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ABSTRACT

Online to batch conversion involves constructing a new batch learner by utilizing
a series of models generated by an existing online learning algorithm, for achiev-
ing generalization guarantees under i.i.d assumption. However, when applied to
real-world streaming applications such as streaming recommender systems, the
data stream may be sampled from time-varying distributions instead of persistently
being i.i.d. This poses a challenge in terms of out-of-distribution (OOD) general-
ization. Existing approaches employ fixed conversion mechanisms that are unable
to adapt to novel testing distributions, hindering the testing accuracy of the batch
learner. To address these issues, we propose AdaO2B, an adaptive online to batch
conversion approach under the bandit setting. AdaO2B is designed to be aware of
the distribution shifts in the testing data and achieves OOD generalization guar-
antees. Specifically, AdaO2B can dynamically combine the sequence of models
learned by a contextual bandit algorithm and determine appropriate combination
weights using a context-aware weighting function. This innovative approach allows
for the conversion of a sequence of models into a batch learner that facilitates OOD
generalization. Theoretical analysis provides justification for why and how the
learned adaptive batch learner can achieve OOD generalization error guarantees.
Experimental results have demonstrated that AdaO2B significantly outperforms
state-of-the-art baselines on both synthetic data and real-world data.

1 INTRODUCTION

Online learning aims at conducting sequential decision-making by capturing the dynamic nature of
data stream, which generates an updated model at each round and uses it for the next decision-making
round (Cesa-Bianchi & Lugosi, 2006; Shalev-Shwartz, 2011). To achieve regret guarantees, online
learning algorithms incrementally update the model upon new instances are received. However, fully
updating the model in an online fashion is often computationally expensive and leads to decision
instability in many real-world applications (e.g., streaming recommender systems). An effective
approach is to employ online to batch conversion (Littlestone, 1989; Cesa-Bianchi et al., 2004),
where a batch learner is constructed based on the sequence of models generated by an existing online
learning algorithm. During the testing process, the batch learner remains fixed and aims to benefit
from the sequence of existing models to achieve good generalization abilities.

Classic online to batch (O2B) conversion approaches typically assume that the instances in data
stream are i.i.d. according to a fixed but unknown distribution. Under this i.i.d. assumption, O2B
conversion involves selecting a representative model or averaging multiple models (Dekel & Singer,
2005; Dekel, 2008; Cutkosky, 2019). However, in real-world applications, distribution shifts between
the training and testing data are ubiquitous, posing new challenges of achieving out-of-distribution
(OOD) generalization guarantees through O2B conversions. For instance, in streaming recommender
systems, user preferences often change dynamically (Hamidzadeh & Moradi, 2021; Zhang et al.,
2021a). For example, a user’s preference for different categories of videos may vary due to factors
like weather or mood, and the features of a video may change on different timestamp.

Existing O2B conversion technologies are not suitable for the OOD scenarios due to their fixed
conversion mechanisms, which can not adjust strategies of combining or selecting models for
adaptation to novel or similar testing distributions. Figure 1(a) presents an empirical study on the
real-world video recommendation data, where user preferences in the testing data may differ due
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Figure 1: (a) Generalization performances (average rewards on testing data) of classic online to
batch conversion technologies on KuaiRec data, where “Best Batch Learner” selects the model
that achieves the highest cumulative reward among all episodes for batch testing, “Simple Averaging
Conversion” uses the average over the model sequence for testing (Cesa-Bianchi et al., 2004), “Last
Learner” chooses the model obtained in the last episode for testing (Shalev-Shwartz, 2007), “Fully
Online Learning” keeps updating the learner on the testing data in an online manner, and the online
learning backbone is sequential batch UCB (Han et al., 2020). (b) Online to batch conversion in BCB
setting on out-of-distribution testing data.

to variations in data collection time, leading to OOD problems in the testing phase. The results
demonstrate a significant decrease in recommendation performance for classic O2B conversions
compared to the fully online learning algorithm during the testing phase. This clearly indicates that
out-of-distribution data can negatively impact the testing accuracy of a batch learner. Analysis reveals
that in online learning, the instances received in the data stream may be sampled from multiple
distributions, violating the i.i.d. assumption. As a result, the models generated by online learning
algorithms have already been trained on data from these distributions, creating an opportunity to
construct a batch learner for OOD generalization.

Motivated by the potential of online learning models, this paper proposes an adaptive O2B conversion
approach for OOD generalization under the bandit feedback setting of online learning. To provide a
deeper understanding, we first establish the OOD generalization error bounds of O2B conversion
theoretically, establishing the relationship between weighted regret and the OOD generalization error
of a batch learner. Building on these theoretical results, we introduce AdaO2B, which leverages an
adaptive weighting network to be aware of distribution shifts and adaptively combines the model
sequence for decision-making. AdaO2B utilizes observed rewards as supervised signals and can be
efficiently trained using different data selection approaches based on bandit feedback. Furthermore,
AdaO2B is model-agnostic and can be applied to any contextual bandit algorithm. We summarize
the major contributions as follows: (1) Rigorous theoretical analysis that establishes the relationship
between the weighted regret in online learning and the OOD generalization error of a batch learner in
O2B conversion; (2) A model-agnostic O2B conversion framework called AdaO2B for achieving
OOD generalization guarantees under bandit feedback setting; (3) Comprehensive empirical studies
showed the effectiveness of AdaO2B in terms of improving the OOD generalization ability of different
bandit algorithms and its superiority over state-of-the-art O2B conversion baselines.

