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Figure 1: We present MFSR, a high-capacity one- or few-step super-resolution model that delivers
photorealistic restoration of real-world low-resolution images. The number of diffusion inference
steps is indicated by ‘s’.

ABSTRACT

Diffusion- and flow-based models have advanced real-world image super-
resolution (Real-ISR), but their multi-step sampling makes inference slow and
hard to deploy. One-step distillation alleviates the cost, yet often degrades restora-
tion quality and removes the option to refine with more steps. We present Mean
Flows for Super-Resolution (MFSR), a new distillation framework that produces
photorealistic, high-fidelity results in a single step while still allowing an optional
few-step path for further improvement. Our approach uses MeanFlow as the learn-
ing target, enabling the student to approximate the mean velocity between arbi-
trary states of the Probability Flow ODE (PF-ODE) and effectively capture the
teacher’s dynamics without explicit rollouts. To better leverage pretrained gener-
ative priors, we additionally improve original MeanFlow’s Classifier-Free Guid-
ance (CFG) formulation with teacher CFG distillation strategy, which enhances
restoration capability and preserves fine details. Experiments on both synthetic
and real-world benchmarks demonstrate that MFSR achieves efficient, flexible,
and high-quality super-resolution, delivering results on par with or even better
than multi-step teachers while requiring much lower computational cost.

1 INTRODUCTION

Image Super-Resolution (ISR) (Dong et al., 2014} [Kim et al, 2016} [Ledig et al.,[2017) aims to re-
construct High-Resolution (HR) image from Low-Resolution (LR) inputs. Traditional ISR methods
typically downsample HR images to form training pairs. However, such approaches fall short when
dealing with real-world images degraded by complex and unknown processes. Recent research has
shifted toward Real-World ISR (Real-ISR) (Zhang et al, 2021} [Wang et al., 2021]), a more challeng-
ing yet practically valuable setting.

Early progress in Real-ISR was largely driven by Generative Adversarial Networks (GANs)
[fellow et al., 2014} [Mirza) [2014)), where adversarial training encouraged sharper textures and per-
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ceptual realism. Despite their success, GAN-based methods often suffer from unstable training and
tend to introduce artifacts. This has motivated exploration of more powerful generative paradigms.

Recently, diffusion- and flow-based generative models (Song et al.,|2020; Ho et al., 2020; Rombach
et al., 2022; [Liu et al., 2022} [Liul 2022} [Lipman et al., 2022; |/Albergo et al.l [2023) have shown
superior image generation capabilities compared to earlier approaches such as GANs, Normalizing
Flows (NFs) (Dinh et al., |2016) and Variational Autoencoders (VAEs) (Kingma & Welling|, [2013).
Numerous researchers have applied diffusion and flow-based models to Real-ISR (Sahak et al.
2023; |Yue et al.} 2024). A notable direction further adapts large-scale text-to-image (T2I) diffusion
models (Podell et al., 2023} [Esser et al., [2024). These methods (Lin et al., [2023; |Yu et al., | 2024; 'Wu
et al.l 2024b; Duan et al., [2025) have achieved superior performance. However, due to the iterative
denoising mechanism of diffusion and flow-based models, the inference process is computationally
expensive. Thus, reducing the number of inference steps while maintaining sample quality has
become a key challenge.

To address this, various one-step distillation methods have been proposed (Wang et al., [2024b; |Wu
et al.| [2024a; Dong et all [2025; [You et al.| 2025). Broadly, these methods either (i) match the
output distribution between student and teacher models (Wu et al.,2024a; |Dong et al., [2025)), or (ii)
constrain the student’s denoising trajectory to remain consistent with that of the teacher (You et al.,
2025). Although effective to some extent, existing methods often fail to recover fine details and
completely lose the flexibility of few-step sampling.

More recently, MeanFlow (Geng et al., |2025) has emerged as an effective generative modeling
paradigm. Unlike traditional flow models, which regress instantaneous velocity at each time step,
MeanFlow instead targets the average velocity. It establishes an analytic relation, termed the Mean-
Flow Identity that links average and instantaneous velocities via a time derivative. This formulation
provides a principled training objective, avoiding heuristic consistency constraints and offering clear
physical interpretation. At inference, MeanFlow supports flexible sampling strategies, allowing the
model to map noisy state to any future point along the PF-ODE in a single step. Such flexibil-
ity is largely absent in existing one-step image restoration methods, making MeanFlow a natural
foundation for developing a more versatile and tunable Real-ISR framework.

Although MeanFlow was originally proposed as a generative model trained from scratch, we argue
that a two-stage strategy—first pre-training a teacher and then distilling into a student—is more ef-
fective and efficient. Directly learning both instantaneous and average velocities often leads to slow
convergence, as the network struggles to learn shortcuts based on instantaneous velocity which it
has not yet accurately captured. By contrast, distillation from a pre-trained teacher instead leverages
already well-learned, high-quality instantaneous velocity field, thereby enabling faster convergence.
This perspective is consistent with recent studies that emphasize the advantages of two-stage distil-
lation (Lu & Song} [2024; |Geng et al.| [2024} |Peng et al., [2025]).

In this paper, we therefore treat MeanFlow as a distillation strategy to accelerate a powerful
multi-step model into a one-step student network. To enhance performance, we propose a novel
Classifier-Free Guidance (CFG)-based distillation strategy (Ho & Salimans, [2022): the teacher’s
CFG-enhanced prediction is used as the instantaneous velocity in the MeanFlow distillation loss.
This modification yields stronger guidance and better performance than the original MeanFlow CFG
formulation.

Unlike previous one-step SR approaches, our method, Mean Flows for Super-Resolution (MFSR),
does not rely on complex loss combinations to ensure restoration quality. It employs only the Mean-
Flow distillation loss, computed entirely in the latent space. Consequently, gradients do not back-
propagate through the encoder or decoder, unlike in (Wu et al.l 2024a; Dong et al 2025} [Zhang
et al.| 2024)), which significantly improves training efficiency. MFSR not only delivers high-quality
one-step restoration, but also preserves the flexibility of few-step sampling, enabling a controllable
trade-off between inference efficiency and restoration quality.

