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Abstract

The recent advancements in 3D Gaussian splatting (3D-GS) have not only facil-
itated real-time rendering through modern GPU rasterization pipelines but have
also attained state-of-the-art rendering quality. Nevertheless, despite its excep-
tional rendering quality and performance on standard datasets, 3D-GS frequently
encounters difficulties in accurately modeling specular and anisotropic compo-
nents. This issue stems from the limited ability of spherical harmonics (SH) to
represent high-frequency information. To overcome this challenge, we introduce
Spec-Gaussian, an approach that utilizes an anisotropic spherical Gaussian (ASG)
appearance field instead of SH for modeling the view-dependent appearance of
each 3D Gaussian. Additionally, we have developed a coarse-to-fine training
strategy to improve learning efficiency and eliminate floaters caused by overfit-
ting in real-world scenes. Our experimental results demonstrate that our method
surpasses existing approaches in terms of rendering quality. Thanks to ASG, we
have significantly improved the ability of 3D-GS to model scenes with specular
and anisotropic components without increasing the number of 3D Gaussians. This
improvement extends the applicability of 3D GS to handle intricate scenarios
with specular and anisotropic surfaces. Our codes and datasets are available at
https://ingra14m.github.io/Spec-Gaussian-website.

1 Introduction

High-quality reconstruction and photorealistic rendering from a collection of images are crucial for a
variety of applications, such as augmented reality/virtual reality (AR/VR), 3D content production,
and art creation. Classic methods employ primitive representations, like meshes [39] and points
[4, 67], and take advantage of the rasterization pipeline optimized for contemporary GPUs to achieve
real-time rendering. In contrast, neural radiance fields (NeRF) [37, 5, 38] utilize neural implicit
representation to offer a continuous scene representation and employ volumetric rendering to produce
rendering results. This approach allows for enhanced preservation of scene details and more effective
reconstruction of scene geometries.

Recently, 3D Gaussian Splatting (3D-GS) [23] has emerged as a leading technique, delivering state-
of-the-art quality and real-time speed. This method optimizes a set of 3D Gaussians that capture the
appearance and geometry of a 3D scene simultaneously, offering a continuous representation that
preserves details and produces high-quality results. Besides, the CUDA-customized differentiable
rasterization pipeline for 3D Gaussians enables real-time rendering even at high resolution.
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Figure 1: Our method not only achieves real-time rendering but also significantly enhances the
capability of 3D-GS to model scenes with specular and anisotropic components. Key to this enhanced
performance is our use of ASG appearance field to model the appearance of each 3D Gaussian, which
results in substantial improvements in rendering quality for both complex and general scenes.

Despite its exceptional performance, 3D-GS struggles to model specular components within scenes
(see Fig. 1). This issue primarily stems from the limited ability of low-order spherical harmonics (SH)
to capture the high-frequency information in these scenarios. Consequently, this poses a challenge
for 3D-GS to model scenes with reflections and specular components, as illustrated in Fig. 1.

To address the issue, we introduce a novel approach called Spec-Gaussian, which combines
anisotropic spherical Gaussian (ASG) [60] for modeling anisotropic and specular components,
an effective training mechanism to eliminate floaters and improve learning efficiencies, and anchor-
based 3D Gaussians for acceleration and storage reduction. Specifically, the method incorporates
two key designs: 1) A new 3D Gaussian representation that utilizes an ASG appearance field instead
of SH to model the appearance of each 3D Gaussian. ASG with a few orders can effectively model
high-frequency information that low-order SH cannot. This new design enables 3D-GS to more
effectively model anisotropic and specular components in static scenes. 2) A coarse-to-fine training
scheme specifically tailored for 3D-GS is designed to eliminate floaters and boost learning efficiency.
This strategy effectively shortens learning time by optimizing low-resolution rendering in the initial
stage, preventing the need to increase the number of 3D Gaussians and regularizing the learning
process to avoid the generation of unnecessary geometric structures that lead to floaters.

By combining these advances, our approach can render high-quality results for specular highlights
and anisotropy as shown in Fig. 4 while preserving the efficiency of Gaussians. Furthermore,
comprehensive experiments reveal that our method not only endows 3D-GS with the ability to model
specular highlights but also achieves state-of-the-art results in general benchmarks.

In summary, the major contributions of our work are as follows:

• A novel ASG appearance field to model the view-dependent appearance of each 3D Gaussian,
which enables 3D-GS to effectively represent scenes with specular and anisotropic components.

• A coarse-to-fine training scheme that effectively regularizes training to eliminate floaters and
improve the learning efficiency of 3D-GS in real-world scenes.

• An anisotropic dataset has also been made to assess the capability of our model in representing
anisotropy.

2 Related Work

2.1 Implicit Neural Radiance Fields

Neural rendering has attracted significant interest in the academic community for its unparalleled
ability to generate photorealistic images. Methods like NeRF [37] utilize Multi-Layer Perceptrons
(MLPs) to model the geometry and radiance fields of a scene. Leveraging the volumetric rendering
equation and the inherent continuity and smoothness of MLPs, NeRF achieves high-quality scene
reconstruction from a set of posed images, establishing itself as the state-of-the-art (SOTA) method for
novel view synthesis. Subsequent research has extended the utility of NeRF to various applications,
including mesh reconstruction [53, 27, 58, 34], inverse rendering [48, 72, 31, 62], optimization of
camera parameters [29, 55, 54, 41], few-shot learning [12, 61, 57], and anti-aliasing [2, 1, 3].

However, this stream of methods relies on ray casting rather than rasterization to determine the color
of each pixel. Consequently, every sampling point along the ray necessitates querying the MLPs,
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Figure 2: Pipeline of Spec-Gaussian. The optimization process begins with SfM points derived from
COLMAP or generated randomly, serving as the initial state for the 3D Gaussians. To address the
limitations of low-order SH and pure MLP in modeling high-frequency information, we additionally
employ ASG in conjunction with a feature decoupling MLP to model the view-dependent appearance
of each 3D Gaussian. Then, 3D Gaussians with opacity σ > 0 are rendered through a differentiable
Gaussian rasterization pipeline, effectively capturing specular highlights and anisotropy in the scene.

leading to significantly slow rendering speed and prolonged training convergence. This limitation
substantially impedes their application in large-scene modeling and real-time rendering.

