mixed reliability, and (2)
maintains performance when no unreliability is present. We also show that (3) LAP is applicable to a
variety of contexts and different noise types, and (4) we provide implementation details and code for
further development and use (see Appendix A.1).

2 BACKGROUND

Noisy labels can be introduced at any point during collection and when human experts are involved,
are practically inevitable (Song et al., 2022; Frenay & Verleysen, 2014; McNicol, 2004; Frenay &
Verleysen, 2014): An expert might have insufficient information (Hickey, 1996; Dawid & Skene,
1979); expert labels are incorrect (Hickey, 1996); the labelling is subjective (Marcus et al., 1993);
or there are communication problems (Zhu & Wu, 2004). Further, noisy features can be introduced
through data processing, or faulty measurements (Li et al., 2021). With each of these issues affecting
data sources differently, we can observe varied data quality.

The majority of the work on noisy data focuses on noisy labels where solutions usually target a
combination of four aspects (Han et al., 2020; Song et al., 2022): sample selection, model architecture,
regularisation, or training loss. IDPA (Wang et al., 2021) explores instance dependent noise, where
label noise depends on an observation’s features, in which they estimate the true label of confusing
instances using model confidence during training. Han et al. (2018) propose “Co-teaching”, a sample
selection method, in which two neural networks are trained simultaneously. Data for which one
model achieves a low training loss is selected to “teach” the other network, as they are assumed
to be more reliable. This work exploits the fact that neural networks learn clean data patterns and
filter noisy instances in early training (Zhang et al., 2021; Arpit et al., 2017), a fact that our work
will take advantage of. Noisy inputs are additionally studied in Li et al. (2021), where they present
RRL, employing two contrastive losses and a noise cleaning method using model confidence during
training. This approach requires modifications to the model architecture and a k nearest neighbours
search at each epoch. However, these methods do not consider multi-source data.

In federated learning, a server trains a global model using local updates on each source (Konečnỳ
et al., 2016), but when sources are noisy, these algorithms often fail (Li et al., 2020). To tackle
varied data quality, Li et al. (2022) propose ARFL, which learns global and local weight updates
simultaneously. The weighted sum of empirical risk of clients’ loss is minimised, where the weights
are distributed by comparing each client’s empirical risk to the average empirical risk of the best k
clients. The contribution to weight updates from the clients with higher losses are minimised with
respect to the updates from other clients – forcing the global model to learn more from clients that
achieve lower losses.

Further, Murphy (2022) discusses sensor fusion, where multiple observations from sensors with
differing (but known) noise are taken, with the goal to calculate the true values. This is connected to
our setting, but in our case, sources generate multiple unique observations, and source reliability is
unknown.

Therefore, we are exploring a context between many; federated learning, sensor fusion, and learning
with noisy data, but differing enough such that methods do not apply or under-perform compared
to our source-aware solution. Nevertheless, Co-teaching, IDPA, RRL, and ARFL will form our
baselines.

MOTIVATION FOR NEW METHODS

We observe that work has so far focused on the problem of noisy data without considering individual
sources. To see why this could be helpful, consider 10 data sources {si}10i=1 where one source, sc, is
producing noisy data with a probability of 0.5 and all other sources are producing clean data. Given a
new observation from the noisy source, xc ∈ sc, consider the probability that xc is noisy: p(xc /∈ R),
where R is the set of reliable data and assume we know the noise rate of sc: p(x /∈ R | x ∈ sc) = 0.5.

Without knowing the data point’s source: The probability that a data point x is unreliable (since
p(x /∈ R | x /∈ sc) = 0) is: p(x /∈ R) = p(x ∈ sc)p(x /∈ R | x ∈ sc) = 0.05.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

When knowing the data point’s source: The probability that a data point xc is unreliable (xc ∈ sc) is
p(xc /∈ R | xc ∈ sc) = 0.5. Similarly, p(xs̸=c /∈ R | xs̸=c /∈ sc) = 0.

Clearly, the source value can provide information about noise that is helpful during model training.

3 METHODS

Inspired by Co-teaching, ARFL, and loss tempering, we propose Loss Adapted Plasticity (LAP):
Briefly, we update a source reliability score as a function of the historical training empirical risk,
which is used to re-weight loss such that the more reliable a source is, the longer the model trains
on data from that source. Importantly, we use the fact that when training, neural networks learn
non-noisy patterns before noisy data (Zhang et al., 2021; Arpit et al., 2017; Han et al., 2018; Arazo
et al., 2019; Yu et al., 2019; Shen & Sanghavi, 2019) and are observed fitting to noisy examples only
after substantial progress is made in fitting to clean examples (Arazo et al., 2019). Therefore, in early
training the empirical risk on clean data is lower than noisy data (Appendix A.2).

TEMPERED LIKELIHOOD

In our setting, we have a dataset D collected from sources in S with D =
⋃

s∈S Ds and s as either a
noisy source s /∈ R or a non-noisy source s ∈ R, where R represents the reliable sources. An optimal
model on non-noisy data DR (parameterised by θ) would have log-likelihood: maxθ log p(DR|θ).
However, since R is unknown during training, we propose to use the tempered log-likelihood on all
data D. With f(·) : [0,+∞) → [1,+∞) as a positive and monotonically increasing function:

log p(DR|θ) =
∑
s∈R

log p(Ds|θ) ≈
∑
s∈S

1

f(Cs)
log p(Ds|θ) = log ptemp(D|θ) (1)

Note the change of sum over s ∈ R to s ∈ S. Here, Cs is the number of training steps that we believe
source s contains noise harmful to training, minus the number of steps it is considered non-noisy
(clipped at 0). Therefore during late training, Cs is large for noisy sources and Cs = 0 for non-noisy
sources, giving: a large temperature f(Cs) >> 1 for s /∈ R, and a low temperature f(Cs) = 1 for
s ∈ R, providing an approximation of log p(DR|θ).

SOURCE RELIABILITY ESTIMATION

To calculate Cs, we use the assumption (discussed above) that neural networks achieve a lower
empirical risk on clean data than noisy data in early training. Given a source s for which we wish to
update Cs, with all other sources as s′; using pθ(·) = p(·|θ); and setting λ > 0, we perform:

Cs =

{
Cs + 1, log pθ(Ds) < exptvars′(log ptemp,θ(Ds′), λ)

Cs − 1, otherwise

Cs = max{0, Cs}

exptvar△(▲, λ) = E△[▲]− λ
√

Var△[▲]

(2)

Intuitively, we increase Cs and therefore the source’s temperature, if its log-likelihood is at most λ
standard deviations less than the expected tempered log-likelihood on all other sources. Consequently,
if no sources are noisy, and the distribution of negative log-likelihoods (NLLs) from the data sources
forms a normal distribution, then we incorrectly increase the temperature of a non-noisy source s

with probability pθ(L̂s ≥ λ) where Ls = − log pθ(Ds) is the NLL on data from source s, and L̂s

refers to the standardisation of the NLL using the mean and variance of the NLLs of all other sources,
Ls′ . When we have noisy sources, we expect that their temperature is large, f(Cs) >> 1, after a
number of steps that is representative of their relative noise level – naturally enabling learning from
noisy sources for a number of steps that reflects their “usefulness”.

IMPLEMENTATION DETAILS

In the following, we present the implementation of our method as gradient scaling for clarity. Given a
dataset D of features and labels that is generated by S sources, S = {s1, ..., sS}. We denote a subset
of D generated by source s as Ds ⊂ D, with each data point corresponding to a single source.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

On a single update step of a model: we have the perceived unreliability for each source C = {Cs}S1
(initially, all sources are considered reliable and so Cs = 0 ∀s); a batch of features, labels, and source
values from D; and a history of training losses, L with length H for all sources. Here, L ∈ RS×H ,
and lsH ∈ L denotes the mean loss of data from source s over the most recent batch containing data
in Ds (hence, subscript H). A larger Cs denotes a larger estimated noise level for source s. Each
step, we update the value Cs (and hence, temperature) for a source s using the empirical risk of all
other sources s′ as in Algorithm 1. Further, we define f(Cs) from Equation 1:

1/f(Cs) = (1− ds) = 1− tanh2(0.005 · δ · Cs)

This choice of f has some nice properties discussed in this section and in Appendix A.3. We refer to
ds as the depression value; and δ is the depression strength, controlling the rate of depression.

Algorithm 1 Calculating Cs at a given step

Require: λ > 0 : Leniency
Require: L ∈ RS×H : Source loss history of length H
Require: C ∈ RS : The current unreliability

Ls = L[s] {Loss history on source s}
Cs = C[s] {Unreliabilty for source s}
µs = mean(Ls)
W [s′] = 1/f(C[s′])
µs′ = weighted mean(L[s′], weights = W [s′])
σ2
s′ = weighted var(L[s′], weights = W [s′])

if µs > µs′ + λσs′ then
Cs = Cs + 1

else if µs ≤ µs′ + λσs′ then
Cs = max{ 0, Cs − 1 }

end if

During training, gradient contributions from source s are then scaled as follows:

ĝs = (1− ds)gs, ds = tanh2(0.005 · δ · Cs) (3)
Where ĝs is the gradient update contribution from a source s. As (1− ds) is a scalar, this method
can be interpreted as scaling gradient contributions (presented here), loss re-weighting as in Figure
1, or likelihood tempering as discussed previously in this section. Additionally, a model evidence
interpretation of LAP can be found in Appendix A.4.

We use 0.005 to scale the depression strength δ for easier interpretation, whilst the use of tanh2

ensures that the scaling applied to gs is in (0, 1] and small perturbations of Cs around 0 do not have a
significant effect on ĝs, making it more robust to randomness. For more detail, see Appendix A.3.

Loss

D
en

si
ty
×

1
/
f

(C
s
) µs′

λσs′

Cs ↑Cs ↓

Cs Increases for Unreliable Sources

Early Training

Loss

µs′

λσs′

Mid Training

Loss

µs′

λσs′

Late Training

Figure 1: Visualisation of Equation 2. Each colour represents the loss values from a single source
over a small number of steps, with its density weighted by its temperature, w(s) = 1/f(Cs). This
shows how sources contribute to µs′ and σ2

s′ as their Cs changes during training and given the
leniency λ. These values are synthetic and for demonstration.

INTUITIONS

Figure 1 shows how the training process evolves over time when using LAP. At first, all sources are
considered equally reliable and so the weighted mean of the loss values is the mean of all sources. As

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the source temperature changes, the weighed mean plus λ standard deviations of the losses moves
towards the sources with lower expected losses, allowing for more learning from the these over time.

0.0

0.5

1.0

1
−
d
s

δ = 0.05 δ = 0.1 δ = 0.25 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0

0.0

0.5

1.0

1
−
d
s

H = 2 H = 5 H = 25 H = 50 H = 250 H = 500 H = 1000

0 1000

Step

0.0

0.5

1.0

1
−
d
s

λ = 0.05

0 1000

Step

λ = 0.1

0 1000

Step

λ = 0.25

0 1000

Step

λ = 0.5

0 1000

Step

λ = 1.0

0 1000

Step

λ = 2.0

0 1000

Step

λ = 4.0

Figure 2: Effect of the introduced parameters on training. Section 3, introduces three parameters
that control the effects of LAP. 1− ds is multiplied by the gradient (equivalently, loss) contribution
from a given source before the model is updated. Here, we show these values for each source (the
different coloured lines) during model training on synthetic data (Appendix A.5). Unless stated in the
title of a given plot, the parameters of LAP were set to H = 25, δ = 1.0, λ = 1.0. We had 5 sources
with noise levels of 0.0, 0.025, 0.05, 0.25, and 1.0 (a darker colour indicates a higher noise rate).

Figure 2 illustrates how 1− ds (reciprocal of the temperature) in Equation 3 develops during training
for each source and different H , δ, and λ values. The first row shows how varying the depression
strength, δ affects the rate at which the learning on a source is reduced. The second row shows how
the history length, H influences 1− ds, where we can see that a larger value allows for a “smoother”
transition. With the exception of small or large values, this parameter has the least effect on training.
The third row illustrates how the leniency, λ in Equation 2 and Algorithm 1 affects the training. Small
values of λ reduce noisy sources’ impacts influence earlier, whilst larger values miss some noisy
sources all together. Here, the sources are coloured by their noise level, demonstrating that LAP
reduced a source’s influence on training in a number of steps corresponding to a sources noise level.