As shown in the left panel of Fig. [T MFSR is capable of producing visually pleasing restorations
with both high fidelity and perceptual realism in a single forward pass. Experiments on synthetic and
real-world benchmarks demonstrate that our approach achieves superior restoration quality while
being significantly faster than the teacher model. Our contributions are summarized as follows:
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* We propose MFSR, the first framework that adapts MeanFlow to Real-ISR, enabling both one-step
and few-step image restoration.

* We introduce a CFG-based MeanFlow distillation strategy that leverages the teacher’s prior, yield-
ing stronger supervision and better results than the original MeanFlow CFG formulation.

» Extensive experiments on synthetic and real-world benchmarks demonstrate that MFSR delivers
strong perceptual quality, robust generalization, and efficient inference.

2 RELATED WORKS

2.1 FEW-STEP DIFFUSION/FLOW MODELS

Despite their strong generative power, diffusion models suffer from high inference cost. This mo-
tivates research on reducing sampling steps. For acceleration, existing distillation methods can be
broadly categorized into two paradigms: distribution-based (Wang et al.,|2024c; |Yin et al.,|2024bga;
Xu et al.} 2024; Zhou et al., | 2024bza; Nguyen & Tran, |2024)) and trajectory-based (Luhman & Luh-
man, 2021} /Song et al.|[2023;|[Salimans & Ho} 2022} Kim et al., 2023} [Frans et al.|[2024;|Lu & Song,
2024). Distribution-based approaches (e.g., score distribution matching) (Wang et al., [2024c; |Yin
et al., [2024b))) aim to align the output distributions of student and teacher models. However, they
often suffer from high computational cost, as they rely on an fake score model and alternate opti-
mization between the student and the fake score network. Trajectory-based methods train the student
with regression objectives derived from the PF-ODE. A representative method, Consistency Model
(Song et al.l |2023; [Lu & Song} [2024)), employs a loss function that constrains student predictions on
two consecutive points along the same PF-ODE, ensuring coherent output across different timesteps.
MeanFlow also belongs to the trajectory-based category, and we defer a detailed discussion to

2.2 DIFFUSION/FLOW-BASED REAL-ISR

Multi-step Diffusion-based Real-ISR. Diffusion models have achieved remarkable success in the
field of image super-resolution. Recent advances leverage powerful pre-trained text-to-image (T2I)
models such as Stable Diffusion (SD) (Rombach et al., |2022) to address the challenges of Real-
ISR (Wang et al., [2024a; Wu et al., 2024bj |Yang et al., 2023} Yu et al.l [2024; [Duan et al., [2025)).
These methods typically guide or control the diffusion process to generate images that preserve the
semantic content of degraded inputs while removing degradations. Representative works include
SUPIR (Yu et al., 2024)), which demonstrates strong generative ability by incorporating negative
prompts and scaling up pre-training with larger models and datasets. Nevertheless, all of these
methods remain limited by the multi-step denoising process inherent to diffusion models, which
typically requires 20-50 denoising steps at inference. Besides, the employment of CFG needs 2
Number of Function Evaluations (NFEs) at each step, doubling the inference time.

One-step Diffusion-based Real-ISR. To reduce inference cost, several works have explored distil-
lation techniques for Real-ISR. SinSR (Wang et al., |2024b)) reformulates the inference process of
ResShift (Yue et al., [2024) as an ODE and performs consistency-preserving distillation. CTMSR
(You et al.,2025)) applies Consistency Training (CT) (Song et al.l|2023) and Distribution Trajectory
Matching (DTM) to map perturbed LR inputs to HR in a single step. Yet these approaches remain
constrained by the lack of large-scale training data. Another line of research focuses on score dis-
tillation. OSEDiff (Wu et al.| 20244a) introduces the Variational Score Distillation (VSD) (Wang
et al.l 2024c)) loss to Real-ISR tasks, achieving decent one-step performance by leveraging prior
knowledge from pre-trained models. TSD-SR (Dong et al., [2025) further proposes Target Score
Distillation (TSD), effectively addressing the issue of unreliable gradient direction caused by VSD.
However, they both need to load an auxiliary score model and alternately train the student and score
network, which increases the training overhead.

3 PRELIMINARY

3.1 RECTIFIED FLOW

Rectified Flow (Liu et al., 2022} [Liu}, [2022; |Lipman et al., 2022} |Albergo et al., [2023)) is an ODE-
based generative modeling framework. Given an initial distribution 7y and a target data distribution



Under review as a conference paper at ICLR 2026

71, it learns a neural velocity field v by minimizing:

1
Lre = Epgmmg o1 ~om {/ ||v(:ct,t) — (z1 — o:O)Hth , with ;= (1 —t)xg +txy, (1)
0

where x; is the linear interpolation of x( and x;. After training, sample generation reduces to solving
the following neural ODE:
dx t

dt
which can be numerically approximated using standard ODE solvers. For instance, applying the
first-order Euler method yields:

=a,+ xv(zy,t), te{0,1,...,N—1}/N. 3)

=v(zy,t), te€][0,1], )

L
t+ N

Here, the trajectory is integrated in IV steps with a step size of 1/N. A larger N provides higher
accuracy at the expense of slower sampling, while a smaller N accelerates generation but reduces
sample quality.

