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ABSTRACT

Graph Neural Networks (GNNs) have shown promising performance across a
number of tasks in recent years. Unsupervised community detection using GNNs
involves the clustering of nodes of a graph given both the features of nodes as
well as the structure of the graph, and has many applications to real world tasks
from social networks to genomics. Unfortunately, there has been relatively little
research using GNNs for commOunity detection, and even less that evaluates the
systems rigorously and fairly. A comprehensive evaluation of the performance
of GNNs requires an suitable environment within which they are evaluated. This
is exacerbated by the fact that community detection is primarily an unsupervised
task, and that (graph) neural networks are used which contain many hyperparam-
eters, discovered by inconsistent procedures. We argue that there is currently a
gap in the literature that establishes a sufficient benchmarking environment for
the consistent evaluation of GNN based community detection, thereby impeding
progress in this nascent field. In this work we propose and evaluate an environment
for the consistent evaluation of neural community detection. With this we show
the strong dependence of the performance to the experimental settings , thereby
motivating the use of this framework to facilitate research into GNN based com-
munity detection.

1 INTRODUCTION

Graphs provide an intuitive way of representing the structural connectivity of data. Graph Neural
Networks (GNNs) have become popular as a neural network based approach for processing graph-
structured data (Scarselli et al., 2008; Kipf & Welling, 2016a). Many real-world systems can be
represented as graphs which contain clusters of similar nodes, according to some definition of sim-
ilarity, Schaeffer (2007) and community detection is the task of finding these clusters. There are
many definitions of clusters within graphs Edachery et al. (1999), but a popular definition is that
these clusters are groups of nodes with a high in-group edge density and relatively low out-group
density Tsitsulin et al. (2020). Analysing the structure to find clusters, or communities, of nodes
enables us to extract useful information for solving real world problems such as fake new detection
(Monti et al., 2019), genomic feature discovery (Cabreros et al., 2016), communities of similar peo-
ple in social networks Yang et al. (2013) and communities of similar research papers or researchers
in citation networks Chen & Redner (2010).

Traditional community detection methods typically partition the adjacency matrix by splitting the
graph to form communities of similar nodes in the graphical space. In contrast, community detection
performed by GNNs, via the process of node clustering, encodes the duality of graphical informa-
tion alongside feature space into a single vector space representation in order to cluster the nodes
into communities. However, due to a lack consistent and rigorous way of measuring performance
in (unsupervised) node clustering in the literature currently, the best choice of algorithm, or process
to discover it, is often unclear. There are a number of challenges with community detection, in
particular given the unsupervised nature of the task, as all algorithms typically rely on hyperparam-
eters to be set, typically tailored to a specific dataset. Further, the process of discovering these often
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involves testing various hyperparameter configurations on the dataset until sufficient performance
is achieved. From a machine learning perspective, in the community detection setting, this may be
troubling as by carrying out this process we may be overfitting to the dataset. For a practitioner
with a new dataset, they are left with little choice but to repeat this process for all algorithms, across
many hyperparameter values, until they are content with their result, which itself can be measured
by various different metrics.

This paper proposes that, while GNN based community detection is still in it’s infancy but has
shown great potential, we must establish a fair and comprehensive environment for the evaluation
and comparison of methods. A rigorous study of GNNs for community detection requires a consis-
tent evaluation environment. Such a framework for evaluation should include multiple metrics of
performance and a consistent training procedure, testing over datasets that represent a wide range
of potential topologies and applications, as well as a well-defined hyperparameter search proce-
dure. Previous research involving training unsupervised GNNs compare works in inconsistent and
often incomplete (in terms of details) manners, making it difficult to accurately capture and compare
performance.

The paper is structured as follows. In Section 2, it is demonstrated that the latest surveys of the land-
scape of community detection fail to capture relevant experimental investigation. They acknowledge
the issues present in research, such as different works reporting on different datasets using different
performance metrics do not benchmark the methods themselves. The GNNs we investigate are sum-
marised in Section 3. Often, the evaluation of these is inconsistent due to the lack of detail provided
on the hyperparameter optimisation (HPO) strategy undertaken originally, if at all. Therefore, we
investigate the relevant contribution of the HPO to GNN based community detection performance.
There are a variety of complex algorithms that can be used for community detection on a variety
of datasets. Section 4 details, and executes, the framework to evaluate the performance of each
algorithm across a suite of datasets. In Section 5 we discuss the results.