In our experiments, LAP parameters were set at H = 25, δ = 1.0, λ = 0.8 unless otherwise stated in
Appendix A.7. These were chosen based on the synthetic experiments presented in Figure 2 and the
validation results on CIFAR-10 (Appendix A.7) as well as the detailed discussion of the effects of
these hyperparameters provided in Appendix A.8.

4 EXPERIMENTS

BASELINE METHODS

To contextualise our approach, we evaluate varied baseline methods: (1) ARFL, designed to tackle
label and input noise in a federated learning setting (Li et al., 2022); (2) IDPA, a probabilistic
method for instance dependent label noise (Wang et al., 2021) which modifies the training loss; (3)
“Co-teaching”, which trains two models simultaneously to perform sample selection based on loss
values during training (Han et al., 2018); (4) RRL, which uses contrastive learning and a k nearest
neighbours search to enforce a smoothness constraint on learnt representations (Li et al., 2021),
modifying model architecture and training loss; and (4) an identical model but without any specific
modifications for tackling noise. Baseline methods were selected based on the availability of code,
their use as baselines in the literature, and for variety in the methods used to evaluate the performance
of LAP. Although our setting assumes noise is independent of features, we felt it was still beneficial
to include IDPA, which is designed for instance dependent label noise. Note, that because ARFL is a
federated learning approach, data cannot be shuffled in the same way as the other models, since each
client trains on a single source.

It is important to note that both IDPA and Co-teaching require the training of a model twice, making
LAP significantly less computationally expensive.

All baselines were implemented using the available code and trained using the recommended parame-
ters with the model and data we test. For further details, see Appendix A.7.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

EXPERIMENTAL DESIGN

To evaluate LAP, we employ various techniques to produce noisy data, extending the methods in
Li et al. (2022); Wang et al. (2021); Han et al. (2018); Li et al. (2021) and test on eleven datasets
from computer vision, healthcare time-series, natural language processing, and tabular regression for
diverse experiments.

Following Li et al. (2022); Wang et al. (2021); Han et al. (2018); Li et al. (2021), we test our proposed
method and baselines on CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and F-MNIST (Xiao et al.,
2017) forming many comparisons with the literature. Along with Tiny-Imagenet and Imagenet (Deng
et al., 2009), these five datasets form well-studied computer vision tasks, easing reproducibility.
Additionally, we use a human labelled version of CIFAR-10, titled CIFAR-10N (Wei et al., 2022),
for which we use the “worst labels” allowing us flexibility in our experiments. We then study an
electrocardiograph (ECG) dataset, PTB-XL (Wagner et al., 2020); a time-series classification task
with the goal to classify normal and abnormal cardiac rhythms and for which noise can be simulated
following Wong et al. (2012) and random labelling to understand LAP applied to time-series data
with multiple noise types. Additionally, a sentiment analysis natural language task allows us to
compare LAP against the literature, for which we employ the IMDB dataset (Maas et al., 2011)
containing movie reviews and their sentiment. Next, we use the GoEmotions dataset (Demszky et al.,
2020), a natural language emotion prediction task, which contains real-world imbalanced source
sizes and class distributions, allowing us to test the robustness of LAP to varied source constructions.
Finally, to illustrate our method’s use for regression, we present results on the California Housing
dataset (Pace & Barry, 1997). For further information, see Appendix A.6 and A.13.

To simulate data sources for CIFAR-10, CIFAR-100, F-MNIST, Imagenet, IMDB, and California
Housing, data is uniformly split into 10 distinct groups, and for Tiny-Imagenet we use 100 groups to
study larger numbers of sources. For CIFAR-10 and CIFAR-100, 4 and 2 of these sources are chosen
to be noisy respectively; for F-MNIST, Imagenet, and Tiny-Imagenet 6, 5 and 40 are chosen; and
for IMDB and California Housing 4 are chosen. These are in line with the noise rates used in the
literature (often 20%, 40%, 50%). For CIFAR-10, in Appendix A.12 we also significantly increase
the number of sources. To generate noise for the vision datasets, we extended the methods in Li et al.
(2022): (1) Original Data: No noise is applied to the data; (2) Chunk Shuffle: Split features into
distinct chunks and shuffle. This is only done on the first and/or second axis of a given input; (3)
Random Label: Randomly assign a new label from the same code; (4) Batch Label Shuffle: For a
given batch of features, randomly shuffle the labels; (5) Batch Label Flip: For a given batch of data,
assign all features in this batch a label randomly chosen from the same batch; (6) Added Noise: Add
Gaussian noise to the features, with mean = 0 and standard deviation = 1; (7) Replace with Noise:
Replace features with Gaussian noise, with mean = 0 and standard deviation = 1.

For IMDB, GoEmotions, and California Housing we use random labelling.

PTB-XL was labelled by 12 nurses, naturally forming data sources. However, since this data is high
quality, synthetic noise is required. We add Gaussian noise to sources’ ECG recordings (simulating
electromagnetic interference as in Wong et al. (2012)) and label flipping to simulate human error in
labelling. This also allows us to test the setting with multiple noise types. Here, data from sources
are upsampled so that each source contains the same number of observations. For experiments with
PTB-XL, we linearly increase the number of noisy sources from 1 to 8 (out of 12 in total), and for
each number of noisy sources we set the noise level for each source linearly from 0.25 to 1.0. For
example, when training with 4 noisy sources, sources haves noise levels of 0.25, 0.50, 0.75, and 1.0.

Since GoEmotions is annotated by 82 raters, their indentification number is used to form the data
sources. Some raters contributed a handful of data points, whilst others labelled thousands; with
each rater providing a different distribution of class labels. This allowed us to explore the real-world
case of data with sources of imbalanced size and label distribution. A detailed discussion of the
imbalanced sources is given in Appendix A.13.

Although CIFAR-10N contains real-world noise, we must still split the data into sources. For each
experiment, we assign sources as to evaluate varied levels of noise and numbers of noisy sources. As
is done for PTB-XL, we linearly increase the number of noisy sources from 1 to 7 (out of 10 in total),
and for each set of noisy sources we linearly increase the noise level from 0.25 to 1.0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For this, seven base model architectures are evaluated (of multiple sizes): A Multilayer Perceptron,
Convolutional Neural Networks, a 1D and 2D ResNet (He et al., 2016), an LSTM (Hochreiter &
Schmidhuber, 1997), and a transformer encoder (Vaswani, 2017) (Appendix A.7).

In all experiments, data points contain an observation, source, and target, which are assigned to
mini-batches in the ordinary way. Features and labels are passed to the model for training, whilst
sources are used by LAP (Appendix A.7). The test sets contain clean labels only.

RESULTS

Table 1: Comparison of LAP with the baselines. Mean ± standard deviation of the maximum test
accuracy (%) of 5 repeats of the baselines and LAP on synthetic data with different noisy types. For
CIFAR-100 these numbers represent the top 5 accuracy. For CIFAR-10, CIFAR-100, and F-MNIST,
the number of noisy sources are 4, 2, and 6 out of 10 respectively. Unreliable sources are each 100%
noisy. All values in bold are within 1 standard deviation of the maximum score. Note that IDPA and
Co-teaching require almost twice the training time in comparison to Standard, ARFL, and LAP.

Model Types

Noise Type Standard ARFL IDPA Co-teaching LAP (Ours)

C
IF

A
R

-1
0

Original Data 77.91 ± 0.62 74.89 ± 1.67 79.89 ± 1.01 80.04 ± 0.49 78.34 ± 1.27
Chunk Shuffle 71.07 ± 1.26 68.42 ± 0.71 72.68 ± 0.96 74.77 ± 0.3 73.91 ± 0.82
Random Label 67.11 ± 1.46 69.93 ± 1.88 55.66 ± 1.54 68.61 ± 1.78 73.11 ± 0.35

Batch Label Shuffle 68.35 ± 1.58 67.12 ± 1.93 68.19 ± 1.48 71.68 ± 0.92 73.84 ± 0.66
Batch Label Flip 68.18 ± 1.81 66.16 ± 1.96 69.65 ± 1.54 71.18 ± 0.76 73.57 ± 0.61

Added Noise 70.04 ± 1.09 68.59 ± 1.38 70.94 ± 1.61 72.29 ± 0.61 72.89 ± 0.37
Replace With Noise 73.23 ± 0.7 67.01 ± 1.02 71.96 ± 1.53 73.87 ± 0.57 73.68 ± 0.4

C
IF

A
R

-1
00

Original Data 76.19 ± 0.4 60.42 ± 1.91 77.78 ± 0.95 76.25 ± 0.54 75.94 ± 1.12
Chunk Shuffle 70.23 ± 0.96 56.76 ± 2.69 66.82 ± 0.85 69.58 ± 0.51 69.98 ± 0.15
Random Label 58.08 ± 1.22 48.85 ± 3.2 49.5 ± 1.03 61.2 ± 0.54 70.27 ± 0.85

Batch Label Shuffle 65.23 ± 1.69 58.2 ± 4.45 64.34 ± 2.09 69.34 ± 0.69 69.58 ± 0.56
Batch Label Flip 61.24 ± 1.32 56.51 ± 3.36 64.61 ± 2.1 69.04 ± 1.19 69.22 ± 0.45

Added Noise 66.03 ± 0.28 58.35 ± 4.16 64.44 ± 1.11 66.02 ± 0.36 67.32 ± 0.76
Replace With Noise 67.84 ± 1.1 58.88 ± 4.33 66.06 ± 0.42 68.52 ± 1.31 68.11 ± 1.02

F-
M

N
IS

T

Original Data 83.74 ± 0.3 82.0 ± 0.4 83.69 ± 0.65 79.09 ± 1.14 83.54 ± 0.6
Chunk Shuffle 77.4 ± 1.11 77.69 ± 0.51 77.45 ± 2.21 74.74 ± 1.21 81.74 ± 2.2
Random Label 77.74 ± 4.3 77.31 ± 3.82 76.57 ± 7.16 77.41 ± 4.47 76.0 ± 6.24

Batch Label Shuffle 82.25 ± 0.65 79.11 ± 1.71 82.82 ± 0.43 82.3 ± 0.32 82.01 ± 1.22
Batch Label Flip 80.6 ± 1.73 78.85 ± 1.78 82.31 ± 0.27 80.43 ± 0.81 81.8 ± 0.71

Added Noise 76.31 ± 2.21 73.28 ± 1.31 78.42 ± 2.1 75.72 ± 1.55 79.35 ± 0.73
Replace With Noise 77.09 ± 2.19 74.12 ± 1.36 80.64 ± 0.42 78.76 ± 1.06 82.76 ± 0.4

Baselines and LAP. Table 1 shows the results of the baselines and LAP on CIFAR-10, CIFAR-100,
and F-MNIST across varied noise. This illustrates that in a high noise setting, LAP often allows
for improved test accuracy over the baselines – two different approaches to learn from noisy labels
(IDPA and Co-teaching), an approach from federated learning (ARFL), as well as training a model in
the standard way. Interestingly, IDPA and Co-teaching attain a higher accuracy on the original data in
CIFAR-10 and 100, likely because IDPA and Co-teaching require the training of a model for twice as
long or twice, almost doubling training time over LAP, ARFL and standard training.

On CIFAR-10 and 100, the performance improvement with LAP is most apparent with random
labelling noise. For instance, on CIFAR-100, LAP achieves a roughly +20% top-5 accuracy over
standard training, whilst IDPA performs worse. Although the performance improvements of LAP
are less dramatic on F-MNIST due to the simpler nature of the dataset, the model still demonstrates
better accuracy in certain noise conditions, particularly with chunk shuffling and replace with noise.