3.2 MEANFLOW

Unlike standard Rectified Flow, which learns an instantaneous velocity field, MeanFlow (Geng et al.}
2025)) regresses the average velocity field over an interval. Specifically, given a time interval [¢, s],
the model will take a current state z; as input and defines a vector pointing to the next state x
(s > t) via:

Ts = Tt + (5 - t)u(gjh ta S)a (4)

where u is the average velocity, defined by u(zy,t,s) = == f: v(z,, 7)d7. By differentiating both
sides on Eq. with respect to ¢ and re-arranging terms, one can obtain the MeanFlow Identity,

which describes the relation between average velocity u(x:, t, s) and instantaneous velocity %:
dx¢ du(zy, t, s)
t,8) = —~ — )2 5
uwestys) = b+ (s — 1) A8 ©)
The derivative w can be expanded by its partial components, du(ﬁtt’t’s) = 8"%’;?” % +

W, which corresponds to a Jacobian-Vector Product (JVP). Then we minimize this objective:
Ou(xy,t, s) day | Qu(we,t,s)
Oz, dt ot

where g serves as the effective regression target, sg(-) denotes stop-gradient operation, and the JVP
term can be calculated approximately at the same cost of one forward operation. During sampling,
the numerical integration of instantaneous velocity fts v(x,, 7)d7 in Rectified Flow can be replaced
by (s — t)u(wy,t, s). In the case of 1-step sampling, one can simply have z1 = xg + u(xg,0,1),
where x is sampled from an initial distribution 7.

LME = Ezo,zl,t,suu(xt,t, s)fsg(utgt)Hi, with ugt = %+(57t)[ ], 6)

3.3 DIT4SR

DiT4SR (Duan et al., 2025) builds on Stable Diffusion3.5 (SD3.5) (Esser et al. [2024), a large-
scale Rectified Flow model that employs Diffusion Transformers (DiTs) (Peebles & Xie, 2023)
as backbone. To adapt SD3.5 for Real-ISR, DiT4SR integrates a LR stream into the DiT blocks,
enabling high perceptual realism in the restored images. During inference, DiT4SR starts from
Gaussian noise and performs iterative denoising conditioned on the latent LR image and a text
prompt extracted from it. Formally, the DiT4SR sampling process is described by the PF-ODE:

dz
o = Vet ar,0), )
where z; = tzur + (1 — t)€, zpr is the latent HR image, € is Gaussian noise, and ¢ denotes the text
prompt. DiT4SR typically requires about 40 denoising steps to produce high-quality reconstructions,

and reducing the number of steps leads to a significant drop in performance.
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Figure 2: Overview of the MeanFlow Distillation (MFD) pipeline. Left: Training pipeline where
the student model is initialized from the teacher. Student model need two time steps as input. Right:

Derivation of the MFD loss. The dotted line denotes the teacher’s and student’s PF-ODE,
the blue line shows the teacher’s predicted instantaneous velocity, the solid line shows the
student’s predicted average velocity and the line indicates the student’s predicted average

velocity over a shorter interval. Taking the limit At — 0 yields the MFD loss Lygp.

4 METHOD

4.1 FRAMEWORK OVERVIEW

Our goal is to distill a powerful but slow multi-step teacher into a one/few-step MeanFlow student for
Real-ISR. We adopt DiT4SR (Duan et al.,[2025) as the teacher model. Overview of the distillation
pipeline is shown in Fig. 2] The framework comprises four components: a visual encoder F, a
prompt extractor, a teacher model v, and a student model u, with only « being trainable. Given a
high-low resolution image pair (zur, Z1R ), We first sample time steps ¢, s and random noise €. A text
prompt c is extracted from xyg, and both zyr and x;r are encoded into latent representations zygr
and zpr. We then interpolate zyr with € according to ¢ to obtain z;, with boundary states zy = € and
z1 = zpr. Conditioned on z1 g and prompt ¢, the teacher receives (z;, ¢t) while the student receives
(zt,t, s) to compute the MeanFlow Distillation loss Lypp. The loss is calculated in latent space,
therefore no decoding is needed during training. In the following sections, we describe the detailed
designs of MFSR and its training loss.

4.2 MODEL INITIALIZATION AND TIMESTEP AUGMENTATION

While MeanFlow can be trained from scratch, initializing from a pre-trained DiT4SR teacher is far
more efficient and practical. Since the teacher produces high-quality restorations, it offers a reliable
trajectory from which the student can learn effective shortcuts.

The teacher predicts the instantaneous velocity % at a single time step, requiring only one time

embedding. In contrast, our student is designed to predict the average velocity over an interval [t, s],
which requires the start and end timestep of the interval to avoid ambiguity.

To accommodate this, we augment the original DiT4SR architecture with an additional time-
embedding branch so that the student can also take the end time s as input. Specifically, we duplicate
the network structure of the original ¢-time embedder from DiT4SR and use this copy as a separate
s-time embedder. The resulting s-embedding is added to the ¢-embedding before being fed into the
network. The teacher v(z¢, t) is thus adapted into a student model u(z¢,t, s). Then, extending the
unconditional MeanFlow Identity (Eq. (3)) to the LR- and text-conditioned case yields:

Ou(zi,t,s | iR, ¢) dze | Ou(z,t, s | 21R, €)

dz
U(zt,t,s | ZLva) == + (S - t) aZt dt ot

i ®)

4.3 IMPROVED INSTANTANEOUS VELOCITY WITH TEACHER CFG

A crucial component in MeanFlow distillation is the choice of the instantaneous velocity %. A

naive choice is to use the Ground-Truth (GT) velocity z; — zo. Under this circumstance, the teacher
model is just used as initialization for student model. However, we empirically observe that this
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leads to inferior restoration results. Notably, the teacher achieves strong visual realism by employing
CFQG, suggesting that CFG plays a crucial role in semantic alignment and perceptual quality.

The original MeanFlow paper attempts to enhance the velocity field using the student model itself
under CFG. In the Real-ISR setting, it can be formulated as:

o8 = w(z — 20) + kulz tt | 2R, €) + (1 — w — K)u(z, tt | 2R, ¢ = @), )

where w and  are scalar weighting factor, and the effective guidance scale is w’ = 1*-. However,
since the student is still being optimized, this self-referential target hampers convergence.

