

000 001 002 003 004 005 MFSR: MEANFLOW DISTILLATION FOR ONE STEP 006 REAL-WORLD IMAGE SUPER RESOLUTION 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022

Anonymous authors

Paper under double-blind review

023
024 Figure 1: We present MFSR, a high-capacity one- or few-step super-resolution model that delivers
025 photorealistic restoration of real-world low-resolution images. The number of diffusion inference
026 steps is indicated by ‘s’.

027 ABSTRACT

028 Diffusion- and flow-based models have advanced real-world image super-
029 resolution (Real-ISR), but their multi-step sampling makes inference slow and
030 hard to deploy. One-step distillation alleviates the cost, yet often degrades restora-
031 tion quality and removes the option to refine with more steps. We present **Mean**
032 **Flows for Super-Resolution (MFSR)**, a new distillation framework that produces
033 photorealistic, high-fidelity results in a single step while still allowing an optional
034 few-step path for further improvement. Our approach uses *MeanFlow* as the learn-
035 ing target, enabling the student to approximate the mean velocity between arbi-
036 trary states of the Probability Flow ODE (PF-ODE) and effectively capture the
037 teacher’s dynamics without explicit rollouts. To better leverage pretrained gener-
038 ative priors, we additionally improve original MeanFlow’s Classifier-Free Guid-
039 ance (CFG) formulation with teacher CFG distillation strategy, which enhances
040 restoration capability and preserves fine details. Experiments on both synthetic
041 and real-world benchmarks demonstrate that MFSR achieves efficient, flexible,
042 and high-quality super-resolution, delivering results on par with or even better
043 than multi-step teachers while requiring much lower computational cost.

044 1 INTRODUCTION

045 Image Super-Resolution (ISR) (Dong et al., 2014; Kim et al., 2016; Ledig et al., 2017) aims to re-
046 construct High-Resolution (HR) image from Low-Resolution (LR) inputs. Traditional ISR methods
047 typically downsample HR images to form training pairs. However, such approaches fall short when
048 dealing with real-world images degraded by complex and unknown processes. Recent research has
049 shifted toward Real-World ISR (Real-ISR) (Zhang et al., 2021; Wang et al., 2021), a more challeng-
050 ing yet practically valuable setting.

051 Early progress in Real-ISR was largely driven by Generative Adversarial Networks (GANs) (Good-
052 fellow et al., 2014; Mirza, 2014), where adversarial training encouraged sharper textures and per-

054 perceptual realism. Despite their success, GAN-based methods often suffer from unstable training and
 055 tend to introduce artifacts. This has motivated exploration of more powerful generative paradigms.
 056

057 Recently, diffusion- and flow-based generative models (Song et al., 2020; Ho et al., 2020; Rombach
 058 et al., 2022; Liu et al., 2022; Liu, 2022; Lipman et al., 2022; Albergo et al., 2023) have shown
 059 superior image generation capabilities compared to earlier approaches such as GANs, Normalizing
 060 Flows (NFs) (Dinh et al., 2016) and Variational Autoencoders (VAEs) (Kingma & Welling, 2013).
 061 Numerous researchers have applied diffusion and flow-based models to Real-ISR (Sahak et al.,
 062 2023; Yue et al., 2024). A notable direction further adapts large-scale text-to-image (T2I) diffusion
 063 models (Podell et al., 2023; Esser et al., 2024). These methods (Lin et al., 2023; Yu et al., 2024; Wu
 064 et al., 2024b; Duan et al., 2025) have achieved superior performance. However, due to the iterative
 065 denoising mechanism of diffusion and flow-based models, the inference process is computationally
 066 expensive. Thus, reducing the number of inference steps while maintaining sample quality has
 067 become a key challenge.

068 To address this, various one-step distillation methods have been proposed (Wang et al., 2024b; Wu
 069 et al., 2024a; Dong et al., 2025; You et al., 2025). Broadly, these methods either (i) match the
 070 output distribution between student and teacher models (Wu et al., 2024a; Dong et al., 2025), or (ii)
 071 constrain the student’s denoising trajectory to remain consistent with that of the teacher (You et al.,
 072 2025). Although effective to some extent, existing methods often fail to recover fine details and
 073 completely lose the flexibility of few-step sampling.

074 More recently, MeanFlow (Geng et al., 2025) has emerged as an effective generative modeling
 075 paradigm. Unlike traditional flow models, which regress instantaneous velocity at each time step,
 076 MeanFlow instead targets the average velocity. It establishes an analytic relation, termed the Mean-
 077 Flow Identity that links average and instantaneous velocities via a time derivative. This formulation
 078 provides a principled training objective, avoiding heuristic consistency constraints and offering clear
 079 physical interpretation. At inference, MeanFlow supports flexible sampling strategies, allowing the
 080 model to map noisy state to any future point along the PF-ODE in a single step. Such flexibility
 081 is largely absent in existing one-step image restoration methods, making MeanFlow a natural
 082 foundation for developing a more versatile and tunable Real-ISR framework.

083 Although MeanFlow was originally proposed as a generative model trained from scratch, we argue
 084 that a two-stage strategy—first pre-training a teacher and then distilling into a student—is more ef-
 085 fective and efficient. Directly learning both instantaneous and average velocities often leads to slow
 086 convergence, as the network struggles to learn shortcuts based on instantaneous velocity which it
 087 has not yet accurately captured. By contrast, distillation from a pre-trained teacher instead leverages
 088 already well-learned, high-quality instantaneous velocity field, thereby enabling faster convergence.
 089 This perspective is consistent with recent studies that emphasize the advantages of two-stage distil-
 090 lation (Lu & Song, 2024; Geng et al., 2024; Peng et al., 2025).

091 In this paper, we therefore treat MeanFlow as a distillation strategy to accelerate a powerful
 092 multi-step model into a one-step student network. To enhance performance, we propose a novel
 093 Classifier-Free Guidance (CFG)-based distillation strategy (Ho & Salimans, 2022): the teacher’s
 094 CFG-enhanced prediction is used as the instantaneous velocity in the MeanFlow distillation loss.
 095 This modification yields stronger guidance and better performance than the original MeanFlow CFG
 096 formulation.

097 Unlike previous one-step SR approaches, our method, **Mean Flows for Super-Resolution (MFSR)**,
 098 does not rely on complex loss combinations to ensure restoration quality. It employs only the Mean-
 099 Flow distillation loss, computed entirely in the latent space. Consequently, gradients do not back-
 100 propagate through the encoder or decoder, unlike in (Wu et al., 2024a; Dong et al., 2025; Zhang
 101 et al., 2024), which significantly improves training efficiency. MFSR not only delivers high-quality
 102 one-step restoration, but also preserves the flexibility of few-step sampling, enabling a controllable
 103 trade-off between inference efficiency and restoration quality.

104 As shown in the left panel of Fig. 1, MFSR is capable of producing visually pleasing restorations
 105 with both high fidelity and perceptual realism in a single forward pass. Experiments on synthetic and
 106 real-world benchmarks demonstrate that our approach achieves superior restoration quality while
 107 being significantly faster than the teacher model. Our contributions are summarized as follows:

- 108 • We propose MFSR, the first framework that adapts MeanFlow to Real-ISR, enabling both one-step
109 and few-step image restoration.
- 110 • We introduce a CFG-based MeanFlow distillation strategy that leverages the teacher’s prior, yielding
111 stronger supervision and better results than the original MeanFlow CFG formulation.
- 112 • Extensive experiments on synthetic and real-world benchmarks demonstrate that MFSR delivers
113 strong perceptual quality, robust generalization, and efficient inference.

115 2 RELATED WORKS

116 2.1 FEW-STEP DIFFUSION/FLOW MODELS

117 Despite their strong generative power, diffusion models suffer from high inference cost. This motivates research on reducing sampling steps. For acceleration, existing distillation methods can be
118 broadly categorized into two paradigms: distribution-based (Wang et al., 2024c; Yin et al., 2024b;a;
119 Xu et al., 2024; Zhou et al., 2024b;a; Nguyen & Tran, 2024) and trajectory-based (Luhman & Luh-
120 man, 2021; Song et al., 2023; Salimans & Ho, 2022; Kim et al., 2023; Frans et al., 2024; Lu & Song,
121 2024). Distribution-based approaches (e.g., score distribution matching) (Wang et al., 2024c; Yin
122 et al., 2024b)) aim to align the output distributions of student and teacher models. However, they
123 often suffer from high computational cost, as they rely on an fake score model and alternate optimi-
124 zation between the student and the fake score network. Trajectory-based methods train the student
125 with regression objectives derived from the PF-ODE. A representative method, Consistency Model
126 (Song et al., 2023; Lu & Song, 2024), employs a loss function that constrains student predictions on
127 two consecutive points along the same PF-ODE, ensuring coherent output across different timesteps.
128 MeanFlow also belongs to the trajectory-based category, and we defer a detailed discussion to §3.2.
129

130 2.2 DIFFUSION/FLOW-BASED REAL-ISR

131 **132 Multi-step Diffusion-based Real-ISR.** Diffusion models have achieved remarkable success in the
133 field of image super-resolution. Recent advances leverage powerful pre-trained text-to-image (T2I)
134 models such as Stable Diffusion (SD) (Rombach et al., 2022) to address the challenges of Real-
135 ISR (Wang et al., 2024a; Wu et al., 2024b; Yang et al., 2023; Yu et al., 2024; Duan et al., 2025).
136 These methods typically guide or control the diffusion process to generate images that preserve the
137 semantic content of degraded inputs while removing degradations. Representative works include
138 SUPiR (Yu et al., 2024), which demonstrates strong generative ability by incorporating negative
139 prompts and scaling up pre-training with larger models and datasets. Nevertheless, all of these
140 methods remain limited by the multi-step denoising process inherent to diffusion models, which
141 typically requires 20-50 denoising steps at inference. Besides, the employment of CFG needs 2
142 Number of Function Evaluations (NFEs) at each step, doubling the inference time.
143

144 **145 One-step Diffusion-based Real-ISR.** To reduce inference cost, several works have explored distil-
146 lation techniques for Real-ISR. SinSR (Wang et al., 2024b) reformulates the inference process of
147 ResShift (Yue et al., 2024) as an ODE and performs consistency-preserving distillation. CTMSR
148 (You et al., 2025) applies Consistency Training (CT) (Song et al., 2023) and Distribution Trajectory
149 Matching (DTM) to map perturbed LR inputs to HR in a single step. Yet these approaches remain
150 constrained by the lack of large-scale training data. Another line of research focuses on score dis-
151 tillation. OSEDiff (Wu et al., 2024a) introduces the Variational Score Distillation (VSD) (Wang
152 et al., 2024c) loss to Real-ISR tasks, achieving decent one-step performance by leveraging prior
153 knowledge from pre-trained models. TSD-SR (Dong et al., 2025) further proposes Target Score
154 Distillation (TSD), effectively addressing the issue of unreliable gradient direction caused by VSD.
155 However, they both need to load an auxiliary score model and alternately train the student and score
156 network, which increases the training overhead.

