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Abstract: A robotic feeding system must be able to acquire a variety of foods.
Prior bite acquisition works consider single-arm spoon scooping or fork skewer-
ing, which do not generalize to foods with complex geometries and deformabili-
ties. For example, when acquiring a group of peas, skewering could smoosh the
peas while scooping without a barrier could result in chasing the peas on the plate.
In order to acquire foods with such diverse properties, we propose stabilizing food
items during scooping using a second arm, for example, by pushing peas against
the spoon with a flat surface to prevent dispersion. The added stabilizing arm can
lead to new challenges. Critically, this arm should stabilize the food scene with-
out interfering with the acquisition motion, which is especially difficult for easily
breakable high-risk food items like tofu. These high-risk foods can break between
the pusher and spoon during scooping, which can lead to food waste falling out
of the spoon. We propose a general bimanual scooping primitive and an adaptive
stabilization strategy that enables successful acquisition of a diverse set of food
geometries and physical properties. Our approach, CARBS: Coordinated Acqui-
sition with Reactive Bimanual Scooping, learns to stabilize without impeding task
progress by identifying high-risk foods and robustly scooping them using closed-
loop visual feedback. We find that CARBS is able to generalize across food shape,
size, and deformability and is additionally able to manipulate multiple food items
simultaneously. CARBS achieves 87.0% success on scooping rigid foods, which
is 25.8% more successful than a single-arm baseline, and reduces food breakage
by 16.2% compared to an analytical baseline. Videos can be found on our website.

Keywords: Bimanual Manipulation, Food Acquisition, Robot-Assisted Feeding,
Deformable Object Manipulation

1 Introduction
Approximately one million people in the U.S. depend on a caregiver’s assistance to eat [3], which
can lead to malnutrition [4, 27] and an erosion of self-worth [23]. Building a robotic feeding system
would enable patients to eat food independently [25]. A key component of such an assistive feeding
system is bite acquisition, i.e., the act of a robotic arm picking up morsels of food from a plate for the
goal of transferring the food to person’s mouth [8]. Prior strategies for bite acquisition acquire food
using a single robotic arm for either skewering with a fork or scooping with a spoon. Fork-based bite
acquisition learns to select skewering primitive parameters from a large supervised dataset of food
items [1, 6, 11]. However, fork-based skewering is inherently limited in what foods it can acquire.
For example, a fork cannot skewer brittle cashews or small peas without damaging the food item,
while scooping with a spoon might be more successful. Existing single-arm spoon-scooping bite
acquisition often uses a hard-coded single-arm scooping primitive, making generalization to varied
food items difficult [21, 22]. When scooping more diverse foods, such as large, rigid-body fruit
cubes and deformable cottage cheese, prior works rely on hard-coded adaptation strategies – new
primitives and even new tools – which are not scalable. Similar to fork skewering, the single-arm
scooping strategy is also inherently limited. For unstable items like broccoli or blueberries, it can be
hard to know where exactly to scoop without pushing it off a barrier such as a fork or bowl wall.
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Figure 1: Learned Bimanual Scooping: CARBS is a bimanual scooping system for foods with
varied geometries and deformabilities. CARBS uses a second arm to stabilize food position during
scooping. To avoid breaking deformable foods between the two arms, we learn a Risk Classifier and
a Failure Classifier to identify high-risk, fragile foods and breakage-imminent states respectively.

Figure 2: Bimanual Failures: Adding a second
stabilizing arm during scooping can lead to new
breakage failures for foods of varying deformabil-
ities. For both brittle and fragile food items like
cashews (A), tofu (B) and cheesecake (C), food
pieces can become wedged between the two arms
and break due to excessive force being applied be-
tween the pusher and scooper. These breakages
can cause food to fall out of the scooper (C), lead-
ing to food waste and scooping inefficiencies.