(%

In our setting, however, a pre-trained teacher model is available. This provides a better alterna-
tive: instead of relying on the student’s self-improvement, we directly use the teacher’s CFG-based
prediction to construct the instantaneous velocity. Concretely, we define:

11
Uit = V(20,t | 2LR, €) + w(v(ze,t | 2R, ) — v(21,t | 2R, € = D). (10)

This formulation incorporates the semantic prior from the text prompt through the teacher’s guid-
ance, while maintaining stability during training.

Furthermore, we extend this idea by incorporating negative prompts into the teacher’s CFG. Prior
works (Yu et al.l |2024; Zhang et al., 2024) have shown that negative prompts ['| can effectively
suppress undesired artifacts and improve the perceptual quality of generated images. Inspired by
this, we replace the null condition in Eq. with a negative prompt condition, leading to:

1::‘6\‘[ =v(z¢,t | zLR,C) + w(v(zt,t | zLRr,¢) — v(ze, t | ZLR,cneg)). (11)
Compared with Eq. (10), this formulation provides stronger supervision by explicitly discourag-
ing unrealistic or low-quality attributes, thereby encouraging the student model to generate sharper

details and richer textures.
Finally, the MeanFlow Distillation loss integrates teacher-guided instantaneous velocity:

Lyirn (0) = ]EZHRvZLRvE:tvSH,u’(Zt7 t,s | 2R, C) — Sg(utgt)H;
(12)

ey (S _ t) [3Ue)(2t,t,3\2LR,C) oo aue(ztaéf\zm,c)]

Wlth Utgt =1 inst Oz inst

During inference, the student model takes the LR image and the extracted text prompt as con-
ditioning inputs. We perform N-step sampling with uniformly spaced timesteps 0 = 7, <
Ty < -+ < Ty = 1, starting from initial noise zyp. The update at each step is given by
Zrniy = Zrn + (Tag1 — Tn)U(2r, Tos Tag | 2LR, €).

4.4 DESIGN DECISIONS

Stabilizing Time Embedding. In the case of distilling DiT4SR, naively computing the Jacobian-

Vector Product (JVP) term W often leads to training instabilities. As shown in (Lu & Song|
Ocnoise (t) | Oemb(Cnoise)

2024; (Chen et al., 2025), the time-derivative can be decomposed as J;u = ot Dorms
ou

Femb(e) where emb(-) denotes the time embeddings and c,;sc(+) is time transformation. In prior

Rectified Flow models such as SD3.5, the choice cpoise(t) = 1000t amplifies the time derivative
Oru by a factor of 1000, resulting in large fluctuations during training. To mitigate this issue, we
adopt the remedy proposed in (Lu & Song|, 2024} (Chen et al., 2025) and set cyoise(t) = ¢ in the
student model. This modification avoids excessive amplification of gradient norms and yields more
stable training dynamics. Note that the teacher model does not need this modification, as the time-
derivative computation does not propagate through its architecture.

Sampling Time Steps. We draw two time steps (¢, s) from the joint distribution p(¢, s) = p(¢)p(s |
t), where p(t) = U[0,1] and p(s | t) = U[t, 1]. Following (Geng et al.; 2025), we enforce a certain
portion of ¢ = s. Specifically, when ¢ = s, the model learns the instantaneous velocity, while when
t # s, it learns the shortcut between time steps (average velocity).

Loss Metrics. Instead of the squared L2 loss or adaptive L2 loss used in (Geng et al.| [2025), we use
Pseudo-Huber loss as suggested in (Song & Dhariwal,|2023) to reduce loss variance during training.

Te

oil painting, cartoon, blur, dirty, messy, low quality, deformation, low resolution, oversmooth.”
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Table 1: Quantitative comparison with the state-of-the-art one-step methods across both synthetic
and real-world benchmarks. The number of diffusion inference steps is indicated by ‘s’. The best
and second best results of each metric are highlighted in red and blue, respectively.

Datasets | Method | PSNRT SSIMT LPIPS| DIST, FID| NIQE|, MUSIQT MANIQA{ CLIPIQA {

OSEDiff-1s | 27.92 0.7836  0.2966 0.2163 13539  6.4381 64.67 0.5898 0.6959

AddSR-1s 27.71 0.7722 03196  0.2242  150.18  6.9321 60.85 0.5490 0.6188

SinSR-1s 28.27 0.7465 0.3730  0.2501 182.28  7.0246 55.55 0.4907 0.6391

DRealSR CTMSR— Is 28.66 0.7838 03232 0.2357 16229  6.1426 59.84 0.4865 0.6505
S3Diff-1s 27.53 0.7491 0.3109  0.2100 118.49 6.2142 63.94 0.6124 0.7132

TSDSR-1s 26.19 0.7170 03116  0.2204 130.70  5.7643 66.11 0.5820 0.7303

MFSR-1s 24.15 0.6423 03660  0.2379 143.12  6.0241 64.47 0.6148 0.7171

MFSR-2s 24.29 0.6455 0.3689  0.2333  139.56  6.2711 64.45 0.6354 0.7023

OSEDiff-1s | 25.15 0.7341 0.2920  0.2128 123.57  5.6345 69.09 0.6335 0.6685

AddSR-1s 24.79 0.7077 0.3091 02191 132.05 5.5440 66.18 0.6098 0.5722

SinSR-1s 26.23 0.7342 0.3191 02363 136.65 6.2773 60.84 0.5418 0.6224

RealSR CTMSR—IS 25.98 0.7543 0.2901 0.2209 135.69 5.5046 64.49 0.5276 0.6397
S3Diff-1s 25.18 0.7269 0.2721 0.2005 105.12 5.2708 67.82 0.6424 0.6734