To reduce the training time of MLP-based NeRF methods and improve rendering speed, subsequent
work has enhanced NeRF’s efficiency in various ways. Structure-based techniques [68, 14, 43, 17, 7]
have sought to improve inference or training efficiency by caching or distilling the implicit neural
representation into more efficient data structures. Hybrid methods [30, 49] increase efficiency by
incorporating explicit voxel-based data structures. Factorization methods [5, 18, 8, 16] apply a low-
rank tensor assumption to decompose the scene into low-dimensional planes or vectors, achieving
better geometric consistency. Compared to continuous implicit representations, the convergence
of individual voxels in the grid is independent, significantly reducing training time. Additionally,
Instant-NGP [38] utilizes a hash grid with a corresponding CUDA implementation for faster feature
querying, enabling rapid training and interactive rendering of neural radiance fields. Spec-NeRF [35]
achieves high-quality specular reflection modeling by introducing Gaussian directional encoding.

Despite achieving higher quality and faster rendering, these methods have not fundamentally over-
come the substantial query overhead associated with ray casting. As a result, a notable gap remains
before achieving real-time rendering. In this work, we build upon the recent 3D-GS [23], a point-
based rendering method that leverages rasterization. Compared to ray casting-based methods, it
significantly enhances both training and rendering speed.

2.2 Point-based Neural Radiance Fields

Point-based representations, similar to triangle mesh-based methods, can exploit the highly efficient
rasterization pipeline of modern GPUs to achieve real-time rendering. Although these methods offer
breakneck rendering speeds and are well-suited for editing tasks, they often suffer from holes and
outliers, leading to artifacts in the rendered images. This issue arises from the discrete nature of point
clouds, which can create gaps in the primitives and, consequently, in the rendered image.

To address these discontinuity issues, differentiable point-based rendering [67, 15, 24, 25] has been
extensively explored for fitting complex geometric shapes. Notably, Zhang et al. [71] employ
differentiable surface splatting and utilize a radial basis function (RBF) kernel to compute the
contribution of each point to each pixel.

Recently, 3D-GS [23] has employed anisotropic 3D Gaussians, initialized from Structure from Motion
(SfM), to represent 3D scenes. The innovative densification mechanism and CUDA-customized
differentiable Gaussian rasterization pipeline of 3D-GS have not only achieved state-of-the-art
(SOTA) rendering quality but also significantly surpassed the threshold of real-time rendering. Many
concurrent works have rapidly extended 3D-GS to a variety of downstream applications, including
dynamic scenes [33, 63, 64, 20, 26, 50], text-to-3D generation [28, 51, 9, 66, 10], avatars [74, 73, 21,
45, 40], scene editing [59, 6, 13], quality enhancement [36, 44] and mesh reconstruction [19, 11, 69,
34].
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Despite achieving SOTA results on commonly used benchmark datasets, 3D-GS still struggles to
model scenes with specular and reflective components, which limits its practical application in
real-time rendering at the photorealistic level. In this work, by replacing spherical harmonics (SH)
with an anisotropic spherical Gaussian (ASG) appearance field, we have enabled 3D-GS to model
complex specular scenes more effectively.

3 Method

The overview of our method is illustrated in Fig. 2. The input to our model is a set of posed images
of a static scene, together with a sparse point cloud obtained from SfM [46]. The core of our method
is to use the ASG appearance field to replace SH in modeling the appearance of 3D Gaussians (Sec.
3.2). Moreover, we introduce a simple yet effective coarse-to-fine training strategy to reduce floaters
in real-world scenes (Sec. 3.3). To further reduce the storage overhead and rendering speed pressure
introduced by ASG, we combine a hybrid Gaussian model that employs sparse anchor Gaussians to
facilitate the generation of neural Gaussians (Sec. 3.4) to model the 3D scene.

3.1 Preliminaries

3D Gaussian splatting. 3D-GS [23] is a point-based method that employs anisotropic 3D Gaussians
to represent scenes. Each 3D Gaussian is defined by a center position x, opacity σ, and a 3D
covariance matrix Σ, which is decomposed into a quaternion r and scaling s. The view-dependent
appearance of each 3D Gaussian is represented using the first three orders of spherical harmonics
(SH). This method not only retains the rendering details offered by volumetric rendering but also
achieves real-time rendering through a CUDA-customized differentiable Gaussian rasterization
process. Following [75], the 3D Gaussians can be projected to 2D using the 2D covariance matrix Σ′,
defined as:

Σ′ = JV ΣV TJT , (1)
where J is the Jacobian of the affine approximation of the projective transformation, and V represents
the view matrix, transitioning from world to camera coordinates. To facilitate learning, the 3D
covariance matrix Σ is decomposed into two learnable components: the quaternion r, representing
rotation, and the 3D-vector s, representing scaling. The resulting Σ is thus represented as the
combination of a rotation matrix R and scaling matrix S as:

Σ = RSSTRT . (2)

The color of each pixel on the image plane is then rendered through a point-based volumetric
rendering (alpha blending) technique:

C(p) =
∑
i∈N

Tiαici, αi = σie
− 1

2 (p−µi)
T ∑−1(p−µi), (3)

where p denotes the pixel coordinate, Ti is the transmittance defined by Πi−1
j=1(1− αj), ci signifies

the color of the sorted Gaussians associated with the queried pixel, and µi represents the coordinates
of the 3D Gaussians when projected onto the 2D image plane.

Anisotropic spherical Gaussian. Anisotropic spherical Gaussian (ASG) [60] has been designed
in the traditional rendering pipeline to efficiently approximate lighting and shading. Different from
spherical Gaussian (SG), ASG has been demonstrated to effectively represent anisotropic scenes
with a small number. In addition to retaining the fundamental properties of SG, ASG also exhibits
rotational invariance and can represent full-frequency signals. The ASG function is defined as:

ASG(ν | [x,y, z], [λ, µ], ξ) = ξ · S(ν; z) · e−λ(ν·x)2−µ(ν·y)2 , (4)

where ν is the unit direction serving as the function input; x, y, and z correspond to the tangent,
bi-tangent, and lobe axis, respectively, and are mutually orthogonal; λ ∈ R1 and µ ∈ R1 are the
sharpness parameters for the x- and y-axis, satisfying λ, µ > 0; ξ ∈ R2 is the lobe amplitude; S is
the smooth term defined as S(ν; z) = max(ν · z, 0).
Inspired by the power of ASG in modeling scenes with complex anisotropy, we propose integrating
ASG into Gaussian splatting to join the forces of classic models with new rendering pipelines for
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higher quality. For N ASGs, we predefined orthonormal axes x, y, and z, initializing them to be
uniformly distributed across a hemisphere. During training, we allow the remaining ASG parameters,
λ, µ, and ξ, to be learnable. We use the reflect direction ωr as the input to query ASG for modeling
the view-dependent specular information. Note that we use N = 32 ASGs for each 3D Gaussian.