1.1 RELATED WORK

Online model averaging/selection is an important topic in online learning, which aims at adjusting
the model class for prediction in an online manner. Online model averaging approach has been
extensively studied in online kernel learning, which typically reduces the model averaging problem to
a prediction problem with expert advice (Jin et al., 2010; Orabona et al., 2010). Orabona et al. (2010)
designed a variant of follow-the-regularized-leader for online model averaging in multiclass problems.
Zhang & Liao (2018) presented an efficient online model selection approach using incremental
sketched kernel alignment, which formulates an unbiased selection criterion of kernel models. Model
selection under bandit settings has received increased attention over the past several years, which
can adapt the reward model class of optimal policy (Foster et al., 2019; Ghosh et al., 2021). Since
existing online model averaging/selection approaches finally obtain fixed strategies for weighting
or selecting the learners, they are not suitable for adapting the OOD testing data. Besides, how to
perform O2B conversion for OOD generalization under bandit settings is still an unsolved problem.
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Transfer learning has received considerable attention in machine learning literature, which aims to
improve the generalization performance on target domain by transferring the knowledge contained in
previous related source domains (Pan & Yang, 2009; Weiss et al., 2016; Zhuang et al., 2020). There
are several types of technologies that are commonly used in transfer learning, including weighted
ERM (Huang et al., 2006; Reddi et al., 2015), feature mapping (Ando et al., 2005), regularization
(Duan et al., 2009; Kuzborskij & Orabona, 2017). More recently, a series of works lies in the idea of
transferring the model trained on streaming data for adapting the target domain (Zhao et al., 2020;
Tao & Lu, 2020). Zhao et al. (2020) proposed a regularized empirical risk minimization approach
on target sources, which could online update the weight of sub-models with theoretical guarantees.
Tao & Lu (2020) focused on the assumption that instances in the data stream are sampled from the
same distribution but not guaranteed independent, and proposed a training process for fine-tuning the
final model outputted by any online learning algorithm. Unlike the O2B conversion we focused on,
these works need to specify the data source or the distribution assumption and re-train the model on
data from the target source. Besides, these works are concerned with the full-information feedback
settings rather than bandit settings in this paper.

2 PROBLEM FORMULATION

Let [m] = {1, 2, . . . ,m}, S ⊆ Rd be the context space whose dimension is d. Since bandit feedback
is ubiquitous in real-world applications, in this paper we focus on the batched version of contextual
bandit (BCB) setting, which is an extension of the classic contextual bandit setting (Perchet et al.,
2015; Han et al., 2020; Esfandiari et al., 2021). In BCB setting, the sequential decision-making
process is partitioned into N episodes, where each episode includes B decision-making steps (B
is also called the batch size). Specifically, at step b in the n-th episode, a bandit algorithm receives
a candidate context set Sn,b ⊆ S, where Sn,b contains M contexts Sn,b = {sI}I∈[M ] and each
context corresponds to a candidate action. Then, the bandit algorithm chooses a context sIn,b

∈ Sn,b
following the policy (i.e.,decision model) fn : Sn,b → [M ] parameterized by θn, where In,b ∈ [M ]
can be seen as the index of the executed action at step b in the n-th episode. After choosing the
context, algorithm will observe a reward Rn,b. Note that, during the decision process in each episode,
the bandit policy is fixed. That is, the policy fn is only updated at the end of the n-th episode based
on a data buffer Dn = {(Sn,b, In,b, Rn,b)}b∈[B].

Figure 1(b) illustrates the online to batch (O2B) conversion problem for out-of-distribution (OOD)
generalization in the above BCB setting. In the online learning phase, bandit policy is incrementally
updated on data steam generated from multiple distributions. O2B conversion aims to formulate
a batch learner based on the collected data for OOD testing in the batch testing phase, where the
testing distributions may be similar but different. Next, we introduce the formal definition of O2B
conversion for OOD generalization in BCB setting.

Definition 1 (O2B Conversion for OOD Generalization). Consider the BCB setting that includes
N episodes. Let FN = {f1, f2, . . . , fN} be a sequence of policies (i.e, decision models) generated
by performing a bandit algorithm A, and D = {Dn}n∈[N ] be the sequence of data buffers that
store the interaction history. Assume that the context-reward pairs are generated according to a
distribution P (may be a mixture distributions1). O2B conversion aims to find a O2B function fo2b:
fo2b : FN ×D → g ∈ G, where g is a batch learner in a policy space G which has generalization
guarantees on a testing distribution Q that may be different from the distribution P.

3 OOD GENERALIZATION ANALYSIS

In this section, we first specify the key ingredients in Definition 1 and then carry out an OOD
generalization justification on why and how to conduct O2B conversion in environments with
distribution shifts. The detailed proofs of the theoretical results can be found in the Appendix A.

We specify the key ingredients in Definition 1 as follows.
Reward r. Following the setups in linear contextual bandit literature (Dimakopoulou et al., 2019;
Yang et al., 2021; Li et al., 2010), for any context si ∈ S ⊆ Rd, we assume that the expectation of

1In Corollary 1, we will give the formulation of the mixture distribution representing the sampling process
according to multiple distributions.
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the observed reward Ri is determined by unknown true reward parameters θ∗ ∈ Rd: E[Ri | si] =
〈θ∗, si〉. The linear reward will be extended to the convex function case in Corollary 1.
Distributions P and Q. Given the linear reward assumption, the distribution shift of the context-
reward pairs can be described as the shift of context distribution. Thus, we define that P and Q are
the distributions on the context space S . Besides, P and Q are unknown to the algorithm and may be
both are mixtures of multiple distributions defined in Corollary 1.
Policy space G. We assume that G is the set containing all possible linear combinations of policies
in the sequence of policies FN = {f1, f2, . . . , fN} generated by a bandit algorithm. Formally, the
adaptive batch learner g ∈ G can be formulated as follows:

g(s) =
∑

n∈[N ]

βn fn(s)/β1:N , ∀s ∈ S, (1)

where {βn}n∈[N ] denotes the combination weights that are outputs of a context-aware weighting
function h : S → RN for adapting the distribution shifts between P and Q, and β1:N denotes the sum
of weights over the number of episodes N , i.e.,β1:N :=

∑
n∈[N ] βn. More specifically, for the linear

true reward, bandit policy fn typically chooses action (i.e.,the context) according to the estimated
reward rn(s) = 〈θn, s〉, where θn denotes the estimated reward parameters in fn from the n-the
episode. Then, the adaptive batch learner g in equation 1 can be represented by the combination of
the estimated reward parameters2

θada =
∑

n∈[N ]

βnθn/β1:N . (2)

For the sake of simplicity, we denote the adaptive batch learner g by θada.
Evaluation metric of OOD generalization. Given an unknown distribution (may be a mixture
distribution) of the contexts s ∈ S, define the expected reward of a policy with estimated reward
parameters θ w.r.t. Q to be ERQ(θ) = Es∼Q[〈θ, s〉]. Then, we define the generalization error (also
called expected risk) of θ w.r.t. Q as follows:

GEQ(θ) = CER − ERQ(θ), (3)

where CER denotes the upper bound of the absolute values of expected reward w.r.t. any distribution.
Then, GEQ(θada) can be used for evaluating the OOD generalization performance of the adaptive
batch learner θada on testing distribution Q.