TSDSR-1s 23.40 0.6886 0.2805  0.2183 11456  5.0924 70.76 0.6312 0.7198

MFSR-1s 21.51 0.6347 03158  0.2295 110.14  5.2421 67.95 0.6389 0.6968

MFSR-2s 21.75 0.6494 0.2999 02222 107.87  5.5980 67.45 0.6560 0.6705

OSEDiff-1s | 23.86 0.6233 0.2896  0.1999 100.53  4.9741 68.53 0.6111 0.6692

AddSR-1s 22.39 0.5652 0.3728  0.2387 13378  5.9929 63.39 0.5657 0.5734

SinSR-1s 24.50 0.6136 03164  0.2110 13196  6.1721 64.26 0.5442 0.6687

DIV2K-Val CTMSR—IS 24.87 0.6349 0.3011 0.2102 12649 5.3036 66.59 0.5146 0.6602
S3Diff-1s 23.68 0.6075 0.2545 0.1759  84.92  5.0358 68.40 0.6252 0.7012

TSDSR-1s 22.17 0.5680 0.2679  0.1901 103.49  4.6621 71.19 0.6010 0.7221

MFSR-1s 21.25 0.5479 0.3143 02029 11145 4.5831 69.30 0.6256 0.7199

MFSR-2s 21.49 0.5626 0.2965 0.1933  106.09  4.8895 68.34 0.6364 0.6906

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Training Datasets. We construct the training set using a combination of images from DIV2K
(Agustsson & Timofte, 2017, DIV8K (Gu et al.| [2019), Flickr2K (Timofte et al., 2017), LSDIR (Li
et al.| 2023)), NKUSR8K (Duan et al 2025), and the first 10K face images from FFHQ (Karras
et al.,|2019). To generate paired data, we apply the Real- ESRGAN (Wang et al.,[2021) degradation
pipeline. The resolution of resulting LR and HR images are set to 128 x 128 and 512 x 512,
respectively.

Test Datasets. We evaluate performance on both synthetic and real-world datasets. The synthetic
set contains 100 randomly cropped 512 x 512 images from the DIV2K validation set and degrade
using the Real-ESRGAN pipeline. For real-world evaluation, we employ RealSR (Cai et al.,|2019),
DRealSR (Wei et al. [2020), RealLR200 (Wu et al.| [2024b), and RealLQ250 (Ai et al., 2025)
datasets. All experiments are conducted with the scaling factor of x4. Center-cropping is applied to
RealSR and DRealSR, and the resolution of their LR images is set to 128 x 128. Both RealLR200
and ReallLQ250 lack corresponding GT images, and no cropping is performed on these two datasets.

Evaluation Metrics. To evaluate our method, we adopt both reference-based and no-reference
metrics. Reconstruction fidelity is measured using PSNR and SSIM (Wang et al., |2004), while
perceptual similarity is assessed with LPIPS (Zhang et al.,|2018) and DISTS (Ding et al., [2020). In
addition, FID (Heusel et al.| 2017) is used to quantify the distributional discrepancy between restored
and GT images. For no-reference Image Quality Assessment (IQA), we include NIQE (Zhang et al.,
2015)), CLIPIQA (Wang et al 2023)), MUSIQ (Ke et al., 2021), and MANIQA (Yang et al., [2022);
for datasets lacking ground truth, we additionally employ LIQE (Zhang et al., [2023). It is worth
noting that quantitative metrics only partially capture perceptual quality, as prior studies have shown
that these metrics often diverge from human judgments (Jinjin et al.|[2020; |Yu et al.,|2024; Lin et al.,
2025)). Therefore, we report these metrics just for reference and mainly focus on user study.

Compared Methods. We compare our method with several one-step diffusion-based methods
SinSR (Wang et al., 2024b), CTMSR (You et al.| 2025), OSEDiff (Wu et al.| 2024a)), AddSR (Xie
et al.} [2024), S3Diff (Zhang et al.,[2024), TSDSR (Dong et al.,|2025). Comparison with multi-step
diffusion-based methods can be found in the Supplementary Material.
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Figure 3: Qualitative comparison with state-of-the-art methods. All methods perform 1-step infer-
ence. Our MFSR is capable of generating vivid details without artifacts or remaining degradations.

5.2 COMPARISON WITH EXISTING METHODS

Qualitative Comparisons. Fig. 3] presents visual comparisons with other one-step baselines. In
the first row, our method demonstrates a clear advantage in recovering fine structural details of the
bicycle. In the second row, it successfully generates rich textures (e.g., frost and snow covering
the flower), benefiting from the strong generative prior initialized from the teacher model. While
OSEDiff produces artifact-free outputs, its results are noticeably over-smoothed. In the last row,
our method effectively removes undesired degradation patterns, whereas competing approaches still
suffer from blurring and color distortions. These results highlight the superiority of our MeanFlow
distillation framework in achieving both structural fidelity and perceptual realism.

Quantitative Comparisons. Tables [T] and [2] report the quantitative results. The relatively lower
PSNR/SSIM scores can be attributed to the perception-distortion (realism-fidelity) trade-off
[& Michaeli, 2018}, Zhu et al, [2024). Notably, our method achieves leading MANIQA score with
one-step sampling, and further improves with two-steps. It also shows competitive performance on
FID, NIQE, MUSIQ, and CLIPIQA, though not always the best. Since quantitative metrics are often
misaligned with human perception in generative restoration, we present them mainly for reference
and place greater emphasis on the user study, which more faithfully reflects perceptual quality.

5.3 USER STUDY

To further assess perceptual quality, we conduct a user study with 75 volunteers. We randomly
sampled 25 LR images from RealLQ250, and compared 1-step MFSR against four representative
methods: SinSR, CTMSR, OSEDiff, and TSDSR. For each image, participants were asked to select
the restoration that best balances realism of textures and details and structural fidelity to the LR
input. The percentage of votes (preference rate) obtained by each method is reported in Fig. 4
MFSR received the highest preference rate of 38.9%, significantly outperforming the second-best
method. These results confirm that MFSR delivers the most perceptually preferred results.
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Table 2: Quantitative comparison with the state-of-the-art one- Figure 4: Results of user study,
step methods on real-world benchmarks lacking ground-truth im- with numbers showing vote per-
age. The number of diffusion inference steps is indicated by ’s’.  centages for each method.