Anchor-based Gaussian splatting. Anchor-based Gaussian splatting was first proposed by
Scaffold-GS [32]. Unlike the attributes carried by each entity in 3D-GS, each anchor Gaussian
carries a position coordinate Pv ∈ R3, a local feature fv ∈ R32, a displacement factor ηv ∈ R3, and
k learnable offsets Ov ∈ Rk×3. They use the COLMAP [46] point cloud to initialize each anchor 3D
Gaussian, serving as the voxel centers to guide the generation of neural Gaussians. The position Pv

of the anchor Gaussian is initialized as:

Pv =

{⌊
P

ϵ
+ 0.5

⌋}
· ϵ, (5)

where P is the point cloud position, ϵ is the voxel size, and {·} denotes removing duplicated anchors.

Then anchor Gaussians can guide the generation of neural Gaussians, which have the same attributes
as vanilla 3D-GS. For each visible anchor Gaussian within the viewing frustum, we spawn k neural
Gaussians and predict their attributes. The positions x of neural Gaussians are calculated as:

{x0, . . . ,xk−1} = Pv + {O0, . . . ,Ok−1} · ηv, (6)

where Pv represents the position of the anchor Gaussian corresponding to k neural Gaussians. The
opacity σ is calculated through a tiny MLP:

{σ0, . . . , σk−1} = Fσ (fv, δcv,dcv) , (7)

where δcv denotes the distance between the anchor Gaussian and the camera, and dcv is the unit
direction pointing from the camera to the anchor Gaussian. The rotation r and scaling s of each
neural Gaussian are derived similarly using the corresponding tiny MLP Fr and Fs.

3.2 Anisotropic View-Dependent Appearance

ASG appearance field for 3D Gaussians. Although SH has enabled view-dependent scene
modeling, the low frequency of low-order SH makes it challenging to model scenes with complex
optical phenomena such as specular highlights and anisotropic effects. Therefore, instead of using
SH, we propose using an ASG appearance field based on Eq. (4) to model the appearance of each 3D
Gaussian. However, the introduction of ASG increases the feature dimensions of each 3D Gaussian,
raising the model’s storage overhead. To address this, we employ a compact learnable MLP Θ
to predict the parameters for N ASGs, with each Gaussian carrying only additional local features
f ∈ R24 as the input to the MLP:

Θ(f) → {λ, µ, ξ}N . (8)

To better differentiate between high and low-frequency information and further assist ASG in fitting
high-frequency specular details, we decompose color c into diffuse and specular components:

c = cd + cs, (9)

where cd represents the diffuse color, modeled using the first three orders of SH, and cs is the specular
color calculated through ASG. We refer to this comprehensive approach to appearance modeling as
the ASG appearance field.

Although ASG theoretically enhance the ability of SH to model anisotropy, directly using ASG to
represent the specular color of each 3D Gaussian still falls short in accurately modeling anisotropic
and specular components, as demonstrated in Fig. 6. Inspired by [16], we do not use ASG directly
to represent color but instead employ ASG to model the latent feature of each 3D Gaussian. This
latent feature, containing anisotropic information, is then fed into a tiny feature decoding MLP Ψ to
determine the final specular color:

Ψ(κ, γ(d), ⟨n,−d⟩) → cs,

κ =

N⊕
i=1

ASG(ωr | [x,y, z], [λi, µi], ξi)
(10)
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Table 1: Quantitative Comparison on anisotropic
synthetic dataset.

Dataset Anisotropic Synthetic
Method PSNR ↑ SSIM ↑ LPIPS ↓ FPS Mem Num.(k)
3D-GS 33.82 0.966 0.062 325 47MB 201

Scaffold-GS 35.34 0.972 0.052 234 27MB -
Ours-w/ anchor 36.76 0.976 0.046 180 25MB -

Ours-light 37.42 0.979 0.044 159 45MB 146
Ours 37.70 0.980 0.042 145 57MB 183

Training Epoches

Rendering
Pipeline

…

w / o 
coarse-to-fine

w / 
coarse-to-fine

Figure 3: Using a coarse-to-fine strategy,
our approach can eliminate the floaters
without increasing the number of GS.

where κ is the latent feature derived from ASG,
⊕

denotes the concatenation operation, γ represents
the positional encoding, d is the unit view direction pointing from the camera to each 3D Gaussian,
n is the normal of each 3D Gaussian, and ωr is the unit reflect direction. This strategy significantly
enhances the ability of 3D-GS to model scenes with complex optical phenomena, whereas neither
pure ASG nor pure MLP can achieve anisotropic appearance modeling as effectively as our approach.

Normal estimation. Following [22, 47], we use the shortest axis of each Gaussian as its normal.
This approach is based on the observation that 3D Gaussians tend to flatten gradually during the
optimization process, allowing the shortest axis to serve as a reasonable approximation for the normal.

The reflect direction ωr can then be derived using the view direction and the local normal vector n as:

ωr = 2(ωo · n) · n− ωo, (11)

where ωo = −d is a unit view direction pointing from each 3D Gaussian in world space to the
camera. We use the reflect direction ωr to query ASG, enabling better interpolation of latent features
containing anisotropic information. Experimental results show that although this unsupervised normal
estimation cannot generate physically accurate normals aligned with the real world, it is sufficient to
produce relatively accurate reflect direction to assist ASG in fitting high-frequency information.

3.3 Coarse-to-fine Training

We observed that in many real-world scenarios, 3D-GS tends to overfit the training data, leading to
the emergence of numerous floaters when rendering images from novel viewpoints. One important
reason is that the COLMAP point cloud is too sparse. Poor initialization makes it difficult for
3D-GS to compensate for overly sparse areas through densification during optimization, leading to
floaters in the rendering images. Moreover, 3D-GS accumulates gradients from each pixel to the GS:
dL
dx =

∑
dL
dpi

dpi

dx , and the densification occurs when the accumulated amount exceeds a threshold
τg = 0.0002. However, having positive and negative gradients can cause GSs that should be densified
to be ignored due to the large negative gradient.