Following the above setup of O2B conversion problem, we first demonstrate the OOD generalization
error bound of the adaptive batch learner θada in equation 2.

Theorem 1 (OOD Generalization Error Bound of Adaptive Batch Learner). Consider the BCB setting
with N episodes and the batch size B. Let θn, n ∈ [N ] be the reward parameters estimated by policy
fn, θ∗ be the true reward parameters, sIn,b

∈ Sn,b be the context chosen by fn at step b, and CER

be the upper bound defined in equation 3. Define the weighted regret as

WReg(N,B) =
∑

n∈[N ],b∈[B]

βn
〈
θ∗ − θn, sIn,b

〉
, (4)

and assume that the weighted regret is bounded by CWReg, i.e.,WReg(N,B) ≤ CWReg. Then,

GEQ(θada)−GEP(θ∗) ≤ EP

[
CWReg

Bβ1:N

]
+ CER

√
2DJS(Q‖P), (5)

where DJS(Q‖P) denotes the Jensen-Shannon (JS) divergence between the distributions Q and P.

Remark 1 (Tighten the Bound). Theorem 1 tells us that the weighted regret upper bounds the OOD
generalization error of the adaptive bath learner θada. That is, to achieve good OOD generalization
performances, the batch learner’s objective should be to minimize the weighted regret in equation 4
by adjusting the combination weights {βn}n∈[N ]. Besides, a smaller JS divergence between the
training distribution P and the testing distribution Q leads to a tighter bound in equation 5.

2In the batch testing phase, since the batch learner is fixed, we omit the exploration term in the original policy
(e.g., the uniform distribution term in EXP3 policy).
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Remark 2 (Simply to i.i.d.). In equation 5, setting βn = 1 for all n ∈ [N ] and Q = P yields the
i.i.d. risk bound of a simple averaging learner θavg =

∑
n∈[N ] θn/N in bandit setting. Analogous to

the case of full-information O2B conversion (Shalev-Shwartz, 2007), the result in equation 5 becomes
GEP(θavg) ≤ GEP(θ∗) + EP [CReg/T ] , where CReg is the upper bound of worse-case regret and
T = N ×B.

As illustrated in Figure 1(b), the distributions of P and Q may be mixture distributions, yielding the
following result.
Corollary 1 (OOD Generalization Error for Mixture Distributions). Assume that the conditions
in Theorem 1 hold, and P,Q are two mixture distributions with distribution densities p(s) =∑

i∈[W ] πi · pi(s) and q(s) =
∑

i∈[W ] τi · qi(s), respectively, where {pi}i∈[W ] and {qi}i∈[W ]

are densities of Gaussian distributions in P and Q, π = {πi}i∈[W ] and τ = {τi}i∈[W ] denotes
multi-dimensional Bernoulli distributions. Then,

GEQ(θada)−GEP(θ∗) ≤ EP

[
CWReg

Bβ1:N

]
+ CER

√
2 logK +K

∑
i∈[W ]

πiτi ·DBKL(pi‖qi), (6)

where DBKL(pi‖qi) := 1
2 [DKL(pi‖qi) + DKL(qi‖pi)] denotes the bidirectional Kullback-Leibler

(KL) divergence between pi and qi (Liang et al., 2021), and DKL(p‖q) denotes the KL divergence
between the distributions p and q.
Remark 3 (Weighted Bidirectional KL Divergence). The weight term πiτi can be seen as the
probability of drawing distributions pi and qi for online learning and OOD testing, respectively. Then,
the weighted bidirectional KL divergence in equation 6 indicates that, if distributions in P and Q
with similar probability of occurrence have similar distribution densities, tighter OOD generalization
error bound can be achieved.

We further give a more general version of the OOD generalization error bound in Theorem 1, where
the expectation of true rewards is convex w.r.t. the reward parameters.
Corollary 2 (OOD Generalization Error for Convex Rewards). Consider the convex reward r(θ, s)
parameterized by θ as well as its expected reward ERQ(θ) = Es∼Q [r(θ, s)] (bounded by CER), and
the generalization error GEQ(θ. Assume that E[∇θnr(θn, s)] = ∇θ∗r(θ∗, s) holds for ∀n ∈ [N ].
Define the weighted regret as WReg(N,B) =

∑
n∈[N ],b∈[B] βn

〈
θ∗ − θn,∇θ∗r(θ∗, sIn,b

)
〉
, and

assume that the weighted regret is bounded by CWReg, i.e.,WReg(N,B) ≤ CWReg. Then, given the
new definitions of CWReg and CER for convex rewards, the adaptive batch learner θada enjoys the
same upper bound of OOD generalization error as in equation 5.

The above results provide theoretical guidance to implement the adaptive O2B learner, and we will
derive guiding principles as well as the algorithm implementation in the next section.

4 ADAO2B: THE PROPOSED ALGORITHM

From Remark 1&3, we can derive the following guiding principles for designing the adaptive O2B
algorithm: (a) The data for training the adaptive batch learner should be as close as possible to the
testing distribution; (b) The combination weights βn, n ∈ [N ] should be computed based on the
received candidate contexts at each step, which can be aware of the changes in test distribution; (c)
The objective of training the weighting function should contain the component of minimizing the
weighted regret in equation 4 or its surrogate. Next, we provide a practical implementation of the
adaptive batch learner θada in equation 2 named AdaO2B.