157 3 PRELIMINARY

158 3.1 RECTIFIED FLOW

159 Rectified Flow (Liu et al., 2022; Liu, 2022; Lipman et al., 2022; Albergo et al., 2023) is an ODE-
160 based generative modeling framework. Given an initial distribution π_0 and a target data distribution

162 π_1 , it learns a neural velocity field v by minimizing:

$$164 \quad \mathcal{L}_{\text{RF}} = \mathbb{E}_{x_0 \sim \pi_0, x_1 \sim \pi_1} \left[\int_0^1 \|v(x_t, t) - (x_1 - x_0)\|^2 dt \right], \quad \text{with } x_t = (1-t)x_0 + tx_1, \quad (1)$$

166 where x_t is the linear interpolation of x_0 and x_1 . After training, sample generation reduces to solving
167 the following neural ODE:

$$168 \quad \frac{dx_t}{dt} = v(x_t, t), \quad t \in [0, 1], \quad (2)$$

170 which can be numerically approximated using standard ODE solvers. For instance, applying the
171 first-order Euler method yields:

$$173 \quad x_{t+\frac{1}{N}} = x_t + \frac{1}{N}v(x_t, t), \quad t \in \{0, 1, \dots, N-1\}/N. \quad (3)$$

175 Here, the trajectory is integrated in N steps with a step size of $1/N$. A larger N provides higher
176 accuracy at the expense of slower sampling, while a smaller N accelerates generation but reduces
177 sample quality.

178 3.2 MEANFLOW

180 Unlike standard Rectified Flow, which learns an instantaneous velocity field, MeanFlow (Geng et al.,
181 2025) regresses the average velocity field over an interval. Specifically, given a time interval $[t, s]$,
182 the model will take a current state x_t as input and defines a vector pointing to the next state x_s
183 ($s > t$) via:

$$184 \quad x_s = x_t + (s - t)u(x_t, t, s), \quad (4)$$

186 where u is the average velocity, defined by $u(x_t, t, s) = \frac{1}{s-t} \int_t^s v(x_\tau, \tau) d\tau$. By differentiating both
187 sides on Eq. (4) with respect to t and re-arranging terms, one can obtain the *MeanFlow Identity*,
188 which describes the relation between average velocity $u(x_t, t, s)$ and instantaneous velocity $\frac{dx_t}{dt}$:

$$190 \quad u(x_t, t, s) = \frac{dx_t}{dt} + (s - t) \frac{du(x_t, t, s)}{dt}. \quad (5)$$

192 The derivative $\frac{du(x_t, t, s)}{dt}$ can be expanded by its partial components, $\frac{du(x_t, t, s)}{dt} = \frac{\partial u(x_t, t, s)}{\partial x_t} \frac{dx_t}{dt} +$
193 $\frac{\partial u(x_t, t, s)}{\partial t}$, which corresponds to a Jacobian-Vector Product (JVP). Then we minimize this objective:

$$196 \quad \mathcal{L}_{\text{MF}} = \mathbb{E}_{x_0, x_1, t, s} \|u(x_t, t, s) - \text{sg}(u_{\text{tgt}})\|_2^2, \quad \text{with } u_{\text{tgt}} = \frac{dx_t}{dt} + (s - t) \left[\frac{\partial u(x_t, t, s)}{\partial x_t} \frac{dx_t}{dt} + \frac{\partial u(x_t, t, s)}{\partial t} \right], \quad (6)$$

198 where u_{tgt} serves as the *effective regression target*, $\text{sg}(\cdot)$ denotes stop-gradient operation, and the JVP
199 term can be calculated approximately at the same cost of one forward operation. During sampling,
200 the numerical integration of instantaneous velocity $\int_t^s v(x_\tau, \tau) d\tau$ in Rectified Flow can be replaced
201 by $(s - t)u(x_t, t, s)$. In the case of 1-step sampling, one can simply have $x_1 = x_0 + u(x_0, 0, 1)$,
202 where x_0 is sampled from an initial distribution π_0 .

203 3.3 DiT4SR

205 DiT4SR (Duan et al., 2025) builds on Stable Diffusion3.5 (SD3.5) (Esser et al., 2024), a large-
206 scale Rectified Flow model that employs Diffusion Transformers (DiTs) (Peebles & Xie, 2023)
207 as backbone. To adapt SD3.5 for Real-ISR, DiT4SR integrates a LR stream into the DiT blocks,
208 enabling high perceptual realism in the restored images. During inference, DiT4SR starts from
209 Gaussian noise and performs iterative denoising conditioned on the latent LR image and a text
210 prompt extracted from it. Formally, the DiT4SR sampling process is described by the PF-ODE:

$$211 \quad \frac{dz_t}{dt} = v(z_t, t | z_{\text{LR}}, c), \quad (7)$$

213 where $z_t = tz_{\text{HR}} + (1 - t)\epsilon$, z_{HR} is the latent HR image, ϵ is Gaussian noise, and c denotes the text
214 prompt. DiT4SR typically requires about 40 denoising steps to produce high-quality reconstructions,
215 and reducing the number of steps leads to a significant drop in performance.

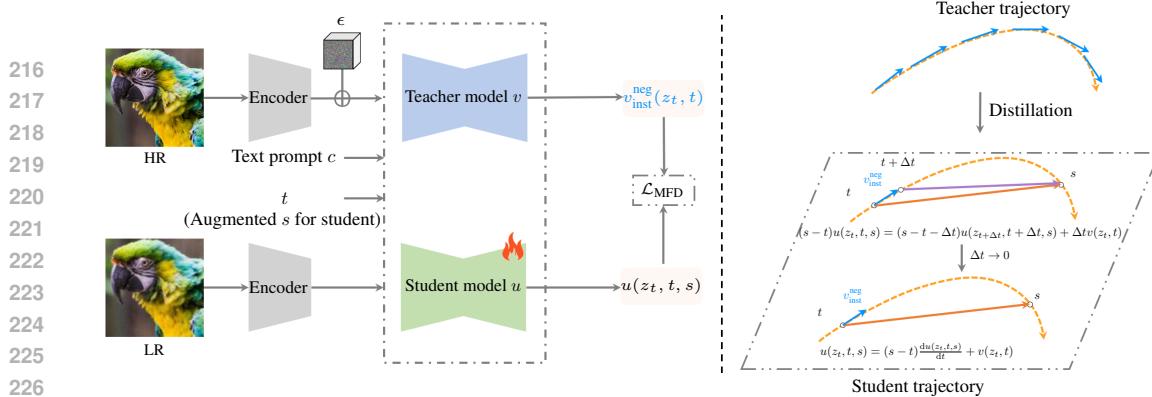


Figure 2: Overview of the MeanFlow Distillation (MFD) pipeline. **Left:** Training pipeline where the student model is initialized from the teacher. Student model need two time steps as input. **Right:** Derivation of the MFD loss. The dotted orange line denotes the teacher’s and student’s PF-ODE, the blue line shows the teacher’s predicted instantaneous velocity, the solid orange line shows the student’s predicted average velocity and the purple line indicates the student’s predicted average velocity over a shorter interval. Taking the limit $\Delta t \rightarrow 0$ yields the MFD loss \mathcal{L}_{MFD} .

4 METHOD

4.1 FRAMEWORK OVERVIEW

Our goal is to distill a powerful but slow multi-step teacher into a one/few-step MeanFlow student for Real-ISR. We adopt DiT4SR (Duan et al., 2025) as the teacher model. Overview of the distillation pipeline is shown in Fig. 2. The framework comprises four components: a visual encoder E , a prompt extractor, a teacher model v , and a student model u , with only u being trainable. Given a high-low resolution image pair $(x_{\text{HR}}, x_{\text{LR}})$, we first sample time steps t, s and random noise ϵ . A text prompt c is extracted from x_{HR} , and both x_{HR} and x_{LR} are encoded into latent representations z_{HR} and z_{LR} . We then interpolate z_{HR} with ϵ according to t to obtain z_t , with boundary states $z_0 = \epsilon$ and $z_1 = z_{\text{HR}}$. Conditioned on z_{LR} and prompt c , the teacher receives (z_t, t) while the student receives (z_t, t, s) to compute the MeanFlow Distillation loss \mathcal{L}_{MFD} . The loss is calculated in latent space, therefore no decoding is needed during training. In the following sections, we describe the detailed designs of MFSR and its training loss.

4.2 MODEL INITIALIZATION AND Timestep AUGMENTATION

While MeanFlow can be trained from scratch, initializing from a pre-trained DiT4SR teacher is far more efficient and practical. Since the teacher produces high-quality restorations, it offers a reliable trajectory from which the student can learn effective shortcuts.

The teacher predicts the *instantaneous velocity* $\frac{dz_t}{dt}$ at a single time step, requiring only one time embedding. In contrast, our student is designed to predict the *average velocity* over an interval $[t, s]$, which requires the start and end timestep of the interval to avoid ambiguity.