Thus, to mitigate the occurrence of floaters in real-world scenes, we propose a coarse-to-fine training
mechanism. We first impose an L1 constraint on the gradients from pixels to GS: dL

dx =
∑

∥ dL
dpi

dpi

dx ∥1,
accumulating the numerical contribution from pixels to GS rather than gradients. This idea is similar
to the concurrent works [65, 70]. Next, to avoid overfitting caused by excessive growth of 3D-GS
during the early stages of optimization, we decide to train 3D-GS progressively from low to high
resolution in real-world scenes:

r(i) = min(⌊rs + (re − rs) · i/τ⌉, re), (12)

where r(i) is the image resolution at the i-th training iteration, rs is the starting image resolution, re
is the ending image resolution (the full resolution we aim to render), and τ is the threshold iteration,
empirically set to 5k.

This training method allows 3D-GS to densify correctly and prevents excessive growth of 3D-GS in
the early stages. Additionally, due to the lower resolution training in the initial phase, this mechanism
reduces training time by approximately 10%. In our experiments, we offer a performance version
with τg = 0.0005 and light version with τg = 0.0006.
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Figure 4: Visualization on NeRF dataset. Our method has achieved specular highlights modeling,
which other 3D-GS-based methods fail to accomplish, while maintaining fast rendering speed.

Dataset Mip-NeRF 360 Mip-NeRF 360 Outdoor Mip-NeRF 360 Indoor
Method | Metrics PSNR ↑ SSIM ↑ LPIPS ↓ FPS Mem PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Plenoxels 23.08 0.626 0.463 6.79 2.1GB 21.68 0.513 0.491 24.83 0.766 0.426
iNGP 25.59 0.699 0.331 9.43 48MB 22.75 0.567 0.403 29.14 0.863 0.242

Mip-NeRF360 27.69 0.792 0.237 0.06 8.6MB 24.47 0.691 0.283 31.72 0.917 0.180
3D-GS 27.79 0.826 0.202 115 748MB 25.02 0.742 0.232 31.25 0.931 0.164

Scaffold-GS 27.98 0.824 0.207 96 203MB 25.07 0.736 0.243 31.61 0.933 0.162
Ours-w/ anchor 28.14 0.824 0.196 70 260MB 24.98 0.735 0.223 32.09 0.935 0.161

Ours-light 28.07 0.834 0.183 44 684MB 25.09 0.752 0.203 31.80 0.936 0.158
Ours 28.18 0.835 0.176 33 847MB 25.11 0.754 0.195 32.01 0.937 0.153

Table 2: Quantitative comparison of on real-world datasets. We report PSNR, SSIM, LPIPS
(VGG) and color each cell as best , second best and third best . Our method has achieved the best
rendering quality, while striking a good balance between FPS and the storage memory.

3.4 Adaption for Anchor-Based Gaussian Splatting

While the ASG appearance field significantly improves the ability of 3D-GS to model specular and
anisotropic features, it introduces additional computational overhead due to the additional local
features f associated with each Gaussian. Inspired by [32], we employ anchor-based Gaussian
splatting to reduce storage overhead and accelerate the rendering.

Since the anisotropy modeled by ASG is continuous in space, it can be compressed into a lower-
dimensional space. Thanks to the guidance of the anchor Gaussian, the anchor feature fv can be
used directly to compress N ASGs, further reducing storage pressure. To make the ASG of neural
Gaussians position-aware, we introduce the unit view direction to decompress ASG parameters.
Consequently, the ASG parameters prediction in Eq. (8) is revised as follows:

Θ(fv,dcn) → {λ, µ, ξ}N , (13)

where dcn denotes the unit view direction from the camera to each neural Gaussian. Additionally,
we set the diffuse part of the neural Gaussian cd = ϕ(fv), directly predicted through an MLP ϕ, to
ensure the smoothness of the diffuse component and reduce the difficulty of convergence.

3.5 Losses

We optimize the learnable parameters and MLPs using the same loss function as 3D-GS [23]. The
total supervision is given by:

L = (1− λD-SSIM)L1 + λD-SSIMLD-SSIM, (14)

where the λD-SSIM = 0.2 is consistently used in our experiments.

4 Experiments

In this section, we present both quantitative and qualitative results of our method. To evaluate its
effectiveness, we compared it to several state-of-the-art methods across various datasets. We color
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Table 3: Results on NeRF synthetic dataset.

Dataset NeRF Synthetic
Method | Metrics PSNR ↑ SSIM ↑ LPIPS ↓ FPS Mem

iNGP-Base 33.18 0.963 0.045 ∼10 13MB
Mip-NeRF 33.09 0.961 0.043 <1 10MB
Tri-MipRF 33.65 0.963 0.042 ∼5 60MB

3D-GS 33.32 0.969 0.031 315 69MB
GS-Shader 33.38 0.968 0.030 97 29MB

Scaffold-GS 33.68 0.967 0.034 240 19MB
Ours-w/ anchor 33.96 0.969 0.032 172 19MB

Ours-light 34.08 0.970 0.029 148 58MB
Ours 34.19 0.971 0.028 121 72MB

Table 4: Results on NSVF synthetic dataset.

Dataset NSVF Synthetic
Method | Metrics PSNR ↑ SSIM ↑ LPIPS ↓ FPS Mem

TensoRF 36.52 0.982 0.026 1.5 65MB
Tri-MipRF 34.58 0.973 0.030 ∼5 60MB
NeuRBF 37.80 0.986 0.019 ∼1 580MB
3D-GS 37.07 0.987 0.015 306 71MB

GS-Shader 33.85 0.981 0.020 68 33MB
Scaffold-GS 36.43 0.984 0.017 218 17MB

Ours-w/ anchor 37.71 0.987 0.015 152 16MB
Ours-light 38.28 0.988 0.013 124 70MB

Ours 38.40 0.988 0.012 108 89MB

Mip-NeRF 360 3D-GS Scaffold-GS Ours GT

Figure 5: Visualization on Mip-NeRF 360 indoor scenes. Our method achieves superior recovery
of specular effects compared to SOTA methods.

each cell as best , second best and third best . Our method includes three versions, each based
on different foundational methods with distinct hyperparameter settings. The performance version
(Ours) is based on 3D-GS [23] with τg = 0.0005; the light version (Ours-light), also based on
3D-GS, has τg = 0.0006; and the mini version (Ours-w/ anchor) is based on Scaffold-GS [32],
with τg = 0.0006. Our method demonstrates superior performance in modeling complex specular
and anisotropic features, as evidenced by comparisons on the NeRF, NSVF, and our "Anisotropic
Synthetic" datasets. Additionally, we showcase its versatility by comparing its performance in diffuse
scenarios, further proving the robustness of our approach.