In these experiments, LAP either achieves the best accuracy, or is within a few percentage points of
the best accuracy. In the latter case, the best accuracy is then often achieved by a method that requires
longer training, but that is less robust to some noise types. Therefore, LAP on the whole achieves
more consistently higher accuracy whilst requiring less compute.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

To further illustrate the potential accuracy improvement from using LAP, within Appendix A.9
we also present these results as a percentage difference to the standard training method. In the
following more challenging experiments, the improvement in accuracy of using LAP becomes clearer.
Additionally, although IDPA and co-teaching are limited to classification tasks, LAP also works on
regression (Appendix A.17).

Table 2: RRL and RRL + LAP results. Mean ± standard
deviation of the maximum test accuracy (%) of 10 repeats
of RRL and LAP on CIFAR-10 data with different types
of noise. Here, 4 out of 10 sources are 100% noisy.

Model Types

Noise Type RRL RRL + LAP (Ours)

Original Data 87.67 ± 0.37 87.54 ± 0.22
Chunk Shuffle 82.93 ± 0.29 84.27 ± 0.31
Random Label 76.04 ± 1.43 80.31 ± 0.58

Batch Label Shuffle 77.66 ± 0.71 80.84 ± 0.51
Batch Label Flip 78.81 ± 0.66 82.02 ± 0.45

Added Noise 78.51 ± 0.74 81.70 ± 0.48
Replace With Noise 80.05 ± 0.65 79.00 ± 0.75

LAP in conjunction with RRL. Since
RRL requires significant changes to the
model architecture and data augmenta-
tion, we separately test the large archi-
tecture (Appendix A.7) and experimen-
tal set-up employed in Li et al. (2021)
for a fairer comparison. Here, we test
RRL with and without LAP to evaluate
its ability to be used in conjunction with
other methods. Table 2 presents these
results on CIFAR-10, and further under-
lines the use of LAP to improve model
performance on data generated by mul-
tiple sources. Here, LAP supplements
the accuracy obtained by RRL, which
uses a contrastive learning approach to
tackle noisy features and labels, that is
improved upon by further applying our
method to make use of the source values. We observe that LAP increases all metric scores except
for “Replace With Noise”, where the difference is relatively small, and “Original Data”, where both
methods perform equally. Again, the most substantial increase in accuracy comes from the random
labelling noise, where LAP improves on RRL by around +5%. These results are supplemented by
Appendix A.10, where we test different numbers of noisy sources and noise rates.

2 3 4 5 6 7 8

Number of Noisy Sources

90

91

92

93

94

95

T
es

t
A

U
C

P
R

(%
)

Method

LAP

Standard

(a) AUC precision-recall on PTB-XL.

2 3 4 5 6

Number of Noisy Sources

75

80

85

90

T
es

t
A

cc
u
ra

cy
(%

)

Method

RRL + LAP

RRL

(b) Accuracy on CIFAR-10N.

Figure 3: LAP results with a varied number of sources and noise levels. In (a) we show the area
under the precision-recall curve for standard training and using LAP on PTB-XL with label noise and
simulated ECG interference noise for 12 total sources. In (b) we show the accuracy on CIFAR-10N
with real human labelling noise when using RRL and RRL + LAP, with 10 sources. In both, the
noise of the sources varies linearly from 25% to 100% for each number of noisy sources. The lines
and error bands represent the mean and standard deviation of the maximum value for each of the 5
repeats. These figures illustrate that LAP maintains higher performance as noise rates increase.

Varied noise level and source sizes with real-world time-series data. Figure 3a compares the
results of not using and using LAP for a time-series classification task on normal and abnormal
cardiac rhythms with both label and input noise. To evaluate the model on data sources with differing
noise levels, for each number of noisy sources we set the noise levels of sources at linear increments
between 25% and 100%. Additionally, we linearly increase the number of these noisy sources and
measure the area under the precision-recall curve (AUC PR) on the test set. These results shows that
LAP allows for improved model training on data with sources of varied noise and with multiple noise
types. Figure 3a also illustrates that in this setting, LAP is robust to increases in the noise within the
dataset, as the AUC PR does not significantly degrade, especially when compared to not using LAP.
Additionally, the standard deviation of results is smaller, suggesting LAP is more consistent in its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

AUC-PR. When only two sources contain noise, the total noise rate in the dataset is only 10%, which
has little negative effect on the standard training.

Real-world noisy labels. To further demonstrate the effectiveness of LAP in conjunction with other
noisy data methods and on real-world noise, we now present the results on a dataset with human
labelling of varied noise rates. Figure 3b illustrates the results on CIFAR-10N, a noisy human labelled
version of CIFAR-10, where we observe a similar pattern to that depicted in Figure 3a. In both cases,
LAP improved accuracy on noisy data at all noise levels tested, and the standard deviation over the
accuracy is reduced. However, we also note that in this case the accuracy of LAP degraded faster
than the AUC PR in Figure 3a as the number of noisy sources increased. This could be for various
reasons, such as differing noise types, model baselines, and data type. In Appendix A.11 we also
show the results of this experiment when using the same model architecture as in Table 1, and with
standard training as a baseline, instead of RRL, where we arrive at the same conclusions.

Table 3: Baselines and LAP results on a natural language task. Mean ± standard deviation of
maximum test accuracy (%) of 5 repeats of the methods on the IMDB dataset with different types of
noise. Here, 4 out of 10 sources are 100% noisy.

Model Types

Noise Type Standard IDPA Co-teaching LAP (Ours)

Original Data 82.81 ± 0.79 83.24 ± 0.56 85.12 ± 0.8 83.2 ± 0.83
Random Label 65.01 ± 0.65 64.61 ± 0.71 67.18 ± 0.69 71.95 ± 2.94

LAP on a noisy natural language task. We also tested LAP on a natural language task, in which
the goal is to predict the sentiment from the movie review. The results are presented in Table 3, for
which we tested two types of noise. Here, LAP clearly out-performs the baselines by a significant
margin, with IDPA not improving on standard training. Additionally, we expect that when the data is
not noisy, using LAP should not limit performance, which we see here. It is interesting however, that
Co-teaching performs better in the “Original Data”. We hypothesise that the IMDB dataset contains
some noisy labels (through human error), which were split uniformly across data sources; a limitation
of our method that we discuss in Section 5.

Table 4: Results on GoEmotions, an imbalanced sources dataset. Mean ± standard deviation of
maximum test top-5 accuracy (%) over 5 repeats of the methods on the GoEmotions data with noisy
labels and random sentence permutation. Here, 30 out of 82 sources are 100% noisy.

Model Types

Noise Type Standard IDPA Co-teaching LAP (Ours)

Original Data 80.43 ± 0.05 79.66 ± 0.21 79.7 ± 0.31 80.44 ± 0.15
Random Label 76.96 ± 0.58 76.05 ± 0.84 77.05 ± 0.7 78.74 ± 0.41

Real-world and imbalanced data sources. To supplement the results on PTB-XL, we present LAP
on an additional dataset containing real-world data sources – GoEmotions. This dataset allows us to
explore the scenario in which source sizes and the classes they contain vary significantly, which could
be a common scenario in real-world use cases. As LAP weights sources based on their log-likelihood,
it is important to consider the robustness of our method to variations in the distribution of classes in
sources, as well as their sizes. In the GoEmotions dataset, our training set contains source sizes in
the range of 1 to 9320 with a mean size of 1676 and standard deviation of 1477 – providing varied
source data distributions (details in Appendix A.13). Table 4 demonstrates the top-5 accuracy of the
various methods in this setting, and suggests that LAP is robust to varied source data distributions in
this real-world dataset. Whilst LAP and Standard training have similar performance when trained on
the original data, using LAP leads to improved top-5 accuracy on the test set when random labels are
introduced. On GoEmotions, random labelling had small effects on the performance of the Standard
training method, reducing the test set top-5 accuracy from 80.5 to 77.0, however LAP was still able
to significantly reduce that performance loss by achieving a test set top-5 accuracy of 78.7. LAP also
produced greater top-5 accuracy than the baselines in all cases, and with less variability in results. In
Appendix A.14 we further test imbalance in source class distributions with an extreme example.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Additional results. Many further experiments, such as with varied numbers of sources and source
sizes (A.10 and A.12), models sizes (A.11), Imagenet (A.15 and A.16), a regression task (A.17),
the effect on late training performance (A.16.1), and experiments straining the method assumptions
(A.14) can be found in Appendix which provide further intuitions about LAP and strong evidence for
its use in a wide variety of settings.

5 DISCUSSION

This research reveals some interesting future research directions. In our experiments, we study models
of varied capacity (for example: Table 1 and Appendix A.11, and Table 2 and Appendix A.16),
however, it is interesting to further study the effects of ill-specified models on noisy data techniques,
as most methods assume that models attain smaller losses on the non-noisy data points (for example:
in our work and Co-teaching (Han et al., 2018)), or that logits are reliable (for example: in RRL (Li
et al., 2021) and IDPA (Wang et al., 2021)). Additionally, we focus on the setting in which knowing
the source of a data point provides extra information in learning from noisy data. However, when the
noise level is uniform across all sources, the source value does not provide additional information
about a data point’s likelihood of being noisy, and so in this case LAP performs as well as standard
training. Here, it would be beneficial to apply a noisy data technique in addition to our method, such
as with RRL + LAP, studied in the experiments (Table 2, Figure 3b, and Appendix A.10).

The additional compute required to apply LAP to a single source is O(S +B) and the extra memory
cost is O(S ×H) (where S is the number of unique sources in the dataset, B is the batch size, and H
is the length of the loss history), as we calculate the source means and standard deviations online. For
multiple sources in a batch, the additional compute becomes O(S×Sb+B) (where Sb is the number
of unique sources in a batch). A measured time cost for a simple experiment is given in Appendix
A.18. The extra memory cost in this case is O(S ×H + Sb × S). Although vectorised in the current
implementation, O(S × Sb) could be performed with Sb parallel jobs of O(S), since each source
calculation is independent, significantly improving its speed for larger numbers of sources. However,
this is already significantly faster than the baselines tested, in which Co-teaching trains two models,
IDPA trains a model for twice as long, and RRL applies k-nearest neighbours at each epoch.

Importantly, as is the case with all methods designed for training models on noisy data, thought must
be given to the underlying cause of noise. For example, in some scenarios noise within a dataset
could be attributed to observations on minority groups during data collection, rather than as a result
of errors in measurements, labelling, or data transfer. This is why we began with the assumption that
all data (if non-noisy) is expected to be generated from the same underlying probability distribution.
If data from minority groups are not carefully considered, any technique for learning from noisy data,
or standard training could lead to an unexpected predictive bias (Mehrabi et al., 2021).

Within this work we presented LAP, a method designed for training neural networks on data generated
by many data sources with unknown noise levels. In Section 4, we observed that using LAP during
training improves model performance when trained on data generated by a mixture of noisy and
non-noisy sources, and does not hinder performance when all data sources are free of noise. The
results also illustrated that applying the proposed method is beneficial at varied noise levels, when
training on multiple sources with differing levels of noise, and whilst being robust to different types
of noise. We additionally see through results in Table 1, 2, 3, 4 and Figure 3a, and 3b that our method
is applicable and robust across multiple domains with differing tasks. Moreover, within the Appendix
we present many further experiments, showing that: (1) Our method is robust to an extreme source
class distribution that tests the limits of the assumptions we made when proposing LAP (Appendix
A.14); (2) The improvements in results translate to large scale datasets (Imagenet), with multiple
noise types (Appendix A.16); (3) LAP is robust to overfitting of noisy data, and therefore achieves
significantly greater performance during late training (Appendix A.16.1); and (4) LAP continues
to outperform the baseline on a regression task (Appendix A.17). Further, our implementation
(Appendix A.1) allows this method to be easily applied to any neural network training where data is
generated by multiple sources and our analysis in Section 3 and Appendix A.8 provides a detailed
description of the introduced parameters and their intuitions.