Scooping objects with unstable geometries or
scooping multiple objects without the help of a
barrier – for example, chasing peas on a plate –
is nontrivial and inefficient. To develop a gen-
eralizable scooping policy that can work across
foods with difficult geometries, we need to use
an additional robot arm to stabilize the food
item. For example, a primary arm should scoop
peas against a surface that is pushing towards
the spoon to stabilize the pea positions (See
Fig. 1). As humans we intuitively and regu-
larly use two arms to stabilize the environment
in many everyday tasks: when tying our shoes,
we use a second arm to hold the knot; or simi-
larly when cutting a steak we use a second arm
to hold the steak to make the act of cutting eas-
ier for the first arm. As a result, there has been

a growing focus on bimanual manipulation for tasks including rope untangling, peg insertion, food
cutting, fabric manipulation, bottle opening, and bag opening, all implicitly leveraging the same in-
sight that an additional arm can act in a stabilizing manner [5, 9, 12, 24, 28, 29]. In bite acquisition,
we posit a second arm holding a pusher (as shown in Fig. 1) can support a scooper in scooping
objects with difficult geometries and deformabilities.

However, adding a second arm for stabilizing the environment – holding or pushing the food items
– opens the door to a new set of complications and failures (see Fig. 2): A pushing arm needs to
physically make contact with the food to stabilize it. This can easily break or deform food items
during scooping and thus impede on task progress. For objects with unstable geometries like snow-
peas or macaroni, it is helpful for the barrier to follow the food into the scooper so the food does
not fall out as the scooper finishes scooping, but this design comes at a cost. Fragile and deformable
items like tofu or jello cubes can easily break when forced into the scooper by the pusher, which
can also cause the item to fall off the scooper or leave residue on the plate. As a result, it is difficult
to define a single hard-coded primitive to that generalizes to both unstable geometry and break-
age failures. We posit that many breakage-prone, or “high-risk” foods will break under predictable
scenarios when the pusher and scooper are squeezing the deformable food together. We employ
this idea when scooping high-risk foods by detecting “breakage-imminent” states and adjusting our
scooping policy to anticipate and prevent food breakage and waste.

Our key insight is we need a second arm to effectively stabilize food environments by identifying
high-risk food items, i.e. the ones that are breakable and fragile, and adapting a dynamic stabilizing
strategy to anticipate and prevent such failures.
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In this work, we propose a learned bimanual scooping policy, CARBS: Coordinated Acquisition with
Reactive Bimanual Scooping, that uses a scooper arm and a pusher arm (similar to fork or knife)
to acquire food items of a wide variety of properties, including shapes, sizes, and deformability.
CARBS first identifies high-risk food items by classifying a visual observation of the target food
item as fragile or robust. Next, CARBS prevents breakage and dropping failures by servoing to
adapt the stabilizing action parameter: the distance between the scooper and pusher. This paper
makes the following contributions:

A Bimanual Scooping Primitive for Bite Acquisition. To our knowledge, we are the first work
to study bimanual strategies for acquiring widely varied foods. We define a novel bimanual scoop-
ing primitive and show that it generalizes to scooping 14 food classes with varied geometries and
deformabilities. Our primitive is also the first to scoop multiple food items per acquisition action.

Learning to Avoid Bimanual Failures. We contribute a framework for anticipating and preventing
bimanual failures by identifying high-risk scenarios and adjusting the stabilizing parameter accord-
ingly. To prevent breakage failures during bimanual scooping, this entails identifying deformable,
fragile foods and adjusting the distance between arms during scooping. When scooping high-risk
foods such as cheesecake and tofu, we learn to detect hazardous, breakage-imminent scooping states
for closed-loop visual feedback to adjust our dynamic stabilizing policy.

Evaluating Learned Scooping Policies. We present physical experiments with CARBS, which
learns to identify fragile foods and adapt a stabilizing parameter to execute a bimanual scooping
action. We find CARBS is able to successfully generalize across food geometries and deformabilities
to scoop 14 food classes without breakage in 85.7% of trials. We will also open-source our food
fragility and breakage datasets and the pusher and scooper CAD models.