4.1 Implementation Details

We implemented our framework using PyTorch [42] and modified the differentiable Gaussian rasteri-
zation to include depth visualization. For the ASG appearance field, the decoupling MLP Ψ consists
of 3 layers, each with 64 hidden units, and the positional encoding for the view direction is of order
2. Regarding coarse-to-fine training, which is applied only to real-world scenes to remove floaters,
we start with a resolution rs that is 4x downsampled. To further accelerate rendering, we prefilter
and allow only those Gaussians with opacity σn > 0 to pass through the ASG appearance field and
Gaussian rasterization pipelines. All experiments were conducted on an NVIDIA RTX 3090.

4.2 Results and Comparisons

Synthetic bounded scenes. We used the NeRF, NSVF, and our "Anisotropic Synthetic" datasets as
the experimental datasets for synthetic scenes. Our comparisons were made with the most relevant
state-of-the-art methods, including 3D-GS [23], Scaffold-GS [32], GaussianShader [22], and several
NeRF-based methods such as NSVF [30], TensoRF [5], NeuRBF [8], and Tri-MipRF [18].

As shown in Fig. 4 (with PSNR and LPIPS), and Tabs. 3- 4, our method achieved the highest
performance with fewer Gaussians compared to vanilla 3D-GS. It also improved upon the issues that
3D-GS faced in modeling high-frequency specular highlights and complex anisotropy as shown in
Tab. 1 with fewer Gaussians and better metrics. See more in the supplementary materials.

Real-world unbounded scenes. To verify the versatility of our method in real-world scenarios, we
used the Mip360 [2] dataset, which contains indoor scenes with specular highlights. As shown in
Tab. 2, our method surpasses state-of-the-art methods on Mip-NeRF 360. Furthermore, our method
effectively balances FPS, storage, and rendering quality. It enhances rendering quality without
increasing storage or significantly reducing FPS. As illustrated in Fig. 5 and Fig. 7, our method has
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28.52/0.041 30.66/0.035 37.50/0.01833.92/0.023 34.95/0.023

3D-GS w/ 6-SH Scaffold w/ 4-layers Ours w/o MLP Ours w/o ASG Ours GT

28.59/0.099 29.78/0.07728.48/0.095 27.99/0.102 29.21/0.088

Figure 6: Ablation on ASG appearance field. We show that directly using ASG to model color
leads to the failure in modeling anisotropy and specular highlights. By decoupling the ASG features
through MLP, we can realistically model complex optical phenomena.

3D-GS Scaffold Ours w/o c2f Ours w/o L1 norm Ours GT

0.246/4531k 0.286/1600k 0.265/5166k 0.218/4512k 0.180/4447k

Figure 7: Ablation on coarse-to-fine training. Experimental results demonstrate that our simple yet
effective training mechanism can effectively remove floaters without increasing the number of 3D
Gaussians, thereby alleviating the overfitting problem prevalent in 3D-GS-based methods.

also significantly improved the visual effect. It removes a large number of floaters in outdoor scenes
and successfully models the high-frequency specular highlights in indoor scenes. This demonstrates
that our approach is not only adept at modeling complex specular scenes but also effectively improves
rendering quality in general scenarios.

4.3 Ablation Study

ASG feature decoupling MLP. We conducted an ablation study to evaluate the key components
of the ASG appearance field, which include ASG features, decoupling MLP, and the separation of
diffuse and specular colors. As demonstrated in Fig. 6 (with PSNR and LPIPS), directly using ASG
to output color results in the inability to model specular and anisotropic components. In contrast to
directly using an MLP for color modeling, as in Scaffold-GS [32], separately modeling diffuse and
specular color can enhance the fitting ability for high-frequency information. ASG can encode higher-
frequency anisotropic features. With the help of ASG’s ability to encode high-frequency anisotropic
features, the decoupling MLP can fit complex optical phenomena, leading to more accurate rendering
results. We also demonstrated that higher-order SH (6-order) and more MLP layers (4-layers) do not
help 3D-GS and Scaffold-GS achieve satisfactory results, highlighting the importance of ASG.

Coarse-to-fine training. We conducted an ablation study to assess the impact of coarse-to-fine (c2f)
training. As illustrated in Fig. 7 (with LPIPS and number of Gaussian), both 3D-GS and Scaffold-GS
exhibit a large number of floaters in the novel view synthesis. Coarse-to-fine training effectively
reduces the number of floaters, alleviating the overfitting issue commonly encountered by 3D-GS in
real-world scenarios. Applying an L1 constraint to the gradients used for 3D-GS densification further
reduced the number of floaters and Gaussians. See more in the supplementary materials.

5 Conclusion

In this work, we introduce Spec-Gaussian, a novel approach to 3D Gaussian splitting that features
an anisotropic view-dependent appearance. Leveraging the powerful capabilities of ASG, our
method effectively overcomes the challenges encountered by vanilla 3D-GS in rendering scenes with
specular highlights and anisotropy. Additionally, we innovatively implement a coarse-to-fine training
mechanism to eliminate floaters in real-world scenes. Both quantitative and qualitative experiments

9



demonstrate that our method not only equips 3D-GS with the ability to model specular highlights and
anisotropy but also enhances the overall rendering quality of 3D-GS in general scenes.

Limitations. Although our method enables 3D-GS to model complex specular and anisotropic
features, it still faces challenges in handling reflections. Specular and anisotropic effects are primarily
influenced by material properties, whereas reflections are closely related to the environment and
geometry. Due to the lack of explicit geometry in 3D-GS, we cannot differentiate between reflections
and materials using constraints like normals, as employed in Ref-NeRF [52] and NeRO [31]. We
plan to explore solutions for modeling reflections with 3D-GS in future work.
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Appendix

This supplementary material provides more results that accompany the paper.

