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Abstract

We report distribution-free bounds for any contrast between the probabilities of the potential out-
come under exposure and non-exposure when the confounders are missing not at random. We
assume that the missingness mechanism is outcome-independent. We also report a sensitivity anal-
ysis method to complement our bounds.
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1. Introduction

This article is concerned with causal effect estimation in the graph in Figure 1, where E denotes the
exposure, D denotes the outcome, and U denotes the confounder. Moreover, £ and D are binary,
and U is categorical. While F and D are fully observed, U is partially observed. The binary random
variable R indicates whether the value of U is observed (R = 0) or missing. In the causal graph in
Figure 1, the dashed edges represent the missingness mechanism.

Mohan and Pearl (2021) classify missingness mechanisms into three types:

* missing completely at random (MCAR) if R1 D, FE,U, and
* missing at random (MAR) if R LU|D, E, and
* missing not at random (MNAR) otherwise.

Therefore, the missingness mechanism in the graph in Figure 1 is MNAR. More specifically, it is
outcome-independent MNAR because R L D|E,U. This mechanism is plausible if R is measured
before D. Previous works studying such a mechanism include those by Ding and Geng (2014) and
Yang et al. (2019).

Two of the most common approaches to deal with missing data are arguably complete case
analysis and multiple imputation (Rubin, 1987). The former simply drops all the cases with missing
values and analyzes the remaining cases. The latter replaces each missing value by multiple values
drawn from the posterior distribution of the missing value given the complete data, so as to ac-
count for the uncertainty about the missing value. The imputed values are used to create completed
datasets that are analyzed as if there had been no missing data. The results obtained from the com-
pleted datasets are then combined. Complete case analysis gives unbiased estimates only under the
MCAR mechanism, whereas multiple imputation gives unbiased estimates only under the MCAR
and MAR mechanisms. Therefore, neither method should be expected to recover the risk ratio (or
any other contrast) from the observed probability distributions {p(D, E,U, R =0),p(D,E,R=1)}
for the causal graph in Figure 1. However, the risk ratio can be recovered for this graph by solving a
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Figure 1: Causal graph where the dashed edges represent the missingness mechanism.

system of linear equations if U does not have more categories than D (Ding and Geng, 2014; Yang
et al., 2019). Therefore, this method is not suitable for our problem either, since U can have any
number of categories.

Since in general point estimation is not possible under MNAR confounding, sensitivity analysis
methods have been developed. Egleston and Wong (2009) present a method for sensitivity analysis
under MNAR confounding for survival analysis, which thus is not suitable for our goal of estimating
the risk ratio (or any other contrast). Moreover, the authors assume a particular model for the
missingness mechanism, which we do not. Lu and Ashmead (2018) present another method for
sensitivity analysis under MNAR confounding. The method bounds the p-value of a test of no
causal effect as a function of a sensitivity parameter, which is different from our aim of estimating
a contrast.

Finally, it is worth mentioning some works that address problems close to ours. Horowitz and
Manski (2020) derive sharp bounds for the risk difference conditioned on the state of the con-
founders under MNAR confounding. How to combine these bounds to produce sharp bounds of the
risk difference is an open problem. Mohan and Pearl (2021) give examples where the risk ratio is re-
coverable under MINAR for some variables but the confounders, which are fully observed. Sun and
Fu (2023) establish conditions for recoverability of the risk difference under treatment-independent
MNAR confounding, i.e., R 1 E|D,U. This missingness mechanism is also considered by Miao
and Tchetgen Tchetgen (2018) to prove parameter identification in some semiparametric models.

The rest of this article is organized as follows. We derive distribution-free bounds for any con-
trast in Section 2, and compare them to complete case analysis and multiple imputation with an
example and simulated experiments in Sections 2.1 and 2.2. We complement our bounds by deriv-
ing a sensitivity analysis method in Section 3, which we illustrate with an example and simulated
experiments in Sections 3.1 and 3.2. We close with a brief discussion in Section 4. The R code for
our examples and experiments is available here.