This work shows that LAP provides improved model performance over the baselines in a variety of
noise settings and equal performance on non-noisy data, whilst being robust to a multitude of tasks
and being cheaper to compute. We therefore imagine many scenarios where LAP is relevant.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin McGuinness. Unsupervised label
noise modeling and loss correction. In International conference on machine learning, pp. 312–321.
PMLR, 2019.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S.
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-
Julien. A closer look at memorization in deep networks. In Proceedings of the 34th International
Conference on Machine Learning, pp. 233–242. PMLR, July 2017. URL https://proceedi
ngs.mlr.press/v70/arpit17a.html.

Emilie Baro, Samuel Degoul, Régis Beuscart, and Emmanuel Chazard. Toward a literature-driven
definition of big data in healthcare. BioMed research international, 2015, 2015.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pp. 1683–1691, Bejing,
China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/chen
i14.html.

A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the
em algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):20–28,
1979. ISSN 0035-9254. doi: 10.2307/2346806.

Sarah Jane Delany, Nicola Segata, and Brian Mac Namee. Profiling instances in noise reduction.
Knowledge-Based Systems, 31:28–40, 2012. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knos
ys.2012.01.015.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. GoEmotions: A Dataset of Fine-Grained Emotions. In 58th Annual Meeting of the
Association for Computational Linguistics (ACL), 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Benoit Frenay and Michel Verleysen. Classification in the presence of label noise: A survey. IEEE
Transactions on Neural Networks and Learning Systems, 25(5):845–869, May 2014. ISSN 2162-
2388. doi: 10.1109/TNNLS.2013.2292894.

Dragan Gamberger, Nada Lavrac, and Saso Dzeroski. Noise detection and elimination in data
preprocessing: Experiments in medical domains. Applied Artificial Intelligence, 14(2):205–223,
February 2000. ISSN 0883-9514, 1087-6545. doi: 10.1080/088395100117124.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
NeurIPS, pp. 8535–8545, 2018.

Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, and Masashi
Sugiyama. A survey of label-noise representation learning: Past, present and future. CoRR,
abs/2011.04406, 2020. URL https://arxiv.org/abs/2011.04406.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Ray J. Hickey. Noise modelling and evaluating learning from examples. Artificial Intelligence, 82
(1–2):157–179, April 1996. ISSN 00043702. doi: 10.1016/0004-3702(94)00094-8.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

11

https://proceedings.mlr.press/v70/arpit17a.html
https://proceedings.mlr.press/v70/arpit17a.html
https://proceedings.mlr.press/v32/cheni14.html
https://proceedings.mlr.press/v32/cheni14.html
https://arxiv.org/abs/2011.04406

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Junnan Li, Caiming Xiong, and Steven C.H. Hoi. Learning from noisy data with robust representation
learning. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9465–9474,
Montreal, QC, Canada, October 2021. IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV4892
2.2021.00935. URL https://ieeexplore.ieee.org/document/9710292/.

Shenghui Li, Edith Ngai, Fanghua Ye, and Thiemo Voigt. Auto-weighted robust federated learning
with corrupted data sources. ACM Transactions on Intelligent Systems and Technology, 13(5):1–20,
October 2022. ISSN 2157-6904, 2157-6912. doi: 10.1145/3517821.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
regularization prevents memorization of noisy labels. Advances in Neural Information Processing
Systems, 33, 2020.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Don McNicol. A Primer of Signal Detection Theory. Psychology Press, New York, November 2004.
ISBN 978-1-4106-1194-9. doi: 10.4324/9781410611949.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35, 2021.

Kevin P. Murphy. Probabilistic machine learning: an introduction. Adaptive computation and
machine learning. The MIT Press, Cambridge, Massachusetts London, England, 2022. ISBN
978-0-262-04682-4.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss
minimization. In International Conference on Machine Learning, pp. 5739–5748. PMLR, 2019.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

12

https://arxiv.org/abs/1412.6980
https://ieeexplore.ieee.org/document/9710292/
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jaree Thongkam, Guandong Xu, Yanchun Zhang, and Fuchun Huang. Support vector machine
for outlier detection in breast cancer survivability prediction. In Yoshiharu Ishikawa, Jing He,
Guandong Xu, Yong Shi, Guangyan Huang, Chaoyi Pang, Qing Zhang, and Guoren Wang (eds.),
Advanced Web and Network Technologies, and Applications, pp. 99–109, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-89376-9.

Divya Tomar and Sonali Agarwal. A survey on data mining approaches for healthcare. International
Journal of Bio-Science and Bio-Technology, 5(5):241–266, 2013.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I. Lunze, Wojciech
Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocardiography dataset.
Scientific Data, 7(1), May 2020. doi: 10.1038/s41597-020-0495-6. URL https://doi.org/
10.1038/s41597-020-0495-6.

Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, and Chen Gong. Tackling instance-
dependent label noise via a universal probabilistic model. In AAAI, pp. 10183–10191, 2021.

Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia.
Iterative learning with open-set noisy labels. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8688–8696, 2018.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with
noisy labels revisited: A study using real-world human annotations. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=TBWA
6PLJZQm.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

W.Y. Wong, R. Sudirman, N.H. Mahmood, S.Z. Tumari, and N. Samad. Study of environment based
condition of electromagnetic interference during ecg acquisition. In 2012 International Conference
on Biomedical Engineering (ICoBE), pp. 579–584, 2012. doi: 10.1109/ICoBE.2012.6178983.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
Robust early-learning: Hindering the memorization of noisy labels. In ICLR, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In International conference on machine
learning, pp. 7164–7173. PMLR, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
March 2021. ISSN 0001-0782, 1557-7317. doi: 10.1145/3446776.

Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. Artificial
Intelligence Review, 22(3):177–210, November 2004. ISSN 1573-7462. doi: 10.1007/s10462-004
-0751-8.

13

https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1038/s41597-020-0495-6
https://openreview.net/forum?id=TBWA6PLJZQm
https://openreview.net/forum?id=TBWA6PLJZQm

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CODE IMPLEMENTATION

An implementation of the proposed method, as well as the code to reproduce the results in this paper
is made available. The experiments in this work were completed in Python 3.11, with all machine
learning code written for Pytorch 2.1 (Paszke et al., 2017). Other requirements to run the experiments
are available in the supplementary code. We make our code available under the MIT license.

All datasets tested are publicly available and easily accessible. Additionally, within the supplementary
code we use the default Pytorch Dataset objects for CIFAR-10, CIFAR-100, and F-MNIST and
provide Pytorch Dataset objects that will automatically download, unzip, and load the data for
PTB-XL, CIFAR-10N, IMDB, and California Housing. We additionally provide code to load Tiny-
Imagenet and Imagenet from a local directory, since it requires an agreement before accessing. This
makes reproduction of the work presented simple to perform.

Baselines were made available by the authors on GitHub:

• ARFL (Li et al., 2020): MIT License: https://github.com/lishenghui/arfl.
• IDP (Wang et al., 2021): License not provided: https://github.com/QizhouWan
g/instance-dependent-label-noise.

• Co-teaching (Han et al., 2018): License not provided: https://github.com/bhanM
L/Co-teaching.

• RRL (Li et al., 2021): BSD 3-Clause License: https://github.com/salesforc
e/RRL.

All experiments were conducted a single A100 (80GB VRAM), and 32GB of RAM. The full research
project required more compute than the experiments reported in the paper to design and implement
LAP, as well as choose training parameters for the standard training model that were then used for
LAP and the baselines. Further information about the compute time required to run each of the main
experiments is found in Appendix A.7, and the corresponding section of the Appendix for further
experiments. In total, using this hardware, experiments took approximately 15 days to complete.

A.2 LOSS ASSUMPTIONS

Within this work, and for many other methods designed for tackling noisy data, we make use of
the assumption that during training, neural networks learn non-noisy patterns before fitting to noisy
data, and therefore achieve a greater log-likelihood on non-noisy data during early training. This
is discussed within Zhang et al. (2021); Arpit et al. (2017); Han et al. (2018); Arazo et al. (2019);
Yu et al. (2019); Shen & Sanghavi (2019); Li et al. (2021); Wang et al. (2021), which present both
theoretical and empirical justifications. We also observe these training dynamics in Appendix A.16.1
(specifically, Figure 7), in which the standard training method overfits to noisy data points significantly
during the later training stages when compared to our method for learning from noisy data.

A.3 FURTHER DETAILS ON DESIGN DECISIONS

WHY USE A WEIGHTED MEAN AND STANDARD DEVIATION?

Firstly, we will discuss why the weighted mean and standard deviation is used for comparing sources
with each other. This is done to allow for the identification of noisy sources by our method when
different data sources might have significantly different noise levels. This is the case in Figure 2,
where we have one source producing 100% noise and other sources with 5%, and 2.5% noise levels.
Here, because the noise in the sources are so varied, the sources with lower noise levels would
likely never have an average loss more than the unweighted mean of the loss trajectory plus the
threshold created from the leniency multiplied by the unweighted standard deviation (Algorithm 1).
By weighting the mean and standard deviation with the calculated temperature, we are able to ensure
that all sources with noise level greater than 0% will be discovered in a number of model update steps
proportional to their noise level. This is shown in Figure 1, where the weighted mean and standard
deviation of the loss moves further to the left, as the weight reduces the influence of the unreliable
source (on the right).

14

https://github.com/lishenghui/arfl
https://github.com/QizhouWang/instance-dependent-label-noise
https://github.com/QizhouWang/instance-dependent-label-noise
https://github.com/bhanML/Co-teaching
https://github.com/bhanML/Co-teaching
https://github.com/salesforce/RRL
https://github.com/salesforce/RRL

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

WHY THE MEAN + STANDARD DEVIATION FOR THRESHOLDING?

When calculating whether a source should be considered more or less unreliable, we need to be
able to calculate a reliability compared to the other sources. We therefore use a mean and standard
deviation over previous loss values, so that we can calculate a relative reliability. As described in
Section 3, it also provides an intuitive idea about the probability that a non-noisy source is incorrectly
identified as noisy on a single step (if the means of loss values are assumed to follow a Gaussian
distribution, which is not unreasonable according to the central limit theorem).

WHY DO WE CLIP RELIABILITY AT 0?

In Algorithm 1, we clip Cs at 0 to ensure that when we have sources with noise levels of different
magnitudes, once the sources with larger noise levels have been heavily weighted and so have
insignificant effects on the weighted mean and standard deviation, we are able to start reducing the
reliability of other noisy sources immediately, rather than waiting for Cs to increase from some
negative value to 0. Also, since we use the tanh2 function to calculate loss (or gradient) scaling,
clipping Cs at 0 prevents us from introducing an error in which loss from reliable sources get scaled
with the same factor as unreliable sources.

EXPLANATION FOR USING tanh2

Equation 3 describes the scaling of gradients (or equivalently, loss values) to reduce the contributions
to model updates from less reliable data sources over time. Although any monotonically increasing
function can be used for f(·) : [0,+∞) → [1,+∞), we find that 1/f(Cs) = 1−tanh2(0.005·δ ·Cs)
provides some nice properties: y = tanh2 x has gradient of 0 at x = 0, and is asymptotic to y = 1,
which are important qualities for calculating the model update scaling. The stationary point at x = 0
means that small perturbations in the unreliability of each source around Cs = 0 have little effects on
the scaling of model updates, which reduces the consequences of randomness in loss values from a
given source and ensures that source contributions are only significantly scaled once it is clear that
their loss values are consistently larger than those of the other sources. Secondly, since y = tanh2 x
is asymptotic to y = 1, the scale factor, 1 − ds (Equation 3) for sources that are calculated to be
unreliable eventually reduces to 0, allowing the model to “ignore” these data points as if they were
masked in late training.

EXPLANATION FOR SCALING WITH 0.005

The value of 0.005 used within the tanh2 function allows for the depression strength parameter δ to
be on the scale of 1, as shown in Figure 2.

A.4 ALTERNATIVE INTERPRETATION

Here, we present another interpretation of our proposed method which may provide inspiration for
future research.

