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Abstract

Two-stage methods have dominated Human-Object Interaction (HOI) detection for
several years. Recently, one-stage HOI detection methods have become popular. In
this paper, we aim to explore the essential pros and cons of two-stage and one-stage
methods. With this as the goal, we find that conventional two-stage methods mainly
suffer from positioning positive interactive human-object pairs, while one-stage
methods are challenging to make an appropriate trade-off on multi-task learning,
i.e., object detection, and interaction classification. Therefore, a core problem is
how to take the essence and discard the dregs from the conventional two types of
methods. To this end, we propose a novel one-stage framework with disentangling
human-object detection and interaction classification in a cascade manner. In detail,
we first design a human-object pair generator based on a state-of-the-art one-stage
HOI detector by removing the interaction classification module or head and then
design a relatively isolated interaction classifier to classify each human-object pair.
Two cascade decoders in our proposed framework can focus on one specific task,
detection or interaction classification. In terms of the specific implementation, we
adopt a transformer-based HOI detector as our base model. The newly introduced
disentangling paradigm outperforms existing methods by a large margin, with
a significant relative mAP gain of 9.32% on HICO-Det. The source codes are
available at https://github.com/YueLiao/CDN.

1 Introduction

The goal of Human-Object Interaction (HOI) detection [2, 20, 6, 18, 7, 8, 17, 3] is to make a machine
detailedly understand human activities from a static image. Human activities in this task are abstracted
as a set of <human, object, action> HOI triplets. Thus, an HOI detector is required to locate human-
object pairs and classify their corresponding action simultaneously. Based on this definition, we
can summarize conventional HOI detection methods into two paradigms, i.e., two-stage methods,
and one-stage methods. These two paradigms have made significant progress with the development
of deep learning, but both paradigms still have their shortcomings due to their structural design.
This paper aims to present a detailed analysis of methods under these two paradigms and propose a
solution to mine the benefits of two-stage and one-stage methods.

We first take a closer look at the conventional two-stage and one-stage HOI detectors. Conventional
two-stage methods [6, 2, 18, 5] are mostly with a serial architecture. As shown in Figure 1 (a),
two-stage methods detect humans and objects first and then feeds the human-object pairs, which
are generated by matching humans and objects one by one, into an interaction classifier. The serial
architecture suffers from locating the interactive human-object pairs under the interference of a
large number of negative pairs only based on local region features. Otherwise, the efficiency of
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Figure 1: (a) Two-stage framework, (b) one-stage end-to-end framework, (c) one-stage framework
with parallel architecture, and (d) our one-stage framework with a cascade disentangling head.

two-stage methods is also limited by the serial architecture. To alleviate these problems, one-stage
methods [20, 13, 39, 3, 28, 14] are proposed to detect the HOI triplets directly and break HOI
detection as multi-task learning, i.e., human-object detection and interaction classification, which is
shown in Figure 1(b). Therefore, one-stage methods can easily focus on the interactive human-object
pairs and effectively extract corresponding features in an end-to-end manner. However, it is difficult
for a single model to make a good trade-off on multi-task learning since human-object detection and
interaction classification are two very different tasks, which requires the model to focus on different
visual features. As shown in Figure 1(c), though some previous methods [20, 3] design two parallel
branches to detect instances and predict interaction respectively, the interaction classification branch
still needs to regress additional offsets to associate humans and objects. Thus the interaction branch is
also required to make a trade-off between interaction classification and human and object positioning.

Therefore, the intuitive idea is to take the essence and discard the dregs from the two paradigms. To
attain this, we propose a novel end-to-end one-stage framework with disentangling human-object
detection and interaction classification in a cascade manner, namely Cascade Disentangling Net-
work (CDN). The original intention of our framework is to keep the advantages of conventional one-
stage methods, directly and accurately locating the interactive human-object pairs, and bring
the advantages of two-stage methods into our one-stage framework, disentangling human-object
detection and interaction classification. As shown in Figure 1(d), in our proposed framework, we
design a human-object pair decoder based on the one-stage paradigm by removing the interaction
classification function, namely HO-PD, and following an isolated interaction classifier. To instantiate
our idea with an end-to-end manner, we design the HO-PD based on the previous state-of-the-art
one-stage transformer-based HOI detector, HOI-Trans [39] and QPIC [28], where we remove the
interaction classification head for each query and make it focus on human-object pairs detection.
Otherwise, we design an independent HOI decoder for interaction classification to make the interac-
tion classification unaffected by human-object detection. Therefore, there exists a core problem, i.e.,
how to link the human-object pair and the corresponding action class. To address this problem, we
initialize the query embedding of the HOI decoder with the output of the last layer of the HO-PD.
In this case, the HOI decoder is able to learn the corresponding action category under the guidance
of the query embedding and free out from the human-object detection task. Moreover, we design a
decoupling dynamic re-weighting manner to handle the long-tailed problems in HOI detection.