2. Bounds

The causal graph in Figure 1 represents a non-parametric structural equation model with indepen-
dent errors, which defines a joint probability distribution p(D, E,U, R). We make the usual as-
sumption that p(D, E,U, R = 0) > 0 so that recoverability of a quantity from p(D, E,U, R = 0)
can be judged from the graph (Mohan and Pearl, 2021). We use upper-case letters to denote random
variables, and the same letters in lower-case to denote their values.


https://www.dropbox.com/scl/fi/9qwg5758jgol2y6mvx9z3/MNAR5.R?rlkey=kfqaqrgcqapo7vs6rg318zxjd&st=appkqg1t&dl=0
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Let D, denote the potential outcome when the exposure is set to level ' = e. Note that

p(De=1)=p(D.=1|E=e)p(E=¢)+p(De=1E=1-e)p(E=1-e)
=p(D=1|E=e)p(E=¢€)+p(De=1E=1-¢)p(E=1-¢) (1

where the second equality follows from counterfactual consistency, i.e., £ = e = D, = D. More-
over,

p(De=1E=1-¢)=p(D.=1E=1-¢,R=0)p(R=0/E=1-¢)
i p(De=1E=1-e,R=1)p(R=1E=1—¢)

where

p(De:1|E:1—6,R:O):Zp(D:1]E:6,U:u,R:0)p(U:u]E:1—e,R:O)

due to D, 1 E|U, R for all e in the causal graph under consideration, and counterfactual consistency. '
We next bound p(D, = 1|E' =1 -e, R = 1) in terms of recoverable quantities. Specifically,

p(De=1E=1-¢,R=1)
=>pD=1E=e,U=u,R=1)p(U=ulE=1-¢,R=1)

=>p(D=1E=e,U=u,R=0)p(U =ulE=1-¢,R=1) ()

u
where the first equality follows from D, L E|U, R for all e in the causal graph under consideration,
and counterfactual consistency, and the second equality follows from D 1L R|E,U in the causal

graph under consideration (i.e., outcome-independent MNAR confounding). Since p(U|E, R = 1)
is not recoverable,” we resort to bounding p(D, = 1|E =1 -¢,R=1) as

m(e)<p(D.=1E=1-e,R=1) < M(e)

where

m(e) =minp(D =1|E =e,U =u,R=0).
and

M(e) =maxp(D=1|E=e,U =u,R=0).
Incorporating these bounds in Equation 1 gives the following bounds of p(D, = 1):
p(D=1,E=¢€e)+p(D.=1E=1-¢,R=0)p(R=0,E=1-¢)+p(R=1,E=1-¢)m(e)
<p(De=1) < (3)
min (1,p(D=1,E=e)+p(De=1|E=1-¢,R=0)p(R=0,E=1-¢€)+p(R=1,E=1-¢e)M(e)).

1. In the previous equation, we could drop R = 0 from the conditioning set since D 1 R|E,U. However, we pre-
fer to keep it to explicitly indicate that p(D|E,U) can be recovered from the observed probability distribution
p(D,E,U,R=0)asp(D|E,U,R=0).

2. Otherwise p(U|E) would be recoverable as p(U|E, R = 0)p(R = 0|E) + p(U|E, R = 1)p(R = 1|E), which is not
(Mohan and Pearl, 2021, Theorem 3).
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Finally, we can obtain a lower (resp. upper) bound for any contrast between p(D; = 1) and
p(Do = 1) by contrasting the lower (resp. upper) bound for p(D; = 1) and the upper (resp. lower)
bound for p(Dg = 1) in the previous equation. For instance, we can obtain bounds for the risk ratio,
risk difference, odds ratio, odds difference, etc. Note that the bounds are distribution-free, i.e., we
make no assumptions about the distribution of the confounding mechanism. However, they are not
sharp (see the appendix).

2.1. Example

Consider the following distribution p(D, E, U, R) compatible with the causal graph in Figure 1 and
where U is ternary:

p(U) = (0.4,0.5,0.1)

(
p(E =1|U) = (0.3,0.1,0.2)
(D=1E=0,U) = (0.1,0.9,0.7)
(

(

(

S

p(D=1|E=1,U) = (0.8,0.3,0.2)
p(R=1|E=0,U) = (0.1,0.95,0.85)
p(R=1|E=1,U) = (0.2,0.8,0.9).