As discussed in Appendix A.2, the model evidence, p(D|M) (D: the dataset and M: the model)
is the probability that a dataset is generated by a given model (by marginalisation of the model
parameters). In our case, this could be used to calculate the probability that data from each source,
s is generated by the given model, namely: p(Ds|M) where Ds is the data generated by a source
s. A model designed for non-noisy data should have a high p(Ds|M) when Ds has a low noise
level, and a low p(Ds|M) when Ds has a high noise level. However, log(p(Ds|M)) is hard to
compute for neural networks, and would require an approximation. It can be shown that p(D|M)
can be approximated by the logsumexp of the log-likelihood over a training trajectory with noisy
gradients, which approximates the posterior samples with SGLD or SGHMC (Chen et al., 2014;
Welling & Teh, 2011). Within our work, when computing if a given source is noisy or non-noisy,
the mean loss for this source is calculated over a training trajectory of length equal to the history
length, H (given by µs in Algorithm 1). This is then compared to a weighted mean of the loss over a
training trajectory of length H of all sources excluding the source under scrutiny (given by µs′ in
Algorithm 1). This weighted mean is related to p(DR|M) where DR represents the data from all
non-noisy sources, since the weights allow us to reduce the influence of noisy sources. Therefore, our

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

method is related to one in which the model evidence is calculated for each source at each step, and
where the sources with a relative model evidence higher than some threshold (defined in our work
through the leniency, λ) have larger influence on the model parameters when updating the weights.

A.5 DETAILS OF THE VARIED PARAMETER EXPERIMENTS

To build an intuition for the parameters introduced in defining LAP, we run some synthetic examples
to understand their effects on 1− ds (in Equation 3). The results of this are presented in Figure 2.

Dataset. The synthetic data is created using Scikit-Learn’s make moons 2 function, which produced
10, 000 synthetic observations with 2 features. Each observation is assigned a label based on which
“moon” the observation corresponded to. Then, to produce synthetic sources and noise levels for each
source, we randomly assign each data point a source number from 0 to 4, so that we have 5 sources
in total. Data points for each source were then made noisy by randomly flipping labels such that each
source had a noise level of 0.0, 0.025, 0.05, 0.25, or 1.0.

Model and training. A simple Multilayer Perceptron (MLP) with hidden sizes of (100, 100) and
ReLU activation functions is trained on this data using the Adam optimiser with a learning rate of
0.01, a weight decay of 0.0001, and with (β1, β2) = (0.9, 0.999) for 50 epochs with a batch size of
128. Data is shuffled at each epoch before being assigned to mini-batches.

LAP parameters. When conducting the experiments, the values of δ, H , and λ were varied as
is described in the graphs shown in Figure 2 to experiment with different values of these newly
introduced parameters. Unless otherwise specified, the values chosen are H = 25, δ = 1.0, λ = 1.0.

These experiments take approximately 5 minutes to complete when using the compute described in
Appendix A.1.

A.6 FURTHER INFORMATION ON THE DATASETS

The content of each of the datasets is as follows:

• CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) are datasets made up of 60,000 RGB
images of size 32× 32 divided into 10 and 100 classes, with 6000 and 600 images per class
respectively. The task in this dataset is to predict the correct class of a given image.

• F-MNIST (Xiao et al., 2017) is made up of 70,000 greyscale images of clothes of size 28×28
divided into 10 classes with 7000 images per class, which is flattened into observations with
784 features. The task of this dataset is to predict the correct class of a given image.

• PTB-XL (Wagner et al., 2020) consists of 21,837 ECG recordings of 10 second length,
sampled at 100Hz, from 18,885 patients, labelled by 12 nurses. The task of this dataset is to
predict whether a patient has a normal or abnormal cardiac rhythm.

• CIFAR-10N (Wei et al., 2022) is a dataset made up of all examples from CIFAR-10, but
with human labelling categorised into different levels of quality. For our case, to allow for
the most flexibility in experiment design, we utilised the worst of the human labels.

• GoEmotions (Demszky et al., 2020) is a natural language dataset in which the task is
to correctly classify the emotion of Reddit comments from a possible 28 emotions. This
dataset contains 171,820 text examples, annotated by 82 raters, with each rater contributing
somewhere between 1 and 9320 labels (mean: 1676, standard deviation: 1477). To produce
the training and test set, we randomly split the examples in the ratio 80:20.

• IMDB (Maas et al., 2011) is a natural language dataset with a sentiment analysis task. The
goal is to correctly classify a movie review as either positive or negative based on its text.
It contains 25,000 reviews in the training set, and 25,000 reviews in the testing set, split
equally between positive and negative sentiment.

• MNIST (LeCun et al., 1998) contains 60,000 training and 10,000 testing images of hand-
written digits in black and white at a resolution of 28. The goal of this dataset is to correctly
identify the digit drawn in the image (from 0 to 9).

2Scikit-Learn:make_moons

16

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Tiny-Imagenet (Deng et al., 2009) contains 110,000 RGB images of size 64 × 64 from
200 classes, with the goal of correctly classifying an image into the given class. There are
100,000 training images and 10,000 images in the test set.

• Imagenet (Deng et al., 2009) contains 1,281,167 RGB images scaled to size 64× 64 from
1000 classes, with the goal of correctly classifying an image into the given class. There are
1,231,167 training images and 50,000 images in the test set.

• California Housing (Pace & Barry, 1997) contains 20,640 samples of house values in
California districts, with the goal to predict the median house value from the U.S census
data for that region. We randomly split the data into training and testing with an 8 : 2 ratio
on each repeat.

Dataset licenses. CIFAR-10, CIFAR-100, and F-MNIST are managed under the MIT License.
PTB-XL is made available with the Creative Commons Attribution 4.0 International Public License 3,
CIFAR-10N is available with the Creative Commons Attribution-Non Commercial 4.0 International
Public License 4, GoEmotions is made available under the Apache-2.0 license 5, and MNIST is
available under the the Creative Commons Attribution-Share Alike 3.0 license 6. IMDB7 and
California Housing8 are made publicly available, and Tiny-Imagenet and Imagenet are available after
agreeing to the terms of access 9.

Dataset availibility. As mentioned in Appendix A.1, all datasets tested are publicly available and
easily accessible. Additionally, within the supplementary code we use the default Pytorch Dataset
objects for CIFAR-10, CIFAR-100, F-MNIST, and MNIST, and provide Pytorch Dataset objects
that will automatically download, unzip, and load the data for PTB-XL, CIFAR-10N, GoEmotions,
IMDB, and California Housing. We additionally provide code to load Tiny-Imagenet and Imagenet
from a local directory, since it requires an agreement before accessing. This makes reproduction of
the work presented simple to perform.

A.7 EXPERIMENTS IN DETAIL

For each of the experiments presented in Section 4, we will now describe the dataset, models, and
training in detail.

MODEL ARCHITECTURES

Within our experiments, we tested many model architectures, described below. Due to limitations
in compute and to allow for our work to be easily reproducible, we use different levels of model
capacity which additionally illustrates that our method is applicable in varied settings. All models are
also available in the supplementary code, implemented in Pytorch.

• Low capacity multilayer perceptron (MLP): The MLP used in Section 4 consists of 3
linear layers that map the input to dimension sizes of 16, 16, and the number of classes.
In between these linear layers we apply dropout with a probability of 0.2, and a ReLU
activation function. For our experiments on California Housing, we used hidden sizes of 32,
32, 32, and 1 (for the output value) with ReLU activation functions.

• Low capacity CNN: This model consisted of 3 convolutional blocks followed by 2 fully
connected layers. Each convolutional block contained a convolutional layer with kernel size
of 3 with no padding, and a stride and dilation of 1; a ReLU activation function; and a max
pooling operation with kernel size of 2. The linear layers following these convolutional
blocks maps the output to a feature size of 64 and then the number of classes, with a ReLU
activation function in between.

3https://creativecommons.org/licenses/by/4.0/.
4https://creativecommons.org/licenses/by-nc/4.0/.
5https://github.com/google-research/google-research.
6https://creativecommons.org/licenses/by-sa/3.0/
7https://ai.stanford.edu/˜amaas/data/sentiment/
8https://www.dcc.fc.up.pt/˜ltorgo/Regression/cal_housing.html
9https://www.image-net.org/download

17

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://github.com/google-research/google-research
https://creativecommons.org/licenses/by-sa/3.0/
https://ai.stanford.edu/~amaas/data/sentiment/
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.image-net.org/download

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• High capacity CNN with contrastive learning: This CNN is inspired by the model used
for the CIFAR-10 experiments in Li et al. (2021) and requires considerably more compute.
It is based on the ResNet architecture (He et al., 2016), except that it uses a pre-activation
version of the original ResNet block. This block consists of a batch normalisation operation,
a convolutional layer (of kernel size 3, a padding of 1, and varied stride, without a bias
term), another batch normalisation operation, and another convolutional layer (with the
same attributes). Every alternate block contains a skip connection (after a convolutional
layer, with a kernel size of 1 and a stride of 2, had been applied to the input). The input
passes through a convolutional layer before the blocks. This is followed by a linear layer
that maps the output of the convolutions to the number of classes. This model also contains
a data reconstruction component that allows for a unsupervised training component.

• ResNet 1D: This model is designed for time-series classification and is based on the 2D
ResNet model (He et al., 2016), except with 1D convolutions and pooling. The model is
made up of 4 blocks containing two convolutional layers split by a batch normalisation
operation, ReLU activation function, and a dropout layer. These convolutional blocks reduce
the resolution of their input by a quarter and increase the number of channels linearly
by the number of input channels in the first layer of the model. Each block contains a
skip connection that is added to the output of the block before passing through a batch
normalisation operation, ReLU activation function and dropout layer. This is followed by a
linear layer that transforms the output from the convolutional blocks to the number of output
classes.

• ResNet 2D: This model is designed for image classification and is exactly the ResNet 20
architecture presented in He et al. (2016) or the ResNet 18 or Resnet 50 implementation in
available with Pytorch 10.

• Transformer Encoder: (Vaswani, 2017) This model is designed for the natural language
based emotion prediction task given by the GoEmotions dataset. This model uses an
embedding layer of size 256, positional encoding, and 2 transformer encoder layers (based
on the implementation in Pytorch 11) with 4 heads, and an embedding size of 256. This
is followed by a linear layer that maps the output from the transformer encoder to the 28
emotion classes.

• LSTM: (Hochreiter & Schmidhuber, 1997) The natural language model contains an em-
bedding layer, which maps tokens to vectors of size 256, a predefined LSTM module from
Pytorch 12 with 2 layers and a hidden size of 512, a dropout layer with a probability of 0.25,
and a fully connected layer mapping the output from the LSTM module to 2 classes.

DATASETS AND MODEL TRAINING

Results in Table 1. To produce the results in Table 1, we used two different models applied to three
different datasets, with 7 noise settings.

• CIFAR-10 and CIFAR-100: All training data is randomly split into 10 sources, with 4 and
2 sources chosen to be noisy for CIFAR-10 and CIFAR-100 respectively. In this experiment,
these noisy sources are chosen to be 100% noisy so that we can get an understanding of how
our method performs on data containing highly noisy sources. Noise is introduced based
on the description given in Section 3. The ResNet 20 model described above is trained on
this data and tasked with predicting the image class using cross entropy loss. The model
is trained for 40 epochs in both cases, with the SGD optimiser and a learning rate of 0.1,
momentum of 0.9, and weight decay of 0.0001, on batches of size 128. When training with
LAP, we use H = 25, δ = 1.0, and λ = 0.8 chosen using the validation data (which is
made noisy using the same procedure as the training data) after trained on data with batch
label flip noise. When training on CIFAR-100 we found that using a warm-up of 100 steps
improved performance.

• F-MNIST: All training data is randomly split into 10 sources, with 6 chosen to be 100%
noisy. The low capacity MLP model is trained for 40 epochs using the Adam optimiser, and

10Pytorch:ResNet
11Pytorch:TransformerEncoderLayer
12Pytorch:LSTM

18

https://pytorch.org/vision/main/models/resnet.html
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

a learning rate of 0.001 on batches of size 200. When training with LAP, we use H = 50,
δ = 1.0, and λ = 0.8 chosen using the validation data (which is made noisy using the same
procedure as the training data) after trained on data with batch label flip noise.

In our implementation, each data point contained an observation, the generating data source, and a
target. The features and labels were passed to the model for training, and the sources were used to
calculate the weighting to apply to the loss on each data point.