To accommodate this, we augment the original DiT4SR architecture with an additional time-embedding branch so that the student can also take the end time s as input. Specifically, we duplicate the network structure of the original t -time embedder from DiT4SR and use this copy as a separate s -time embedder. The resulting s -embedding is added to the t -embedding before being fed into the network. The teacher $v(z_t, t)$ is thus adapted into a student model $u(z_t, t, s)$. Then, extending the unconditional *MeanFlow Identity* (Eq. (5)) to the LR- and text-conditioned case yields:

$$u(z_t, t, s | z_{\text{LR}}, c) = \frac{dz_t}{dt} + (s - t) \left[\frac{\partial u(z_t, t, s | z_{\text{LR}}, c)}{\partial z_t} \frac{dz_t}{dt} + \frac{\partial u(z_t, t, s | z_{\text{LR}}, c)}{\partial t} \right] \quad (8)$$

4.3 IMPROVED INSTANTANEOUS VELOCITY WITH TEACHER CFG

A crucial component in MeanFlow distillation is the choice of the instantaneous velocity $\frac{dz_t}{dt}$. A naïve choice is to use the Ground-Truth (GT) velocity $z_1 - z_0$. Under this circumstance, the teacher model is just used as initialization for student model. However, we empirically observe that this

leads to inferior restoration results. Notably, the teacher achieves strong visual realism by employing CFG, suggesting that CFG plays a crucial role in semantic alignment and perceptual quality.

The original MeanFlow paper attempts to enhance the velocity field using the student model itself under CFG. In the Real-ISR setting, it can be formulated as:

$$v_{\text{inst}}^{\text{orig}} = w(z_1 - z_0) + \kappa u(z_t, t, t | z_{\text{LR}}, c) + (1 - w - \kappa) u(z_t, t, t | z_{\text{LR}}, c = \emptyset), \quad (9)$$

where w and κ are scalar weighting factor, and the effective guidance scale is $w' = \frac{w}{1-\kappa}$. However, since the student is still being optimized, this self-referential target hampers convergence.

In our setting, however, a pre-trained teacher model is available. This provides a better alternative: instead of relying on the student’s self-improvement, we directly use the teacher’s CFG-based prediction to construct the instantaneous velocity. Concretely, we define:

$$v_{\text{inst}}^{\text{null}} = v(z_t, t | z_{\text{LR}}, c) + w(v(z_t, t | z_{\text{LR}}, c) - v(z_t, t | z_{\text{LR}}, c = \emptyset)). \quad (10)$$

This formulation incorporates the semantic prior from the text prompt through the teacher’s guidance, while maintaining stability during training.

Furthermore, we extend this idea by incorporating negative prompts into the teacher’s CFG. Prior works (Yu et al., 2024; Zhang et al., 2024) have shown that negative prompts¹ can effectively suppress undesired artifacts and improve the perceptual quality of generated images. Inspired by this, we replace the null condition in Eq. (10) with a negative prompt condition, leading to:

$$v_{\text{inst}}^{\text{neg}} = v(z_t, t | z_{\text{LR}}, c) + w(v(z_t, t | z_{\text{LR}}, c) - v(z_t, t | z_{\text{LR}}, c^{\text{neg}})). \quad (11)$$

Compared with Eq. (10), this formulation provides stronger supervision by explicitly discouraging unrealistic or low-quality attributes, thereby encouraging the student model to generate sharper details and richer textures.

Finally, the MeanFlow Distillation loss integrates teacher-guided instantaneous velocity:

$$\begin{aligned} \mathcal{L}_{\text{MFD}}(\theta) &= \mathbb{E}_{z_{\text{HR}}, z_{\text{LR}}, \epsilon, t, s} \|u(z_t, t, s | z_{\text{LR}}, c) - \text{sg}(u_{\text{tgt}})\|_2^2, \\ \text{with } u_{\text{tgt}} &= v_{\text{inst}}^{\text{neg}} + (s - t) \left[\frac{\partial u_{\theta}(z_t, t, s | z_{\text{LR}}, c)}{\partial z_t} v_{\text{inst}}^{\text{neg}} + \frac{\partial u_{\theta}(z_t, t, s | z_{\text{LR}}, c)}{\partial t} \right]. \end{aligned} \quad (12)$$

During inference, the student model takes the LR image and the extracted text prompt as conditioning inputs. We perform N -step sampling with uniformly spaced timesteps $0 = \tau_1 < \tau_2 < \dots < \tau_N = 1$, starting from initial noise z_0 . The update at each step is given by $z_{\tau_{n+1}} = z_{\tau_n} + (\tau_{n+1} - \tau_n) u(z_{\tau_n}, \tau_n, \tau_{n+1} | z_{\text{LR}}, c)$.

4.4 DESIGN DECISIONS

Stabilizing Time Embedding. In the case of distilling DiT4SR, naively computing the Jacobian-Vector Product (JVP) term $\frac{du(z_t, t, s)}{dt}$ often leads to training instabilities. As shown in (Lu & Song, 2024; Chen et al., 2025), the time-derivative can be decomposed as $\partial_t u = \frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}}$, where $\text{emb}(\cdot)$ denotes the time embeddings and $c_{\text{noise}}(\cdot)$ is time transformation. In prior Rectified Flow models such as SD3.5, the choice $c_{\text{noise}}(t) = 1000t$ amplifies the time derivative $\partial_t u$ by a factor of 1000, resulting in large fluctuations during training. To mitigate this issue, we adopt the remedy proposed in (Lu & Song, 2024; Chen et al., 2025) and set $c_{\text{noise}}(t) = t$ in the student model. This modification avoids excessive amplification of gradient norms and yields more stable training dynamics. Note that the teacher model does not need this modification, as the time-derivative computation does not propagate through its architecture.

Sampling Time Steps. We draw two time steps (t, s) from the joint distribution $p(t, s) = p(t)p(s | t)$, where $p(t) = \mathcal{U}[0, 1]$ and $p(s | t) = \mathcal{U}[t, 1]$. Following (Geng et al., 2025), we enforce a certain portion of $t = s$. Specifically, when $t = s$, the model learns the instantaneous velocity, while when $t \neq s$, it learns the shortcut between time steps (average velocity).

Loss Metrics. Instead of the squared L2 loss or adaptive L2 loss used in (Geng et al., 2025), we use Pseudo-Huber loss as suggested in (Song & Dhariwal, 2023) to reduce loss variance during training.

¹“oil painting, cartoon, blur, dirty, messy, low quality, deformation, low resolution, oversmooth.”

324
 325 Table 1: Quantitative comparison with the state-of-the-art one-step methods across both synthetic
 326 and real-world benchmarks. The number of diffusion inference steps is indicated by ‘s’. The best
 327 and second best results of each metric are highlighted in red and blue, respectively.

Datasets	Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DIST \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
DRealSR	OSEDiff-1s	27.92	0.7836	0.2966	0.2163	135.39	6.4381	64.67	0.5898	0.6959
	AddSR-1s	27.77	0.7722	0.3196	0.2242	150.18	6.9321	60.85	0.5490	0.6188
	SinSR-1s	28.27	0.7465	0.3730	0.2501	182.28	7.0246	55.55	0.4907	0.6391
	CTMSR-1s	28.66	0.7838	0.3232	0.2357	162.29	6.1426	59.84	0.4865	0.6505
	S3Diff-1s	27.53	0.7491	0.3109	0.2100	118.49	6.2142	63.94	0.6124	0.7132
	TSDSR-1s	26.19	0.7170	0.3116	0.2204	130.70	5.7643	66.11	0.5820	0.7303
	MFSR-1s	24.15	0.6423	0.3660	0.2379	143.12	6.0241	64.47	0.6148	0.7171
	MFSR-2s	24.29	0.6455	0.3689	0.2333	139.56	6.2711	64.45	0.6354	0.7023
RealSR	OSEDiff-1s	25.15	0.7341	0.2920	0.2128	123.57	5.6345	69.09	0.6335	0.6685
	AddSR-1s	24.79	0.7077	0.3091	0.2191	132.05	5.5440	66.18	0.6098	0.5722
	SinSR-1s	26.23	0.7342	0.3191	0.2363	136.65	6.2773	60.84	0.5418	0.6224
	CTMSR-1s	25.98	0.7543	0.2901	0.2209	135.69	5.5046	64.49	0.5276	0.6397
	S3Diff-1s	25.18	0.7269	0.2721	0.2005	105.12	5.2708	67.82	0.6424	0.6734
	TSDSR-1s	23.40	0.6886	0.2805	0.2183	114.56	5.0924	70.76	0.6312	0.7198
	MFSR-1s	21.51	0.6347	0.3158	0.2295	110.14	5.2421	67.95	0.6389	0.6968
	MFSR-2s	21.75	0.6494	0.2999	0.2222	107.87	5.5980	67.45	0.6560	0.6705
DIV2K-Val	OSEDiff-1s	23.86	0.6233	0.2896	0.1999	100.53	4.9741	68.53	0.6111	0.6692
	AddSR-1s	22.39	0.5652	0.3728	0.2387	133.78	5.9929	63.39	0.5657	0.5734
	SinSR-1s	24.50	0.6136	0.3164	0.2110	131.96	6.1721	64.26	0.5442	0.6687
	CTMSR-1s	24.87	0.6349	0.3011	0.2102	126.49	5.3036	66.59	0.5146	0.6602
	S3Diff-1s	23.68	0.6075	0.2545	0.1759	84.92	5.0358	68.40	0.6252	0.7012
	TSDSR-1s	22.17	0.5680	0.2679	0.1901	103.49	4.6621	71.19	0.6010	0.7221
	MFSR-1s	21.25	0.5479	0.3143	0.2029	111.45	4.5831	69.30	0.6256	0.7199
	MFSR-2s	21.49	0.5626	0.2965	0.1933	106.09	4.8895	68.34	0.6364	0.6906

345 346 347 5 EXPERIMENTS 348

349 5.1 EXPERIMENTAL SETTINGS

350
 351
 352 **Training Datasets.** We construct the training set using a combination of images from DIV2K
 353 (Agustsson & Timofte, 2017), DIV8K (Gu et al., 2019), Flickr2K (Timofte et al., 2017), LSDIR (Li
 354 et al., 2023), NKUSR8K (Duan et al., 2025), and the first 10K face images from FFHQ (Karras
 355 et al., 2019). To generate paired data, we apply the Real-ESRGAN (Wang et al., 2021) degradation
 356 pipeline. The resolution of resulting LR and HR images are set to 128×128 and 512×512 ,
 357 respectively.