Datasets | Method | NIQE| MUSIQ® MANIQA1 CLIPIQAT LIQE 1

MFSR CTMSR SinSR OSEDiff TSDSR
OSEDiff-1s | 3.9656 69.55 0.5782 0.6725 3.9039
SinSR-1s | 5.8204 63.73 0.5161 0.6990 3.2578
CTMSR-1s | 4.5835 68.00 0.5078 0.6706 3.3373 1
RealLQ250 | S3Diff-1s | 3.9715 69.19 0.6016 0.7043 4.0192 13.4%
TSDSR-1s | 3.4868 72.09 0.5829 0.7221 4.0834
MFSR-1s | 3.5309 70.65 0.6040 0.6992 4.2136
MFSR-2s | 3.5560 70.58 0.6204 0.7047 4.1687 %
OSEDiff-1s | 4.0199 69.60 0.6020 0.6752 4.0560 RS
SinSR-1s | 5.5887 63.59 0.5421 0.6955 3.4758
CTMSR-1s | 4.2815 67.60 0.5354 0.6738 3.6061
RealLR200 | S3Diff-1s | 4.0360 68.92 0.6172 0.7025 4.0643 .
TSDSR-1s | 3.6400 71.02 0.6093 0.7212 4.1035 208%
MFSR-1s | 3.6690 69.50 0.6190 0.6893 4.1813
MFSR-2s | 3.7721 69.38 0.6344 0.6876 4.1564

Table 3: Ablation studies for CFG strategy and its scale w.
Instantaneous Velocity w LPIPS| DISTS| FID| NIQE| MUSIQ{ MANIQA{ CLIPIQA ¢

21— % - 0.3210 0.2276  121.78  5.5784 65.32 0.6035 0.6474
Original MeanFlow CFG 6  0.3478 0.2453  120.81  5.8691 67.33 0.6091 0.6951
Ours null 6  0.2931 0.2151  109.75 5.7146 65.27 0.6184 0.6551

Ours neg 1 0.2983 0.2237  109.23 5.2234 66.84 0.6273 0.6747

Ours neg 4 03021 0.2255  110.83  5.2317 67.02 0.6317 0.6773

Ours neg 6 03158 0.2295  110.14  5.2421 67.95 0.6389 0.6968

Ours neg 8 03151 0.2300  110.01  5.2253 67.69 0.6364 0.6879

5.4 EFFECT OF INCREASING INFERENCE STEPS

Our one-step results already surpass existing one-step base- (30
lines. Furthermore, unlike prior methods, our framework
supports few-step inference. In Fig. 5] we evaluate the ef-
fect of different sampling steps on RealLQ250 and report
MANIQA. S3Diff and TSDSR perform 1-step sampling. 0.600 i
Increasing the step count from one to two brings a clear SIDIE1s
improvement, demonstrating the benefit of optional refine- 0585 o
ment. Extending the steps to three, four or five yields mod- T > 3 2 5 3
erate improvements, while increasing to eight steps results Sampling Steps

in only marginal gains. These results show that most per-
ceptual benefits are captured within the first few steps.

0.615

MANIQA

Figure 5: Effect of sampling steps.

5.5 ABLATION STUDY

Effectiveness of CFG strategy. We evaluate our proposed CFG strategy for MeanFlow distilla-
tion by comparing different instantaneous velocity formulations on RealLQ250, including the GT
field (z; — zp), the original MeanFlow CFG strategy, and our CFG variants with null and negative
prompts. We also conduct an ablation study on the CFG scale w. The original MeanFlow CFG have
an effective guidance scale of w' = ﬁ = 6, withw = 1 and Kk = 0.83 in Eq. (9). As shown in
Tab. [3] our strategy achieves the best quality scores (MUSIQ, MANIQA, CLIPIQA), demonstrat-
ing its effectiveness over baselines. Among different CFG scales, w = 6 with negative prompt
yields the best performance, and is therefore adopted as our default configuration. Additional visual

comparisons are provided in the Supplementary Material.

6 CONCLUSION

In this paper, we propose Mean Flows for Super-Resolution (MFSR), a effective distillation method
that enables high-realism restoration results in only one step while retaining the option of few-step
sampling to trade compute for sample quality. We adapt MeanFlow to distill a multi-step Real-
ISR teacher into student model. To improve SR performance, we make modifications to original
MeanFlow CFG strategy to achieve stronger guidance and better performance. Extensive experiment
results demonstrate the effectiveness of our method, highlighting its ability to restore fine details
with remarkable realism.
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A ALGORITHM

The pseudo-code of MFSR training and inference algorithm is summarized as[I)and [2]

Algorithm 1 MFSR training

Require: Pre-trained teacher model v, VAE encoder F, prompt extractor Y, data distribution pp, two time
step joint distribution pr, stop gradient operator sg[-], a predefined metric function d(-, -)

: Student model u <+ copyWeights(v), // intialize

: Add the second time embedder to u

. repeat

Sample €~ N(O, 1), (JSHR7£L‘LR) ~ PD, t, S ~ prT

Calculate ZHR, RLR = E(Q)‘HR), E(QZLR)

Calculate ¢ = Y (zur)

Calculate z; = tzur + (1 — t)e

Calculate Gt = v(zr,t | 21k, €) +w(v(ze,t | 2ir, €) — v(2r,t | 21k, €™F)).