1.1 CONTRIBUTIONS

In this paper, we make the following key contributions:

• We are the first propose a framework for the rigorous evaluation of GNN based community
detection; we aim to set a standard for future research in this area.

• We open-source the framework to facilitate and encourage the use of our framework by
those proposing and evaluating new methods1.

• Through rigorous evaluation we show experimental conditions significantly impact perfor-
mance of these methods, thereby demonstrating the necessity for this framework.

2 LITERATURE REVIEW

We will provide an overview of the literature related to community detection, highlighting that while
GNNs have shown promise, there is often missing context and experimental details. We also review
other evaluation frameworks proposed for GNNs, highlighting the gap that our proposed framework
addresses.

2.1 COMMUNITY DETECTION

Liu et al. (2020) argues for the use of graph deep learning for the task of community detection and
details the methodology behind current approaches. Su et al. (2022) provides a taxonomy of existing
methods, comparing representative works in the GNN space, as well as deep non-negative matrix
factorisation and sparse filtering-based methods, but do not evaluate the methods. Jin et al. (2021)
does contrast classical approaches to community detection and GNN based methods, however are
focused on providing clarity to the theoretical underpinning of community detection methods. Chu-
naev (2020) provides an overview of community detection methods but omit any mention of GNN
methods. Tu et al. (2018) provides an overview of network representation learning for community

1we will make the URL available upon acceptance
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detection and proposes a novel method to incorporate node connectivity and features, but does not
compare GNN methods in the study. Ezugwu et al. (2022) is survey of clustering algorithms provid-
ing an in-depth discussion of all applications of clustering algorithms, but neglects an investigation
into methods that perform clustering on graphs.

2.2 EVALUATION FRAMEWORKS

There exist several frameworks for the evaluation of supervised tasks involving GNNs, but none for
unsupervised tasks such as community detection. Palowitch et al. (2022) provides an empirical study
of the performance of 11 GNNs that are representative of the research space as well as introducing a
novel methodology for generating synthetic graphs. They assess performance in node classification,
link prediction and feature prediction. This helps to assess how GNNs might perform in practical,
untested applications. They provide multiple attempts at fair hyperparameter optimisation across the
models. These modes of optimisation specified are randomly drawing hyperparameters or evaluating
a series of the randomly draw hyperparameters against some evaluation metric. They illustrate
the usefulness of empirical evaluation and that a consistent framework across models is the best
way to assess progress. Errica et al. (2019) also provides a reproducible and rigorous environment
for evaluating graph classification. The authors use this setup to justify that GNNs are not yet
fully exploiting structural information present, reasoning that previous comparisons are subject to
dependence of random initialisations.

There exists recent studies also showing that fair GNN evaluations are required to accurately com-
pare methods; Huang et al. (2020) demonstrates that simpler models can outperform GNNs when
evaluated with a proper baseline, highlighting a gap in research knowledge between community
detection and GNN research, which we seek to address. Shchur et al. (2018) show that there are
various shortcomings in the evaluation of GNNs where they often lack a fair comparison for differ-
ent architectures. Importantly, they show that under similar testing conditions, simple architectures
can perform better than complex. They empathise the need for evaluation strategies based on mul-
tiple splits, due to the unstable nature and the high dependence of model performance on training
environment. Chen et al. (2022) performs an experimental evaluation of the tricks that various GNN
methods use to improve their methods but applied to a baseline GNN. They find that there are sweet
spots of architecture trick combinations for each dataset that give the best performance, providing
motivation for the exploration of the potential combination in hyperparameter space.

The performance of a method depends on the dataset used in evaluation (Palowitch et al., 2022). Hu
et al. (2020) presents large scale graph benchmarks across a range of domains and tasks. They use
data splits that reflect practical usage by partitioning the graph based on a metric of node importance.
Generally, there are a wide range of benchmarks for graph learning Dwivedi et al. (2020); Morris
et al. (2020); Liu et al. (2022) but currently none for community detection.

3 METHODS

The relevant research thread for methodologies that learn representations with GNNs is summarised
in Section 3.1. Thereafter, we group GNN methods surveyed into two families: unsupervised graph
clustering (Section 3.2) and self-supervised graph learning (Section 3.3). The former refers to GNN
architectures designed with the modules that are intended for the purpose of detecting communities,
the latter use contrastive learning schemes for representation learning. Typically, contrastive meth-
ods are evaluated using logistic regression on the representation learnt by the GNN, as they have
no functionality to cluster. Therefore, instead, we apply k-means to the learnt representations of the
graph in vector space to detect communities unsupervised clustering results.