358
 359 **Test Datasets.** We evaluate performance on both synthetic and real-world datasets. The synthetic
 360 set contains 100 randomly cropped 512×512 images from the DIV2K validation set and degrade
 361 using the Real-ESRGAN pipeline. For real-world evaluation, we employ RealSR (Cai et al., 2019),
 362 DRealSR (Wei et al., 2020), RealLR200 (Wu et al., 2024b), and RealLQ250 (Ai et al., 2025)
 363 datasets. All experiments are conducted with the scaling factor of $\times 4$. Center-cropping is applied to
 364 RealSR and DRealSR, and the resolution of their LR images is set to 128×128 . Both RealLR200
 365 and RealLQ250 lack corresponding GT images, and no cropping is performed on these two datasets.

366
 367 **Evaluation Metrics.** To evaluate our method, we adopt both reference-based and no-reference
 368 metrics. Reconstruction fidelity is measured using PSNR and SSIM (Wang et al., 2004), while
 369 perceptual similarity is assessed with LPIPS (Zhang et al., 2018) and DIST (Ding et al., 2020). In
 370 addition, FID (Heusel et al., 2017) is used to quantify the distributional discrepancy between restored
 371 and GT images. For no-reference Image Quality Assessment (IQA), we include NIQE (Zhang et al.,
 372 2015), CLIPQA (Wang et al., 2023), MUSIQ (Ke et al., 2021), and MANIQA (Yang et al., 2022);
 373 for datasets lacking ground truth, we additionally employ LIQE (Zhang et al., 2023). It is worth
 374 noting that quantitative metrics only partially capture perceptual quality, as prior studies have shown
 375 that these metrics often diverge from human judgments (Jinjin et al., 2020; Yu et al., 2024; Lin et al.,
 376 2025). Therefore, we report these metrics just for reference and mainly focus on user study.

377
 378 **Compared Methods.** We compare our method with several one-step diffusion-based methods
 379 SinSR (Wang et al., 2024b), CTMSR (You et al., 2025), OSEDiff (Wu et al., 2024a), AddSR (Xie
 380 et al., 2024), S3Diff (Zhang et al., 2024), TSDSR (Dong et al., 2025). Comparison with multi-step
 381 diffusion-based methods can be found in the **Supplementary Material**.

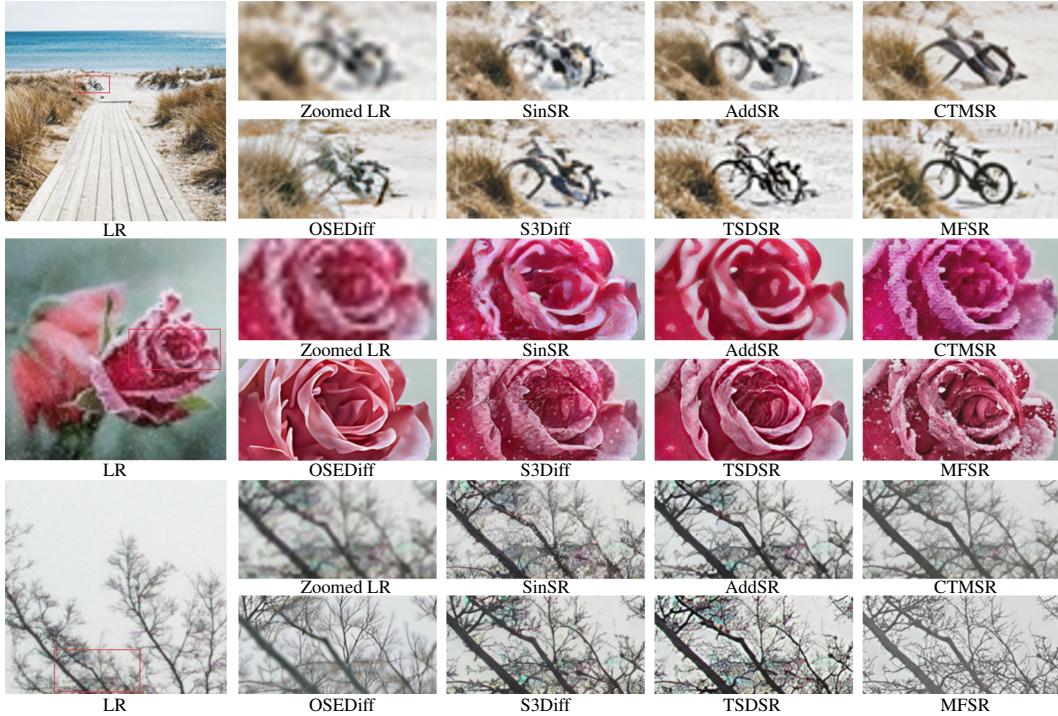


Figure 3: Qualitative comparison with state-of-the-art methods. All methods perform 1-step inference. Our MFSR is capable of generating vivid details without artifacts or remaining degradations.

5.2 COMPARISON WITH EXISTING METHODS

Qualitative Comparisons. Fig. 3 presents visual comparisons with other one-step baselines. In the first row, our method demonstrates a clear advantage in recovering fine structural details of the bicycle. In the second row, it successfully generates rich textures (e.g., frost and snow covering the flower), benefiting from the strong generative prior initialized from the teacher model. While OSEDiff produces artifact-free outputs, its results are noticeably over-smoothed. In the last row, our method effectively removes undesired degradation patterns, whereas competing approaches still suffer from blurring and color distortions. These results highlight the superiority of our MeanFlow distillation framework in achieving both structural fidelity and perceptual realism.

Quantitative Comparisons. Tables 1 and 2 report the quantitative results. The relatively lower PSNR/SSIM scores can be attributed to the perception-distortion (realism-fidelity) trade-off (Blau & Michaeli, 2018; Zhu et al., 2024). Notably, our method achieves leading MANIQA score with one-step sampling, and further improves with two-steps. It also shows competitive performance on FID, NIQE, MUSIQ, and CLIPQA, though not always the best. Since quantitative metrics are often misaligned with human perception in generative restoration, we present them mainly for reference and place greater emphasis on the user study, which more faithfully reflects perceptual quality.

5.3 USER STUDY

To further assess perceptual quality, we conduct a user study with 75 volunteers. We randomly sampled 25 LR images from RealLQ250, and compared 1-step MFSR against four representative methods: SinSR, CTMSR, OSEDiff, and TSDSR. For each image, participants were asked to select the restoration that best balances realism of textures and details and structural fidelity to the LR input. The percentage of votes (preference rate) obtained by each method is reported in Fig. 4. MFSR received the highest preference rate of 38.9%, significantly outperforming the second-best method. These results confirm that MFSR delivers the most perceptually preferred results.

Table 2: Quantitative comparison with the state-of-the-art one-step methods on real-world benchmarks lacking ground-truth image. The number of diffusion inference steps is indicated by 's'.

Datasets	Method	NIQE ↓	MUSIQ ↑	MANIQA ↑	CLIPQA ↑	LIQE ↑
RealLQ250	OSEDiff-1s	3.9656	69.55	0.5782	0.6725	3.9039
	SinSR-1s	5.8204	63.73	0.5161	0.6990	3.2578
	CTMSR-1s	4.5835	68.00	0.5078	0.6706	3.3373
	S3Diff-1s	3.9715	69.19	0.6016	0.7043	4.0192
	TSDSR-1s	3.4868	72.09	0.5829	0.7221	4.0834
	MFSR-1s	3.5309	70.65	0.6040	0.6992	4.2136
	MFSR-2s	3.5560	70.58	0.6204	0.7047	4.1687
RealLR200	OSEDiff-1s	4.0199	69.60	0.6020	0.6752	4.0560
	SinSR-1s	5.5887	63.59	0.5421	0.6955	3.4758
	CTMSR-1s	4.2815	67.60	0.5354	0.6738	3.6061
	S3Diff-1s	4.0360	68.92	0.6172	0.7025	4.0643
	TSDSR-1s	3.6400	71.02	0.6093	0.7212	4.1035
	MFSR-1s	3.6690	69.50	0.6190	0.6893	4.1813
	MFSR-2s	3.7721	69.38	0.6344	0.6876	4.1564

Figure 4: Results of user study, with numbers showing vote percentages for each method.

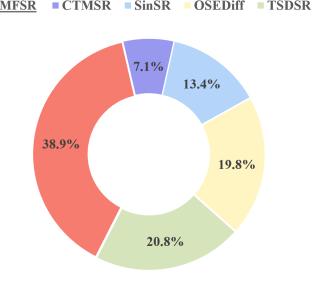


Table 3: Ablation studies for CFG strategy and its scale w .

Instantaneous Velocity	w	LPIPS ↓	DISTS ↓	FID ↓	NIQE ↓	MUSIQ ↑	MANIQA ↑	CLIPQA ↑
$z_1 - z_0$	-	0.3210	0.2276	121.78	5.5784	65.32	0.6035	0.6474
Original MeanFlow CFG	6	0.3478	0.2453	120.81	5.8691	67.33	0.6091	0.6951
Ours null	6	0.2931	0.2151	109.75	5.7146	65.27	0.6184	0.6551
Ours neg	1	0.2983	0.2237	109.23	5.2234	66.84	0.6273	0.6747
Ours neg	4	0.3021	0.2255	110.83	5.2317	67.02	0.6317	0.6773
Ours neg	6	0.3158	0.2295	110.14	5.2421	67.95	0.6389	0.6968
Ours neg	8	0.3151	0.2300	110.01	5.2253	67.69	0.6364	0.6879

5.4 EFFECT OF INCREASING INFERENCE STEPS

Our one-step results already surpass existing one-step baselines. Furthermore, unlike prior methods, our framework supports few-step inference. In Fig. 5, we evaluate the effect of different sampling steps on RealLQ250 and report MANIQA. S3Diff and TSDSR perform 1-step sampling. Increasing the step count from one to two brings a clear improvement, demonstrating the benefit of optional refinement. Extending the steps to three, four or five yields moderate improvements, while increasing to eight steps results in only marginal gains. These results show that most perceptual benefits are captured within the first few steps.