Let U represent the income of the individuals in the population. The treatment has a positive
effect on low income individuals (U = 0), but it has a negative effect on medium and high income
individuals. Low income individuals are more likely to report their income status than medium and
high income individuals.

Since we have access to the data generation process, we can compute the true risk ratio R Ryqye =
p(D1 =1)/p(Dg = 1) by adjusting for U, that is

p(Dezl):Zp(D:1|E=e,U:u)p(U:u). 4)

In reality, when the data generation process is unknown, we can perform a complete case analysis,
which in our case amounts to adjusting for U|R = 0, that is replacing p(U) in Equation 4 with
p(U|R = 0). We refer to this quantity as RRcc. We can also apply multiple imputation to obtain a
quantity that we refer to as RR ;. In our case, this amounts to replacing p(U) in Equation 4 with

p(UR=0)p(R=0)+p(R=1) Zp(U|D =d,E=e,R=0)p(D=d,E=¢/R=1). (5
d,e

We explain next the correspondence between the terms in this equation and the steps in multiple
imputation applied to an incomplete dataset (recall Section 1). The first term in the sum corre-
sponds to the distribution of U derived from the complete cases, whereas the second term in the
sum corresponds to the distribution of U derived from the cases completed through imputation.
The term p(U|D = d,E = e, R = 0) represents the uncertainty in the value to impute for the in-
complete cases where D = d and E' = e, which is assessed from the complete cases. The term
p(D =d,E = e|R = 1) represents the fraction of incomplete cases where D = d and E = e. Fi-
nally, our alternative to complete case analysis and multiple imputation is to lower and upper bound
RRyyye, respectively, by
LB =LB(1)/UB(0)
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Table 1: Results of the experiments in Section 2.2 (in percentages).

Missingness | Method | Biased | Wrong log-sign | Out bounds | Both
MCAR CC 0 0.0 00| 0.0
MI 0 0.0 00| 0.0
MAR CC 100 4.3 59| 0.7
MI 0 0.0 00| 0.0
MNAR CC 100 9.3 154 26
MI 100 7.5 8.9 1.2
MNARex CC 100 20.7 414 | 11.6
MI 100 16.1 258 | 53

and

UB =UB(1)/LB(0)

where LB(e) and U B(e) denote the lower and upper bounds of p(D, = 1) in Equation 3.

In this example, RRye = 0.88, RRcco = 3.94 and RRy;; = 2.01. Our bounds constrain
RRyyye to lie in the interval [0.74,1.44]. Therefore, RRcc and RRyy; are so biased that they
wrongly suggest a positive effect of the treatment on the whole population. Moreover, they are
so biased that they lie outside our interval, and thus they are not logically possible. The reason
of this is that the majority of the complete cases correspond to the subpopulation U = 0 (i.e., low
income individuals), who benefit from the treatment. Specifically, compare p(U = 0) = 0.4 with
p(U =0|R =0) = 0.88 and 0.7 for Equation 5 with U = 0.

Note that our interval includes the null causal effect RR = 1. This is a consequence of the
non-recoverability of the association between E and U, which may be so strong as to nullify the
causal effect or even reverse it. Note though that our interval does not need to be centered at the
null causal effect, and thus it may be informative about both the magnitude and log-sign of the true
causal effect. In any case, recall that our bounds are distribution-free.

2.2. Experiments

We report some experiments that provide additional evidence on the observations made with the
previous example. Specifically, we generate 10° distributions p(D, E,U, R) compatible with the
causal graph in Figure 1 and where U is ternary. All the parameters are sampled uniformly from
the interval [0, 1]. This corresponds to a MNAR mechanism. We count the number of generated
distributions where (i) RRcc and RR )y disagree with R Ry (i.€., the former are biased), (ii) they
disagree on the log-sign (i.e., they disagree on whether the treatment is beneficial or not), (iii) RRc¢
and RRr are outside the bounds derived in Section 2, and (iv) both (ii) and (iii) occur. We repeat
the experiments after removing the edge U -> R, which corresponds to a MAR mechanism. Finally,
we do the same removing both incoming edges to R, which corresponds to a MCAR mechanism.
The first six rows of Table 1 present the results (in percentages). These follow the expected pat-

tern discussed in Section 1, namely RRcoc and RR);; are unbiased under the MCAR mechanism,
RRcc is biased and RRj;; unbiased under the MAR mechanism, and both RRoc and RR;;
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are biased under the MNAR mechanism.® For the MNAR mechanism, moreover, a non-negligible
percentage of RRcc and RR)sr have incorrect log-sign and/or lie outside our bounds. Some par-
ticular missingness patterns may exacerbate these problems. For instance, the last two rows of Table
1 present the results of repeating our experiments but keeping p( R|E, U) fixed to the values in Sec-
tion 2.1. Therefore, our bounds are a safe alternative to RRcc and RR);, as they always include
R Ry Moreover, recall that they are distribution-free.