Our contributions can be summarized threefold: (1) We conduct a detailed analysis of two conven-
tional HOI detection paradigms, i.e., two-stage and one-stage. (2) We propose a novel one-stage
framework with a cascade disentangling decoder to combine the advantages of two-stage and one-
stage methods. (3) Our method outperforms previous state-of-the-art methods by a large margin on
the HOI detection task, especially achieves a 25.35% performance gain on rare classes of HICO-Det.

2 Analysis of Two-stage and One-stage HOI detectors

We first introduce a unified formulation for the HOI detection problem. Given a human-centric image
I , the model T (·) is required to predict a set of HOI triplets S = {(bhi , boi , ai), i ∈ {1, 2, · · · ,K}},
where bhi , boi and ai denotes a human bounding-box, an object bounding-box and their corresponding
action category, respectively.

Two-stage HOI detector. Two-stage detectors can be regarded as an instance-driven manner, detect-
ing instances first and predicting interaction based on the detected instances. The two-stage detector
divides T (·) into two stages, i.e., detection Td(·) and interaction classification Tc(·). In the first stage,
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we suppose that Td(·) produces M human bounding-boxes and N object bounding-boxes. Here the
‘object’ is a universal object which includes human as one class. Therefore, Td(·) generates M ×N
human-object pairs. In general, the number of true-positive interactive human-object pairs, denoted as
K ′, is much smaller than M ×N . However, in the second stage, Tc(·) needs to scan all M ×N pairs
one by one and predict an action category with its corresponding confidence score. In this case, Tc(·)
is required to inference M ×N times to find K ′ interactive pairs from M ×N pairs. We argue that
this manner causes three problems. Firstly, these models produce a more additional computational
cost, whose time complexity is O(M ×N)� O(K ′). Secondly, the imbalance between positive
and negative samples makes the model easily overfit to negative samples. Thus the model tends
to assign a ‘no-interaction’ class for human-object pairs with very high confidence, suppressing
the true-positive samples. Thirdly, the accuracy of interaction classification is influenced by the
non-end-to-end pipeline. Because the interaction classification is mostly based on the region features
extracted by Td(·), while the core of Td(·) is to regress bounding-boxes and its extracted features
pay more attention to the edge of regions, thereby such features are not good options for interaction
classification, which needs more context. However, it is an excellent property for two-stage methods
that disentangling detection and interaction classification makes each stage focus on its task and
produce good results in each stage.

One-stage HOI detector. As for one-stage methods, they detect all HOI triplets S directly and
simultaneously with an end-to-end framework. Such paradigm has greatly relieved the three problems
of two-stage methods, especially for efficiency, where the time complexity is reduced to O(K ′).
Most one-stage methods are interaction-driven, which directly locate the interaction point [20]
or interactive human-object pairs [39], thereby reducing negative sample interference. However,
coupling human-object detection and interaction classification limit their performance because it is
hard to generate a unified feature representation for two very different tasks. Though the parallel
one-stage methods break HOI detection into two parallel branches, their interaction branch still suffers
from multi-task learning. Specifically, the optimization target of interaction branch is P(eh, eo, a|V ),
where eh and eo are associative embeddings, e.g., offset, to match interaction with human and object
respectively. Therefore, even if detection is organized as an independent branch, the interaction
branch must position humans and objects for the association. The set-based detectors couple detection
and interaction completely, whose optimization function is P(bh, bo, a|V ).

Next, we introduce a simple one-stage framework with disentangling human-object detection and
interaction classification, namely CDN, to mine the benefits of two-stage and one-stage HOI detectors.
Our CDN disentangles the original set-based one-stage optimization function into two cascade
decoders. Firstly, we predict human-object pair by P(bh, bo|V ). Secondly, we apply an isolated
decoder to predict the action category by P(a|V , bh, bo). More details are in the following.

3 Method
In this section, we will present a detailed introduction to the pipeline of our proposed CDN. In
section 3.1, we present an overview of our framework and briefly introduce the pipeline. In section 3.2,
we introduce the visual feature extractor. The cascade disentangling HOI decoder is introduced
in section 3.3. Section 3.4 introduces a novel dynamic re-weighting mechanism that mitigates the
long-tailed problem. The detailed training process and post-processing are discussed in section 3.5.

3.1 Overview
The architecture of our proposed CDN is illustrated in Figure 2. Our CDN is organized in a cascade
manner with a visual feature extractor. Given an image, we first follow transformer-based detection
methods [1, 39] to apply a CNN followed by a transformer encoder architecture to extract visual
features into a sequence. Then we detect HOI triplets in two cascade decoders. Firstly, we apply
the Human-Object Pair Decoder (HO-PD) to predict a set of human-object bounding-boxes pairs
based on a set of learnable queries. Next, taking the output of the last layer of HO-PD as queries, an
isolated interaction decoder is utilized to predict the action category for each query. Finally, the HOI
triplets are formed by the output of the above two cascade decoders.