5.5 ABLATION STUDY

Effectiveness of CFG strategy. We evaluate our proposed CFG strategy for MeanFlow distillation by comparing different instantaneous velocity formulations on RealLQ250, including the GT field ($z_1 - z_0$), the original MeanFlow CFG strategy, and our CFG variants with null and negative prompts. We also conduct an ablation study on the CFG scale w . The original MeanFlow CFG have an effective guidance scale of $w' = \frac{w}{1-\kappa} = 6$, with $w = 1$ and $\kappa = 0.83$ in Eq. (9). As shown in Tab. 3, our strategy achieves the best quality scores (MUSIQ, MANIQA, CLIPQA), demonstrating its effectiveness over baselines. Among different CFG scales, $w = 6$ with negative prompt yields the best performance, and is therefore adopted as our default configuration. Additional visual comparisons are provided in the **Supplementary Material**.

6 CONCLUSION

In this paper, we propose Mean Flows for Super-Resolution (MFSR), a effective distillation method that enables high-realism restoration results in only one step while retaining the option of few-step sampling to trade compute for sample quality. We adapt MeanFlow to distill a multi-step Real-ISR teacher into student model. To improve SR performance, we make modifications to original MeanFlow CFG strategy to achieve stronger guidance and better performance. Extensive experiment results demonstrate the effectiveness of our method, highlighting its ability to restore fine details with remarkable realism.

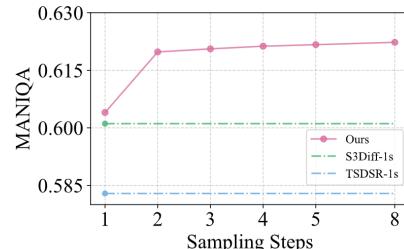


Figure 5: Effect of sampling steps.

486 REFERENCES
487

488 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and
489 study. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp.
490 126–135, 2017.

491 Yuang Ai, Xiaoqiang Zhou, Huaibo Huang, Xiaotian Han, Zhengyu Chen, Quanzeng You, and Hongxia Yang.
492 Dreamclear: High-capacity real-world image restoration with privacy-safe dataset curation. In *NeurIPS*,
493 2025.

494 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework
495 for flows and diffusions. *arXiv preprint arXiv:2303.08797*, 2023.

496 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE conference
497 on computer vision and pattern recognition*, pp. 6228–6237, 2018.

498 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-
499 resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF international conference
500 on computer vision*, pp. 3086–3095, 2019.

501 Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze Xie, and
502 Song Han. Sana-sprint: One-step diffusion with continuous-time consistency distillation. *arXiv preprint
503 arXiv:2503.09641*, 2025.

504 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying structure and
505 texture similarity. *IEEE transactions on pattern analysis and machine intelligence*, 44(5):2567–2581, 2020.

506 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv preprint
507 arXiv:1605.08803*, 2016.

508 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for
509 image super-resolution. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
510 September 6–12, 2014, Proceedings, Part IV 13*, pp. 184–199. Springer, 2014.

511 Linwei Dong, Qingnan Fan, Yihong Guo, Zhonghao Wang, Qi Zhang, Jinwei Chen, Yawei Luo, and Changqing
512 Zou. Tsd-sr: One-step diffusion with target score distillation for real-world image super-resolution. In *CVPR*,
513 2025.

514 Zheng-Peng Duan, Jiawei Zhang, Xin Jin, Ziheng Zhang, Zheng Xiong, Dongqing Zou, Jimmy S Ren, Chun-
515 Le Guo, and Chongyi Li. Dit4sr: Taming diffusion transformer for real-world image super-resolution. *arXiv
516 preprint arXiv:2503.23580*, 2025.

517 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
518 minik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
519 image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.

520 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut models. *arXiv
521 preprint arXiv:2410.12557*, 2024.

522 Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models made easy.
523 *arXiv preprint arXiv:2406.14548*, 2024.

524 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for one-step
525 generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

526 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
527 Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information processing
528 systems*, 27, 2014.

529 Shuhang Gu, Andreas Lugmayr, Martin Danelljan, Manuel Fritzsche, Julien Lamour, and Radu Timofte. Div8k:
530 Diverse 8k resolution image dataset. 2019.

531 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by
532 a two time-scale update rule converge to a local nash equilibrium. *Advances in neural information processing
533 systems*, 30, 2017.

534 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.

535 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural
536 Information Processing Systems*, 33:6840–6851, 2020.

540 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
 541 Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.

542

543 Gu Jinjin, Cai Haoming, Chen Haoyu, Ye Xiaoxing, Jimmy S Ren, and Dong Chao. Pipal: a large-scale
 544 image quality assessment dataset for perceptual image restoration. In *Computer Vision–ECCV 2020: 16th
 545 European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16*, pp. 633–651. Springer,
 546 2020.

547 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
 548 networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 549 4401–4410, 2019.

550 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image quality
 551 transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5148–5157,
 552 2021.

553 Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong He,
 554 Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ode trajectory
 555 of diffusion. *arXiv preprint arXiv:2310.02279*, 2023.

556 Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convo-
 557 lutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 558 1646–1654, 2016.

559 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

560

561 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew
 562 Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution
 563 using a generative adversarial network. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 564 and Pattern Recognition*, pp. 4681–4690, 2017.

565 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun Liu,
 566 Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of the IEEE/CVF
 567 Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.

568 Xinqi Lin, Jingwen He, Ziyuan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, and
 569 Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. *arXiv preprint
 570 arXiv:2308.15070*, 2023.

571 Xinqi Lin, Fanghua Yu, Jinfan Hu, Zhiyuan You, Wu Shi, Jimmy S Ren, Jinjin Gu, and Chao Dong. Harnessing
 572 diffusion-yielded score priors for image restoration. *arXiv preprint arXiv:2507.20590*, 2025.

573

574 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for genera-
 575 tive modeling. *arXiv preprint arXiv:2210.02747*, 2022.

576

577 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*, 2024.

578 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint
 579 arXiv:2209.14577*, 2022.

580 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data
 581 with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

582

583 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models. *arXiv
 584 preprint arXiv:2410.11081*, 2024.

585 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling
 586 speed. *arXiv preprint arXiv:2101.02388*, 2021.

587 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
 588 On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 589 and Pattern Recognition*, pp. 14297–14306, 2023.

590

591 Mehdi Mirza. Conditional generative adversarial nets. *arXiv preprint arXiv:1411.1784*, 2014.

592

593 Thuan Hoang Nguyen and Anh Tran. Swiftbrush: One-step text-to-image diffusion model with variational score
 594 distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 7807–7816, 2024.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the*
 595 *IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

596

597 Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored consistency
 598 models. *arXiv preprint arXiv:2507.03738*, 2025.

599

600 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
 601 Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv*
 601 *preprint arXiv:2307.01952*, 2023.

602

603 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 604 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 604 *Vision and Pattern Recognition*, pp. 10684–10695, 2022.

605

606 Hshmat Sahak, Daniel Watson, Chitwan Saharia, and David Fleet. Denoising diffusion probabilistic models
 607 for robust image super-resolution in the wild. *arXiv preprint arXiv:2302.07864*, 2023.

608

609 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv preprint*
 609 *arXiv:2202.00512*, 2022.

610

611 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. *arXiv preprint*
 611 *arXiv:2310.14189*, 2023.

612

613 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 614 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 614 *arXiv:2011.13456*, 2020.

615

616 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint*
 617 *arXiv:2303.01469*, 2023.

618

619 Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on
 620 single image super-resolution: Methods and results. In *Proceedings of the IEEE conference on computer*
 620 *vision and pattern recognition workshops*, pp. 114–125, 2017.

621

622 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel of images.
 623 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 2555–2563, 2023.

624

625 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion
 625 prior for real-world image super-resolution. *International Journal of Computer Vision*, pp. 1–21, 2024a.

626

627 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-
 628 resolution with pure synthetic data. In *Proceedings of the IEEE/CVF international conference on computer*
 628 *vision*, pp. 1905–1914, 2021.

629

630 Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao,
 631 Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single step. In *Proceedings*
 631 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25796–25805, 2024b.

632

633 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
 634 fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information*
 634 *Processing Systems*, 36, 2024c.

635

636 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
 637 visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.

638

639 Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang Lin. Component
 640 divide-and-conquer for real-world image super-resolution. In *Computer Vision–ECCV 2020: 16th European*
 640 *Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16*, pp. 101–117. Springer, 2020.

641

642 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for real-world
 642 image super-resolution. *arXiv preprint arXiv:2406.08177*, 2024a.

643

644 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr: Towards
 645 semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF Conference on Com-*
 645 *puter Vision and Pattern Recognition*, pp. 25456–25467, 2024b.

646

647 Rui Xie, Ying Tai, Kai Zhang, Zhenyu Zhang, Jun Zhou, and Jian Yang. Addsr: Accelerating diffusion-based
 647 blind super-resolution with adversarial diffusion distillation. *arXiv preprint arXiv:2404.01717*, 2024.

648 Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale text-to-image
 649 generation via diffusion gans. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 650 *Recognition*, pp. 8196–8206, 2024.

651 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang.
 652 Maniqa: Multi-dimension attention network for no-reference image quality assessment. In *Proceedings of*
 653 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1191–1200, 2022.

654 Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion for realistic
 655 image super-resolution and personalized stylization. *arXiv preprint arXiv:2308.14469*, 2023.

656 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and William T
 657 Freeman. Improved distribution matching distillation for fast image synthesis. *arXiv preprint*
 658 *arXiv:2405.14867*, 2024a.