4.1 DATA SELECTION

We use subsets of the whole sequences of policies and data buffers in Definition 1 for O2B conversion.
Specifically, to reduce the difference between the training distribution of O2B conversion and the
testing distribution, we propose the following three approaches for maintaining the data buffers
(denoted by DK := {Dn}n∈K ⊆ D) and the candidate policy set (denoted by FK := {fn}n∈K ⊆
FN ), where K ⊆ [N ] denotes the index set of the selected data buffers which is also the index set
of the policies trained on these selected buffers, and K := |K| denotes the cardinality of K (i.e.,the
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Figure 2: The training process of the proposed AdaO2B based on the data collected at step b in the
n-th episodes, where {ik}k∈[K] denotes the index set K specified in Section 4.1.

cardinality of DK and FK).
1) Sliding window approach. Motivated by the fact that streaming data from neighboring periods
typically has similar distributions in the streaming applications (Bendada et al., 2020; Zhang et al.,
2021b), we use the data buffers and policies from the most recent K episodes for training the adaptive
O2B learner, i.e.,K = {N −K + 1, N −K + 2, . . . , N}. More specifically, the training process is
based on DK = {Dn}Nn=N−K+1 that are the data buffers in the recent K episodes, and the candidate
policy set FK = {fn}Nn=N−K+1.
2) Reservoir sampling approach. Without knowing the number of episodes N , we can use reservoir
sampling approach (Knuth, 1998) to determining which data buffers and the corresponding candidate
policies are stored for O2B conversion, such that every data buffer in DK (as well as every policy in
FK) has the same probability of being selected in an online fashion.
3) Data-dependent approach. Since the decrease or low growth of the rewards received in two
episodes indicates severe distribution shifts, we can maintain the candidate policies with average
rewards of low growth rates and the corresponding data buffers. Specifically, we present a data-
dependent approach for selecting the elements in DK and FK: the index set K is constructed by
selecting the indices with the bottom-K values of (Rn+1 −Rn)/Rn, ∀n ∈ [N ], where Rn denotes
the average reward over all steps in the n-th episode.

4.2 MODEL FORMULATION AND TRAINING

Formally, by only retaining the exploitation term in the policy for batch testing, the k-th policy in
FK = {fn}n∈K can be written as fik = arg maxj∈[M ]〈θik , sj〉, sj ∈ Sik,b,which makes decision
according to the estimated reward using the estimated reward parameters θik given the contexts. Then,
given the index setK = {ik}k∈[K] defined in Section 4.1, the adaptive batch learner in equation 2 can
be expressed as: θada =

∑
k∈[K] βikθik/βK, ik ∈ K, where βK =

∑
k∈[K] βik . The combination

weights {βik}k∈[K] are obtained using the context-aware weighting function h : S → RK . We
implement the weighting function h using one MLP (Multi-Layer Perceptron), denoted by MLPh.
As shown in Figure 2, at each step, the weighting function h (i.e.,MLPh) takes the candidate contexts
as input, and obtains a K-dimensional vector {βik}k∈[K].

To incorporate the weighted regret in equation 4 into the training objective, we transform the weighted
regret into a loss function. Given the index set K, for the candidate context set Sik,b collected at step
b in the ik-th episodes, the weighted regret truncated with K becomes∑

k∈[K]

βik 〈θ∗ − θik , sj〉 , sj ∈ Sik,b. (7)

Multiplying equation 7 by 1/βK, we get〈 ∑
k∈[K]

βik/βKθ
∗, sj

〉
− 〈θada, sj〉 , sj ∈ Sik,b, (8)

where the first term can be seen as an estimate of the true reward, and the second term is the
final estimated reward estimated by θada, denoted by rfinal(s) = 〈θada, s〉 . Then, as a surrogate
objective of minimizing equation 8, we perform the training process of θada by minimizing the
difference between the observed true rewardRn,b in data buffers and the final estimated reward. More
specifically, in the adaptive batch learner θada, model parameters that need to be trained include the
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Algorithm 1 AdaO2B
Require: Batch size B, number of episodes N , bandit algorithm A, number of candidate policies K
Ensure: Adaptive batch learner θada

1: Initialize the policy θ1 using uniform distribution, and the candidate policies set Fθ ← ∅
2: // Online Learning Phase
3: for n = 1 to N do
4: for b = 1 to B do
5: Receive candidate context set Sn,b and choose context sIn,b

∈ Sn,b following the policy θn
6: Observe the reward Rn,b

7: end for
8: Store the interactions into a data buffer Dn ← {(Sn,b, In,b, Rn,b)}b∈[B]

9: Store the policy Fθ ← Fθ ∪ {θn} if n ∈ K
10: Update the policy θn as θn+1 ← ∆(θn) on Dn using bandit algorithm A
11: end for
12: // Online to Batch Conversion Phase
13: Collect K data buffers DK ← {Dn}n∈K
14: Compute the estimated rewards rn(s) using policies in Fθ for all n ∈ K and s ∈
∪n∈K,b∈[B]{Sn,b}

15: Compute the combination weights {βn}n∈K using MLPh for each candidate context set in DK
16: Compute the final estimated rewards {rfinal(si)}i∈[M ] for each candidate context set in DK
17: Optimizing the loss in equation 9 on DK using Adam and output the model parameters Θh of

MLPh

18: return Fθ = {θn}n∈K, Θh

parameters in the weighting function MLPh. All these trainable parameters in MLPh are denoted
as Θh, and trained based on DK specified in Section 4.1. Finally, the task of training the weighting
function h amounts to minimize the following mean squared error (MSE) loss:

LΘh
=

1∣∣DK∣∣
∑

(In,b,Rn,b)∈DK

[
Rn,b − rfinal(sIn,b

)
]2

+ λ‖Θh‖22, (9)

where ‖Θh‖22 is a regularizer for avoiding over-fitting, and λ ≥ 0 is the regularization parameter.
Besides, as shown in Figure 2, each final estimated reward can be efficiently computed through
the multiplication of the reward matrix that concatenates the estimated rewards, and the vector of
combination weights. Then, the obtained final estimated rewards are normalized through a Sofmax
function. Finally, Adam (Kingma & Ba, 2014) is used to conduct the optimization. We summarize
the above steps in Algorithm 1, called AdaO2B. To facilitate the understanding of the whole process,
we involve the online learning phase in AdaO2B.