9: Calculate loss £ = d (u(zt,t, s | zir, ©), sg[% + (s— t)%])
10: Update u with the loss gradient VL

11: until convergence
12: Return student model u

A R A

Algorithm 2 MFSR inference

Require: MFSR model u, VAE encoder E, VAE decoder D, prompt extractor Y, LR image zir, sampling
steps N, sequence of time points 0 = 7 < 72 < --- < 75 = 1, initial noise 2o

: Calculate zir = E(x1r)

: Calculate ¢ = Y (z1r)

:forn=0to N —1do

Calculate 2., , = 2, + (Tnt+1 — Tn)u(2r,, , Tny, Tn+1 | 2R, €)

: end for

: Calculate Zur = D(z1)

: Return super-resolved image Zur

B IMPLEMENTATION DETAILS

Our model is initialized from the teacher model DiT4SR, which is built upon SD3.5. During training,
we freeze the original parameters of SD3.5 and only update the additional parameters introduced by
DiT4SR, as detailed in Sec.3 of the DiT4SR paper (Duan et al., 2025). Besides, we incorporate
LoRA (Hu et al} |2021)) into the transformer blocks of SD3.5, with a LoRA rank of 64. Following
DiT4SR, we use LLaVA (Liu et al.| 2024) as the prompt extractor. We employ the Adam optimizer
with a learning rate of 5e-5. Training is conducted on 8 NVIDIA H200 GPUs with a batch size
of 80, and the entire process takes approximately 19 hours. In total, the model is trained for 12K
iterations.

C DERIVATION OF THE CONTINUOUS-TIME EQUATION

Here we show detailed derivations of the continuous-time equations in Fig. [2] Starting from the
original equation,

(s —t)u(ze,t,s) = (s —t— At) u(zH_At, t+ At, s) + Atv(z, t). (13)

Since wu is differentiable in both z and ¢ and the path ¢ — z; is differentiable, we can apply a
first-order Taylor expansion of u(ziya¢, t + At, s) along the trajectory (z¢,t):

u(zeran,t + Aty s) = u(ze, t,s) + At %u(zh t,s) +r(At), (14)
where the remainder satisfies
. r(At) . _
Aliglo A 0, ie. r(At) = o(At).
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Substituting Eq. (I4) into the right-hand side of Eq. (I3) gives

(s —t)u(z, t,s) = (s —t — At) [u(zt, t,s) + At %u(zt, t,s) +r(At)| + Atwv(z,t)

(s =tyukzr T5) = (s = tpatzr T 5) — Atu(z,t, s)

d > d
+(s—1t)At au(zt,t, s) — At au(zt, t,s)

+ (s — t)r(At) — Atr(At) + At v(z, t).

Dividing through by At (for At # 0) and re-arranging terms gives

(s —t)r(At)

Al —r(At) 4+ v(zt, t).

u(ze,t,8) = (s — 1) %u(zt,t, s) — At %u(zt, t,s) +

At
Taking the limit At — 0, we have T(At ) — 0and r(At) — 0, while also noting At %u(zt, t,s) —

0, we obtain the final result:

u(ze, t,8) = (s —1t) %u(zt,t, s) + v(zt, t) (15)

And this is used to construct MeanFlow Distillation loss in Eq.

D NOISE VS. LR INITIALIZATION

We adopt Gaussian noise as the initial state for denoising. While recent works (Wu et al.| [2024a;
Dong et al., 2025) instead initialize from the LR image, we find that noise initialization offers clear
advantages. First, it allows the model to synthesize richer details and textures, whereas starting
from the LR image tends to restrict the generative capacity and makes it difficult to remove complex
degradations (as shown in the third row of Fig.[3). Second, initializing from noise ensures consis-
tency with the teacher’s PF-ODE, thereby strengthening the student’s ability to inherit the teacher’s
generative prior.

E DIFFERENCE FROM PREVIOUS WORKS

Guided distillation (Meng et al.,[2023). Guided distillation, originally proposed for text-to-image
generation, transfers knowledge from a teacher model with CFG to a few-step student model via a
two-stage process. The first stage trains a model to match CFG-enhanced outputs of the teacher, and
the second stage progressively distills it into a few-step diffusion model. While effective for gen-
eration, this two-stage paradigm is inefficient. In contrast, our method directly distills teacher CFG
prediction through MeanFlow distillation, avoiding two-stage training and improving efficiency.

S3Diff (Zhang et al., 2024). S3Diff introduces an online negative sample generation strategy to
align low-quality concepts with negative prompts, enabling CFG at inference to improve visual
quality. However, this requires applying CFG during the inference time of the student model, effec-
tively doubling the NFE. By contrast, our approach utilize the negative prompt enhanced teacher’s
CFG prediction as the supervision signal during training, allowing genuine 1 NFE inference.

F MORE ABLATION STUDY RESULTS

Ratio of ¢ # s. We study the effect of varying the ratio of ¢ # s on RealLQ250 in Table
Empirically, a ratio of 0.5 yields the best results, which is lower than the 0.75 used in original
MeanFlow (Geng et al.,|2025)). This difference arises because our distillation setting already captures
the instantaneous velocity field, allowing greater focus on learning the shortcut.

Visual comparison of CFG strategies. In Fig.[6| we provide a visual comparison from the ablation
study of our proposed CFG strategy. All variants perform 1-step sampling. Our method delivers the
best restoration quality, free of artifacts and with the most detailed textures.
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Table 4: Ablation studies for hyperparameter ratio r.

r» NIQE, MUSIQT MANIQA | CLIPIQA +

0 5.2529 67.23 0.6283 0.6819
025 5.2311 67.58 0.6301 0.6863
0.5 5.2421 67.95 0.6389 0.6968
0.75  5.1046 67.76 0.6358 0.6895

‘ ~\l\\\‘ 7 / ‘|.\7‘\\>‘
MOAN 745 ‘\,\(\t.ﬁ\A\

Original MeanFlow CFG

Figure 6: Visual comparison from ablation study of our CFG strategy.
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G QUALITATIVE COMPARISON ACROSS DIFFERENT SAMPLING STEP AND
COMPARISON WITH THE TEACHER MODEL

To better illustrate the effectiveness of our method, we present qualitative comparisons between
MEFSR (with 1/2/4 steps) and the teacher model in Fig. [/} Performing only a single inference step
with DiT4SR results in pronounced artifacts and distortions. The first three rows compare super-
resolution results across different sampling steps of our student model (1/2/4 steps) against the
teacher model. Our one-step restoration occasionally introduces reconstruction errors; for exam-
ple, in the first row, the reflection in the water is incorrectly reconstructed as buildings. In contrast,
our two-step and four-step variants effectively correct this issue, producing realistic water ripples
and reflection. In the second row, our one-step restoration fails to remove background degradations
around the cat’s ear, whereas two-step and four-step restoration successfully remove these artifacts
and produce sharper, more realistic fur details compared to the teacher. The third row shows an
image containing text: the one-step model distorts the letter M, while two-step and four-step mod-
els accurately reconstruct the character. These examples demonstrate that increasing the number of
sampling steps improves restoration quality, offering a flexible trade-off between efficiency and SR
quality.