• Section A provides more ablations.

• Section B provides additional results, including more visualizations and quantitative results
on complete datasets.

A More Ablations

In this section, we present the complete quantitative ablations on the key components of our method.

We first evaluate the role of each component of the ASG appearance field in NeRF synthetic scenes
as shown in Tab. 5. The introduction of ASG improves the ability to model specular highlights
and reduces the number of 3D Gaussians. The inclusion of normals did not significantly increase
computational overhead, but it did enhance rendering metrics and visual quality. More importantly,
we achieve better rendering quality with fewer Gaussians than vanilla 3D-GS, a characteristic that
can be further explored in the future.

Next, we evaluated our full method on the Mip360 dataset in Tab. 6. It is important to note that
the Mip360 dataset is divided into indoor and outdoor scenes. Indoor scenes have more specular
highlights, while outdoor scenes contain a large number of floaters. The coarse-to-fine approach
itself improves the quality of 3D-GS in real-world scenes, mainly by eliminating a significant amount
of floaters in outdoor settings. Although the introduction of the ASG appearance field significantly
increases rendering overhead, it did greatly enhance the modeling of specular highlights in indoor
scenes. Under the constraints of the coarse-to-fine mechanism, our complete method combines the
advantages of both, achieving the best rendering quality. To further improve rendering speed, we also
implement a light version and a mini version based on Scaffold-GS. These versions offer a trade-off
between rendering quality and speed and can be used as needed. The quality of the Mip360 scenes
demonstrates that our method is not only capable of handling scenes with specular highlights but is
also robust in real-world diffuse scenarios.

B More Comparisons

In this section, we present the complete quantitative results of our experiments. We report PSNR,
SSIM, LPIPS (VGG), and color each cell as best , second best and third best .

B.1 NeRF Synthetic Scenes

As shown in Tabs. 7-9, our method demonstrates the best rendering quality metrics in almost every
scene. It’s important to note that the experimental setup for Tri-MipRF [18] differs from other
methods. It uses both the training and validation sets as training data, expanding the scale of the
model’s data. When its training data is limited to the training set, its metrics suffer a noticeable drop.
Nevertheless, to ensure that the experimental results fully reflect the highest performance of each
method, and to prevent significant drops in metrics due to differences in experimental environments,
we still present the metrics from the Tri-MipRF official paper. Our method achieved more prominent
metrics in scenes with notable specular reflection and anisotropy, such as Drums, Lego, and Ship.
This demonstrates that our method not only improves the overall rendering quality but also has a
more significant advantage in complex specular scenarios.

B.2 NSVF Synthetic Scenes

The NSVF [30] dataset, in comparison to NeRF, features more noticeable metallic specular reflection,
as presented in the Wineholder, Steamtrain, and Spaceship scenes. It is important to note that Tri-
MipRF fails to converge in the Steam scene with the official code, so we did not report metrics for
that scenario. As shown in Tabs. 10-12, we present the per-scene experimental results of PSNR,
SSIM, and LPIPS in the supplementary material. The experimental results indicate that compared to
other methods based on 3D-GS [23], our method has significant advantages in metallic highlights
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Table 5: Ablation on ASG appearance field.

Dataset NeRF Synthetic
Method PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ Num.(k) ↓
3D-GS 33.32 0.969 0.031 315 295

w/o ASG 34.03 0.969 0.030 175 271
w/o decoup-MLP 33.95 0.970 0.030 217 244

w/o normal 34.10 0.971 0.029 139 238
Full (Light) 34.08 0.970 0.029 148 186

Full 34.19 0.971 0.028 121 237

Table 6: Ablation on full method.
Dataset MipNeRF 360
Method PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑ Num.(M) ↓
3D-GS 27.47 0.812 0.222 115 3.23

w/o ASG field 27.61 0.830 0.184 113 3.21
w/o c2f 28.01 0.823 0.203 28 3.56

w/ anchor 28.14 0.824 0.196 70 -
Full (Light) 28.07 0.834 0.183 44 2.52

Full 28.18 0.835 0.176 33 3.10

Mip-NeRF 360 3D-GS Scaffold-GS Ours-w/o Norm Ours GT

Figure 8: Visualization on Mip-NeRF 360 outdoor scenes. Our method achieves robust floater
removal by coarse to fine training.

and complex transmission scenarios. Additionally, we compared it with the SOTA NeRF-based
methods based on NeRF. Our approach enables 3D-GS to surpass the latest SOTA of NeRF, achieving
high-frequency highlight modeling that 3D-GS couldn’t realize but NeRF could, thereby achieving
truly high-quality rendering as shown in Fig. 14.

3D-GS Scaffold-GS Ours GT

Figure 9: More comparisons with baselines. Our method achieves robust floater removal by coarse-
to-fine training.
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Specular highlights Reflection

Figure 10: Illustration of specular high-
lights and reflections.

GS-Shader Ours GT

Figure 11: Ccomparison on Ref-NeRF dataset.

3D-GS Scaffold-GS Ours GT

Figure 12: Visualization on Nex [56] dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
iNGP-Base 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18
Mip-NeRF 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
Tri-MipRF 36.10 26.59 34.51 38.54 36.15 30.73 37.75 28.78 33.65
GS-Shader 35.83 26.36 34.97 37.85 35.87 30.07 35.23 30.82 33.38
3D-GS 35.36 26.15 34.87 37.72 35.78 30.00 35.36 30.80 33.32
Scaffold-GS 35.28 26.44 35.21 37.73 35.69 30.65 37.25 31.17 33.68
Ours-w/ anchor 35.57 26.58 35.71 38.12 36.62 30.66 36.81 31.63 33.96
Ours-light 35.69 26.77 36.03 38.25 36.11 30.84 36.95 31.97 34.08
Ours 35.72 26.92 36.10 38.25 36.46 30.98 37.09 31.97 34.19