5 EXPERIMENTS

We conducted experiments to test the performance of AdaO2B on synthetic data and real-world data.
The implementation details are provided in the Appendix C.

5.1 EXPERIMENTAL SETTINGS

Baselines. AdaO2B was compared with several classic online to batch conversion algorithms as
well as their variants, including: Best Batch Learner (BBL) selects the model that achieves the
highest cumulative reward among all episodes for batch testing, which can be seen as a data-driven
version of the random sampling conversion (Dekel & Singer, 2005). Last Learner (LL) directly
chooses the model obtained in the last episode for testing (Shalev-Shwartz, 2007). Simple Averaging
Conversion (SAC) simply uses the average over the model sequence for batch testing (Cesa-Bianchi
et al., 2004; Shalev-Shwartz, 2011). Voting Conversion (VC) decides the executed action according
to the majority of the candidate policies (Freund & Schapire, 1999; Dekel & Singer, 2005). Constant
Weight (CW) outputs a weighted average batch learner with constant weights. CW records the
average reward over all steps in each episode for every generated model, normalizes these average
rewards using Softmax and uses the normalized average reward as the combination weights for
averaging the model sequence.
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Table 1: Comparisons of average reward (w.r.t. all episodes) for AdaO2B and baselines on synthetic
and real-world KuaiRec dataset. Bold values are the best of the proposed algorithm, while the best
values in baselines are underlined. ‘∗’: improvements over baselines are statistical significant (t-test,
p-value< 0.05) compared to the best baseline.

Model Type Dataset Synthetic KuaiRec
Algorithm SBUCB EXP3-B BLTS-B SBUCB EXP3-B BLTS-B

Oracle FOL 0.7644 0.6665 0.7651 0.6032 0.5819 0.6063

Baselines

BBL 0.7354 0.6388 0.7453 0.5363 0.5691 0.5633
LL 0.7388 0.6441 0.7494 0.5440 0.5583 0.5642

SAC-S 0.7356 0.6404 0.7397 0.5445 0.5604 0.5661
SAC-R 0.6929 0.6216 0.7019 0.5417 0.5691 0.5699
SAC-D 0.7070 0.6230 0.7130 0.5426 0.5701 0.5647
VC-S 0.7365 0.6396 0.7402 0.5441 0.5595 0.5659
VC-R 0.6969 0.6086 0.7040 0.5457 0.5723 0.5667
VC-D 0.7091 0.6194 0.7165 0.5421 0.5712 0.5655
CW-S 0.7332 0.6418 0.7404 0.5445 0.5603 0.5658
CW-R 0.7004 0.6228 0.7054 0.5424 0.5688 0.5675
CW-D 0.7098 0.6252 0.7166 0.5427 0.5701 0.5647

Ours

AdaO2B-S 0.7848∗ 0.6971∗ 0.7811∗ 0.5556∗ 0.5861∗ 0.5806∗
(+6.23%) (+8.23%) (+4.23%) (+1.81%) (+2.41%) (+1.88%)

AdaO2B-R 0.7692∗ 0.7154∗ 0.7672∗ 0.5563∗ 0.5861∗ 0.5832∗
(+4.11%) (+11.07%) (+2.38%) (+1.94%) (+ 2.41%) (+2.33%)

AdaO2B-D 0.7777∗ 0.7380∗ 0.7783∗ 0.5532∗ 0.5833∗ 0.5796∗
(+5.27%) (+14.58%) (+3.86%) (+1.37%) (+ 1.92%) (+1.7%)

Similarly to the proposed AdaO2B, SAC, VC and CW all need to maintain the candidate policies and
retained data buffers for conversion. We denote these algorithms based on different data selection
approaches (defined in Section 4.1) as “algorithm name-S/R/D”, where “S/R/D” denote the Sliding
window approach, Reservoir sampling approach, and Data-dependent approach, respectively. For
example, AdaO2B based on sliding window approach is denoted by "AdaO2B-S". AdaO2B as well as
the above O2B baselines is model-agnostic, which can be applied to the following bandit backbones:
Sequential Batch UCB (SBUCB) is a batched extension of the classic LinUCB (Li et al., 2010)
where it is continuously fed with data batches (Han et al., 2020). Batched EXP3 (EXP3-B) is a
batched version of the adversarial bandit EXP3 (Bistritz et al., 2019). BLTS-B uses the Thompson
sampling for selecting parameters of estimated rewards (Dimakopoulou et al., 2019). To compare the
performance between O2B conversion and fully online learning, we introduce the following version
as oracle for each bandit backbone: Fully Online Learning (FOL) keeps updating the policy on the
testing data in an online manner.

Data. We conducted experiments on a synthetic dataset which simulates the OOD scenario and
a real-world short video recommendation dataset Kuairec3. Detailed descriptions about these two
datasets are provided in Appendix C.2 due to the space limitation.

5.2 EXPERIMENTAL RESULTS AND ANALYSES

Results & discussions on synthetic data. Table 1 reports the average reward w.r.t. all episodes for
the proposed AdaO2B and the baselines on the synthetic dataset. From the result, we can observe
that AdaO2B significantly outperformed all the baselines with all three different bandit backbones in
terms of the average rewards. Specifically, AdaO2B outperformed the best baseline (LL) by 6.23%
with SBUCB, 14.58% with EXP3-B, and 4.23% with BLTS-B. Figure 3 (a)–(c) illustrate the curves
of average rewards on testing data, where AdaO2B achieved the highest rewards over all episodes of
testing. These results verified the effectiveness and model agnosticism of AdaO2B for capturing the
distribution shifts and improving the performance of online to conversion in the out-of-distribution
scenario. Furthermore, the proposed AdaO2B even outperformed FOL on synthetic data. The
reason is that FOL used the exploration and exploitation trade-off strategy on testing data, where the
exploration may hurt the accuracy of the bandit policy in a synthetic testing environment. For the
three data selection method used in AdaO2B, we can conclude that: (1) the data-dependent approach

3https://kuairec.com
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(a) SBUCB on Synthetic Dataset
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(b) EXP3-B on Synthetic Dataset
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(c) BLTS-B on Synthetic Dataset

Figure 3: Average rewards of baselines and the proposed AdaO2B equipped with the best data
selection approach on testing data of synthetic dataset, where N denotes the number of episodes in
the batch testing phase.
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(a) KuaiRec; Data selection: S
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(b) KuaiRec; Data selection: R
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(c) KuaiRec; Data selection: D

Figure 4: Performance comparison of AdaO2B and all baselines with different number of candidate
policies K and different data selection process on KuaiRec dataset. The bandit backbone is SBUCB.
More results with other backbones (i.e., EXP3-B and BLTS-B) can be found in Appendix C.6

achieved higher average rewards than the reservoir sampling approach, indicating the advantage of
the data-dependent approach for slight distribution shifts; (2) Sliding window approach typically
outperformed other data selection approaches since the distribution of the recent data buffers was
more similar to that of the testing data in this synthetic environment.