3.1 GRAPH REPRESENTATION LEARNING

GNNs process a graph by computing a function (in the form of a neural network) over both structural
connectivity and feature information. GNNs were first formulated by Scarselli et al. (2008) to com-
bine graph data with node information by propagating feature information messages across a node’s
connectivity. The general framework of aggregating information from a node’s neighbourhood into
an embedding was defined as Message Passing Neural Networks by Gilmer et al. (2017). Graph Con-
volutional Networks (GCNs) expands on the GNN formulation by using a learn-able weight matrix
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through which messages are passed. To efficiently compute the averaging of neighbourhood features
a symmetric normalisation of the Laplacian is used in combination with a re-normalisation trick to
solve vanishing gradients. Graph Attentional Networks (GATs) propose that each node should be
able to individually learn the weights of contribution from their direct neighbours Veličković et al.
(2017). GAT makes it possible to assign varying importance’s to different nodes within a neighbor-
hood whilst also considering different sized neighbourhoods. The following methods will use these
representations produced by a GNN for community detection.

3.2 UNSUPERVISED GRAPH CLUSTERING

GNN methods detailed herein were proposed to specifically use a clustering objective, formulated in
various ways, while training the neural network. The Deep Attentional Embedded Graph Clus-
tering (DAEGC) Wang et al. (2019a) architecture consists of an encoder variation of a GAT, that
exploits high-order neighbors by use of a proximity matrix, and a inner product decoder trained a
reconstruction loss to recover graph structure. They extends ideas from Xie et al. (2016) by using
k-means target to self-supervise the clustering module to iteratively refine the clustering of node
embeddings. Deep Modularity Networks (DMoN) is a method for attributed graph clustering with
GCNs by maximising a modularity based clustering objective to optimise cluster assignments by
a spectral relaxation of the problem Tsitsulin et al. (2020). Variational Graph AutoEncoder Re-
construction (VGAER) reconstructs a modularity distribution using a cross entropy based decoder
from the encoding of a VGAE Kipf & Welling (2016b).

3.3 SELF-SUPERVISED GRAPH LEARNING

Self-supervision is often used in GNNs, and in particular, the idea of contrastive learning. Con-
trastive methods compare samples of data with the intuition that similar samples in the original
domain should be embedded close to each other in the embedded domain. This process typically
employs the use of augmentation to produce a sample that has preserved information pertinent to
the representation. Deep Graph Infomax (DGI) adapts principles from Deep InfoMax Hjelm et al.
(2018) for graph applications by maximising mutual information between patch representations of
sub-graphs and the corresponding high-level summaries Velickovic et al. (2019). This helps the
model to contain information that is globally relevant by encouraging information to be preserved
that is present across the local patch summaries. GRAph Contrastive rEpresentation learning
(GRACE) generates a corrupted view of the graph by removing edges and masking features and
learns node representations by maximising agreement across the viewsZhu et al. (2020). They argue
that the mean-pooling readout function used by DGI to summarise the graph is insufficient to pre-
serve distinctive features from node-level embeddings Zhu et al. (2020). Contrastive Multi-View
Representation Learning on Graphs (MVGRL) argues that the best employment of contrastive
methods for graphs is achieved by contrasting encodings’ from first-order neighbors and a general
graph diffusion Hassani & Khasahmadi (2020). By use of a mutual information estimator the agree-
ment between representations from both sides of the architecture is scored. Bootstrapped Graph
Latents (BGRL) Thakoor (2021) adapts the self-supervised bootstrap procedure from BYOL Grill
et al. (2020), by maintaining two graph encoders. The online encoder learns to predict the repre-
sentations of the target encoder, which in itself is updated by an exponential moving average of the
online encoder. SelfGNN Kefato & Girdzijauskas (2021) also uses this principal but uses augmen-
tations of the feature space to train the network.