3.2 Visual Feature Extractor
We define the visual feature extractor by combining a CNN and a transformer encoder. Fed with
an input image I with shape (H,W,C), the CNN generates a feature map of shape (H

′
,W

′
, Db).
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Figure 2: The framework of our CDN. It is comprised of three components:Visual Feature Extractor,
Human-Object Pair Decoder (HO-PD) and Interaction Decoder. We first apply a CNN-transformer
combined architecture to extract sequenced visual features Xs. Then, we divide HOI detection
into two cascade transformer-based decoders. Firstly, we regress the human-object bounding-box
pairs based on Xs and a set of random-initialized queries Qd by HO-PD. The interactive score is
from a binary classification to determine whether the human-object pair is an interactive pair or not.
Secondly, we predict one or many action categories for each predicted human-object pairs, where we
take the output of HO-PD Qout

d to initialize the interaction queries Qc and aggregate information
with Xs. Finally, the HOI triplets are formed by the output of the cascade decoders.

Then, Db is reduced to Dc by a projection convolution layer with a kernel size 1× 1. Next, a flatten
operator is used to generating the flatten feature Xv ∈ R(H

′
×W

′
)×Dc by collapsing the spatial

dimensions into one dimension. This flatten feature is then fed into a transformer encoder and the
position encoding Epos ∈ R(H

′
×W

′
)×Dc , which distinguishes the relative position in the sequence

Xs ∈ R(H
′
×W

′
)×Dc . Thanks to the multi-head self-attention mechanism, the transformer encoder

produces a feature map with richer contextual information by summarizing global information. The
output of the encoder is denoted as global memory with a dimension of Dc.

3.3 Cascade Disentangling HOI Decoder
The cascade disentangling HOI decoder consists of two decoders: Human-Object Pair Decoder (HO-
PD) and interaction decoder. Both decoders share the same architecture, a transformer-based decoder,
with independent weights. In this subsection, we first introduce the general architecture of the decoder
and then elaborate on the two decoders in detail, respectively.

Transformer-based decoder. We follow the transformer-based object detector DETR [1] to design
the basic architecture in our cascade disentangling HOI decoder. We apply N transformer decoder
layers for each decoder and equip each decoder layer with several FFN heads for intermediate
supervision. Specifically, each decoder layer is comprised of a self-attention module and a multi-head
co-attention module. During feed-forward, fed into a set of learnable queries Q ∈ RNq×Cq , each
decoder layer first applies a self-attention module on all queries and then conducts a multi-head
co-attention operation between queries and the sequenced visual features, and outputs a set of updated
queries. For the FFN heads, each head is comprised of one or several MLP branches, and each
branch is for a specific task, e.g., regression, or classification. All queries share the same FFN heads.
Therefore, each decoder can be simply represented as:

P = f(Q,Xs,Epos). (1)

Besides, the number of queries Nq is determined by the number of positive samples of an image.

HO-PD. Firstly, we design the HO-PD to predict a set of human-object pairs from the sequenced
visual features. To this end, we first randomly initialize a set of learnable queries Qd ∈ RNd×Cq as
HO queries. Then we apply a transformer-based decoder, which takes HO queries Qd and sequenced
visual features as input and applies three FFN heads for each query to predict human bounding-box,
object bounding-box, and object class, which form a human-object pair. We also utilize an additional
interactive score head to simply determine whether the human-object pair is an interactive pair or
not by a binary classification. In this case, P is instantiated as Pho, which is consist of a set of
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human-object pairs {(bhi , boi ), i ∈ {1, 2, · · · , Nd}}. Thus, HO-PD can be denoted as:

Pho = fd(Qd,Xs,Epos). (2)

In addition, we keep the output queries of the last layer of HO-PD as Qout
d for the following step.

Interaction Decoder. Secondly, we propose the interaction decoder to classify the human-object
queries and assign one or several action categories for each human-object query. To classify each
human-object query one-to-one, we initialize Qc with the output of HO-PD Qout

d . In this way,
Qout
d can provide prior knowledge to guide Qc to learn the corresponding action categories for each

human-object query. The other components and inputs are the same as HO-PD, which conducts
self-attention among queries and co-attention with Xs and Epos. The final output is a set of action
categories Pcls : {ai, i ∈ {1, 2, · · · , Nd}}. Therefore, this process can be formulated as:

Pcls = fcls(Q
out
d ,Xs,Epos). (3)

In our proposed cascade disentangling HOI decoder, the task of HOI detection is disentangled into two
relatively independent steps: human-object pairs detection and interaction classification. Therefore,
each step can aggregate more related features to concentrate on its corresponding task.