Results & discussions on real-world Kuairec dataset. The results of average rewards of the
baselines and the proposed AdaO2B on the KuaiRec dataset are reported in Table 1. We can observe
that, AdaO2B outperformed the best baseline (VC-R and SAC-R) by 1.94% with SBUCB, 2.41%
with EXP3-B, and 2.33% with BLTS-B. Figure 6 in Appendix C.5 shows the curves of average
rewards on KuaiRec dataset, where AdaO2B achieved the highest average reward for all bandit
backbones approximating the performances of the oracle FOL. The results verified the effectiveness
of the model-agnostic AdaO2B framework in improving existing bandit models for real-world online
to batch conversion problem. Note that FOL with EXP3-B has lower average rewards than FOL with
other bandit backbones. This phenomenon is due to the randomized exploration term used in the
EXP3-B policy that is more suitable for online adversarial environments. Besides, AdaO2B equipped
with the reservoir sampling approach had the best performance than other data selection approach,
indicating that a simple reservoir sampling approach could capture the severe distribution drift in
real-world applications.

Parameter analysis. This section empirically studied the impact of the number of candidate policies
(i.e.,K). A larger K means the, more candidate policies and data buffers are stored for conducting
the O2B conversion. We conducted experiments to test the performance of AdaO2B with different
K values. The results illustrated in Figure 4 indicate that AdaO2B equipped with data selection
approaches are all not sensitive to the parameter K, demonstrating the effectiveness of the online to
batch conversion in AdaO2B. Besides, the data-dependent approach had lower variances w.r.t. the
parameter K than the other two data selection approaches.

6 CONCLUSION

This paper aims to address the out-of-distribution generalization problem in online to batch conversion.
Specifically, we propose an adaptive online to batch conversion approach called AdaO2B. The
proposed AdaO2B is aware of distribution shifts through adaptively combining the model sequence
using a weighting network, takes rigorous theoretical analyses as guidance, and achieves OOD
generalization guarantees under the bandit feedback setting. Experimental results demonstrated the
effectiveness of AdaO2B in out-of-distribution scenarios.
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A DETAILED PROOFS IN THEORETICAL ANALYSIS

A.1 PROOF OF THEOREM 1

To facilitate the presentation of the proofs, we first provide the definition of Jensen-Shannon (JS)
divergence.
Definition 2 (Jensen-Shannon (JS) Divergence (Fuglede & Topsoe, 2004)). Given two distributions
Q and P, the Jensen-Shannon divergence between Q and P is

DJS(Q‖P) :=
1

2
[DKL(Q‖H) + DKL(P‖H)] ,

where H = (Q + P)/2, and DKL(X‖Y) denotes the Kullback-Leibler (KL) divergence between the
distributions X and Y.

Proof of Theorem 1. Letting
θ̄n =

∑
i∈[n]

βiθi
/
β1:n,

it is obvious that θada = θ̄N . We first bound the weighted regret of {θ̄n}n∈[N ] as follows:∑
n∈[N ],b∈[B]

βn
[〈
θ∗, sIn,b

〉
− 〈θ̄n, sIn,b

〉
]

=
∑

n∈[N ],b∈[B]

{
βn
〈
θ∗ − θn, sIn,b

〉
+ βn

〈
θn − θ̄n, sIn,b

〉}
= WReg(N,B) +

∑
n∈[N ],b∈[B]

β1:(n−1)

〈
θ̄n − θ̄n−1, sIn,b

〉
,

(10)

where in the last equality we used θ̄n = [β1:(n−1)θ̄n−1 + βnθn]/β1:n. Here, with a slight abuse of
notations, we define β1:0 = 0. From equation 10 we have∑

n∈[N ],b∈[B]

βn
〈
θ∗, sIn,b

〉
= WReg(N,B) +

∑
n∈[N ],b∈[B]

β1:(n−1)

〈
θ̄n − θ̄n−1, sIn,b

〉
+

∑
n∈[N ],b∈[B]

βn〈θ̄n, sIn,b
〉.

= WReg(N,B) +
∑

n∈[N ],b∈[B]

[
β1:n

〈
θ̄n, sIn,b

〉
− β1:(n−1)

〈
θ̄n−1, sIn,b

〉]
≤ CWReg +

∑
n∈[N ],b∈[B]

[
β1:n

〈
θ̄n, sIn,b

〉
− β1:(n−1)

〈
θ̄n−1, sIn,b

〉]
.

(11)

We now take expectations on both sides of equation 11 and obtain that

Bβ1:NERP(θ∗) ≤ EP [CWReg] +B
∑

n∈[N ]

[
β1:nERP(θ̄n)− β1:(n−1)ERP(θ̄n−1)

]
. (12)

Note that the second term on the right side of equation 12 telescopes and becomes
Bβ1:N [ERP(θ∗)− ERP(θ̄N )] ≤ EP [CWReg] . (13)

Combining GEP(θ̄N )−GEP(θ∗) = ERP(θ∗)−ERP(θ̄N ), θada = θ̄N , and equation 13 yields that

GEP(θada) ≤ GEP(θ∗) + EP

[
CWReg

Bβ1:N

]
. (14)

Motivated by the information theoretical tools in OOD generalization (Shui et al., 2020), we have
GEQ(θada)−GEP(θada)

≤ maxT,θ GET(θ)−minT,θ GET(θ)√
2

√
DJS(Q‖P)

≤ 2CER√
2

√
DJS(Q‖P).