To allow fairness in the comparison with ARFL, global updates on this model were performed the
same number of times as the number of epochs other models were trained for, with all clients being
trained on data for a single epoch before each global update. All other parameters for the ARFL
model are kept the same. When testing IDPA, the parameters were chosen as in Wang et al. (2021)
by using the default parameters in the implementation. Finally, when testing “Co-teaching”, the
parameters are chosen as in Han et al. (2018) where possible, and scaled proportionally by the change
in the number of epochs between their setting and our setting where they depended on the total
number of epochs. The forgetting rate was set as the default given in the implementation code, 0.2,
since we do not assume access to the true noise rate.

Note that when training ARFL, since it is a federated learning method, each client is trained on
sources separately.

These experiments take approximately 2 days to complete when using the compute described in
Appendix A.1.

For all of the following experiments, to reduce computational cost, we fix the parameters of LAP to
H = 25, δ = 1.0, and λ = 0.8. In practise, optimising these parameters should allow for improved
performance when using LAP over those presented in this work.

Results in Table 2. To produce the results presented here, all training data is randomly split into 10
sources, with 4 chosen to be 100% noisy. The high capacity CNN with contrastive learning presented
in Li et al. (2021) is trained for 25 epochs, with all other parameters kept as in the original work.
In addition to this model, a version (with the same parameters) is trained using LAP with H = 25,
δ = 1.0, and λ = 0.8. These models were trained on batch sizes of 128 using stochastic gradient
descent with a learning rate of 0.02, momentum of 0.9, and weight decay 0.0005. Data is randomly
assigned to mini-batches, with each batch containing multiple sources.

These experiments take approximately 3 days to complete when using the compute described in
Appendix A.1.

Results in Figure 3a. This experiment allowed us to test the performance of using LAP on different
numbers of sources with varied noise levels. Firstly, data is split into 12 sources based on the clinician
performing the labelling of the ECG recording. Then, for a given number of sources (increasing
along the x axis), the noisy sources have noise levels that are set at linear intervals between 25%
and 100%. These sources are made noisy following suggestions in Wong et al. (2012) to simulate
electromagnetic interference and using label flipping to simulate human error in labelling. On this
data, we train the ResNet 1D model for 40 epochs using the Adam optimiser with a learning rate of
0.001 and a batch size of 64. This model is trained with and without LAP with H = 25, δ = 1.0, and
λ = 0.8. Data is randomly assigned to mini-batches, with each batch containing multiple sources.

These experiments take approximately 16 hours to complete when using the compute described in
Appendix A.1.

Results in Figure 3b. Here, CIFAR-10 is used as the features and the labelling collected in Wei et al.
(2022) are used as the noisy labels to produce CIFAR-10N. The data is first randomly split into 10
sources. Then, for a given number of sources (increasing along the x axis), the noisy sources have
noise levels that are set at linear intervals between 25% and 100%, by replacing the true CIFAR-10
labels with the real noisy labels from Wei et al. (2022). The high capacity CNN with contrastive
learning presented in Li et al. (2021) is trained for 25 epochs, with all other parameters kept as in the
original work. As before, a version of this model (with the same parameters) is trained using LAP
with H = 25, δ = 1.0, and λ = 0.8. These models are trained on batch sizes of 128 using stochastic
gradient descent with a learning rate of 0.02, momentum of 0.9, and weight decay 0.0005. Data is
randomly assigned to mini-batches, with each batch containing multiple sources.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

These experiments take approximately 30 hours to complete when using the compute described in
Appendix A.1.

Results in Table 3. In this set of experiments, we want to test the use of LAP in a natural language
setting. Firstly, we load the training and testing sets and randomly split the training set into 10 sources
uniformly. We then choose 4 of the sources to be 100% unreliable, and introduce noise through
random labelling and randomly permuting the order of the text. We truncate or extend each review
such that it contains exactly 256 tokens. We use an LSTM to predict the sentiment of the movie
reviews by training the model for 40 epochs with a batch size of 128, leaning rate of 0.001 and the
Adam optimiser (Kingma & Ba, 2014). A version of this model (with the same parameters) is also
trained using LAP with H = 25, δ = 1.0, and λ = 0.8. As before, data is randomly assigned to
mini-batches, with each batch containing multiple sources. Since IDPA and Co-teaching are not
bench-marked on this dataset, for the baseline specific parameters we used the same values as given
for CIFAR-10.

These experiments take approximately 12 hours to complete when using the compute described in
Appendix A.1.

Results in Table 4. This experiment is designed to test the performance of LAP on a dataset with
real-world data sources with significant imbalance in both their size and class distributions (further
details in Appendix A.13) to better understand the robustness of our proposed method, since it
calculates the log-likelihood of sources during training. We chose 30 of the total 82 raters to produce
noisy labels. The Transformer Encoder was trained for 25 epochs with a batch size of 256 and a
learning rate of 0.001 using the Adam optimiser (Kingma & Ba, 2014). A version of this model (with
the same parameters) is also trained using LAP with H = 25, δ = 1.0, and λ = 0.8. As before, data
is randomly assigned to mini-batches, with each batch containing multiple sources.

These experiments take approximately 12 hours to complete when using the compute described in
Appendix A.1.

A.8 ASSESSING THE SENSITIVITY OF LAP TO THE HYPERPARAMETERS

0.125 0.25 0.5 1.0 2.0 4.0 8.0

Depression Strength

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
L

o
ss

(a) Depression Strength, δ.

5 10 25 50 100 200 400 800

History Length

0.30

0.35

0.40

0.45

T
es

t
L

o
ss

(b) History Length, H .

0.125 0.25 0.5 1.0 2.0 4.0 8.0

Leniency

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

T
es

t
L

o
ss

(c) Leniency, λ.

Figure 4: Sensitivity to Hyperparameters. Here, we demonstrate the senstivitiy of the model
performance based on the LAP hyperparamters introduced in Section 3 by varying their values whilst
keeping the others fixed at (δ,H, λ) = (1.0, 50, 1.0).

In Figure 4 we present the change in cross entropy loss on the test set of the synthetic data used in
Figure 2 and described in Section A.5. In this experiment the depression strength δ, history length H ,
and leniency λ were kept at (δ,H, λ) = (1.0, 50, 1.0) unless specified otherwise.

Depression strength. We observe that significantly increasing the depression strength δ can lead
to a noticeable rise in test loss, particularly when δ ≥ 2.0 (Figure 4a). This is because large values
of δ force training contributions from noisy data sources to be reduced early in training (as shown
in Figure 2), whilst they might still be useful for learning a robust model. Suppressing them too
quickly might prevent the model from learning important patterns in the noisy data which are useful
for predicting on the test set, leading to worse performance. This highlights the need to choose a
depression strength δ which strikes the right balance between filtering noise and learning from all
available data. We find that a value of δ = 1.0 performs well generally.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

History length. When studying the history length H , we see the test loss remains relatively stable
across the range of values (Figure 4b). There is some improvement for history length values of
H = 50 and H = 100, but there is little difference in performance between using large and small
values of H . This indicates that whilst increasing H allows for LAP to consider more contextual
information when calculating the source weighting, it also makes our method slower to react to rapid
changes in the training loss due to the significantly larger history being considered. We find that a H
value of 25 to 50 generally performs well.

Leniency. In Figure 4c, we present the test loss as we vary the value of leniency λ. The loss values
for this parameter remain relatively stable across its different values, suggesting the the model is
fairly robust to variations in leniency. It may not be a critical parameter for tuning in this particular
set up, since Figure 2 shows that for all values of leniency tested the two noisiest sources were heavily
weighted during training. In scenarios where noise levels are very low, it might be necessary to reduce
the leniency to capture them. In contrast, when it is thought that patterns can be learnt from the noisy
data, it might be beneficial to use a larger leniency value, which intuitively lengthens the amount
of time before noisy sources are weighted (Figure 2). In general, we find that a value of λ = 1.0
performs well.

These experiments take approximately 5 minutes to complete when using the compute described in
Appendix A.1.

A.9 TABLE 1 WITH PERCENTAGE DIFFERENCE IN VALUES

Table 5: Comparison of LAP with the baselines. Mean ± standard deviation of the percentage
difference of the maximum test accuracy (%) of 5 repeats of the baselines and LAP on synthetic data
with different noisy types. For CIFAR-100 these numbers represent the top 5 accuracy. For CIFAR-
10, CIFAR-100, and F-MNIST, the number of noisy sources are 4, 2, and 6 out of 10 respectively.
Unreliable sources are each 100% noisy. All values in bold are within 1 standard deviation of the
maximum score.

Model Types

Noise Type Standard ARFL IDPA Co-teaching LAP (Ours)

C
IF

A
R

-1
0

Original Data - -3.88% ± 2.06 2.54% ± 1.59 2.74% ± 1.02 0.56% ± 1.24
Chunk Shuffle - -3.71% ± 1.44 2.28% ± 1.36 5.23% ± 2.10 4.02% ± 2.22
Random Label - 4.20% ± 1.76 -17.03% ± 3.10 2.26% ± 3.18 8.98% ± 2.51

Batch Label Shuffle - -1.71% ± 4.75 -0.20% ± 2.88 4.90% ± 2.04 8.07% ± 2.42
Batch Label Flip - -2.92% ± 3.19 2.24% ± 4.60 4.48% ± 3.84 7.94% ± 2.19

Added Noise - -2.04% ± 2.79 1.33% ± 3.59 3.24% ± 2.37 4.09% ± 1.40
Replace With Noise - -8.48% ± 2.05 -1.71% ± 2.84 0.89% ± 0.80 0.63% ± 1.26

C
IF

A
R

-1
00

Original Data - -20.68% ± 2.62 2.10% ± 1.26 0.08% ± 0.57 -0.32% ± 1.11
Chunk Shuffle - -19.13% ± 4.90 -4.84% ± 2.08 -0.91% ± 1.49 -0.33% ± 1.25
Random Label - -15.89% ± 5.26 -14.72% ± 3.14 5.40% ± 1.85 21.02% ± 2.47

Batch Label Shuffle - -10.71% ± 7.49 -1.35% ± 2.68 6.38% ± 3.73 6.72% ± 2.69
Batch Label Flip - -7.78% ± 3.78 5.50% ± 3.09 12.80% ± 3.82 13.06% ± 2.38

Added Noise - -11.65% ± 5.99 -2.39% ± 1.93 -0.01% ± 0.89 1.97% ± 1.53
Replace With Noise - -13.17% ± 6.84 -2.61% ± 1.76 1.01% ± 1.43 0.42% ± 2.74

F-
M

N
IS

T

Original Data - -2.08% ± 0.75 -0.06% ± 0.55 -5.56% ± 1.31 -0.24% ± 1.06
Chunk Shuffle - 0.39% ± 1.00 0.08% ± 3.32 -3.41% ± 2.60 5.62% ± 2.83
Random Label - -0.15% ± 9.40 -1.40% ± 9.40 -0.10% ± 9.15 -1.87% ± 11.09

Batch Label Shuffle - -3.82% ± 2.22 0.69% ± 0.75 0.07% ± 1.03 -0.29% ± 1.67
Batch Label Flip - -2.15% ± 2.30 2.17% ± 2.47 -0.16% ± 2.95 1.54% ± 2.93

Added Noise - -3.94% ± 1.89 2.80% ± 2.67 -0.75% ± 1.82 4.04% ± 3.08
Replace With Noise - -3.75% ± 4.20 4.68% ± 3.21 2.25% ± 3.88 7.42% ± 2.86

Table 5 shows the values presented in Table 1 as a percentage difference of the standard training
method. This more clearly demonstrates the size of the accuracy improvement from using LAP on
CIFAR-10, CIFAR-100, and F-MNIST.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

In particular, using LAP leads to substantial improvements over the baseline in more challenging
scenarios, such as with random labelling noise or batch label flipping. For example, on CIFAR-100
with random label noise, LAP achieves a 21.02% improvement in top-5 accuracy over standard
training, significantly out-performing the baselines such as IDPA. Even in cases in which LAP is not
the top-performing method, its performance remains comparable and often within a few percentage
points of the best results.