659 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung
 660 Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF Conference*
 661 *on Computer Vision and Pattern Recognition*, pp. 6613–6623, 2024b.

662 Weiyi You, Mingyang Zhang, Leheng Zhang, Xingyu Zhou, Kexuan Shi, and Shuhang Gu. Consistency trajec-
 663 tory matching for one-step generative super-resolution. *arXiv preprint arXiv:2503.20349*, 2025.

664 Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and Chao
 665 Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the wild. In
 666 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25669–25680,
 667 2024.

668 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image super-
 669 resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36, 2024.

670 Aiping Zhang, Zongsheng Yue, Renjing Pei, Wenqi Ren, and Xiaochun Cao. Degradation-guided one-step
 671 image super-resolution with diffusion priors. *arXiv preprint arXiv:2409.17058*, 2024.

672 Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for
 673 deep blind image super-resolution. In *Proceedings of the IEEE/CVF International Conference on Computer*
 674 *Vision*, pp. 4791–4800, 2021.

675 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality evaluator. *IEEE*
 676 *Transactions on Image Processing*, 24(8):2579–2591, 2015.

677 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
 678 of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 679 *and Pattern Recognition*, pp. 586–595, 2018.

680 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality assessment via
 681 vision-language correspondence: A multitask learning perspective. In *IEEE Conference on Computer Vision*
 682 *and Pattern Recognition*, pp. 14071–14081, 2023.

683 Mingyuan Zhou, Huangjie Zheng, Yi Gu, Zhendong Wang, and Hai Huang. Adversarial score identity distilla-
 684 tion: Rapidly surpassing the teacher in one step. *arXiv preprint arXiv:2410.14919*, 2024a.

685 Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity distil-
 686 lation: Exponentially fast distillation of pretrained diffusion models for one-step generation. In *Forty-first*
 687 *International Conference on Machine Learning*, 2024b.

688 Yuanzhi Zhu, Ruiqing Wang, Shilin Lu, Junnan Li, Hanshu Yan, and Kai Zhang. Oftsr: One-step flow for
 689 image super-resolution with tunable fidelity-realism trade-offs. *arXiv preprint arXiv:2412.09465*, 2024.

690

691

692

693

694

695

696

697

698

699

700

701

702 **A ALGORITHM**
703704 The pseudo-code of MFSR training and inference algorithm is summarized as 1 and 2.
705706 **Algorithm 1** MFSR training
707

Require: Pre-trained teacher model v , VAE encoder E , prompt extractor Y , data distribution p_D , two time step joint distribution p_T , stop gradient operator $\text{sg}[\cdot]$, a predefined metric function $d(\cdot, \cdot)$
1: Student model $u \leftarrow \text{copyWeights}(v)$, // intialize
2: Add the second time embedder to u
3: **repeat**
4: Sample $\epsilon \sim \mathcal{N}(0, 1)$, $(x_{\text{HR}}, x_{\text{LR}}) \sim p_D$, $t, s \sim p_T$
5: Calculate $z_{\text{HR}}, z_{\text{LR}} = E(x_{\text{HR}}), E(x_{\text{LR}})$
6: Calculate $c = Y(x_{\text{HR}})$
7: Calculate $z_t = tz_{\text{HR}} + (1 - t)\epsilon$
8: Calculate $\frac{dz_t}{dt} = v(z_t, t \mid z_{\text{LR}}, c) + w(v(z_t, t \mid z_{\text{LR}}, c) - v(z_t, t \mid z_{\text{LR}}, c^{\text{neg}}))$.
9: Calculate loss $\mathcal{L} = d\left(u(z_t, t, s \mid z_{\text{LR}}, c), \text{sg}\left[\frac{dz_t}{dt} + (s - t)\frac{du(z_t, t, s \mid z_{\text{LR}}, c)}{dt}\right]\right)$
10: Update u with the loss gradient $\nabla \mathcal{L}$
11: **until** convergence
12: **Return** student model u

721 **Algorithm 2** MFSR inference
722

Require: MFSR model u , VAE encoder E , VAE decoder D , prompt extractor Y , LR image x_{LR} , sampling steps N , sequence of time points $0 = \tau_1 < \tau_2 < \dots < \tau_N = 1$, initial noise z_0
1: Calculate $z_{\text{LR}} = E(x_{\text{LR}})$
2: Calculate $c = Y(x_{\text{LR}})$
3: **for** $n = 0$ **to** $N - 1$ **do**
4: Calculate $z_{\tau_{n+1}} = z_{\tau_n} + (\tau_{n+1} - \tau_n)u(z_{\tau_n}, \tau_n, \tau_{n+1} \mid z_{\text{LR}}, c)$
5: **end for**
6: Calculate $\hat{x}_{\text{HR}} = D(z_1)$
7: **Return** super-resolved image \hat{x}_{HR}

732 **B IMPLEMENTATION DETAILS**
733
734 Our model is initialized from the teacher model DiT4SR, which is built upon SD3.5. During training,
735 we freeze the original parameters of SD3.5 and only update the additional parameters introduced by
736 DiT4SR, as detailed in Sec.3 of the DiT4SR paper (Duan et al., 2025). Besides, we incorporate
737 LoRA (Hu et al., 2021) into the transformer blocks of SD3.5, with a LoRA rank of 64. Following
738 DiT4SR, we use LLaVA (Liu et al., 2024) as the prompt extractor. We employ the Adam optimizer
739 with a learning rate of 5e-5. Training is conducted on 8 NVIDIA H200 GPUs with a batch size
740 of 80, and the entire process takes approximately 19 hours. In total, the model is trained for 12K
741 iterations.
742
743 **C DERIVATION OF THE CONTINUOUS-TIME EQUATION**
744
745 Here we show detailed derivations of the continuous-time equations in Fig. 2. Starting from the
746 original equation,
747

748
$$(s - t)u(z_t, t, s) = (s - t - \Delta t)u(z_{t+\Delta t}, t + \Delta t, s) + \Delta t v(z_t, t). \quad (13)$$
749

750 Since u is differentiable in both z and t and the path $t \mapsto z_t$ is differentiable, we can apply a
751 first-order Taylor expansion of $u(z_{t+\Delta t}, t + \Delta t, s)$ along the trajectory (z_t, t) :

752
$$u(z_{t+\Delta t}, t + \Delta t, s) = u(z_t, t, s) + \Delta t \frac{d}{dt}u(z_t, t, s) + r(\Delta t), \quad (14)$$
753

754 where the remainder satisfies
755

$$\lim_{\Delta t \rightarrow 0} \frac{r(\Delta t)}{\Delta t} = 0, \quad \text{i.e. } r(\Delta t) = o(\Delta t).$$

756 Substituting Eq. (14) into the right-hand side of Eq. (13) gives
 757

$$\begin{aligned}
 758 \quad (s-t)u(z_t, t, s) &= (s-t-\Delta t)\left[u(z_t, t, s) + \Delta t \frac{d}{dt}u(z_t, t, s) + r(\Delta t)\right] + \Delta t v(z_t, t) \\
 759 \\
 760 \quad \cancel{(s-t)u(z_t, t, s)} &= \cancel{(s-t)u(z_t, t, s)} - \Delta t u(z_t, t, s) \\
 761 \\
 762 \quad + (s-t)\Delta t \frac{d}{dt}u(z_t, t, s) - \Delta t^2 \frac{d}{dt}u(z_t, t, s) \\
 763 \\
 764 \quad + (s-t)r(\Delta t) - \Delta t r(\Delta t) + \Delta t v(z_t, t).
 \end{aligned}$$

765 Dividing through by Δt (for $\Delta t \neq 0$) and re-arranging terms gives
 766

$$767 \quad u(z_t, t, s) = (s-t) \frac{d}{dt}u(z_t, t, s) - \Delta t \frac{d}{dt}u(z_t, t, s) + \frac{(s-t)r(\Delta t)}{\Delta t} - r(\Delta t) + v(z_t, t).$$

768
 769 Taking the limit $\Delta t \rightarrow 0$, we have $\frac{r(\Delta t)}{\Delta t} \rightarrow 0$ and $r(\Delta t) \rightarrow 0$, while also noting $\Delta t \frac{d}{dt}u(z_t, t, s) \rightarrow 0$, we obtain the final result:
 770
 771

$$772 \quad u(z_t, t, s) = (s-t) \frac{d}{dt}u(z_t, t, s) + v(z_t, t) \quad (15)$$

773 And this is used to construct MeanFlow Distillation loss in Eq. (12)
 774

775 D NOISE VS. LR INITIALIZATION

776 We adopt Gaussian noise as the initial state for denoising. While recent works (Wu et al., 2024a;
 777 Dong et al., 2025) instead initialize from the LR image, we find that noise initialization offers clear
 778 advantages. First, it allows the model to synthesize richer details and textures, whereas starting
 779 from the LR image tends to restrict the generative capacity and makes it difficult to remove complex
 780 degradations (as shown in the third row of Fig. 3). Second, initializing from noise ensures consis-
 781 tency with the teacher’s PF-ODE, thereby strengthening the student’s ability to inherit the teacher’s
 782 generative prior.
 783

784 E DIFFERENCE FROM PREVIOUS WORKS

785 **Guided distillation (Meng et al., 2023).** Guided distillation, originally proposed for text-to-image
 786 generation, transfers knowledge from a teacher model with CFG to a few-step student model via a
 787 two-stage process. The first stage trains a model to match CFG-enhanced outputs of the teacher, and
 788 the second stage progressively distills it into a few-step diffusion model. While effective for gen-
 789 eration, this two-stage paradigm is inefficient. In contrast, our method directly distills teacher CFG
 790 prediction through MeanFlow distillation, avoiding two-stage training and improving efficiency.
 791

792 **S3Diff (Zhang et al., 2024).** S3Diff introduces an online negative sample generation strategy to
 793 align low-quality concepts with negative prompts, enabling CFG at inference to improve visual
 794 quality. However, this requires applying CFG during the inference time of the student model, effec-
 795 tively doubling the NFE. By contrast, our approach utilize the negative prompt enhanced teacher’s
 796 CFG prediction as the supervision signal during training, allowing genuine 1 NFE inference.
 797

801 F MORE ABLATION STUDY RESULTS

802 **Ratio of $t \neq s$.** We study the effect of varying the ratio of $t \neq s$ on RealLQ250 in Table 4.
 803 Empirically, a ratio of 0.5 yields the best results, which is lower than the 0.75 used in original
 804 MeanFlow (Geng et al., 2025). This difference arises because our distillation setting already captures
 805 the instantaneous velocity field, allowing greater focus on learning the shortcut.
 806

807 **Visual comparison of CFG strategies.** In Fig. 6, we provide a visual comparison from the ablation
 808 study of our proposed CFG strategy. All variants perform 1-step sampling. Our method delivers the
 809 best restoration quality, free of artifacts and with the most detailed textures.