3.4 Decoupling Dynamic Re-weighting
The HOI datasets usually have long-tail class distribution for both object class and action class. To
alleviate the long-tail problem, we design a dynamic re-weighting mechanism for further improve-
ments with a decoupling training strategy. In detail, we first train the whole model with regular losses.
Then, we freeze the parameters of the visual feature extractor and only train the cascade disentangling
decoders with a relatively small learning rate and the designed dynamic re-weighted losses.

During decoupling training, at each iteration, we apply two similar queues to accumulate number
of each object class or action class. The queues are used as memory banks to accumulate training
samples and truncate the accumulation with length LQ as sliding windows. In detail, Qo with length
LoQ to accumulate object number No

i for each object class i ∈ {1, 2, · · · , Co}, and Qa with length
LaQ to accumulate interaction number Na

i for each action category i ∈ {1, 2, · · · , Ca}. The dynamic
re-weighting coefficients wdynamic are presented as follow:

wai
∣∣
i∈{1,2,··· ,Ca}

=
(∑Ca

i=1Ni
Ni

)pa
, wabg =

(∑Ca

i=1Ni
Na
bg

)pa
, (4)

woi
∣∣
i∈{1,2,··· ,Co}

=
(∑Co

i=1Ni
Ni

)po
, wobg =

(∑Co

i=1Ni
No
bg

)po
, (5)

where Ni is the number of accumulated positive samples of category i by the queues Qo and Qa, Nbg
is the number of accumulated background samples, C is the number of categories, and exponent p is
a hyper-parameter that adapts the magnitude of mitigation. Specifically, the weight of background
class, wbg, is designed to balance the positives and negatives. For the stability of the dynamic
re-weighted training, the weight coefficients are initialized as wstatic with those calculated by 4 and
5 using the static number of object and action categories. The final dynamic weights are given as
w = γwstatic + (1 − γ)wdynamic, where γ is a smooth factor, given as min(0.999LQ , 0.9). The
factor γ transits w from wstatic to wdynamic with the increasing of LQ. Finally, the weights are used
to the classification losses in a traditional way by multiplying each coefficient to each class and then
calculating the summation.

3.5 Training and Post-processing
In this section, we introduce the training and inference processes in detail. Especially, we will
introduce a novel Pair-wise Non-Maximal Suppression (PNMS) strategy in the inference process.

Training. Following the set-based training process of HOI-Trans [39] and QPIC [28], we first match
each ground-truth with its best-matching prediction by the bipartite matching with the Hungarian
algorithm. Then the loss is produced between the matched predictions and the corresponding ground
truths for the final back-propagation. During matching, we consider the predictions of two cascade
decoders together. The loss of CDN follows QPIC which is composed by five parts: the box regression

5



loss Lb, the intersection-over-union loss LGIoU [26], the interactive score loss Lp, the object class
loss Loc , and the action category loss Lac . The target loss is the weighted sum of these parts as:

L =
∑

k∈(h,o)

(λbL
k
b + λGIoUL

k
GIoU ) + λpLp + λoL

o
c + λaL

a
c , (6)

where λb, λGIoU , λp, λo and λa are the hyper-parameters for adjusting the weights of each loss.

Inference. The inference process is to composite the output of instance-related FFNs and the
interaction-related FFN to form HOI triplets. By our cascade disentangling decoder architecture,
the instance queries and the interaction queries are one-to-one corresponding, therefore, the five
components <human bounding box, object bounding box, object class, interactive score, action class>
can be homologous in each of the Nd dimensions per FFN head. Formally, we generate the i-th
output prediction as <bhi , boi , argmaxkchoii (k)>. The HOI triplet score choii is given by choii = cai c

o
i c
p
i ,

where cai and coi are the scores of interaction and object classification, respectively, and cpi is the
interactive score from the interactive FFN head for the query vector being an human-object pair.

PNMS. After sorting choii in descending order and generating the top K HOI triplets, we design a
pair-wise non-maximal suppression (PNMS) method to further filter out human-object pairs from
pair-wise bounding boxes overlapping perspective. For two HOI triplets m and n, the pair-wise
overlap PIoU is calculated as:

PIoU(m,n) =
( I(bhm, bhn)
U(bhm, b

h
n)

)α( I(bom, bon)
U(bom, b

o
n)

)β
, (7)

where the operators I and U compute the intersection and union areas between the two boxes of m
and n, respectively. α and β are the balancing parameters between humans and objects.

4 Experiments

In this section, we conduct comprehensive experiments to demonstrate the superiority of our designed
CDN. In section 4.1, we briefly introduce the experimental benchmarks. Section 4.2 presents
implementation details. Next, It is a detailed experimental comparison and analysis of two-stage
and one-stage methods in section 4.3. In section 4.4, we compare our methods with the previous
state-of-the-art methods. The ablation studies and components analysis are included in 4.5.