This illustrates LAP’s robustness across varied datasets and noise types, showing that it consistently
maintains or improves accuracy in high-noise conditions where other models struggle.

A.10 RRL + LAP WITH VARIED NOISE.

Table 6: Different noise level and number of sources. Mean ± standard deviation (%) of the
percentage difference in maximum test accuracy between RRL + LAP and RRL over 5 repeats when
training a model on CIFAR-10 for different noise levels and numbers of sources. Here a positive
value represents an improvement in accuracy when using LAP. Here, U corresponds to the number
of unreliable sources out of 10 sources in total. Batch label flipping was used to introduce noise.

Noise Level

U 25% 50% 75% 100%

2 0.88% ± 0.19 1.61% ± 0.60 2.95% ± 0.64 3.16% ± 0.51
4 0.09% ± 0.71 1.25% ± 0.58 2.01% ± 0.96 5.24% ± 1.24
6 0.02% ± 0.43 0.46% ± 0.50 3.74% ± 0.80 11.61% ± 1.66

Table 6 shows the percentage difference in accuracy when using LAP over not using LAP for different
noise levels and numbers of noisy sources.

In these experiments, data in CIFAR-10 is randomly split into 10 sources, with the row of Table 6
defining the number of noisy sources, of which all have a noise rate as given by the column of Table
6. As before, the high capacity CNN with contrastive learning presented in Li et al. (2021) is trained
for 25 epochs, with all other parameters kept as in the original work. Additionally, a version of this
model (with the same parameters) is trained using LAP with H = 25, δ = 1.0, and λ = 0.8. These
models are trained on batch sizes of 128 using stochastic gradient descent with a learning rate of
0.02, momentum of 0.9, and weight decay 0.0005. Data is randomly assigned to mini-batches, with
each batch containing multiple sources.

When the whole dataset noise level is small (i.e: 2 sources with 25% noise), there are small per-
formance increases when using LAP – likely because here, noisy sources have small impacts on
the performance of models trained without LAP. Additionally, for lower noise levels, increasing
the number of noisy sources reduced the performance improvement. This is likely because LAP
is reducing noisy source training contributions early, when there is still information to learn. This
can be remedied by increasing the leniency (λ), however since we were limited by compute, LAP
parameters were fixed across experiments.

These experiments take approximately 5 days to complete when using the compute described in
Appendix A.1.

A.11 CIFAR-10N WITH A SMALLER NEURAL NETWORK

In Figure 5, we show the results of the experiment presented in Figure 3b except when using the Low
capacity CNN described in Appendix A.7. The results in this experiment follow the same trend as in
Figure 3b, reassuring us of the applicability of LAP in a variety of settings, where lower capacity
models are used.

These experiments take approximately 4 hours to complete when using the compute described in
Appendix A.1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

2 3 4 5 6

Number of Noisy Sources

64

66

68

70

T
es

t
A

cc
u
ra

cy
(%

)

Our Method

Enabled

Disabled

Figure 5: Accuracy values on CIFAR-10N for an increasing number of noisy sources with a
lower capacity model. The lines and error bands represent the mean and standard deviation of the
maximum test accuracy for each of the 5 repeats with random allocation of noisy sources. The noise
of the sources increases linearly from 25% to 100% for each number of noisy sources. In total, there
are 10 sources. Here we test the low capacity CNN (Appendix A.7).

Table 7: Comparison of LAP with the baselines with varied numbers of sources. Mean ± standard
deviation of maximum test accuracy (%) of 5 repeats of the baselines and LAP on synthetic data
with different noisy types and numbers of sources. The number of noisy sources ranges from 10 to
50,000, corresponding to “LAP-n”, where n denotes the number of sources in the training data. For
all experiments, 40% of the sources were chosen as unreliable, with 100% noise rate. Since there are
50,000 training data points, LAP-50,000 corresponds to LAP acting over sources that have size 1: i.e
the standard noisy data setting.

Model Types

Noise Type Standard IDPA Co-teaching LAP-10 LAP-1250 LAP-50,000

Original Data 69.46 ± 1.12 70.86 ± 0.32 67.73 ± 0.83 69.6 ± 1.08 69.57 ± 1.07 70.28 ± 0.5
Chunk Shuffle 65.92 ± 1.32 66.34 ± 0.99 63.55 ± 0.41 66.92 ± 0.56 66.08 ± 1.02 65.47 ± 0.98
Random Label 60.85 ± 1.67 57.93 ± 1.59 61.37 ± 1.01 66.5 ± 0.43 66.15 ± 1.16 66.49 ± 0.65

Batch Label Shuffle 62.23 ± 0.62 60.08 ± 0.13 63.9 ± 0.44 66.09 ± 0.65 66.71 ± 0.48 65.73 ± 1.13
Batch Label Flip 59.94 ± 2.48 61.02 ± 1.9 63.05 ± 2.43 64.48 ± 1.11 66.42 ± 1.22 65.41 ± 1.65

Added Noise 59.86 ± 1.38 61.19 ± 0.33 59.59 ± 1.37 63.58 ± 1.03 59.52 ± 1.06 60.55 ± 1.08
Replace With Noise 65.07 ± 0.63 65.85 ± 0.64 64.1 ± 1.13 64.89 ± 1.28 66.39 ± 1.66 65.09 ± 0.43

A.12 CIFAR-10 WITH A WITH LARGE NUMBERS OF SOURCES

To understand the effectiveness of our method as the number of sources grows, we extended the
results in Table 1 by significantly increasing the number of unique sources. Here, we use the low
capacity CNN presented in Appendix A.7, with all other settings kept the same as in Table 1, except
that the number of epochs is reduced from 40 to 25 as the model architecture is smaller.

In this experiment we see that LAP performs well across the different source sizes, demonstrating its
robustness as the number of sources increases. In fact, LAP-50,000 corresponds to an experiment
where the size of each source is equal to 1 – the standard noisy data setting. It is interesting to see
that in this case LAP often performs as well or better than the baselines, suggesting its usefulness in a
setting it was not originally designed for.

These experiments take approximately 12 hours to complete when using the compute described in
Appendix A.1.

A.13 SOURCE DISTRIBUTION IN GOEMOTIONS DATASET

The GoEmotions dataset (Demszky et al., 2020) was chosen for its real-world imbalanced source
distributions. Here, the training set contains source sizes in the range of 1 to 9320 with a mean size
of 1676 and standard deviation of 1477, enabling us to study the robustness of LAP to imbalances in
the source sizes and label distributions.

In Figure 6 we show the distribution of source sizes and the number of classes within each source.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

100 101 102 103 104

Number of Data Points in a Source

0

5

10

15

20

N
u
m

b
er

o
f

S
o
u
rc

es

Total # Sources: 82

(a) The distribution of source sizes.

0 5 10 15 20 25

Number of Unique Classes in a Source

0

10

20

30

40

N
u
m

b
er

o
f

S
o
u
rc

es

Total # Sources: 82
Total # Classes: 28

(b) Distribution of unique classes in sources.

Figure 6: Source and class distributions in GoEmotions. In (a) we present the number of sources
with a given size, plotted on log-scale. This demonstrates the imbalance in the size of the sources in
the dataset, with some containing thousands of data points, whilst others contain just a few hundred.
In (b) we additionally explore the number of classes within each data source, showing that around
half of all sources do not contain all classes, with two sources containing less than 5 classes.

Figure 6a demonstrates the imbalance in the size of each source, with some sources containing
thousands of data points, whilst others contain hundreds or tens of data points. A dataset with this
construction allows us to test the robustness of LAP to settings with uneven source sizes, a realistic
situation in real-world data collection.

Further, Figure 6b shows the distribution of the number of unique classes that are contained within
each source. In particular, we observe that around half of all sources do not contain all of the classes,
with two sources containing less than 5 classes. The imbalance in the class distribution across sources
is more apparent when we list the largest three classes for some of the sources:

• Source 1 with size 37: class 28 = 40.54%, class 19 = 8.11%, class 26 = 5.41%

• Source 2 with size 1137: class 28 = 38.43%, class 19 = 10.82%, class 2 = 5.89%

• Source 4 with size 2702: class 5 = 17.84%, class 28 = 11.84%, class 11 = 8.62%

• Source 8 with size 1253: class 28 = 14.45%, class 23 = 12.05%, class 21 = 10.45%

• Source 16 with size 3224: class 5 = 13.43%, class 23 = 12.38%, class 1 = 10.92%

• Source 32 with size 175: class 28 = 50.86%, class 8 = 18.86%, class 2 = 6.86%

• Source 64 with size 623: class 28 = 18.46%, class 4 = 11.88%, class 5 = 6.58%

These values demonstrate that sources contain large variations in the number of data points and
the distributions of classes they contain. By testing with this dataset we can verify LAPs improved
performance in settings in which the class distribution is uneven across sources, which may affect
the source log-likelihood during training and strain the assumption we made that non-noisy sources
contain similar data distributions.

A.14 STRAINING THE ASSUMPTIONS OF OUR METHOD

To demonstrate the robustness of LAP, we now construct an experiment designed to strain the
assumptions we made when introducing our method.

To work as intended, our proposed method assumes that all non-noisy sources contain similar data
distributions. This allows us to say that the weighted likelihood ratio between a source under
inspection and the other sources indicates whether to increase or decrease our reliability score
(Equation 2). However, in real-world use cases, some sources might only produce a single class
or a more challenging subset of classes. In such a case, we would like to understand whether our
method can correctly identify the noisy sources without mistakenly labelling the more challenging
data source as noisy.

To construct this setting, we combined data from both MNIST (LeCun et al., 1998) and CIFAR-
10 Krizhevsky (2009) (Appendix A.6). First, we evenly split the MNIST data into 99 sources, and
applied random label noise to 95 of them. This created a setting with many noisy sources, which

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

we hypothesised would be a challenging setting to learn in. We then randomly chose 2 classes from
CIFAR-10 and assigned them to a single source, giving us 99 MNIST sources (with 95 of them noisy)
and a single CIFAR-10 source (which remained non-noisy). We then kept the same non-noisy class
labelling for MNIST from the original dataset (i.e: in the non-noisy data, a handwritten digit 0 was
assigned class 0, etc) and mapped the two classes from CIFAR-10 to new classes: 10 and 11 – giving
12 classes in total. Since CIFAR-10 is more challenging to classify than MNIST, this allowed us
to construct a dataset in which almost all sources are easier to classify than the final source, which
contains 2 classes of more difficult data to separate. We also ran the same experiment with no random
label noise applied to the MNIST sources.

To ensure the CIFAR-10 and MNIST images are the same size and have the same number of filters,
we apply a grayscale and resizing transformation to the CIFAR-10 data. We then use a simple
CNN consisting of two convolutional layers with 32 and 64 filters respectively, ReLU activation
functions, max pooling layers (with kernel size 2), and two lineaer layers mapping representations to
sizes 9216, 128, and finally 13. We use dropout, cross entropy loss, and the Adam optimiser with
learning rate 0.001 and batches of size 128, trained for 25 epochs. The LAP parameters used were
(δ,H, λ) = (1.0, 50, 4.0) for the original data experiment and (0.1, 50, 1.0) for the random label
experiment. These were chosen using 5 runs on a validation set.

Table 8: Difficult data results. Mean ± standard deviation of maximum test accuracy (%) over 5
repeats of standard training and LAP on a combination of MNIST and CIFAR-10 data with noisy
labels. Here, 95 out of 100 sources are 100% noisy.

Model Types

Noise Type Standard LAP (Ours)

Original Data 98.38 ± 0.4 98.36 ± 0.39
Random Label 67.43 ± 2.83 96.29 ± 0.83

Table 8 shows the surprising results of this experiment. Since this data is made up of significant noise,
it causes a large degradation in the accuracy of a standard training model when random labelling is
applied to the data. However, LAP allows for almost all of this loss in accuracy to remain, showing
significantly greater performance on the test set over the standard training method, whilst allowing for
comparative accuracy in the absence of noise. Here, we observe that even in a contrived experiment
designed as a failure case for our proposed method, LAP still produces increased accuracy over this
baseline.