Table 7: Per-scene PSNR comparison on the NeRF dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
iNGP-Base 0.979 0.937 0.981 0.982 0.982 0.951 0.990 0.896 0.963
Mip-NeRF 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882 0.961
Tri-MipRF 0.985 0.939 0.983 0.984 0.982 0.953 0.992 0.879 0.963
GS-Shader 0.987 0.949 0.985 0.985 0.983 0.960 0.991 0.905 0.968
3D-GS 0.987 0.955 0.987 0.985 0.983 0.960 0.992 0.907 0.969
Scaffold-GS 0.985 0.950 0.985 0.983 0.980 0.960 0.992 0.898 0.967
Ours-w/ anchor 0.986 0.953 0.987 0.985 0.982 0.962 0.992 0.904 0.969
Ours-light 0.987 0.955 0.988 0.985 0.981 0.963 0.993 0.905 0.970
Ours 0.987 0.958 0.988 0.985 0.982 0.963 0.993 0.909 0.971

Table 8: Per-scene SSIM comparison on the NeRF dataset.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
iNGP-Base 0.022 0.071 0.023 0.027 0.017 0.060 0.010 0.132 0.045
Mip-NeRF 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138 0.043
Tri-MipRF 0.016 0.066 0.020 0.021 0.016 0.052 0.008 0.136 0.042
GS-Shader 0.012 0.040 0.013 0.019 0.014 0.033 0.006 0.103 0.030
3D-GS 0.011 0.037 0.012 0.020 0.016 0.037 0.006 0.106 0.031
Scaffold-GS 0.013 0.042 0.013 0.023 0.019 0.040 0.008 0.114 0.034
Ours-w/ anchor 0.013 0.038 0.012 0.022 0.016 0.037 0.007 0.112 0.032
Ours-light 0.012 0.035 0.011 0.019 0.017 0.034 0.006 0.101 0.029
Ours 0.011 0.033 0.011 0.018 0.014 0.031 0.006 0.099 0.028

Table 9: Per-scene LPIPS (VGG) comparison on the NeRF dataset.
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Figure 13: Visualization on our "Anisotropic Synthetic" dataset. We show the comparison
between our method and 3D-GS across all eight scenes. Qualitative experimental results demonstrate
the significant advantage of our method in modeling anisotropic scenes, thereby enhancing the
rendering quality of 3D-GS.

3D-GS Scaffold-GS GS-shader Ours GT

Figure 14: Visualization on NSVF dataset. Our method significantly improves the ability to
model metallic materials compared to other GS-based methods. At the same time, our method also
demonstrates the capability to model refractive parts, reflecting the powerful fitting ability of our
method.

Bike Life Palace Robot Space Steam Toad Wine Avg.
NeRF 31.77 31.08 31.76 28.69 34.66 30.84 29.42 28.23 30.81
NSVF 37.75 34.60 34.05 35.24 39.00 35.13 33.25 32.04 35.13
TensoRF 39.23 34.51 37.56 38.26 38.60 37.87 34.85 31.32 36.52
Tri-MipRF 36.98 33.98 36.55 33.49 37.60 - 33.48 29.97 34.58
NeuRBF 40.71 36.08 38.93 39.13 40.44 38.35 35.73 32.99 37.80
3D-GS 40.76 33.19 38.89 39.16 36.80 37.67 37.33 32.76 37.07
Scaffold-GS 39.87 35.00 38.53 37.92 34.36 37.12 36.29 32.32 36.43
GS-Shader 37.38 27.36 36.55 37.00 32.61 35.27 34.50 30.16 33.85
Ours-w/ anchor 40.63 35.56 38.95 38.52 39.47 37.98 36.55 34.04 37.71
Ours-light 41.48 36.11 39.23 39.54 39.89 38.19 37.22 34.59 38.28
Ours 41.67 36.15 39.33 39.65 40.03 38.26 37.43 34.69 38.40

Table 10: Per-scene PSNR comparison on the NSVF dataset.
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Bike Life Palace Robot Space Steam Toad Wine Avg.
NeRF 0.970 0.946 0.950 0.960 0.980 0.966 0.920 0.920 0.952
NSVF 0.991 0.971 0.969 0.988 0.991 0.986 0.968 0.965 0.979
TensoRF 0.993 0.968 0.979 0.994 0.989 0.991 0.978 0.961 0.982
Tri-MipRF 0.990 0.962 0.973 0.985 0.986 - 0.968 0.945 0.973
NeuRBF 0.995 0.977 0.985 0.995 0.993 0.993 0.983 0.972 0.986
3D-GS 0.994 0.979 0.983 0.994 0.991 0.993 0.985 0.975 0.987
Scaffold-GS 0.993 0.979 0.981 0.995 0.985 0.992 0.982 0.971 0.984
GS-Shader 0.992 0.964 0.979 0.994 0.985 0.990 0.980 0.966 0.981
Ours-w/ anchor 0.994 0.979 0.982 0.994 0.993 0.992 0.984 0.975 0.987
Ours-light 0.995 0.982 0.984 0.993 0.994 0.994 0.984 0.977 0.988
Ours 0.995 0.982 0.984 0.995 0.994 0.994 0.985 0.978 0.988

Table 11: Per-scene SSIM comparison on the NSVF dataset.

Bike Life Palace Robot Space Steam Toad Wine Avg.
TensoRF 0.010 0.048 0.022 0.010 0.020 0.017 0.031 0.051 0.026
Tri-MipRF 0.012 0.048 0.023 0.019 0.019 - 0.036 0.055 0.030
NeuRBF 0.006 0.036 0.016 0.009 0.011 0.011 0.025 0.036 0.019
3D-GS 0.005 0.028 0.017 0.006 0.009 0.007 0.018 0.025 0.015
Scaffold-GS 0.007 0.030 0.019 0.008 0.019 0.010 0.022 0.021 0.017
GS-Shader 0.007 0.051 0.020 0.008 0.016 0.010 0.023 0.029 0.020
Ours-w/ anchor 0.005 0.027 0.018 0.007 0.007 0.008 0.021 0.025 0.015
Ours-light 0.005 0.024 0.015 0.006 0.007 0.007 0.018 0.022 0.013
Ours 0.004 0.022 0.014 0.005 0.007 0.007 0.017 0.021 0.012

Table 12: Per-scene LPIPS (VGG) comparison on the NSVF dataset.