2 Related Work
Food Acquisition. Previous works have studied single-arm food acquisition with chopsticks [17,
18], skewering with a fork [1, 6, 8, 11], and scooping with a spoon [21, 22]. Ke et al. [18] study
grasping a set of household objects with chopsticks, but do not consider food objects or variations
in geometric and physical properties. Past works on fork-based bite acquisition take a step towards
more general food acquisition by learning an optimal skewering policy from a large dataset of food
items [1, 6, 11]. However, both chopsticks and forks with their accompanying acquisition primitives
may struggle to generalize to many food items. In particular, it would be difficult to acquire fragile
or very small foods such as jello or peas with a fork or chopsticks because the foods could break or
would require very precise acquisition strategies unforgiving of slight errors. Spoon scooping is a
promising acquisition alternative for these foods. Ohshima et al. [21] consider scooping portions off
a large block of deformable foods – tofu and pudding – with an analytical policy. However, this an-
alytical single-arm scooping method is limited to food items of relatively homogeneous geometries
and deformability. Park et al. [22] also use a single arm to scoop more varied foods (i.e. fruit cubes,
cottage cheese) from a bowl by asking a human end-user to select between three spoon tools of
differing materials and shapes per food class, which is not scalable to the large universe of potential
foods. In contrast, our learned bimanual scooping approach uses one scooper and one pusher tool to
acquire foods of highly variable geometries and deformabilities off a plate.

Bimanual Manipulation. In recent years, bimanual manipulation has enabled robots to perform
new tasks using new motion primitives such as bag opening, flinging fabrics, cutting vegetables, and
opening bottles [2, 5, 9, 12, 13, 16, 20, 29]. The extra mobility provided by an additional arm can
take the role of stabilizing the environment to reduce non-stationarity and make the task easier. For
example, past works have implicitly considered utilizing a stabilizing arm for tasks including peg
insertion, untangling ropes, and cutting foods [5, 9, 12, 24, 29]. This idea is very relevant to the food
manipulation domain. Foods can have widely varied physical properties and geometries – they can
be deformable, brittle, slippery, and in unstable shapes and poses. As a result, it can be difficult to
manipulate these objects due to the unpredictable dynamics of food movements and interactions.

Past bimanual food manipulation works have considered food preparation tasks – cutting and peel-
ing vegetables, scooping out a melon, and mixing in a bowl. Food cutting or peeling works use a
stabilizing arm to hold the food in place during the cutting motions, but these stabilizing strategies
are largely stationary or analytical [9, 29] and do not make additional task progress [7]. On the
other hand, Ureche et al. [26] use a more versatile stabilizing strategy for melon scooping, zucchini
peeling, and bowl mixing by learning bimanual interaction constraints from human demonstrations.
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Figure 3: Bimanual Stabilizing Strategies: CARBS uses 3 stabilizing strategies: (1) Angled Push-
ing and (2) Adaptive Cupping during the Pushing Phase, and (3) Pinning during the Scooping Phase.
In Angled Pushing, the pusher moves at an angle ✓ = 15� off the vertical, which encourages food
items to roll off the barrier surface and into the spoon. In Adaptive Cupping, the pusher pushes
foods towards the spoon with the concave surface and cups them to be centered with the spoon
mouth. This strategy is parameterized by a learned parameter ↵ that represents the scaling of the
distance travelled by the pusher. In Pinning, the pusher moves upwards to follow the spoon mouth
as it scoops to prevent food items from toppling and falling out.
For melon scooping, the stabilizing arm holding the melon is able to adjust its force to brace against
the scooping tool to better stabilize the melon’s position and even progress towards task success by
pushing more melon into the scooper. However, this work is only specialized for scooping a melon
and does not consider a generalizable policy for the large variety of food items necessary for a scal-
able robotic feeding system. Our method similarly uses a dynamic stabilizing strategy that pushes
food towards the scooper to both stabilize food position and make more task progress. However,
our method is able to learn to directly sense states close to bimanual constraint violations (food
breakage failures) from visual feedback, and bypasses the need for expensive human demonstration
collection. Our method is also able to learn these constraints in a food-agnostic way and generalizes
to visually varied, out-of-distribution food classes.