4 FRAMEWORK

4.1 PROBLEM DEFINITION

The problem definition of community detection on attributed graphs is defined as follows. The
graph is represented as G = (A,X), with the relational information of nodes modelled by the
adjacency matrix A ∈ RN×N . Given a set of nodes V and a set of edges E, let ei,j = (vi, vj) ∈ E
denote the edge that points from vj to vi. The graph is considered weighted so, the adjacency
matrix 0 < Ai,j ≤ 1 if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E. Also given is a set of node features
X ∈ RN×d, where N is the number of nodes in the graph and d represents the number of different
node attributes (or feature dimensions). The objective is to partition the graph G into k clusters
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such that nodes in each partition, or cluster, generally have similar structure and feature values. For
simplicity we assume hard clustering, where each community detection algorithm must predict for
each nodes a single community to which it belongs, such that P ∈ RN . Community detection using
traditional methods requires the intermediate step of producing a list of edges to split in order to
form communities based on the adjacency matrix. This is not required in our framework as we will
only evaluate the clusters associated with each node using the labels given such that L ∈ RN .

4.2 DATASETS

It has recently been further demonstrated (Palowitch et al., 2022) that the selection of datasets affects
the ranking of different methods at the related task of node classification. Building on this, we com-
pare methods across a range of graph topologies as defined by their graph statistics. To summarise
each dataset in terms of structural clusters, or communities, we use the average clustering coefficient
which is simply the average of all the local clustering coefficients calculated for each node, which is
the proportion of all the connections that exist in a nodes neighbourhood, over all the links that could
exist in that neighbourhood (Watts & Strogatz, 1998). We also use the average closeness centrality
as a measure of how close the average node is to other nodes. Closeness centrality is defined as the
reciprocal of the mean shortest path distance from all other nodes in the graph (Wasserman et al.,
1994). We use publicly available datasets that have been used previously in GNN research, shown
along with their statistics available Table 1. A more detailed description of each dataset can be found
in the appendix.

Table 1: The datasets, and associated statistics, we will study.

Datasets Nodes Edges Features Classes Average
Clustering
Coefficient

Mean
Closeness
Centrality

acm (Wang et al., 2019b) 3025 3025 13128 3 0.549 0.079
amac (He & McAuley, 2016) 13752 13752 80062 10 0.157 0.264
amap (He & McAuley, 2016) 7650 7650 119081 8 0.404 0.242

bat 131 131 1038 4 0.636 0.469
citeseer (Giles et al., 1998) 3327 3327 4552 6 0.141 0.045

cora (McCallum et al., 2000) 2708 2708 5278 7 0.241 0.137
dblp (Tang et al., 2008) 4057 4057 3528 4 0.177 0.026

eat 399 399 5994 4 0.539 0.441
uat 1190 1190 13599 4 0.501 0.332

texas (Craven et al., 1998) 183 183 162 5 0.198 0.344
wisc (Craven et al., 1998) 251 251 257 5 0.208 0.32

cornell (Craven et al., 1998) 183 183 149 5 0.167 0.326

4.3 PERFORMANCE METRICS

There exist several different performance metrics commonly used to evaluate community detection,
including metrics that assume access to the ground truth, and others that do not. For the former,
we use the (macro) F1-score, and the normalised mutual information (NMI). We use the macro F1-
score (Van Rijsbergen, 1977) to ensure that our evaluations are not biased by the label distribution,
as communities sizes are often imbalanced. Macro-F1 (Lewis et al., 1996) is computed using an
unweighted mean of all the per-class F1 scores. NMI is a widely used measure to compare com-
munity detection methods. NMI is the normalisation of the amount of information that can extract
from one distribution with respect to a second (Lancichinetti et al., 2009). These two metrics are
calculated using the information of the true cluster labels, and as such can be considered supervised
metrics, although this knowledge is not used during the community detection process itself. Mod-
ularity (Newman, 2006) quantifies the deviation of the clustering from what would be observed in
expectation under a random graph (Tsitsulin et al., 2020). Conductance (Shi & Malik, 2000) is the
proportion of total edge volume that points outside the cluster which Yang & Leskovec (2012) shows
is a good measure of evaluating network communities. These two metrics are unsupervised as they

5



Under review as a conference paper at ICLR 2023

are calculated using the predicted cluster label and the adjacency matrix, without using a ground
truth.