(15)

Finally, combining equation 14 and equation 15 concludes the proof.
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A.2 PROOF OF COROLLARY 1

Proof of Corollary 1. For the mixture distribution H = (P + Q)/2, its distribution density h(s) can
be represented as the following sum of multiple sub-distribution densities {hi}i∈[W ]:

h(s) =
∑
i∈[W ]

hi
W
, hi =

W

2
[πi · pi(s) + τi · qi(s)] .

Using the chain rule for Kullback-Leibler (KL) divergence (Cover & Thomas, 1991), we can obtain
that the KL divergence (denoted by DKL(·‖·)) between P and H as well as Q and H can be bounded
as follows:

DKL(P‖H) ≤ logW −H(π) +
∑
i∈[W ]

πi ·DKL(pi‖hi),

DKL(Q‖H) ≤ logW −H(τ ) +
∑
i∈[W ]

τi ·DKL(qi‖hi),
(16)

where H(π) and H(τ ) denote the entropy of distributions π and τ , respectively.

From the variational upper bound of KL divergence (Hershey & Olsen, 2007), we can bound the KL
divergences DKL(pi‖hi) as follows:

DKL(pi‖hi) ≤
Wπi

2
DKL(pi‖pi) +

Wτi
2

DKL(pi‖qi),

=
Wτi

2
DKL(pi‖qi).

(17)

Similarly, we obtain the upper bound of DKL(qi‖hi) as

DKL(qi‖hi) ≤
Wπi

2
DKL(qi‖pi). (18)

Combining equation 16, equation 17, and equation 18 yields the following upper bound of the JS
divergence DJS(Q‖P):

2DJS(Q‖P)

= DKL(P‖H) + DKL(Q‖H)

≤ 2 logW −H(π)−H(τ ) +W
∑
i∈[W ]

πiτi ·DBKL(pi‖qi)

≤ 2 logW +W
∑
i∈[W ]

πiτi ·DBKL(pi‖qi),

where DBKL(pi‖qi) := 1
2 [DKL(pi‖qi) + DKL(qi‖pi)] denotes the bidirectional KL divergence

between pi and qi (Liang et al., 2021).

A.3 PROOF OF COROLLARY 2

Proof of Corollary 2. Using the linearization trick of convex functions (Shalev-Shwartz, 2011), we
can obtain that ∑

n∈[N ],b∈[B]

βn
[
r(θ∗, sIn,b

)− r(θ̄n, sIn,b
)
]

≤
∑

n∈[N ],b∈[B]

βn
[〈
θ∗ − θ̄n,∇θ∗r(θ∗, sIn,b

)
〉]
.

(19)

Similarly, from E[∇θnr(θn, s)] = ∇θ∗r(θ∗, s), ∀n ∈ [N ], we have∑
n∈[N ],b∈[B]

β1:(n−1)

〈
θ̄n − θ̄n−1,∇θ∗r(θ∗, sIn,b

)
〉

≤ E

 ∑
n∈[N ],b∈[B]

β1:(n−1)

[
r(θ̄n, sIn,b

)− r(θ̄n−1, sIn,b
)
] , (20)
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Treating ∇θ∗r(θ∗, sIn,b
) as the context received at step b in the b-th episode, and substituting

equation 19 and equation 20 into equation 10 in the proof of Theorem 1, we have∑
n∈[N ],b∈[B]

βn
[
r(θ∗, sIn,b

)− r(θ̄n, sIn,b
)
]

≤WReg(N,B) + E

 ∑
n∈[N ],b∈[B]

β1:(n−1)

[
r(θ̄n, sIn,b

)− r(θ̄n−1, sIn,b
)
] . (21)

Similarly to the proof of equation 11 and equation 12, using equation 21 as a tool, we can obtain
the same upper bound of the expected convex rewards as in Theorem 1, yielding the final OOG
generalization error bound.

B DIAGRAM ILLUSTRATING THREE DATA SELECTION APPROACHES

In this section, we present graphical representations for three data selection approaches used in
managing data buffers as described in Section 4.1. These approaches include the sliding window
approach, reservoir sampling approach, and data-dependent approach.

Rebuttal to Reviews on Submission 4344
(Figures and Tables)
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Reservoir sampling approach

… …
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of being selected in an online fashion.

… …

Data-dependent approach selecting the indices with the bottom-K values of

Figure 1: An illustration of three data selection schemes.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 5: Diagram illustrating three data selection approaches for managing data buffers in Sec-
tion 4.1.

C DETAILED EXPERIMENTAL SETTINGS AND MORE EXPERIMENTAL
RESULTS

C.1 IMPLEMENTATION DETAILS

In our implementation on both synthetic and real-world data, we trained AdaO2B based on the last
10 (i.e.,K = 10) data buffers and history policies. We tuned the hyper-parameters as follows: the
learning rate was tuned among {1e−2, 1e−3, 1e−4, 1e−5}, the weight decay was tuned among
{1e−3, 1e−4, 1e−5, 1e−6}, and the batch size was tuned in {256, 512, 1024, 2048}. Besides, the
hidden dimensions of the MLPh were set as [64, 64]. For AdaO2B, SBUCB and BLTS-B, we tuned
the regularization parameter in [0.2 : +0.2 : 2]. For EXP3-B, we tuned the exploitation parameter in
[0.1 : +0.1 : 1]. All the algorithms were trained on a single Tesla V100.

C.2 DATA PREPARATION

Synthetic Dataset. To simulate the OOD scenario, we generated the synthetic data as follows:
number of episodes N = 40, batch size B = 5, 000 number of candidates M = 10, and the context
dimension d = 10. For OL-Data, we drew candidate context set Sn,b ⊆ Rd from a Gaussian
distribution N (µs1d, σ

2
s Id), where in the first 20 episodes, the means of candidate contexts were

µs ∈ [1 : −0.4 : −2.6] and the standard deviation was σs = 0.05. To simulate the mixture
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distribution, we set the mean of the first candidate context to 1.2 in the last 20 episodes. Compared
to OL-Data, the mean of the first candidate context in BT-Data was set to 1.4 for simulating the
distribution shifts in testing data. The observed reward (user feedback) given the context sn,b was set
to a sigmoid function sigmoid(〈wr, sn,b〉), where each element of the coefficient vector wr ∈ Rd

was sampled according to a Gaussian distribution as N (0.1, 0.012).