3 CARBS: Coordinated Acquisition with Reactive Bimanual Scooping
We consider the task of scooping a variety of food items off a plate while maximizing the integrity
of the food item, i.e., the weight, after the scooping motion. Food items may vary in geometry
and deformabilities, including foods that are brittle (i.e. cashews), compliant (i.e. pasta), and frag-
ile/breakable (i.e. tofu). We assume access to a plate workspace with a standard (x, y, z) coordinate
frame (as in Fig. 1). We assume full bimanual access to this plate workspace with the following two
mounted tools: Scooper and Pusher (See Fig. 4). The Scooper tool is a plastic spoon mounted at an
angle to the robot end effector with a camera mounted for access to angled images I 2 RW⇥H⇥C

of the spoon and surrounding workspace. The Pusher tool is a concave barrier that is mounted
vertically to the robot end effector1.

We model the bimanual scooping task as a Partially Observable Markov Decision Process (POMDP)
M = (O,S,A, T ,R). We observe images I 2 O of the unknown food environment states S 2 S

and define an action space A as joint 14-DoF robot actions (as, ap). The visual state space is an RGB
image observation space O 2 RW⇥H⇥C . We assume unknown transition dynamics T : S⇥A �! S ,
an initial state distribution of food configurations ⇢0, and a time horizon T . We define a reward
R : S ⇥ A �! R as the weight of the food in the scooper after scooping. We aim to construct a
closed loop policy ⇡ : O �! A to maximize the expected reward by successfully scooping a set of
varied foods.

To scoop a large diversity of foods with two arms without dropping or breaking them, we intro-
duce CARBS, a reactive bimanual scooping policy learned from real food interactions (Fig. 1). We
simplify the complex bimanual action space by introducing a novel bimanual primitive, which is
parameterized by the distance of travel for the pusher and the location of the food item, and em-
ploys three bimanual stabilizing strategies: (1) Angled Pusher, (2) Cupping Motion, and (3) Pinning
Motion (shown in Fig.3). We show that this parameterization generalizes to robust food items (e.g.,
grape) by selecting a large distance of travel, as well as for breakage-prone items (e.g., tofu) which
require more adaptive pusher travel distances. To handle the latter case of breakage-prone items,

1This design is inspired by antique pushers that were used to push foods into spoons.
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CARBS learns to adapt the pusher travel distance by anticipating common types of failure. Our
policy network learns to identify which regime we are in (robust or breakage-prone) based on just
the initial plate image.

A Bimanual Scooping Primitive. We define a parameterized bimanual scooping primitive that
takes two inputs, pusher travel distance ↵ and food position (xf , yf ), and has three phases to be per-
formed in succession: (1) Pushing, (2) Scooping, and (3) Food Transfer. We thus reduce the 14 DoF
action space A to 3 dimensions: pusher travel distance ↵ and food position (xf , yf ). The scooper
and pusher begin in starting positions centered around the food position along a fixed pushing axis.
We empirically found that the choice of pushing axis did not affect performance, so we select the
x-axis to favor our robots’ range.