Table 9: Difficult data results on the CIFAR-10 classes. Mean ± standard deviation of maximum
test accuracy (%) on the CIFAR-10 classes over 5 repeats of standard training and LAP trained on
a combination of MNIST and CIFAR-10 data with noisy labels. This is the accuracy on just the
CIFAR-10 test set, which is a subset of the test set corresponding to Table 8.

Model Types

Noise Type Standard LAP (Ours)

Original Data 0.97 ± 0.01 0.95 ± 0.06
Random Label 0.98 ± 0.01 0.97 ± 0.02

Additionally, Table 9 shows that we do see a small reduction in performance on the more challenging
source (containing the CIFAR-10 data). On the original data, in all the five runs, LAP labelled the
source containing the CIFAR-10 data as non-noisy as desired. However, when random label noise is
applied to MNIST sources, the source containing CIFAR-10 data was incorrectly considered noisy in
two out of the five runs. In these two cases, the validation accuracy was lower than in the other three
runs:

• CIFAR-10 was incorrectly considered noisy: 23.50% and 24.39%.

• CIFAR-10 was correctly considered non-noisy: 25.46%, 25.19%, 25.53%.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Note the validation accuracy is low, because it contains the noisy labels as well as the clean labels.
Therefore, with more runs and an ensemble of the higher validation accuracy runs, higher accuracy
on the test set and in particular on the CIFAR-10 source, would likely be achieved.

In the extreme case presented here, which violates the assumptions we made during Section 3, we
find that our method is robust to challenging source class distributions and achieves markedly greater
accuracy on the test set under noisy learning, whilst achieving comparative accuracy on the single
challenging (but non-noisy) CIFAR-10 source.

A.15 TINY-IMAGENET RESULTS

Table 10: Tiny Imagenet results. Mean ± standard deviation of maximum test top-5 accuracy (%)
over 5 repeats of standard training and LAP on Tiny Imagenet data with noisy labels. Here, 40 out of
100 sources are 100% noisy.

Model Types

Noise Type Standard LAP (Ours)

Original Data 61.32 ± 0.61 60.62 ± 0.71
Random Label 46.27 ± 1.04 54.48 ± 0.57

In an effort to demonstrate the potential of LAP further, we evaluate our method on Tiny-Imagenet
(Deng et al., 2009), a subset of Imagenet that contains 100,000 images from 200 classes. In this
experiment, we wanted to test the use of LAP on larger images with larger numbers of sources. Firstly,
we load the training and testing sets and randomly split the training set into 100 sources uniformly. We
then choose 40 of the sources to be 100% unreliable, and introduce noise through random labelling.
This dataset is then split in the ratio 9 : 1 to produce a validation set. For this experiment, we train a
ResNet 50 architecture using the baseline training method provided for Imagenet in Pytorch 13. This
trains the model for 90 epochs with a batch size of 256 using stochastic gradient descent with an
initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0001, as well as a learning rate
scheduler that multiplies the learning rate by 0.1 every 30 epochs. A version of this model (with the
same parameters) is also trained using LAP with H = 25, δ = 1.0, and λ = 0.8. As before, data is
randomly assigned to mini-batches, with each batch containing multiple sources.

The results of this are available in Table 10 and again demonstrates the expected performance
improvement when using LAP for datasets with sources of unknown noise, and the maintenance of
performance when data is non-noisy.

These experiments take approximately 14 hours to complete when using the compute described in
Appendix A.1.

A.16 IMAGENET RESULTS WITH MULTIPLE NOISE TYPES

Table 11: Imagenet results. Mean ± standard deviation of maximum test top-5 accuracy (%) over 5
repeats of standard training and LAP on Imagenet data with noisy labels and noisy inputs. Here, 5 out
of 10 sources are 100% noisy, with three of them containing label noise and 2 containing input noise.

Model Types

Noise Type Standard LAP (Ours)

Input and Label Noise 68.05 ± 0.26 70.61 ± 0.26

We additionally present our results on Imagenet, which allows us to test our method on a large scale
dataset. Within this experiment, as in that presented in Figure 3a, we allow for both input and label
noise. In Figure 3a all noisy sources contain two types of noise, however in this experiment we allow

13https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-t
orchvision-latest-primitives/

26

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

for different sources to contain different types of noise. We further observe, in Table 11, that using
LAP improves model performance here, since it achieves a greater maximum top-5 test accuracy as
expected.

For this experiment, we train a ResNet 50 architecture using the baseline training method provided for
Imagenet in Pytorch13. This trains the model for 90 epochs with a batch size of 256 using stochastic
gradient descent with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 0.0001,
as well as a learning rate scheduler that multiplies the learning rate by 0.1 every 30 epochs. We
split the Imagenet data into 10 sources, of which 5 are chosen to be noisy (2 containing input noise
and 3 containing label noise). Images are loaded as 8-bit integer arrays and interpolated to (64, 64)
before input noise is synthesised by randomly adding uniform integers from [-64, 64]. They are then
transformed to 32-bit floats and normalised using the mean and standard deviation available on the
same Pytorch training script. Label noise is added by randomly replacing labels in noisy sources.
This dataset is then split in the ratio 9 : 1 to produce a validation set for the analysis in Appendix
A.16.1. A version of the ResNet 50 model (with the same parameters) is also trained using LAP with
H = 25, δ = 1.0, and λ = 0.8. As before, data is randomly assigned to mini-batches, with each
batch containing multiple sources. These experiments are repeated 5 times for each setting.

These experiments take approximately 32 hours to complete when using the compute described in
Appendix A.1.

A.16.1 LATE TRAINING TEST ACCURACY

Table 12: Imagenet late training results. Mean ± standard deviation of test top-5 accuracy (%) over
the last 10 epochs of standard training and LAP on Imagenet data with noisy labels and noisy inputs,
repeated 5 times. Here, 5 out of 10 sources are 100% noisy, with three of them containing label noise
and 2 containing input noise.

Model Types

Noise Type Standard LAP (Ours)

Input and Label Noise 42.96 ± 0.64 66.26 ± 0.21

The noisy data literature often presents model performance results on the last x epochs, since in
reality (as we don’t have access to clean test labels) there is no way of knowing when to stop
training and reduce overfitting to noisy data. In our work, in an effort to be most fair to the standard
training baseline, we present the maximum performance over all of training to ensure that we are
not presenting results in which the standard training baseline has significantly overfit to the noisy
data. However, in Table 12 we also present the average test accuracy over the last 10 epochs as is
often reported in the literature. These results show the significant improvement that using LAP can
have on model training when it is unknown if the standard training method is overfitting to noisy data.
Similarly, Figure 7 presents the training, validation, and testing performance at each epoch during
the training of a neural network using the standard method and LAP. We can see that the training
curves appear usual (Figure 7a, with LAP’s training curve representing the tempered loss), and that
the validation accuracy is greater for standard training (since the validation set contains noisy labels),
but that when tested on the clean labels (Figure 7c), it is clear that using LAP enables considerably
more robustness to noisy data. Early stopping could be used here to achieve the maximally achieving
models (since the epoch of maximum accuracy on the test set is the same as the validation set), which
is why we find it more informative to report the maximum test accuracy as presented in all other
experiments.

A.17 CALIFORNIA HOUSING: REGRESSION RESULTS

In Table 13 we present the results of using LAP and standard training on a regression dataset in which
we have 10 total sources and 4 that are 100% noisy, with labels replaced with uniform noise (sampled
between the minimum and maximum label value in the training set).

To test our method against standard training, we evaluate both on a dataset of 20,640 samples of
house values in California districts, with the goal to predict the median house value from the U.S

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 20 40 60 80

Epoch

0

1

2

3

4

5

6

7

T
ra

in
in

g
L

o
ss

LAP (Ours)

Standard

(a) Training cross entropy loss.

0 20 40 60 80

Epoch

0

10

20

30

40

50

V
a
li
d
a
ti

o
n

T
o
p
-5

A
cc

u
ra

cy
(%

)

LAP (Ours)

Standard

(b) Validation top-5 accuracy.

0 20 40 60 80

Epoch

0

10

20

30

40

50

60

70

80

T
es

t
T

o
p
-5

A
cc

u
ra

cy
(%

)

LAP (Ours)

Standard

(c) Test top-5 accuracy.

Figure 7: Performance on Imagenet. In (a) we show the cross-entropy loss on the training data at
each epoch where the loss using LAP represents the tempered cross-entropy loss. In (b) we present
the validation top-5 accuracy at each epoch. In (c) we present the test top-5 accuracy at each epoch to
demonstrate the fitting to the noise that occurs when not using LAP during late training. Here, 5 out
of a total of 10 sources are 100% noisy, with 2 containing input noise, and 3 containing label noise.
The two steps in performance occur at the points at which we scale the learning rate using a scheduler
(epoch 30 and 60). The lines and error bands represent the mean and standard deviation over the 5
repeats. The vertical black dashed line represents the epoch at which LAP achieved maximum top-5
accuracy on the test set.

Table 13: Standard and LAP results on a regression task. Mean ± standard deviation of minimum
mean squared error of standard training and LAP over 5 repeats on the California Housing dataset
with different types of noise. Here, 4 out of 10 sources are 100% noisy. Note that “Random Label” is
the only noise type with a significant difference between methods. Here, smaller is better.

Model Types

Noise Type Standard LAP (Ours)

Original Data 0.44 ± 0.02 0.44 ± 0.02
Random Label 0.62 ± 0.02 0.45 ± 0.02

census data for that region – a regression task. We randomly split the data into training and testing
with an 8 : 2 ratio for each of the 5 runs we performed over each noise type. We train a multilayer
perceptron as described in Section A.7 for 200 epochs with a batch size of 256, leaning rate of 0.001
using stochastic gradient descent with momentum of 0.9 and weight decay of 0.0001. A version of
this model (with the same parameters) is also trained using LAP with H = 25, δ = 1.0, and λ = 0.8.
As before, data is randomly assigned to mini-batches, with each batch containing multiple sources.
This was repeated 5 times for each setting.

Table 13 shows that LAP improves the test set performance significantly over the baseline for random
labelling noise and maintains performance when no noise is present. This is as expected, and again
illustrates its effectiveness, but this time on a regression task.

These experiments take approximately 2 hours to complete when using the compute described in
Appendix A.1.

A.18 ADDITIONAL COMPUTE EXAMPLE

In this section, we briefly describe the additional cost of applying LAP with a specific example.

In practise using our implementation, with an MLP with hidden sizes 20− 2000− 2000− 5, and
batches of 512 samples (with 20 features, 5 classes, and data generated from 10 sources) the forward-
backward pass through the model (without source reweighting) takes 15300 µ s ± 164 µ s and the
reweighting of losses takes 469 µ s ± 10.8 µ s, increasing the time by 3%. With 50 and 100 sources,
the reweighting of losses takes 1000 µ s ± 11.3 µ s and 1990 µ s ± 49.2 µ s respectively.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Using the same set-up, with batches of 2048 in size and 10 sources, the forward-backward pass
(without reweighting) takes 41000 µ s ± 689 µ s whilst the loss reweighting takes 467 µ s ± 8.51
µ s (no significant change as the batch size increases), increasing the time to compute the loss and
gradients on a batch by 1%.

We believe this is a fair trade-off for the potential improvement in performance.

29

	Introduction
	Background
	Methods
	Experiments
	Discussion
	Appendix
	Code implementation
	Loss assumptions
	Further details on design decisions
	Alternative interpretation
	Details of the varied parameter experiments
	Further information on the datasets
	Experiments in detail
	Assessing the sensitivity of LAP to the hyperparameters
	Table 1 with percentage difference in values
	RRL + LAP with varied noise.
	CIFAR-10N with a smaller neural network
	CIFAR-10 with a with large numbers of sources
	Source distribution in GoEmotions dataset
	Straining the assumptions of our method
	Tiny-Imagenet results
	Imagenet results with multiple noise types
	Late training test accuracy

	California Housing: Regression results
	Additional Compute Example