KuaiRec dataset. We used the KuaiRec dataset4, which collected from the recommendation logs of
a popular video-sharing mobile app Kuaishou and is the the first dataset that contains a fully observed
user-item interaction matrix. The final dataset after filtering comprises 6980 unique users, 973 unique
videos, and 400,000 user-video interactions. KuaiRec also provided various side information of both
users and videos. Particularly, KuaiRec provided the daily item features, i.e.,the same item may
have different features on different date, which naturally satisfy our research target. Following the
practices in (Zhang et al., 2021b; 2022; Yoshikawa & Imai, 2018), we processed the categorical
features as one-hot vectors and then concatenated them to the integer features. The final dimension of
the feature vectors was reduced to 50 through principal component analysis (PCA), i.e.,d = 50. For
the candidate set, we retained the original item for each interaction and then randomly sampled 99
extra items from the rest item set.

C.3 EVALUATION METRICS

For both synthetic and real-world datasets, we split them into two subsets for the online learning
phase (as well as the O2B conversion phase) and the batch testing phase, respectively, denoted by
OL-Data and BT-Data. Following the standard practice in (Zhang et al., 2021b), we use the average
reward to evaluate the accuracy of algorithms as 1

nB

∑n
k=1

∑B
b=1Rk,b for the first n episodes, where

Rk,b is the observed reward at step b in the k-th episode.

C.4 EVALUATION PROTOCOLS ON REAL-WORLD DATA

In online recommendation, we cannot guarantee that the corresponding feedback of each recom-
mended item to the user can be found in the log data. To overcome this issue and facilitate ground-truth
evaluations, following (Jeunen et al., 2020; Zhang et al., 2022), we created a simulated online en-
vironment to test all the algorithms. More specifically, we first trained a matrix factorization (MF)
model (Koren et al., 2009) using both OL-Data and BT-Data. AUC of the trained MF model were
both over 83%, which assures that the online environment can provide nearly realistic feedbacks of
users. At each step, the online environment received a selected context (i.e.,a recommended item)
from the algorithm, and returned a user feedback (1 or 0) according to I(ŷ > γ), where I(·) is an
indicator function, ŷ is the predicted score by the trained MF model and γ is a tuned threshold that
the AUC can achieve the highest score.

C.5 COMPLETE RESULTS OF REWARD CURVES ON KUAIREC DATASET
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(a) SBUCB on KuaiRec Dataset
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(b) EXP3-B on KuaiRec Dataset
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(c) BLTS-B on KuaiRec Dataset

Figure 6: Average rewards of baselines and the proposed AdaO2B equipped with the best data
selection approach on testing data of KuaiRec dataset, where N denotes the number of episodes in
the batch testing phase.

4https://kuairec.com
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C.6 COMPLETE RESULTS OF PARAMETER ANALYSIS

This section empirically studied the impact of the number of candidate policies (i.e.,K). A larger K
means the, more candidate policies and data buffers are stored for conducting the O2B conversion.
We conducted experiments to test the performance of AdaO2B with different K values. The results
illustrated in Figure 7 and Figure 8 indicate that AdaO2B equipped with different bandit backbones
and data selection approaches are all not sensitive to the parameterK, demonstrating the effectiveness
of the online to batch conversion in AdaO2B. Besides, the data-dependent approach had lower
variances w.r.t. the parameter K than the other two data selection approaches.
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(a) Bandit backbone: SBUCB; Data
selection: S
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(b) Bandit backbone: SBUCB; Data
selection: R
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(c) Bandit backbone: SBUCB; Data
selection: D
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(d) Bandit backbone: EXP3-B; Data
selection: S
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(e) Bandit backbone: EXP3-B; Data
selection: R
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(f) Bandit backbone: EXP3-B; Data
selection: D
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(g) Bandit backbone: BLTS-B; Data
selection: S
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(h) Bandit backbone: BLTS-B; Data
selection: R
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(i) Bandit backbone: BLTS-B; Data
selection: D

Figure 7: Performance comparison of AdaO2B and all baselines with different number of candidate
policies K and different data selection process on the synthetic dataset and KuaiReC dataset. “S/R/D”
denote the Sliding window approach, Reservoir sampling approach, and Data-dependent approach,
respectively.
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(a) Bandit backbone: SBUCB; Data
selection: S
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(b) Bandit backbone: SBUCB; Data
selection: R
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(c) Bandit backbone: SBUCB; Data
selection: D
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(d) Bandit backbone: EXP3-B; Data
selection: S
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(e) Bandit backbone: EXP3-B; Data
selection: R
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(f) Bandit backbone: EXP3-B; Data
selection: D
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(g) Bandit backbone: BLTS-B; Data
selection: S
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(h) Bandit backbone: BLTS-B; Data
selection: R
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(i) Bandit backbone: BLTS-B; Data
selection: D

Figure 8: Performance comparison of AdaO2B and all baselines with different number of candidate
policiesK and different data selection process on the real-world KuaiRec dataset. “S/R/D” denote the
Sliding window approach, Reservoir sampling approach, and Data-dependent approach, respectively.

18


	Introduction
	Related Work

	Problem Formulation
	OOD Generalization Analysis
	AdaO2B: The Proposed Algorithm
	Data Selection
	Model Formulation and Training

	Experiments
	Experimental Settings
	Experimental Results and Analyses

	Conclusion
	Detailed Proofs in Theoretical Analysis
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2

	Diagram illustrating three data selection approaches
	Detailed Experimental Settings and More Experimental Results
	Implementation Details
	Data Preparation
	Evaluation metrics
	Evaluation Protocols on Real-World Data
	Complete Results of Reward Curves on KuaiRec Dataset
	Complete Results of Parameter Analysis