4.4 EVALUATION ENVIRONMENT

All community detection methods have hyperparameters that influence the performance of the
method. Unfortunately, without a consistent framework, particularly in the unsupervised setting,
it is often unclear in the literature how hyperparameters were found. To the best of our knowledge,
this holds for all GNN based methods we cover here. Soenen et al. (2021) details the effects of not
choosing hyperparameters by starting with the assumption that there is no best way of selecting hy-
perparameters. They first select those given in their respective original papers however, the default
settings can be selected based on observations not known or detailed in the original paper; this can
bias algorithms performance to the original datasets. They then use a selection method called ’best
default’ which means to compute the best defaults given access to some datasets and then use those
found values on new datasets. Selection of hyperparameters in this way assumes that a researcher
will always have knowledge of external sources in order to select the best performance. The main
conclusion must be that newly proposed methods must have a procedure to compare to, otherwise
they are using potentially different information to evaluate their choices of parameters, calling into
question the fairness of novel investigations. These conclusions were drawn within the context of
anomaly detection, which we seek to build on here within community detection.

As it is well known that the best hyperparameters for a particular method are dataset dependent, we
will use hyperparameter optimisation (HPO) to evaluate each method with rigour. We consider best
practice for methods is to test across a wide a range of HPs, with as wide a HP interval as a budget
allows. Choosing too wide of a HP interval or including uninformative HPs in the search space can
have an adverse effect on tuning outcomes in the given budget Bischl et al. (2021); Yang & Shami
(2020). The hyperparameter we measure can be found in the Appendix. We note that it is not our
objective to discover the best HPs for each method across each dataset, thus we will perform HPO
under feasible constraints in order to validate our hypothesis.

For HPO, for each dataset, we train the GNN based method on a subset of the data, as done in
supervised machine learning, and select hyperparameters based on a performance metric on the
validation set. Given that the Tree Parzen-Estimator (TPE) Bergstra et al. (2013) can retain the
conditionality of variables Yang & Shami (2020) and has been shown to be a good estimator given
limited resources Yuan et al. (2021), we will use the TPE for this evaluation environment.

For a fair comparison, all GNNs methods tested will be trained using the Adam optimiser Kingma &
Ba (2014) but will be treat the learning rate and decay as HPs. All methods may train for a maximum
amount of epochs (5000), but we implement a patience criteria for early stopping. We allocate a total
max budget 200000 choices for each algorithm and a budget of 250 rounds of training. Algorithms
that are designed to benefit from a small number of HPs should perform better than those with
more, as they can search more of the space within the given budget. The full hyperparameter space
explored is detailed in Appendix A. We split the dataset by removing edges from the adjacency
matrix with 1 − p (where p is 0.8 in our evaluations). The full experiment procedure is given by
Algorithm 1. Using this procedure, we answer the research question: to what extent are the ranking
of each method affected by a consistent experimental evaluation procedure?

5 EVALUATION

In this section we will evaluate a variety of methods under our proposed framework, analyse and
discuss their results. At a high level, we find, as recently shown by Palowitch et al. (2022) in another
GNN task, that the best method is not ubiquitously the best across all datasets. Similarly, the worst
method on each dataset is not the same. Further, how the best or worst is measured depends on the
specific metric used to quantify performance.

From the results in Figure 1, we observe on every dataset tested that the performance of at least one
model is improved due to the use of HPO in our framework, beyond the originally reported hyper-
parameters. While the origin of how the originally reported hyperparameters were found is often
unclear, it is evident that reported hyperparameters should be found using a consistent procedure as
the GNN based approaches are clearly sensitive to them for community detection.
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Figure 1: The average performance and standard deviation of all metrics over all methods and
datasets, from the hyperparameter investigation (shown in colour), compared with the default hy-
perparameters (dashed bars). The metric maximised in the HPO was NMI. Conductance is the only
metric where a lower value is better. Out Of Memory (OOM) occurrences during the HPO were
the following dataset/method combinations: amac-daegc, amac-sublime, amap-dgi, acm-sublime,
acm-vgaer; the dataset/method combinations that caused OOM using the default settings were amac-
daegc, amac-sublime. All models are trained on a server with 4x 2080 Ti GPUs (12GB), 96GB of
RAM, and a 16core Xeon CPU.
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Algorithm 1 Evaluation Environment

1: for seed idx = 1, 2, . . . , 10 do
2: train dataset/test dataset = split(dataset, p = 0.8)
3: if seed idx = 1 then
4: best performance = 0.
5: training dataset/validation-dataset = split(train dataset, p = 0.8)
6: for n trial = 1, 2, . . . , 250 do
7: hparams ∼ TPE
8: model.train(hparams, training dataset)
9: performance = model.eval(validation dataset)

10: if performance > best performance then
11: best performance = performance, best hparams = hparams
12: end if
13: end for
14: end if
15: model.train(best hparams, train dataset)
16: test performance[seed idx] = model.eval(test dataset)
17: end for
18: final performance =