During the Pushing phase, both the pusher and scooper move towards each other along the x-axis
towards some point ppush = (xf+d, yf ) closer to the scooper than pusher, as shown in Figure 3.A-B.
The Pushing phase also utilizes two bimanual stabilization strategies: Angled Pusher and Cupping
Motion (See Fig. 3.A-B). In Angled Pusher, the pusher is angled at some fixed angle ✓ = 15� about
the y-axis, rather than orthogonal to the plate. This stabilizes the food position by encouraging
the food to slide or roll into the scooper at the end of pushing when the two arms meet, as shown
in Fig. 3.A. In Cupping Motion, the pusher pins the food against the concave surface as it moves
towards the scooper, which promotes centering the food position during movement into the entrance
of the spoon (see Fig. 3.B). Cupping Motion is an adaptive stabilizing strategy that takes as input
the primitive input ↵ 2 [0, 1], which determines how close the pusher and scooper get to each other.
↵ = 0 implies no motion and ↵ = 1 results in the pusher and scooper reaching each other.

After the Pushing phase, we assume CARBS has successfully manipulated the food item into the
scooper and move to the Scooping phase. In this phase, we rotate the scooper up about the y axis
to “scoop” the food into the bowl of the spoon. During the Scooping phase, CARBS employs the
Pinning Motion stabilizing strategy where the pusher moves up along the z axis with the scooper as
it rotates (shown in Fig. 3.C). This strategy prevents foods in unstable poses within the spoon from
falling out of the scooper. Lastly, CARBS finishes with the Food Transfer phase by moving the
pusher away from the scooper and rotating the scooper towards an end user to prepare for feeding.

Identifying High-Risk Settings. To learn the inputs of the bimanual scooping primitive (xf , yf )
and ↵ from image observations I 2 O, CARBS leverages the insight that foods with similar de-
formabilities encounter similar breakage failures, and posits that learning to identify high-risk set-
tings, e.g. robust vs. breakage-prone foods, will help determine the optimal ↵ inputs. Due to the
high variability of food dynamics, we do not learn a dynamics model of our POMDP M and in-
stead learn parameters to perform adaptive scooping with our previously-defined bimanual scooping
primitive, which performs each of the three phases in succession.

Given an initial overhead image observation I0, CARBS starts by identifying the food position in
the initial environment state s0. To do this, we learn a segmentation model f : RW⇥H⇥C

�!

RW⇥H to obtain a food mask and food center position (xf , yf ) from the initial image I0, which is
then passed to our bimanual scooping primitive. As illustrated in Fig. 1, to differentiate between
food deformabilities, we learn a Risk Classifier r : RW⇥H⇥C

�! {0, 1} that identifies an initial
food image I0 as “Robust” or “Fragile”. In practice, we instantiate the classifier with a ResNet34
model [14] trained on a hand-labelled food fragility dataset with 600 images of 14 food classes. For
robust foods, we set ↵ = 1 for maximum pushing of the food, since the food is not in danger of
breaking and can benefit from the added pushing stabilization. For fragile foods, it is nontrivial to
select ↵ given only an initial observation I0, so we propose a closed loop system for determining ↵.

Servoing for Fragile Foods. At the beginning of each scooping rollout, we initialize ↵ = 1, indi-
cating that the pusher should travel the full distance during the Pushing phase. However, varied food
dynamics and differences in deformability can dictate the need for different ↵ values even within
the same food class. For example, when scooping two pieces of tofu, the food items may deform
or slide on the plate differently due to food interactions with the plate, slight robot imprecision,
or food shelf life. As a result, CARBS uses closed loop visual feedback in the form of a Failure
Classifier f : RW⇥H⇥C

�! {0, 1} that identifies breakage-imminent states where the food item is
in contact with the pusher and scooper, but not yet squeezed until breakage. This classifier is run at
each state during Pushing (as in Fig. 1). When a breakage-imminent state is detected, the Pushing
phase is terminated and ↵ < 1. For example, if a breakage-imminent state was detected after 65%
of the Pushing phase had completed, the phase would terminate early and this would correspond
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Figure 4: Experimental Setup: Left: The Pusher is a custom concave barrier used to push food
items to the mouth of the spoon. The Scooper has an RGB camera mounted above the spoon to
access images of the spoon mouth and surrounding workspace during scooping. Right: We consider
scooping 16 food settings: 11 robust containing up to three food items, and 4 fragile.

to ↵ = 0.65 because the pusher had traveled 65% of the full pushing distance. We instantiate the
Failure Classifier with a ResNet34 [14] model trained on hand-labelled images of 30 scooping trials.