Our experiments provide additional evidence on the bias induced by complete case analysis and
multiple imputation under MNAR confounding, which is related to the bias induced by adjusting
for a proxy of an unmeasured confounder (Gabriel et al., 2022). More specifically, one can see
complete case analysis and multiple imputation as adjusting for a sort of proxy of an unmeasured
confounder, in the sense that they adjust for an imperfect version of the confounder, which consists
of only complete cases in the former solution and complete and imputed cases in the latter.

3. Sensitivity Analysis

Unlike in the previous section, we now bound any contrast of interest in terms of some user-defined
parameters. Recall that p(U|E, R = 1) is not recoverable. Let us define the sensitivity parameters

a(e) =minp(U =ulE=e,R=1)

and
B(e) =maxp(U =u|E=e,R=1)

whose values the analyst has to specify for all e. By definition, these values must lie in the interval
[0,1] and a(e) < 3(e). The observed data distributions constrain the valid values further. To see it,
note that

p(D=1E=¢,R=1)=) p(D=1E=e,U=u,R=1)p(U=ulE=¢,R=1)
=>p(D=1E=e,U=u,R=0)p(U=u|E=¢,R=1)
>a(e) Y. p(D=1E=¢e,U=u,R=0)

where the second equality follows from R 1 D|E, U, and thus

ae) <min(1,p(D=1|E=e,R=1)/>.p(D=1|E=¢,U =u,R=0))

and likewise

B(e) >min(1,p(D=1|E=e,R=1)/Yp(D=1|E=e,U =u,R=0)).

We can thus define the feasible regions for a(e) and 5(e) as

0<a(e)<min(l,p(D=1|E=¢e,R=1)/Y.p(D=1|E=¢,U=u,R=0))<B(e) <1.

3. In these experiments, complete case analysis can be made unbiased for the MAR mechanism by first recovering
p(D, E,U), which is recoverable for that mechanism in the causal graph under consideration (Mohan and Pearl,
2021, Theorem 1).
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Now, note that Equation 2 implies that

a(l-e)> p(D=1E=¢e,U=u,R=0)

<p(De=1E=1-¢,R=1)< (6)
B(l-e)> p(D=1E=¢,U=u,R=0).

Therefore, as before, we can incorporate these bounds in Equation 1 to bound p(D, = 1), which
allows us to obtain a lower (resp. upper) bound for any contrast between p(D; = 1) and p(Dg = 1)
by contrasting the lower (resp. upper) bound for p(D; = 1) and the upper (resp. lower) bound
for p(Dy = 1). However, the bounds are not sharp (see the appendix). To ensure that the bounds
include the true value of the contrast, the analyst has to choose values for «(e) and 3(e) such that
Equation 6 holds. In other words, the analyst has to choose values for a(e) and 3(e) such that

ale) <minp(U=u|lE=¢,R=1)

and
B(e) >minp(U =ulE=¢e,R=1)

but she can never be certain of this, since p(U|E, R = 1) is not recoverable. To put it differently,
some values in the feasible regions of «(e) and 5(e) may result in bounds that do not contain the
true value of the contrast. Even if they do contain it, there is no guarantee that these bounds are
narrower than the distribution-free bounds derived in Section 2. Finally, the fact that each bound
only involves two sensitivity parameters (i.e., «(0) and 3(1) for the lower bound, and «(1) and
£(0) for the upper bound) makes the sensitivity analysis easy to visualize in tables or 2-D plots.*
We illustrate these observations in the next two sections.