∑
test performance / 10

The HPO can be seen to influence the F1 performance ranking on most datasets, except for cora.
This is notable because cora is the most commonly used dataset in general GNN research, indicating
a potential bias towards this dataset in measuring performance. From this we can also reason that
there may be a bias of GNN architecture design towards certain graph data topologies, which can be
addressed by using a wide and consistent evaluation framework. If we look at the acm dataset, the
discovered hyperparameters perform worse than the original parameters across the methods tested.
This indicates that methods in general perform worse on this graph topology. The acm dataset is the
only dataset that has a high average clustering coefficient combined with a low closeness centrality.
From this, we may infer that GNN based community detection doesn’t work well when clusters are
densely connected but the average paths between nodes are long.

In general, F1 and NMI appear to be correlated in terms of ranking between default and HPO hyper-
parameters. However, if we look across the datasets, the conductance and modularity are often vastly
different between the two sets of hyperparameters despite the similarity in the other metrics. This
highlights the importance of choosing the optimisation target for HPO, with our analysis produced
by optimising over a supervised NMI metric on the validation set.

Further, the results demonstrate that each method on each dataset is sensitive to the random seeds
used. It is unsurprising that there is deviation due to the random seed, but it is clear the necessity to
report results in this way for community detection, as the random seed impacts not only the methods
themselves, but also the splits used for training, validation and testing.

The difference between the results of the HPO and the default parameters specified, show that as
expected, results are significantly affected by the evaluation procedure. We propose that future
research makes use of our framework, or similar, in order to ensure that all community detection
methods are evaluated under the same procedure in order to increase fairness and rigour. We show
that if new methods merely utilise hyperparameters for methods as reported in their original research
papers, it can be difficult to ensure the rigour needed, given the sensitivity of methods to them and
the lack of clarity in how they were found. Given the unsupervised nature of community detection,
along with the common use of deep neural networks, there are less established protocols for setting
hyperparameters, and it may be unclear the degree of ‘overfitting’ to datasets that took place to find
hyperparameters.

Our results also demonstrate that there is currently no consistent State-of-the-Art method in com-
munity detection across even the limited set of common datasets we used for our evaluation, when
using a consistent evaluation framework.
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5.1 LIMITATIONS

We readily acknowledge a number of limitations of our study. Firstly, we evaluate over a limited
search space, which could be extended to a continuous distribution over each parameter, with more
trials and thus more computational time. However, we chose a search space that is feasible for
typical researchers to search over, and thus, practical and usable.

In this paper, we evaluate the learnt embedding dimension of contrastive methods with k-means but
do not compare performance using other clustering methods. It may be relevant to include spectral
clustering or density based clustering algorithms for comparison. Nonetheless, k-means is well used
in the literature for clustering deep neural network representations, and thus is a reasonable choice.

6 CONCLUSION

In this work we sought to propose a solution to a challenging problem within the nascent field
of community detection with GNNs. We outlined the reasons why it is often difficult to compare
methods currently at this unsupervised task and proposed a framework for the fair and consistent
evaluation of them. Using this framework we evaluated a suite of community detection algorithms
across many benchmark graph datasets used for community detection. Our findings confirm that all
current methods are sensitive to the experimental evaluation procedure used, the details of which are
often missing from the respective papers. We hope that this work establishes a common protocol to
help the field of GNN based community detection to grow and flourish.
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A APPENDIX

A.1 DATASET DESCRIPTION

Cora was introduced by McCallum et al. (2000) and represents a graph of papers in topics around
machine learning, where each publication is represented by a Bag of Words model. Citeseer Giles
et al. (1998) was created from publications relating to neural neural, and the feature matrix is a
TF/IDF weighted word vector. The Acm dataset contains papers published KDD, SIGMOD, SIG-
COMM, MobiCOM and are divided into three clusters by research area - databases, wireless com-
munication, data mining Wang et al. (2019b). The feature matrix comes from a bag-of-words of
the keywords from the paper. The DBLP is a citation network dataset extracted from DBLP, ACM,
MAG (Microsoft Academic Graph), and other sources Tang et al. (2008).