4 Experiments
We validate CARBS’s effectiveness on scooping foods of varied geometries and deformabilities. We
design a series of experiments scooping 14 food items to demonstrate the advantage of a reactive
bimanual strategy over hard-coded or single-arm actions. We select 14 food items to cover a wide
range of sizes, shapes, and deformabilities: blueberry, broccoli, carrot, cashew, cheesecake cube,
farfalle pasta, goldfish, grape, jello piece, macaroni pasta, pea, snow pea, strawberry and tofu cube
(See Fig. 4). See Appendix A for food property details. We assume all food groups are pregrouped,
where each food item is in contact with other items, if any, in the scene. Each set of food properties
comes with a unique set of challenges. For example, blueberries, peas, and grapes are round, which
may roll around the plate, while snowpeas and macaroni are irregularly shaped and can be difficult
to stabilize within the spoon. We consider three deformable foods with diverse visual and material
properties (jello, tofu, and cheesecake cubes), which are critically susceptible to breakage failures.

Food Type Success Rate
Single ↵ = 1 CARBS

Broccoli 5/5 5/5 5/5
Grapes 3/5 5/5 5/5
Blueberry 4/5 5/5 5/5
Strawberry 5/5 5/5 5/5
Carrot 4/5 5/5 5/5
Farfalle 5/5 5/5 5/5
Macaroni 2/5 5/5 5/5
Snow Pea 3/5 4/5 4/5
Cashews (2) 2/10 7/10 7/10
Goldfish (2) 6/10 8/10 8/10
Blueberries (2) 6/10 6/10 6/10
Peas (3) 3/15 15/15 14/15

Table 1: Robust Food Physical Results: We report
the per food item success rate over 5 trials of scoop-
ing robust foods with the Single, ↵ = 1, and CARBS
strategies. As expected, we observe CARBS matches
↵ = 1 performance across all robust foods. Both the
CARBS and ↵ = 1 methods match or outperform the
Single baseline, suggesting that the bimanual stabiliz-
ing strategies (Angled Pusher, Cupping Motion, and
Pinning Motion) are advantageous over a static barrier.

Food Dataset. The Segmentation model is
trained on a dataset of 600 overhead RGB
images of all food items except Orange
Jello in the real workspace. We subtract
a background image of the workspace to
obtain masks of the food items. The Risk
Classifier is trained on a the same dataset
of overhead RGB images of food items.
We hand-label each image as “Robust”
or “Fragile”, and augment 8X. The Fail-
ure Classifier is trained on images from
scooping rollouts of tofu only, which we
found to be sufficient for generalization to
other food classes as well. More train-
ing details are in Appendix B. We collect
a dataset by recording 60 image frames
each of the Pushing phase of 30 rollouts
with ↵ = 1, meaning we push the food
the maximum distance. We then hand-
label when the food item breaks in each
rollout, and automatically generate labels
per image as “Keep Going” or “Stop” for
safe and breakage-imminent states respec-
tively.
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Implementation Details. Our real-world environment setup consists of two 7-DoF Franka Emika
Panda arms, each holding a Scooper or Pusher tool as shown in Fig. 4. The robot bases are set to be
parallel with each other with the plate workspace between two bases, and both robots are controlled
with an impedance controller. The Scooper is mounted at a 45 degree angle with an angled Intel
Realsense D435 camera above the spoon as shown in Fig. 4. We designed a custom 3D printed
pusher with a concave surface to encourage food grouping and stabilization. See Appendix C for a
discussion of design choices for the pusher and the spoon. Our failure classifier to servo for breakage
runs at 20 Hz frequency.