4.1 Datasets and Evaluation Metrics

Datasets. We carry out experiments on two widely-used HOI detection benchmarks: HICO-Det [2]
and V-COCO [8]. We follow the standard evaluation scheme. HICO-Det consists of 47, 776 Creative
Common images from Flickr (38, 118 for training and 9, 658 for test) with more than 150K human-
object pairs. It contains the same 80 object categories as MS-COCO [21] and 117 action categories.
The objects and actions form 600 classes of HOI triplets. V-COCO is derived from MS-COCO
dataset, which consists of 5, 400 images in the trainval subset and 4, 946 images in the test subset. It
has 29 action categories (25 HOIs and 4 body motions) and 80 object categories. For both datasets,
one person can interact with multiple objects in different ways at the same time.

Evaluation Metrics. Following the standard evaluation [2], we use the mean average precision
(mAP) as the evaluation metric. For one positively predicted HOI triplet <human, object, action>, it
needs to contain accurate human and object locations (box IoU with reference to GT box is greater
than 0.5) and correct object and action categories. Specifically, for HICO-Det, besides the full set of
600 HOI classes, we also report the mAP over a rare set of 138 HOI classes that have less than 10
training instances and a non-rare set of the other 462 HOI classes. For V-COCO, we report the role
mAP for two scenarios: scenario 1 includes the cases even without any objects (for the four action
categories of body motions), and scenario 2 ignores these cases.

4.2 Implementation Details

We implement three variant architectures of CDN: CDN-S, CDN-B, and CDN-L, where ‘S’, ‘B’, and
‘L’ denote small, base, and large, respectively. For CDN-S and CDN-B, we adopt ResNet-50 with
a 6-layer transformer encoder as the visual feature extractor. For the cascade decoders, CDN-S is
equipped with both 3-layer transformers, while CDN-B has a 6-layer transformer for each decoder.
CDN-L only replaces the ResNet-50 with ResNet-101 in CDN-B. The reduced dimension size Dc
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is set to 256. The number of queries Nd is set to 64 for HICO-Det and 100 for V-COCO since the
average number of positives for variant human-object pairs per image of HICO-Det is smaller than
V-COCO. The human and object box FFNs have 3 linear layers with ReLU, while the object and
action category FFNs have one linear layer. The code is provided in supplemental material.

During training, we initialize the network with the parameters of DETR [1] trained with the MS-
COCO dataset. We set the weight coefficients λb, λGIoU , λp, λo and λa to 2.5, 1, 1, 1 and 1,
respectively, which are exactly same with QPIC [28]. We optimize the network by AdamW [23] with
the weight decay 10−4. We first train the whole model for 90 epochs with a learning rate of 10−4
decreased by 10 times at the 60th epoch. Then, during the decoupling training process, we fine-tune
the cascade disentangling decoders together with the box, object, and action FFNs for 10 epochs with
a learning rate of 10−5. We use both object and action dynamic re-weighting for HICO-Det and only
action dynamic re-weighting for V-COCO. The re-weighting parameter p is set to 0.7 for both object
and action. The length LQ of training sample queue Q for both object and action is set to 2×Ns,
where Ns is the sample number of the training set. All experiments are conducted on the 8 Tesla
V100 GPUs and CUDA10.2, with a batch size of 16.

For validation, we select 100 detection results with the highest scores and then adopt PNMS to further
filter results. The threshold, α, and β of PNMS are set to 0.7, 1, and 0.5, respectively.

4.3 Experiment Analysis of Two-stage and One-stage Methods

In this part, we introduce a detailed experimental analysis of conventional two-stage and one-stage
methods and our proposed CDN from the following three aspects.

Human-object Pair Generation. We first explore the quality of the human-object pairs generation
between two-stage and one-stage methods. To attain this, we conduct a detailed experiment based
on a representative two-stage method iCAN [6]. We first implement a PyTorch version iCAN as
the baseline model, denoted as iCAN∗, which only applies human and object appearance with a
COCO-pretrained Faster-RCNN detector [25]. For a fair comparison, we first fine-tune DETR on
HICO-Det for 100 epochs only with the instance detection annotation based on COCO-pretrained
weights. Then we combine the detected human and object bounding-boxes, whose confidences are
greater than a threshold, one by one to generate human-object pairs denoted as iCAN† in Table 1.
We train our CDN only with HO-PD for 100 epochs and get the human-object pairs from the output
directly. Then, we graft the human-object pairs to the baseline model to extract box features and
utilize the same interaction classifier in the second stage of iCAN∗. In this way, we degrade the
number of pairs from M ×N to K ′, which means time complexity is reduced from O(M ×N) to
O(K ′). Primarily, HO-PD significantly promotes mAP from 15.37 to 24.05, as shown in Table 1.
This indicates that one-stage methods are much superior in human-object pair generation.