Teapot Plane Record Ashtray Dishes Headphone Jupyter Lock Avg.
3D-GS 27.24 26.80 43.81 34.43 29.62 38.72 40.52 29.36 33.81
Scaffold-GS 30.64 29.14 47.79 35.66 32.12 37.19 40.04 30.13 35.34
Ours-w/ anchor 33.53 31.56 50.35 36.14 32.95 38.48 40.10 30.96 36.76
Ours-light 34.75 31.01 50.30 37.76 33.03 39.39 41.42 31.68 37.42
Ours 35.24 30.95 50.90 38.03 33.04 40.12 41.47 31.86 37.70

Table 13: Per-scene PSNR comparison on our "Anisotropic Synthetic" dataset.

Teapot Plane Record Ashtray Dishes Headphone Jupyter Lock Avg.
3D-GS 0.968 0.946 0.994 0.969 0.947 0.989 0.985 0.932 0.966
Scaffold-GS 0.979 0.965 0.998 0.973 0.967 0.986 0.983 0.924 0.972
Ours-w/ anchor 0.985 0.973 0.999 0.974 0.973 0.988 0.984 0.930 0.976
Ours-light 0.987 0.967 0.998 0.984 0.970 0.990 0.987 0.948 0.979
Ours 0.988 0.967 0.999 0.985 0.970 0.990 0.987 0.951 0.980

Table 14: Per-scene SSIM comparison on our "Anisotropic Synthetic" dataset.

Teapot Plane Record Ashtray Dishes Headphone Jupyter Lock Avg.
3D-GS 0.043 0.085 0.019 0.044 0.120 0.015 0.075 0.098 0.062
Scaffold-GS 0.029 0.057 0.006 0.038 0.082 0.021 0.086 0.099 0.052
Ours-w/ anchor 0.022 0.042 0.004 0.039 0.067 0.017 0.084 0.093 0.046
Ours-light 0.021 0.052 0.007 0.022 0.079 0.014 0.076 0.080 0.044
Ours 0.021 0.051 0.005 0.020 0.077 0.013 0.071 0.075 0.042

Table 15: Per-scene LPIPS (VGG) comparison on our "Anisotropic Synthetic" dataset.

bicycle flowers garden stump treehill room counter kitchen bonsai
Plenoxels 21.91 20.10 23.49 20.66 22.25 27.59 23.62 23.42 24.67
iNGP 22.17 20.65 25.07 23.47 22.37 29.69 26.69 29.48 30.69
Mip-NeRF360 24.37 21.73 26.98 26.40 22.87 31.63 29.55 32.23 33.46
3D-GS 25.63 21.94 27.73 27.02 22.79 31.80 29.12 31.61 32.48
Scaffold-GS 25.61 21.74 27.82 26.79 23.38 32.14 29.62 31.81 32.87
Ours-w anchor 25.44 21.36 27.97 26.91 23.23 32.27 30.12 32.04 33.91
Ours-light 25.87 21.81 28.06 27.23 22.48 32.11 29.74 32.09 33.26
Ours 25.90 21.86 28.07 27.25 22.48 32.11 30.12 32.25 33.54

Table 16: Per-scene PSNR comparison on the Mip-NeRF 360 dataset.
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bicycle flowers garden stump treehill room counter kitchen bonsai
Plenoxels 0.496 0.431 0.606 0.523 0.509 0.842 0.759 0.648 0.814
iNGP 0.512 0.486 0.701 0.594 0.542 0.871 0.817 0.858 0.906
Mip-NeRF360 0.685 0.583 0.813 0.744 0.632 0.913 0.894 0.920 0.941
3D-GS 0.778 0.623 0.874 0.784 0.651 0.928 0.916 0.933 0.948
Scaffold-GS 0.773 0.609 0.867 0.774 0.657 0.931 0.919 0.931 0.950
Ours-w anchor 0.775 0.611 0.869 0.775 0.645 0.932 0.920 0.934 0.953
Ours-light 0.795 0.645 0.879 0.795 0.647 0.934 0.920 0.936 0.952
Ours 0.797 0.648 0.881 0.797 0.647 0.935 0.923 0.937 0.953

Table 17: SSIM Comparison on the Mip-NeRF 360 dataset.

bicycle flowers garden stump treehill room counter kitchen bonsai
Plenoxels 0.506 0.521 0.386 0.503 0.540 0.419 0.441 0.447 0.398
iNGP 0.446 0.441 0.257 0.421 0.450 0.261 0.306 0.195 0.205
Mip-NeRF360 0.301 0.344 0.170 0.261 0.339 0.211 0.204 0.127 0.176
3D-GS 0.204 0.328 0.103 0.207 0.318 0.191 0.178 0.113 0.173
Scaffold-GS 0.224 0.339 0.112 0.228 0.315 0.182 0.177 0.114 0.174
Ours-w anchor 0.205 0.292 0.110 0.215 0.293 0.185 0.179 0.115 0.166
Ours-light 0.173 0.279 0.097 0.190 0.275 0.182 0.173 0.111 0.168
Ours 0.166 0.263 0.092 0.184 0.269 0.177 0.166 0.108 0.162

Table 18: LPIPS Comparison on the Mip-NeRF 360 dataset.

B.3 Anisotorpic Synthetic Scenes

"Anisotropic Synthetic" is a synthetic dataset we rendered ourselves, which includes 8 scenes with
significant anisotropy. We tested some existing 3D-GS-based methods on "Anisotropic Synthetic."
As shown in Tabs. 13-15, our method achieved a very significant improvement in rendering metrics.
Fig. 13 shows the comparison between our method and 3D-GS across all eight scenes. Qualitative
experiments also demonstrate the significant visual advantages of our method, highlighting the
substantial improvement our method brings to anisotropic parts, thereby enhancing the overall
rendering quality.

B.4 Mip-360 Scenes

The MipNeRF-360 scenes include five outdoor and four indoor scenarios. There are several scenes
rich in specular reflections, such as bonsai, room, and kitchen. As shown in Tabs. 16-18, our method
achieved significant advantages in the four indoor scenes. This reflects our method’s strengths in
modeling specular reflections and anisotropy. In outdoor scenes, our method also achieved rendering
metrics comparable to the SOTA methods. Furthermore, with the help of the coarse-to-fine training
mechanism, our method significantly reduced the number of floaters as shown in Fig. 11, resulting in
a substantial improvement in visual effects.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: I am sure that the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: I am sure that the paper discuss the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, the paper does.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper does.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code can be released upon acceptance, but now it’s not a clean version.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper contains details about the training model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We evaluate the results through PSNR, SSIM and LPIPS.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: They are presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we do.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, they do.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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