Table 4: Ablation studies for hyperparameter ratio r .

r	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
0	5.2529	67.23	0.6283	0.6819
0.25	5.2311	67.58	0.6301	0.6863
0.5	5.2421	67.95	0.6389	0.6968
0.75	5.1046	67.76	0.6358	0.6895

Figure 6: Visual comparison from ablation study of our CFG strategy.

G QUALITATIVE COMPARISON ACROSS DIFFERENT SAMPLING STEP AND COMPARISON WITH THE TEACHER MODEL

To better illustrate the effectiveness of our method, we present qualitative comparisons between MFSR (with 1/2/4 steps) and the teacher model in Fig. 7. Performing only a single inference step with DiT4SR results in pronounced artifacts and distortions. The first three rows compare super-resolution results across different sampling steps of our student model (1/2/4 steps) against the teacher model. Our one-step restoration occasionally introduces reconstruction errors; for example, in the first row, the reflection in the water is incorrectly reconstructed as buildings. In contrast, our two-step and four-step variants effectively correct this issue, producing realistic water ripples and reflection. In the second row, our one-step restoration fails to remove background degradations around the cat’s ear, whereas two-step and four-step restoration successfully remove these artifacts and produce sharper, more realistic fur details compared to the teacher. The third row shows an image containing text: the one-step model distorts the letter M , while two-step and four-step models accurately reconstruct the character. These examples demonstrate that increasing the number of sampling steps improves restoration quality, offering a flexible trade-off between efficiency and SR quality.

The fourth to sixth rows highlight cases where our method surpasses the teacher model. Specifically, our approach yields sharper and more natural reconstructed leaves (while the teacher outputs blurry textures), more realistic wall patterns, and a better removal of excessive blur.

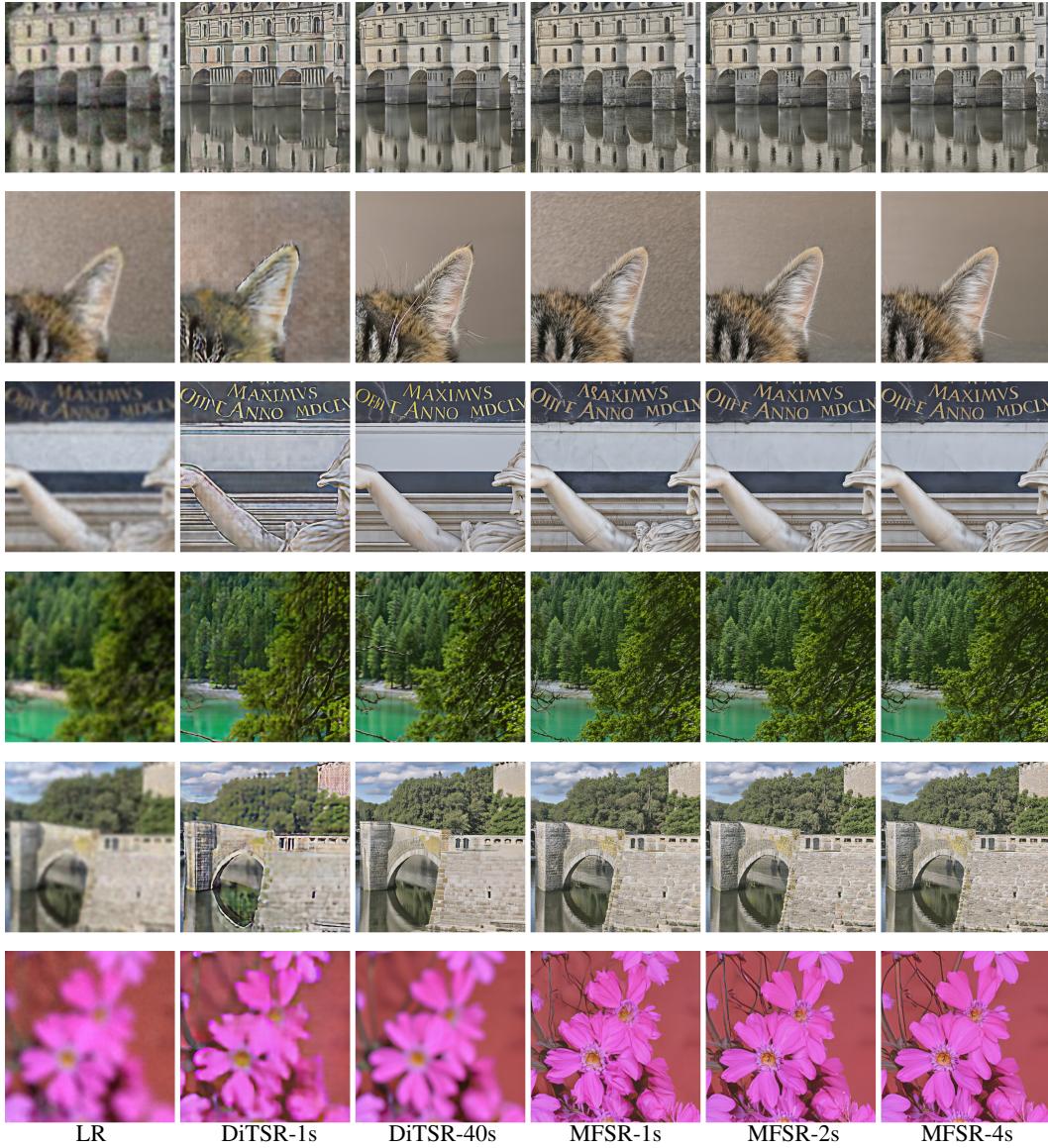


Figure 7: Qualitative comparison across different sampling steps and our teacher model, DiT4SR. The number of diffusion inference steps is indicated by 's'. Please zoom in for a better view.

Overall, these results indicate that our distilled student model achieves restoration quality on par with, or even superior to the teacher model and is much more efficient.

H COMPARISON WITH MULTI-STEP DIFFUSION-BASED METHODS

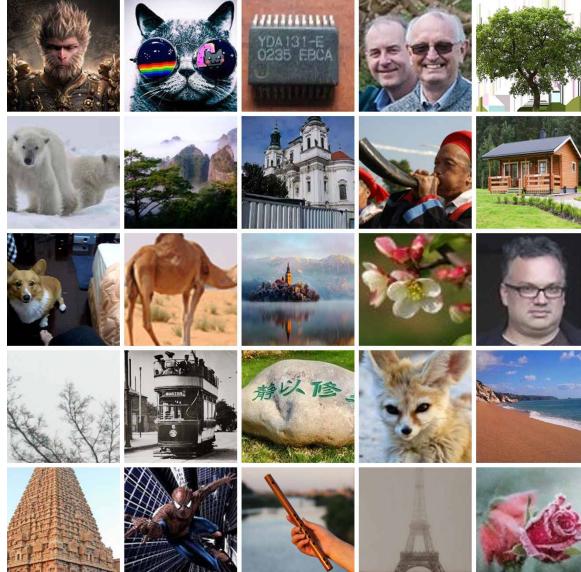
In Table 5, we present a quantitative comparison with representative multi-step diffusion-based methods on the DRealSR and RealSR datasets. The competing methods include StableSR (Wang et al., 2023), DiffBIR (Lin et al., 2023), SeeSR (Wu et al., 2024b), SUPIR (Yu et al., 2024), PASD (Yang et al., 2023), ResShift (Yue et al., 2024), and the teacher model DiT4SR (Duan et al., 2025). Our approach demonstrates best or competitive performance while being much less denoising steps than these multi-step counterparts.

918
 919 Table 5: Quantitative comparison with state-of-the-art multi-step methods on real-world bench-
 920 marks. The number of diffusion inference steps is indicated by 's'. The best and second best results
 921 of each metric are highlighted in **red** and **blue**, respectively.

Datasets	Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	FID \downarrow	NIQE \downarrow	MUSIQ \uparrow	MANIQA \uparrow	CLIPQA \uparrow
DRealSR	StableSR-200s	28.04	0.7454	0.3279	0.2272	144.15	6.5999	58.53	0.5603	0.6250
	DiffBIR-50s	25.93	0.6525	0.4518	0.2761	177.04	6.2324	65.66	0.6296	0.6860
	SeeSR-50s	28.14	0.7712	0.3141	0.2297	146.95	6.4632	64.74	0.6022	0.6893
	SUPiR-50s	25.09	0.6460	0.4243	0.2795	169.48	7.3918	58.79	0.5471	0.6749
	DiT4SR-40s	25.69	0.6802	0.3644	0.2442	156.95	6.6407	64.39	0.6230	0.6561
	PASD-20s	27.79	0.7495	0.3579	0.2524	171.03	6.7661	63.23	0.5919	0.6242
	ResShift-15s	28.69	0.7874	0.3525	0.2541	176.77	7.8762	52.40	0.4756	0.5413
	MFSR-1s	24.15	0.6423	0.3660	0.2379	143.12	6.0241	64.47	0.6148	0.7171
	MFSR-2s	24.29	0.6455	0.3689	0.2333	139.56	6.2711	64.45	0.6354	0.7023
RealSR	StableSR-200s	24.62	0.7041	0.3070	0.2156	128.54	5.7817	65.48	0.6223	0.6198
	DiffBIR-50s	24.24	0.6650	0.3469	0.2300	134.56	5.4932	68.35	0.6544	0.6961
	SeeSR-50s	25.21	0.7216	0.3003	0.2218	125.10	5.3978	69.69	0.6443	0.6671
	DiT4SR-40s	23.50	0.6683	0.3173	0.2239	118.94	6.0077	67.85	0.6587	0.6398
	SUPiR-50s	23.65	0.6620	0.3541	0.2488	130.38	6.1099	62.09	0.5780	0.6707
	PASD-20s	25.68	0.7273	0.3144	0.2304	134.18	5.7616	68.33	0.6323	0.5783
	ResShift-15s	26.39	0.7567	0.3158	0.2432	149.59	6.8746	60.22	0.5419	0.5496
	MFSR-1s	21.51	0.6347	0.3158	0.2295	110.14	5.2421	67.95	0.6389	0.6968
	MFSR-2s	21.75	0.6494	0.2999	0.2222	107.87	5.5980	67.45	0.6560	0.6705

I LR IMAGES IN USER STUDY

937
 938 Fig. 8 shows the thumbnail of LR images used in the user study.