Strategy Full Rare Non-Rare
iCAN∗ 14.16 12.26 14.73
iCAN † 15.37 13.23 16.01

HO-PD+iCAN∗ 24.05 18.32 25.76
QPIC [28] 29.07 21.85 31.23

CDN-S base 30.96 27.02 32.14

Table 1: Analysis of Two-stage and One-
stage Methods. ∗ denotes our implemented
PyTorch version iCAN [6] baseline model. †
denotes replacing instance detection boxes
given by a HICO-Det fine-tuned DETR
detector to extract box features. ‘HO-
PD+iCAN∗’ denotes replacing original one-
by-one generated human-object pairs with
our HO-PD generated. ‘CDN-S base’ de-
notes CDN-S w/o re-weighting and PNMS
strategies.

(a)

(b)

(c)

hold cake walk dog ride bicycle row boat ride horse

Figure 3: Visualization of Feature Maps for
Queries. Visual attended features for query with
top-1 score extracted from the last layer of the de-
coder of (a) QPIC, (b) HO-PD in CDN, and (c)
interaction decoder in CDN. Zoom in for details.

Interaction Classification. We aim to study the interaction classification between conventional
multi-task one-stage methods and our disentangled one-stage detector. We can regard QPIC [28] as a
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Default Know Object
Method Detector Backbone Extra Full Rare Non-Rare Full Rare Non-Rare

Two-stage Method:
InteractNet [7] COCO ResNet-50-FPN 7 9.94 7.16 10.77 - - -

GPNN [24] COCO Res-DCN-152 7 13.11 9.34 14.23 - - -
iCAN [6] COCO ResNet-50 7 14.84 10.45 16.15 16.26 11.33 17.73

No-Frills [9] COCO ResNet-152 P 17.18 12.17 18.68 - - -
PMFNet [30] COCO ResNet-50-FPN P 17.46 15.65 18.00 20.34 17.47 21.20
CHGNet [31] COCO ResNet-50 7 17.57 16.85 17.78 21.00 20.74 21.08

DRG [5] COCO ResNet-50-FPN T 19.26 17.74 19.71 23.40 21.75 23.89
VCL [12] COCO ResNet-50 7 19.43 16.55 20.29 22.00 19.09 22.87

IP-Net [32] COCO Hourglass-104 7 19.56 12.79 21.58 22.05 15.77 23.92
VSGNet [29] COCO ResNet-152 7 19.80 16.05 20.91 - - -
FCMNet [22] COCO ResNet-50 7 20.41 17.34 21.56 22.04 18.97 23.12

ACP [15] COCO ResNet-152 T 20.59 15.92 21.98 - - -
PD-Net [35] COCO ResNet-152-FPN T 20.81 15.90 22.28 24.78 18.88 26.54
DJ-RN [16] COCO ResNet-50 P 21.34 18.53 22.18 23.69 20.64 24.60

IDN [17] COCO ResNet-50 7 23.36 22.47 23.63 26.43 25.01 26.85
One-stage Method:

UnionDet [13] COCO ResNet-50-FPN 7 17.58 11.72 19.33 19.76 14.68 21.27
DIRV [4] COCO EfficientDet-d3 7 21.78 16.38 23.39 25.52 20.84 26.92

PPDM-Hourglass [20] HICO-DET Hourglass-104 7 21.94 13.97 24.32 24.81 17.09 27.12
HOI-Trans [39] HICO-DET ResNet-50 7 23.46 16.91 25.41 26.15 19.24 28.22

GG-Net [37] HICO-DET Hourglass-104 7 23.47 16.48 25.60 27.36 20.23 29.48
ATL [11] HICO-DET ResNet-50 7 23.81 17.43 25.72 27.38 22.09 28.96

HOTR [14] HICO-DET ResNet-50 7 25.10 17.34 27.42 - - -
AS-Net [3] HICO-DET ResNet-50 7 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [28] HICO-DET ResNet-50 7 29.07 21.85 31.23 31.68 24.14 33.93

CDN-S HICO-DET ResNet-50 7 31.44 27.39 32.64 34.09 29.63 35.42
CDN-B HICO-DET ResNet-50 7 31.78 27.55 33.05 34.53 29.73 35.96
CDN-L HICO-DET ResNet-101 7 32.07 27.19 33.53 34.79 29.48 36.38

Table 2: Performance comparison on the HICO-Det test set. The ‘P’, ‘T’ represent human pose
information and the language feature, respectively.

multi-task version of our CDN. Table 1 shows that our ‘CDN-S base’ (w/o re-weighting and PNMS
strategies) has achieved mAP 30.96 with 6.50% relative mAP gain compared to QPIC. Especially,
our ‘CDN-S base’ significantly outperforms QPIC for rare classes with a 23.66% improvement. The
performance of rare classes can partly reflect the accuracy of interaction classification.