Food Type Avg. Weight Difference (%)
↵ ValueSingle ↵ = 0.93 ↵ = 1 CARBS

Tofu 23.194 41.099 2.474 0.444 0.9477±0.019
Red Square Jello (Failure OOD) 40.700 21.376 1.076 0.420 0.9400±0.021

Cheesecake (Failure OOD) 26.873 25.937 10.867 6.639 0.9231±0.016
Orange Triangle Jello (CARBS OOD) 100 62.274 9.720 0.449 0.9169±0.030

Table 2: Fragile Food Physical Results: We report the weight loss of food items after scooping as
a percentage of the original food weight, averaged across 5 trials. We also report the average values
of CARBS’s stabilizing parameter ↵, a scaling value for the total pushing distance (13 cm) with
a 95% confidence interval. We observe that CARBS’s Failure Classifier adjusts ↵ to end pushing
at a different position depending on the food. This suggests that the classifier learns to recognize
the bimanual constraint that leads to breakage rather than a fixed ending position for all fragile
foods. We also find that the triangle jello has the highest ↵ variability, possibly due to its irregular
shape relative to the cube foods. We observe CARBS’s Failure Classifier generalizes to novel fragile
food classes (Jello, Cheesecake) and its Risk Classifier generalizes to varied visual appearances and
geometries within one class (Orange Jello).

Figure 5: Failure Modes: We observe 4 fail-
ure modes across scooping strategies: (Not
Enter) foods contact the scooper but do not
enter the spoon bowl, (Roll) foods roll out
of scooping range, (Fall) foods fall out of
the spoon after being scooped into the spoon,
and (Break) breakage. There are many (Not
Enter) failures with the Single baseline be-
cause irregularly shaped foods and multiple
items are difficult to roll into the spoon with
a static pusher. We also find both baselines
have a higher occurrence of breakage fail-
ures, supporting the need for an adaptive sta-
bilizing strategy.

Baselines. We compare against three baselines: Sin-
gle, ↵ = 0.93 and ↵ = 1. Single executes
a single-arm scooping method where the pusher is
fixed and acts as a static barrier. The spoon moves
towards the food and pushes the food against a sta-
tionary pusher during scooping. Notably, the pusher
does not use any of the bimanual stabilizing strate-
gies shown in Fig. 3. ↵ = 0.93 executes a biman-
ual scooping primitive without an adaptive stabiliz-
ing strategy where the pushing distance is 0.93 of
the total 13cm pushing distance, stopping approxi-
mately 1cm early to prevent breakage. ↵ = 1 exe-
cutes a bimanual scooping primitive instead with the
full 13cm pushing distance (↵ = 1), which is iden-
tical to the primitive for scooping a robust food item.

Results. We compare our method, CARBS, against
two baselines across 14 different food items, with 11
robust foods and 4 fragile foods. We also include an
additional ↵ = 0.93 baseline for the 4 fragile foods,
which is the average ↵ value across all CARBS frag-
ile food trials. For robust foods, we report binary
scooping success as whether the food ended within
the spoon bowl after scooping in Table 1. We con-
sider settings of single foods of varied geometries,
and additional settings of up to 3 food items. As
expected, CARBS and ↵ = 1 have similarly high
performances because CARBS should learn to set
↵ = 1 for Robust foods. We compare to the Sin-
gle baseline to observe the advantages of the three bimanual scooping strategies (Angled Pushing,
Cupping, and Pinning as in Fig. 3) over a static pusher position. For round foods, the Angled Pusher
stabilization (described in Sec. 3) is important for building momentum and helping the item roll
into the scooper, which prevents the food from rolling away (Roll Failure). For irregularly shaped
foods that often extend past the spoon edges, the food items can be in unstable poses even once in
the spoon bowl, which can cause them to fall out during the Scooping phase. These items benefit
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from the Pinning stabilizing strategy to pin the food in place throughout the rotation motion and
prevent them from falling out (Fall Failure). See Appendix F for an ablation study on the stabilizing
strategies.