The fourth to sixth rows highlight cases where our method surpasses the teacher model. Specifically,
our approach yields sharper and more natural reconstructed leaves (while the teacher outputs blurry
textures), more realistic wall patterns, and a better removal of excessive blur.
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Figure 7: Qualitative comparison across different sampling steps and our teacher model, DiT4SR.
The number of diffusion inference steps is indicated by ’s’. Please zoom in for a better view.

Overall, these results indicate that our distilled student model achieves restoration quality on par
with, or even superior to the teacher model and is much more efficient.

H COMPARISON WITH MULTI-STEP DIFFUSION-BASED METHODS

In Table [5] we present a quantitative comparison with representative multi-step diffusion-based
methods on the DRealSR and RealSR datasets. The competing methods include StableSR

2023), DiffBIR (Lin et al., [2023), SeeSR 2024b), SUPIR 2024), PASD
2023), ResShift (Yue et al.| [2024), and the teacher model DiT4SR 2025).

Our approach demonstrates best or competitive performance while being much less denoising steps
than these multi-step counterparts.
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Table 5: Quantitative comparison with state-of-the-art multi-step methods on real-world bench-
marks. The number of diffusion inference steps is indicated by ’s’. The best and second best results
of each metric are highlighted in red and blue, respectively.

Datasets | Method | PSNRT SSIM{ LPIPS| DISTS| FID| NIQE| MUSIQ? MANIQA 1 CLIPIQA 1

StableSR-200s | 28.04 0.7454  0.3279 0.2272  144.15  6.5999 58.53 0.5603 0.6250
DiffBIR-50s 25.93 0.6525 0.4518 02761  177.04  6.2324 65.66 0.6296 0.6860

SeeSR-50s 28.14 0.7712  0.3141 0.2297 14695  6.4632 64.74 0.6022 0.6893

DRealSR S_UPIR—SOs 25.09 0.6460  0.4243 02795 16948  7.3918 58.79 0.5471 0.6749
DiT4SR-40s 25.69 0.6802 0.3644 02442 15695 6.6407 64.39 0.6230 0.6561

PASD-20s 27.79 0.7495 0.3579 0.2524  171.03  6.7661 63.23 0.5919 0.6242

ResShift-15s 28.69 0.7874  0.3525 0.2541 176.77  7.8762 52.40 0.4756 0.5413

MFSR-1s 24.15 0.6423 0.3660 02379  143.12  6.0241 64.47 0.6148 0.7171

MFSR-2s 24.29 0.6455 0.3689 02333  139.56 6.2711 64.45 0.6354 0.7023
StableSR-200s | 24.62 0.7041 0.3070 0.2156  128.54  5.7817 65.48 0.6223 0.6198
DiffBIR-50s 24.24 0.6650  0.3469 02300 13456  5.4932 68.35 0.6544 0.6961

SeeSR-50s 25.21 0.7216  0.3003 0.2218  125.10  5.3978 69.69 0.6443 0.6671

RealSR DiT4SR-40s 23.50 0.6683 0.3173 02239 11894  6.0077 67.85 0.6587 0.6398
SUPIR-50s 23.65 0.6620  0.3541 0.2488  130.38  6.1099 62.09 0.5780 0.6707

PASD-20s 25.68 0.7273 0.3144 02304 13418 5.7616 68.33 0.6323 0.5783

ResShift-15s 26.39 0.7567 0.3158 02432 149.59  6.8746 60.22 0.5419 0.5496

MFSR-1s 21.51 0.6347 0.3158 02295 110.14 5.2421 67.95 0.6389 0.6968

MFSR-2s 21.75 0.6494  0.2999 02222 107.87 5.5980 67.45 0.6560 0.6705

I LR IMAGES IN USER STUDY

Fig. 8| shows the thumbnail of LR images used in the user study.

Figure 8: The LR images used in user study.

J MORE VISUAL COMPARISONS

In Fig.[9)and Fig. we provide additional visual comparisons with other state-of-the-art one-step
methods, further demonstrating the robust restoration ability of MFSR and the superior quality of
its results.

In addition, Fig. [TT] presents examples of super-resolution on Al-Generated Content (AIGC), and
Fig. |12 shows an example of old photo restoration. These results achieve visually pleasing effects,
highlighting strong practical value of our method in real-world applications.
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K USE OF LARGE LANGUAGE MODELS

Large language models were employed solely to refine language and correct grammar in the
manuscript. They played no role in the conception or design of the methodology, experiments,
or data analysis. The authors independently verified and validated all technical content, results, and
conclusions.

OSEDiff S3Diff

Zoomed LR

OSEDiff S3Diff

LR OSEDiff
Figure 9: Qualitative comparison with state-of-the-art methods. All methods perform 1-step infer-
ence. Please zoom in for a better view.
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Figure 10: Qualitative comparison with state—of—the—art methods. All methods perform 1-step infer-
ence. Please zoom in for a better view.
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LR - © MFSR
Figure 11: 4x SR results on Al-Generated Content using 3-step sampling. Please zoom in for a
better view.
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Figure 12: Result of old photo restoration using 3-step sampling. Please zoom in for a better view.
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