Feature Learning. This part discusses the differences in feature learning between the conventional
one-stage method, QPIC, and our CDN from a qualitative view. As shown in Figure 3, we visualized
the feature maps extracted from the last layer of the decoder of QPIC, the HO-PD, and the interaction
decoder in our CDN. We can see that HO-PD and QPIC attend very similar regions, e.g., the
boundaries of humans and objects and the human-object contact areas, which are beneficial for
locating the interactive human-object pairs. However, the interaction decoder concentrates on human-
pose and the regions that contribute to understanding human actions. As for the specific case, for
example, for ‘hold cake’, HO-PD in CDN attends to the boundaries of the cake while the interaction
decoder in CDN concentrates on the interaction context, i.e., the human’s hands holding the cake.
Thus, it shows that CDN disentangles the human-object detection and interaction classification. For
‘ride horse’, HO-PD in CDN emphasizes the overall feature of the human and the horse, and the
highlight parts are the edges of the human and horse. For the interaction decoder in CDN, the
highlighted part emphasizes the interaction context, i.e., the human carries the rope when riding a
horse. Finally, QPIC somehow combines the two highlights, but both are not obvious.

4.4 Comparison to State-of-the-Art

We conduct experiments on HICO-Det and V-COCO benchmarks to verify the effectiveness of our
proposed methods. For HICO-Det dataset as shown in Table 2, comparing to the previous state-of-the-
art two-stage method FCMNet [22] with ResNet-50 as backbone, our CDN-B significantly promotes
mAP from 20.41 to 31.78, with a relative gain of 55.71%. Even compared with PD-Net [36] which
adopts extra language feature and DJ-RN [16] which utilizes extra human pose features, CDN-B
achieves 52.71% and 48.92% relative mAP gains, respectively. When comparing to the one-stage
method AS-Net [3] and QPIC [28] which also adopt transformer-based detector architecture, CDN-B
attains 10.08% and 9.32% point relative mAP gains, respectively. Table 3 shows the comparisons
on V-COCO dataset. CDN-B achieves 62.29 AProle on Scenario 1 and 64.42 AProle on Scenario 2,
which significantly outperform previous state-of-the-art method QPIC with relative 5.94% and 5.61%
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Method Extra APS1role APS2role
Two-stage Method:

InteractNet [7] 7 40.0 -
GPNN [24] 7 44.0 -
iCAN [6] 7 45.3 52.4
TIN [18] 7 47.8 54.2
VCL [12] 7 48.3 -
DRG [5] T 51.0 -

IP-Net [32] 7 51.0 -
VSGNet [29] 7 51.8 57.0
PMFNet [30] P 52.0 -
PD-Net [35] T 52.6 -

CHGNet [31] 7 52.7 -
FCMNet [22] 7 53.1 -

ACP [15] T 53.23 -
IDN [17] 7 53.3 60.3

One-stage Method:
UnionDet [13] 7 47.5 56.2
HOI-Trans [39] 7 52.9 -

AS-Net [3] 7 53.9 -
GG-Net [37] 7 54.7 -
HOTR [14] 7 55.2 64.4
DIRV [4] 7 56.1 -
QPIC [28] 7 58.8 61.0

CDN-S 7 61.68 63.77
CDN-B 7 62.29 64.42
CDN-L 7 63.91 65.89

Table 3: Performance comparison on
the V-COCO test set. The ‘P’, ‘T’ rep-
resent the human pose information and the
language feature, respectively.

Strategy Full Rare Non-Rare
QPIC [28] 29.07 21.85 31.23

base 31.06 26.68 32.36
+ re-weighting 31.38 27.36 32.58

+ PNMS 31.78 27.55 33.05
(a) Strategies: Analysis of improvements by various
training strategies.

Strategy LQ p Full Rare Non-Rare
base - - 31.06 26.68 32.36

decouple - - 30.90 26.09 32.33
static - 0.7 31.25 27.12 32.49

dynamic 2×Ns 0.8 31.33 27.45 32.49
dynamic 1×Ns 0.7 31.34 27.48 32.49
dynamic 2×Ns 0.7 31.38 27.36 32.58

(b) Dynamic re-weighting: Analysis of decouple training with
dynamic re-weighted losses, i.e., different queue length LQ, coeffi-
cient p and dynamic or static.

α β thres Full Rare Non-Rare
- - - 31.38 27.36 32.58
1 1 0.8 31.66 27.46 32.91
1 1 0.7 31.75 27.50 33.03
1 0.7 0.7 31.77 27.54 33.03
1 0.5 0.8 31.75 27.51 33.02
1 0.5 0.7 31.78 27.55 33.05

(c) PNMS: The effects of different settings of PNMS coef-
ficients, i.e., α, β, and thres denotes threshold.