Lastly, we consider scooping 2-3 food items simultaneously, as inspired by the example of chasing
peas around a plate. While CARBS and the ↵ = 1 baseline still outperform the Single baseline,
they fail to achieve as high success as scooping a single food item. It is more difficult to stabilize
multiple food items simultaneously due to the added dynamics complexity. For example, stabilizing
two blueberries to ensure both roll into the mouth of the scooper is nontrivial (Not Enter Failure).
The food dynamics also become more complicated as multiple foods can interact not only with the
pusher and scooper tools, but also with each other.

We present experiments scooping four fragile food settings in Table 2. Two food settings are out
of distribution for our Failure Classifier and one is out of distribution for both the Failure and Risk
Classifier. We report the weight loss during scooping as a percentage of the original food weight to
measure the breakage failure severity. CARBS is able to reduce food breakage by 16.185% com-
pared to the ↵ = 1 baseline. This suggests that the Failure Classifier can effectively recognize
breakage-imminent states and adapt the stabilizing parameter ↵ to prevent breakage. We also find
that ↵ = 0.93 baseline, with a fixed early stop of 1cm to prevent breakage, has worse performance
than CARBS because the fixed distance cannot adapt to different food geometries and properties.
Some smaller foods fail to fully enter the spoon bowl due to the early stop and are not scooped,
resulting in 100% weight loss. We note that although the average ↵ value for cheesecake is 0.9231,
there is still a large gap in performance between CARBS and the ↵ = 0.93 baseline because
CARBS is able to adjust ↵ for each food item. We additionally report the 95% confidence inter-
vals for the CARBS ↵ values to highlight this adaptability. We note that the weight difference for
CARBS for cheesecake, while still lower than the Single and ↵ = 1 baselines, is significantly higher
than tofu and jello. This is due to the stickiness of the cheesecake and its propensity to leave food
residue on the plate and tools during movement. We also report the ↵ values learned with CARBS
and show that although our Failure Classifier is only trained on one food class (tofu), CARBS is
able to adjust ↵ across novel food classes depending on their shape, size, and deformability. This
supports our claim that learning to detect failures from vision generalizes across breakage-prone
food classes. We also find CARBS’s Risk Classifier generalizes within a food class to varied visual
appearance and geometries, suggesting the effectiveness of CARBS for scooping novel foods.

5 Discussion
Summary. We present CARBS, a learned bimanual scooping policy for robustly scooping food
items of varied geometries and deformabilities. CARBS learns a dynamic stablizing strategy to
avoid breakage failures when scooping high-risk foods by identifying breakage-immenent states
and adjusting the stabilizing action parameter: the distance between the scooper and pusher. We
evaluate the generalizability of CARBS with physical experiments scooping 14 foods of varying
shapes, sizes, and fragility, and compare against two baselines. We find that CARBS is able to
successfully scoop 85.7% of foods.

Limitations and Future Work. CARBS struggles to scoop foods with uncommon material proper-
ties and complex dynamics, and multiple food items. While our system is able to reduce cheesecake
breakage compared to baselines, it does not achieve similar success compared to other fragile foods
due to the cheesecake’s stickiness. CARBS also struggles when scooping multiple blueberries with
unpredictable dynamics. Their round shape and inertia allow them to roll off not only the scooper
and pusher, but also each other. CARBS leaves room for improvement when scooping multiple
food items as well – it is nontrivial to determine an optimal stabilizing policy for multiple items
at once. In future work, we hope to study more dynamic stabilizing strategies for food acquisition
and other bimanual tasks, such as tying knots and buttoning clothes. We plan to relax our food
environment assumptions and scoop an even larger range of foods, for example by pushing to group
multiple scattered peas on a cluttered plate and then scooping into a spoon. These cluttered food
settings require longer horizon planning using potentially new primitives to group then acquire the
food, which we leave to future work. We will also explore multimodal sensing strategies with new
probing primitives for scooping to generalize to more unseen foods and augment our vision-only
system.
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