3.1. Example

We illustrate our sensitivity analysis method with the example in Section 2.1. Figure 2 shows the
bounds of RR; e as a function of the sensitivity parameters. The axes span the feasible regions of
the parameters. In the data generation model considered, «(0) = 0.05, (1) = 0.22, 5(0) = 0.82 and
B(1) = 0.49. These values are unknown to the analyst, because p(U|E, R = 1) is not recoverable.
However, the figure reveals that the analyst only needs to have some rough idea of these values to
confidently conclude that R Ry, lies in the interval [0.6,1.7]. Note that this interval is wider than
the distribution-free interval reported in Section 2.1. We investigate this question further in the next
section. Narrower intervals can be obtained at the risk of excluding R R;... For instance, choosing
a(0) = B(1) = 0.4 results in a lower bound of 1.05, whereas RRy,, = 0.88. Therefore, the analyst
should act conservatively and choose values that she believes are not greater (resp. smaller) than the
unknown true values of a(e) (resp. 5(e)).

4. If the analyst considers that having to specify four sensitivity parameters is too demanding, then one can derive
a similar sensitivity analysis method with just two parameters, namely o = mine ., p(U = u|E = ¢, R = 1) and
B =maxe.p(U=ulE=eR=1).
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Figure 2: Bounds for the example in Section 3.1.
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Table 2: Results of the experiments in Section 3.2 (in percentages).
Factor | RRyqe included | LB narrower | UB narrower ‘ Both narrower

0.9 99.7 26.6 26.6 16.5
1 100 18.9 18.9 10.7
1.1 100 13.2 13.2 6.7
1.2 100 9.3 9.2 4.1

3.2. Experiments

We report some experiments showing that, unlike in the previous section, our sensitivity analy-
sis method quite often produces bounds that are narrower than those derived in Section 2, while
including RRy .. Specifically, we generate 108 distributions p(D, E,U, R) compatible with the
causal graph in Figure 1 and where U is ternary. All the parameters are sampled uniformly from
the interval [0, 1]. This corresponds to a MNAR mechanism. For each distribution generated, we
compute the true values of the sensitivity parameters, which we denote by a*(e) and 3*(e). These
are unknown to the analyst. Instead, the analyst chooses values for the sensitivity parameters as

a(e) =min(1,a”(e)/f)

and
B(e) =min(1, 8%(e) - f)

with factor f = 0.9,1,1.1,1.2. This amounts to considering four types of analysts, from slightly
risky (i.e., f = 0.9) to optimal (i.e., f = 1) to conservative (i.e., f = 1.1,1.2). For each analyst type,
we count the number of generated distributions where (i) the sensitivity analysis bounds include
RRyrue, (1) the sensitivity analysis bounds are narrower than the distribution-free bounds derived
in Section 2.

Table 2 presents the results (in percentages). As expected, the larger the factor f the wider the
sensitivity analysis interval, and thus the less likely to improve the distribution-free bounds but the
more likely to include RR; . Being slightly risky (i.e., f = 0.9) improves the distribution-free
bounds without missing R Ry, in most cases. Being conservative (i.e., f = 1.1, 1.2) improves the
distribution-free bounds in a sizeable number of cases without never missing R Ryyye. In summary,
if the analyst is able to produce relatively accurate values for the sensitivity parameters, then there
is a good chance that our sensitivity analysis method returns bounds that include R Ry and are
narrower than the distribution-free ones. This calls for combining both pairs of bounds by taking
the narrowest ones.

4. Discussion

We have derived distribution-free bounds for any contrast between the probabilities of the potential
outcome under exposure and non-exposure when there is outcome-independent MNNAR confound-
ing. Our bounds are therefore a safe alternative to commonly used solutions such as complete case
analysis and multiple imputation which can be very biased, as shown by our example and experi-
ments. We have complemented our bounds with a sensitivity analysis method to produce narrower
bounds.
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We have derived the results for binary outcomes but they also hold for ordinal and continuous
outcomes, provided that the estimand of interest is a contrast between the expectations of the po-
tential outcomes, i.e., E[D;] and E[ Dg]. To see it, first replace p(D; = 1) and p(Dy = 1) in the
derivations above with E[ D1 ] and E[ Dy ], since they are equivalent for a binary outcome D. Then,
note that most of our derivations are applications of the law of total expectation, which applies to
any type of random variable.