Table 4: Ablation studies of our proposed
method on the HICO-Det test set. We
carry out all experiments based on the base
model (CDN-B).

gains, respectively. As for efficiency analysis, CDN-S has almost the same number of parameters and
flops compared to QPIC, but CDN-S achieves mAP 31.44 on HICO-Det, 8.15% higher than QPIC.

4.5 Ablation Study

In this subsection, we analyse the effectiveness of the proposed strategies and components in detail.
All experiments are eventuated on the HICO-Det dataset. The performance of each strategy is
evaluated in Table 4a. The five hyper-parameters of the training loss in 7 follow QPIC [28]. The
ablation study of the two hyper-parameters in the re-weighting is shown in Table 4b, and that of the
three hyper-parameters in the PNMS is shown in Table 4c. We carry out all experiments based on the
model CDN-B with ResNet-50 as backbone.

Strategies. As shown Table 4a, our pure model without any additional post-processing operation,
namely base model, achieves mAP 31.06, promoting 1.99 compared with QPIC [28]. Especially, the
base model significantly promotes mAP for rare classes from 21.85 to 26.68 compared to QPIC. It
indicates the superiority of the architecture of disentangling human-object detection and interaction
classification. The re-weighted training further promotes mAP to 31.38, with a gain of 0.32, and the
gain mainly lies in rare classes. Finally, the PNMS further improves mAP to 31.78.

Dynamic re-weighting. In this part, we conduct experiments to evaluate the components in the
dynamic re-weighted training strategy based on the base model as shown in Table 4b. If we only
decouple training without re-weighting, the model achieves mAP 30.90, which is lower than the base
model. Therefore, it shows that the performance gain does not come from a longer training process.
Adding static weights wstatic to losses promotes mAP to 31.25. The dynamic re-weighting method
improves the re-weighting effect since it captures the real-time weight of each class for each real-time
sample during training. Thus it can sufficiently dig information from every single sample to achieve
the best overall performance. Our method obtains best result mAP 31.38 when LQ = 2×Ns and p =
0.7.

PNMS. On the basis of the model after re-weighted training, we compare the variance by different
parameter settings of the PNMS strategy, which is shown in Table 4c. We fix the human box balance
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factor α to 1. Then we tune the object box balance factor β and the threshold of the PIoU to filter
pair-wise boxes. We achieve best performance mAP 31.78 when β = 0.5 and thres = 0.7. The fact
that β is smaller than α, indicates that the overall performance is more sensitive to human boxes
compared with object boxes in our framework.

5 Related Work
Two-stage Methods. Most previous HOI detectors are with a two-stage paradigm [6, 2, 18, 5].
Firstly, a fine-tuned detector [25, 10] is applied to detect the instances. Secondly, generating the
human-object pairs by matching detected human and object one by one, and then feeding them into an
interaction classifier. To improve the interaction classification, some extra features were applied, such
as human pose [27, 19, 9], human parts [38, 30, 16], and language features [33, 5, 22, 15]. Besides,
some two-stage methods [24, 29, 31, 34, 38] applied graph neural networks to model the interactions.

One-stage Methods. One-stage methods detect HOI triplets directly [20, 32, 13, 39, 3, 28, 14]. In
detail, [20, 32] proposed a point-based interaction detection method which performs inference at
each interaction key point. [13] proposed an anchor-based method to predict the interactions for
each human-object union box. Recently, set-based detection approach has been proposed to handle
HOI detection as a set prediction problem [39, 3, 28]. Specifically, [39, 28] designed a transformer
encoder-decoder architecture to directly predict HOI detection results in an end-to-end manner, while
[3] utilized parallel instance and interaction decoder branches to adaptively aggregate the HOI triplets.

6 Conclusion
In this paper, we explore the essential pros and cons of two-stage and one-stage HOI detection in
detail. We propose a novel one-stage framework with disentangling human-object detection and
interaction classification in a cascade manner. Our CDN can keep the advantage of one-stage methods,
directly and accurately locating the interactive human-object pairs, and bring the benefit of two-stage
methods, disentangling detection and interaction classification. Our novel paradigm has outperformed
previous methods by margins. However, we only implement a specific version to mine the benefits of
two-stage and one-stage methods. In the future, we plan to apply our idea with more general one-stage
methods and introduce more advantages of two-stage methods into the one-stage framework.

Potential Negative Societal Impacts
Similar to many other AI technologies, our proposed CDN itself is harmless. However, someone
might utilize it for military purposes or apply it to any other malicious human activities detection,
which might negatively impact society. Therefore, we encourage well-intentioned consideration
before adopting our technique.
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