939
 940 Figure 8: The LR images used in user study.

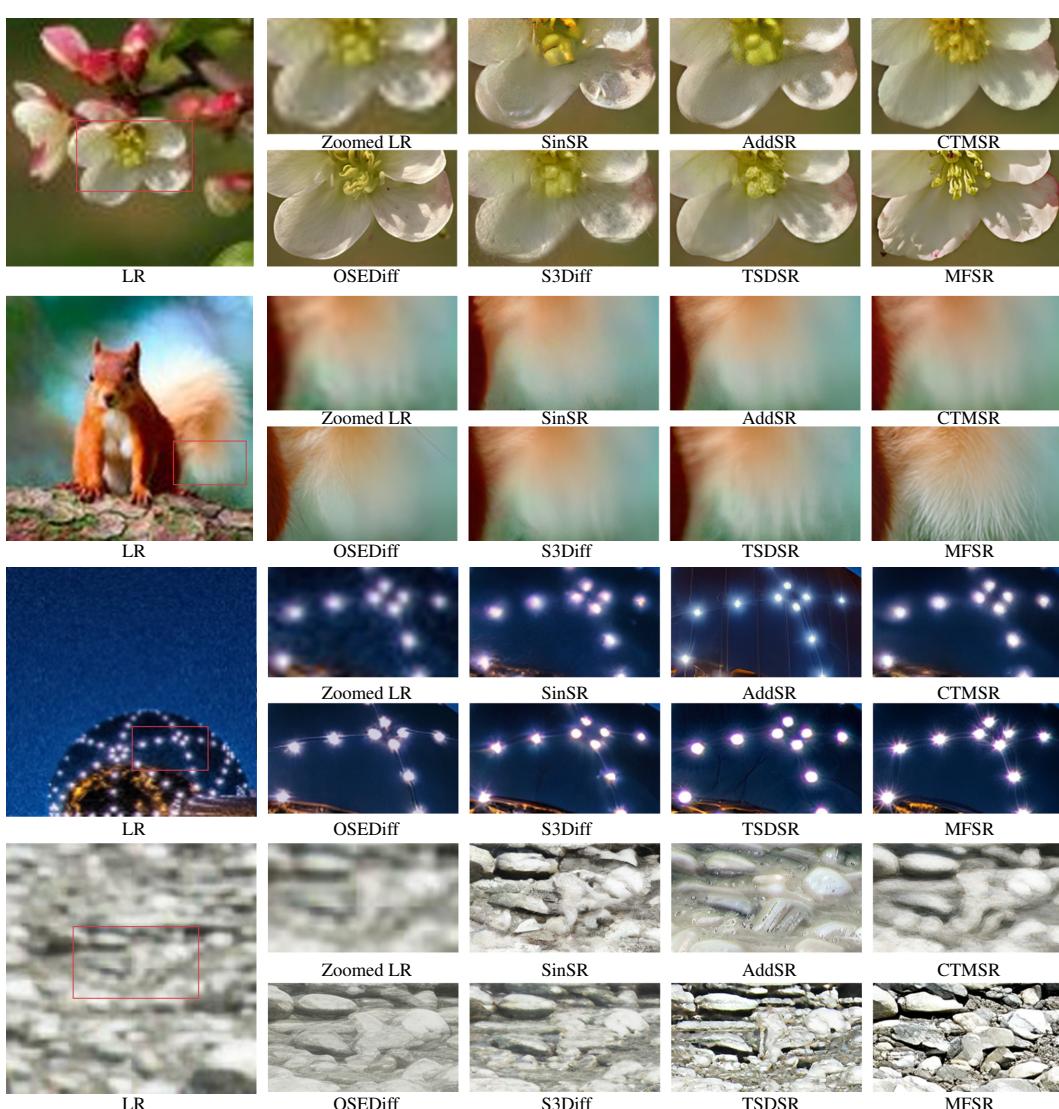
J MORE VISUAL COMPARISONS

941
 942 In Fig. 9 and Fig. 10, we provide additional visual comparisons with other state-of-the-art one-step
 943 methods, further demonstrating the robust restoration ability of MFSR and the superior quality of
 944 its results.

945
 946 In addition, Fig. 11 presents examples of super-resolution on AI-Generated Content (AIGC), and
 947 Fig. 12 shows an example of old photo restoration. These results achieve visually pleasing effects,
 948 highlighting strong practical value of our method in real-world applications.

972 K USE OF LARGE LANGUAGE MODELS
973

974 Large language models were employed solely to refine language and correct grammar in the
975 manuscript. They played no role in the conception or design of the methodology, experiments,
976 or data analysis. The authors independently verified and validated all technical content, results, and
977 conclusions.



1013 Figure 9: Qualitative comparison with state-of-the-art methods. All methods perform 1-step infer-
1014 ence. Please zoom in for a better view.

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

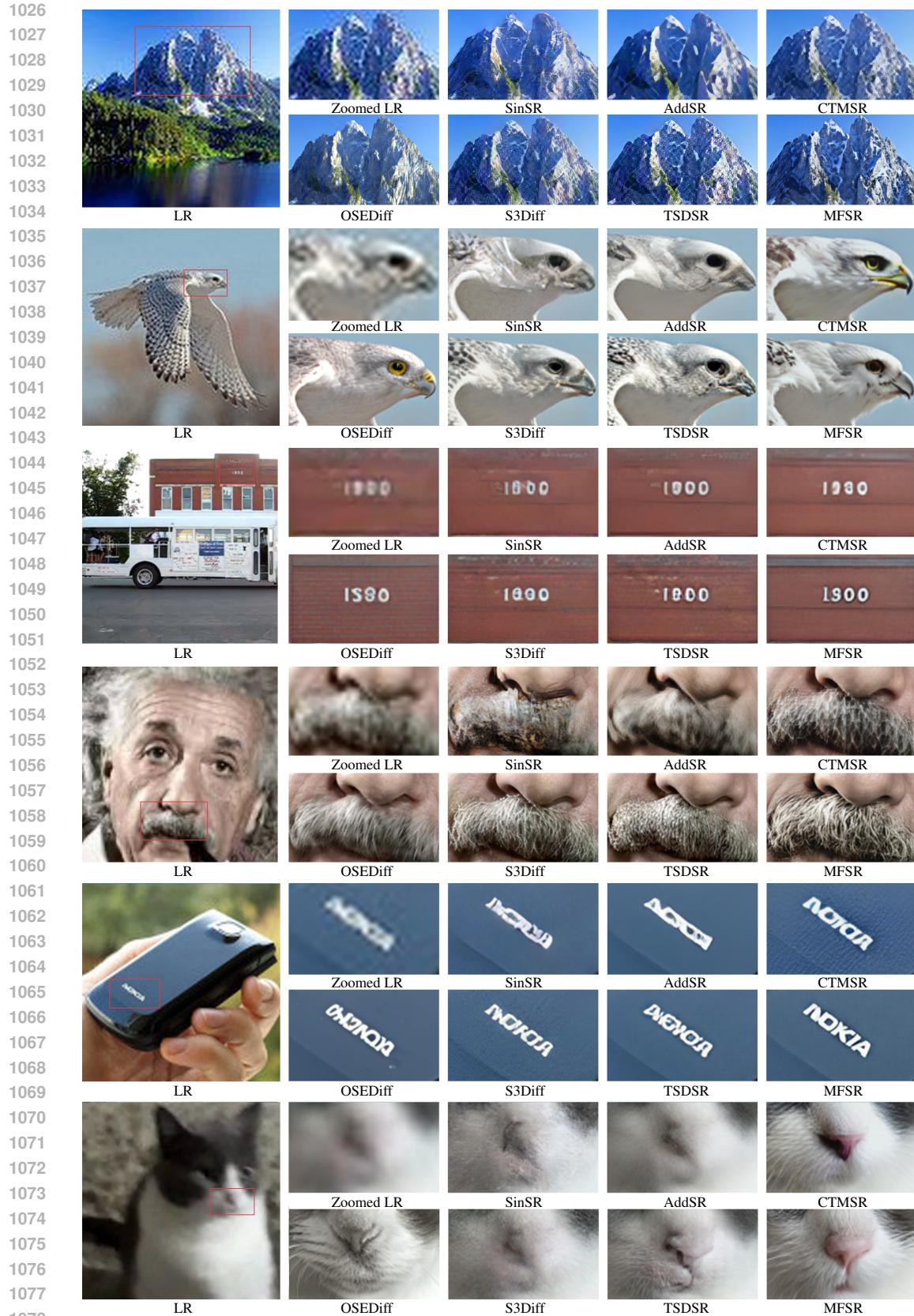


Figure 10: Qualitative comparison with state-of-the-art methods. All methods perform 1-step inference. Please zoom in for a better view.

Figure 11: $4 \times$ SR results on AI-Generated Content using 3-step sampling. Please zoom in for a better view.

Figure 12: Result of old photo restoration using 3-step sampling. Please zoom in for a better view.