Amac and Amap are extracted from the Amazon co-purchase graph (He & McAuley, 2016), where
nodes represent products, edges represent whether two products are frequently co-purchased or not,
features represent product reviews encoded by bag-of-words. Texas, Wisc, and Cornell are ex-
tracted from the WebKB dataset that includes web pages from computer science departments of
various universities (Craven et al., 1998). Uat, Eat, and Bat contain airport activity data collected
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from different sources. Uat is extracted from National Civil Aviation Agency (ANAC) from January
to December 2016 and looks at the number of people passing through each airport. Eat and Bat
features are based on number of landings are are respectively extracted from Statistical Office of the
European Union (Eurostat) and Bureau of Transportation Statistics.

A.2 METHODS NOT EXPLORED DUE TO CONSTRAINTS WITH PROCESSING POWER TIME

Salha-Galvan et al. (2022) is similar to VGAER with a slight architectural change calling their
model the Modularity-Aware VGA. They using a s-regular specification of the adjacency matrix,
which connects nodes randomly rather than considering the connection to all nodes as done with
VGAER.

Graph Contrastive Learning with Adaptive Augmentation (GCA) Zhu et al. (2021) uses the same
architecture as GRACE but argues that data augmentation schemes do not do enough to preserve
the intrinsic structures and attributes of graphs. They suggest altering masking probabilities to be
skewed for unimportant edges or features, so that important features are more likely not be masked.
Again, due to time constraints, this method will not be evaluated in this study.

Unified Community Detection with Graph Convolutional Networks (UCoDe) detects communities
by comparing node similarity on a community-wise modularity matrix Moradan et al. (2021). This
architecture uses a GCN to output node community affiliation probabilities from which a modularity
matrix is constructed. A corrupted view of this matrix is constructed by a row-wise permutation of
the matrix then compared with the original in the loss function. This has the effect of maximising
the diagonal elements of the modularity matrix which represents the modularity within a community
and minimising the off-diagonal elements.

A.3 HYPERPARAMETER CONFIGURATION

cross model parameters

patience : [25, 100, 500, 1000]
learning rate : [0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]
weight decay : [0.05, 0.005, 0.0005, 0.0]
size of search space: 96

daegc

pre epoch : [30, 40, 50, 60]
pre lr : [0.01, 0.005, 0.001]
update interval : [1, 3, 5]
hidden size : [128, 256, 512]
embedding size : [8, 16, 24]
kl loss const : [1, 0.2, 5, 10, 20]
size of search space: 155520

dgi

hid units : [64, 128, 256, 512]
size of search space: 384

dmon

architecture : [32, 64, 128, 256, 512]
cluster size regularization : [0, 0.3, 0.5, 0.7, 1.0]
dropout rate : [0.75, 0.5, 0.25, 0.1]
size of search space: 9600
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grace

num hidden : [128, 256]
num proj hidden : [64, 128]
drop edge rate 1 : [0.1, 0.2, 0.4]
drop edge rate 2 : [0.1, 0.2, 0.4]
drop feature rate 1 : [0.0, 0.1, 0.2]
drop feature rate 2 : [0.0, 0.1, 0.2]
size of search space: 31104

mvgrl

hid units : [64, 128, 256, 512]
sample size : [1500, 2000]
batch size : [1, 2, 4]
size of search space: 2304

selfgnn

gnn type : [’gcn’, ’gat’, ’sage’]
prd head norm : [’batch’, False]
prj head norm : [’layer’, False]
encoder norm : [’no’, False]
layer1 : [512, 256]
layer2 : [64, 128, 256]
dropout : [0, 0.25, 0.5]
size of search space: 41472

sublime

hidden dim : [256, 512]
rep dim : [32, 64]
proj dim : [32, 64]
dropout : [0, 0.5]
maskfeat rate learner : [0.2, 0.5, 0.8]
maskfeat rate anchor : [0.2, 0.5, 0.8]
dropedge rate : [0.25, 0.5, 0.75]
k : [20, 30, 40]
size of search space: 124416

bgrl

layer1 : [512, 256]
layer2 : [128, 256]
drop feature rate 1 : [0.1, 0.2, 0.4]
drop feature rate 2 : [0.1, 0.2, 0.4]
drop edge rate 1 : [0.1, 0.2, 0.4]
drop edge rate 2 : [0.1, 0.2, 0.4]
dropout : [0.0, 0.25, 0.5]
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size of search space: 93312

vgaer

hidden1 : [16, 32, 64, 128]
hidden2 : [8, 16, 32, 64]
dropout : [0.0, 0.2, 0.5]
size of search space: 4608
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