In the future, we would like to derive similar bounds and/or a sensitivity analysis method for
standard MNAR confounding. An extension of our work that we are currently studying is the case
where the analyst does not specify the values of the sensitivity parameters but their distribution. We
can then use Mote Carlo simulation to approximate the distributions of the lower and upper bounds
for any contrast: Sample values for the sensitivity parameters, compute the bounds, and repeat. We
can finally use the approximated distributions to approximate the expectations of the bounds or the
probabilities that the bounds are smaller or bigger than a given value.

Finally, it is worth mentioning that the problem considered in this article has a straightforward
solution via the data fusion approach proposed by Wang et al. (2024). This approach consists in
augmenting the primary MNAR dataset with some hopefully available MAR dataset. In our prob-
lem, the primary dataset is over { D, E, U } where U is MNAR and thus p(D|E, U) can be estimated
as p(D|E,U, R = 0), and the auxiliary dataset should be over { £, U} where U is MAR and thus
p(U|E) can be estimated as p(E, U|R = 0)/p(E|R = 0) and used in the place of p(U|E, R = 1) for
the primary dataset. Plugging these estimates into Equation 2 gives the desired answer.
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Appendix A. On the Sharpness of the Bounds

We show below that the distribution-free bounds derived in Section 2 are not sharp. Let the set
{p(D,E,U,R=0),p'(D,E,R = 1)} represent the observed data distributions at hand. To show
that the lower bound for p(D; = 1) in Equation 3 is sharp, we need to construct a distribution
p(D,E,U, R) such that (i) {p(D,E,U, R =0),p(D,E,R = 1)} coincides with {p’(D, E,U, R =
0),p (D, E,R = 1)}, and (ii) the lower bound for p(D; = 1) coincides with p(D; = 1). To this
end, set p(R) = p'(R), p(D,E,UR=0)=p'(D,E,UR=0),and p(E|R=1) =p'(E|R =1).
Note that condition (ii) requires that p(D; = 1|E = 0, R = 1) = m(1), which implies by Equation 2
that we need to set p(U = v*|E =0,R =1) = 1 if and only if v* = argmin, p'(D = 1|E = 1,U =
u, R = 0). Note also that condition (i) requires the following equality to hold:

p(D=1E=0,R=1)=Yp(D=1E=0,U=u,R=1)p({U=u|/E=0,R=1)

=S p(D=1E=0,U=u,R=0)p(U =u|E=0,R=1)
u

where the second equality follows from R 1 D|E,U. Combining these two requirements implies
that p(D = 1|EF =0,R=1) = p(D = 1|E = 0,U = u*, R = 0), which implies that p’(D = 1|E =
0,R=1)=p(D=1|FE =0,U = u*, R = 0) by condition (i). However, this does not need to be
true. Therefore, the lower bound for p(D; = 1) in Equation 3 is not sharp.

Similarly, we show below that the sensitivity analysis bounds derived in Section 3 are not sharp.
Let the set {p’(D, E,U,R=0),p'(D, E, R = 1)} represent the observed data distributions at hand,
and consider a(0) = a(1) = 0 and 5(0) = 5(1) = 1. Note that these values belong to the feasibility
regions. To show that the lower bound for p(D; = 1) is sharp, we need to construct a distribution
p(D, E,U, R) such that (i) {p(D,E,U,R = 0),p(D, E,R = 1)} coincides with {p'(D,E,U, R =
0),p'(D,E,R = 1)}, (ii) the true values of the sensitivity parameters for p(D, E,U, R) coincide
with {a(0),a(1), 5(0),8(1)}, and (iii) the lower bound for p(D; = 1) coincides with p(D; = 1).
To this end, set p(R) = p'(R), p(D, E,U|{R=0) =p'(D,E,U/R=0),andp(E|R=1) =p'(E|R =
1). Note that condition (iii) requires that p(D; = 1|E = 0, R = 1) = 0 by Equation 6, which implies
by Equation 2 that we need to set p(U = u|E = 0,R = 1) = 0 for all u, because we assumed in
Section 2 that p(D, E,U, R = 0) > 0. This is not possible, and thus the lower bound for p(D; = 1)
is not sharp.
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