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Abstract

We present the first algorithm for testing equivalence between two continuous
distributions using differential privacy (DP). Our algorithm is a private version
of the algorithm of Diakonikolas et al [16]. The algorithm of [16] uses the data
itself to repeatedly discretize the real line so that — when the two distributions
are far apart in Ak-norm — one of the discretized distributions exhibits large
L2-norm difference; and upon repeated sampling such large gap would be detected.
Designing its private analogue poses two difficulties. First, our DP algorithm can
not resample new datapoints as a change to a single datapoint may lead to a very
large change in the descretization of the real line. In contrast, the (sorted) index of
the discretization point changes only by 1 between neighboring instances, and so
we use a novel algorithm that set the discretization points using random Bernoulli
noise, resulting in only a few buckets being affected under the right coupling.
Second, our algorithm, which doesn’t resample data, requires we also revisit the
utility analysis of the original algorithm and prove its correctness w.r.t. the original
sorted data; a problem we tackle using sampling a subset of Poisson-drawn size
from each discretized bin. Lastly, since any distribution can be reduced to a
continuous distribution, our algorithm is successfully carried to multiple other
families of distributions and thus has numerous applications.

1 Introduction

Differential privacy (DP), a mathematically rigorous notion that bounds the effect of any single datum
on the output distribution, is the current (de facto) gold-standard of privacy preserving data analysis.
By now we have a myriad of DP-algorithms for learning and for various tasks of statistical inference.
Indeed, the design of DP-hypothesis testers is crucial for the dissipation of DP into other data-centric
fields — such as economics, education and health — that analyze sensitive data in massive quantities.
However, by and large the design of DP-hypothesis testing is confined to distributions over finite (and
thus discrete) domains rather than contiunuous distributions.

Hypothesis testing over continuous distributions poses a special challenge due to infinitesimally
small perturbations — two continuous distributions can have Total-Variation distance of α using,
say, exponentially many intervals each with an exponentially small shift of probability mass, which
clearly cannot be detected with polynomially-size sample. Luckily, this issue was resolved in the
works of [10, 15, 16] who restricted the TV-distance to using k-intervals. Formally, these works
measure distance in Ak-norm: where for any two distributions P and Q we have that ∥P −Q∥Ak

=

sup
I

∑k
j=1 |P(Ij)−Q(Ij)| where I is a partition of the real-line R into k intervals I1, I2, ..., Ik.

But the fact remains that continuous distributions pose a special challenge for DP-algorithm designers.
In fact, releasing even a simple statistics like the median is impossible over infinite domains [6, 7].
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And yet, as we show in this work, it is possible to compare (samples from) two continuous distributions
while preserving differential privacy and discern whether the two are identical or far-apart in Ak-
distance. This suggests a sharp contrast between the task of learning from a (single) continuous
distribution and the task of statistical inference based on two continuous distributions.

Baseline. This sharp contrast may seem striking at first, yet on second thought, it is known that
any statistical inference task that only has two possible outputs (in our case - “accept / identical” vs
“reject / far-apart”) can easily be made private using the Subsample-and-Aggregate framework [26] —
simply run O(1/ϵ)-times the non-private equivalence tester of Diakonikolas et al [16] and return the
most prevalent output using simple noisy count. This gives a simple ϵ-DP equivalence tester with
O((k4/6α−6/5 + k1/2α−2)/ϵ) sample complexity with two clear drawbacks: (1) its large sample
complexity bound and (2) its decision to accept or reject is explained as ‘in the majority of the runs
of the tester it decided so’. The algorithm we present in this work improves on both aspects: it has
a sample complexity of Õ

(
max

{
k4/5

α6/5 ,
k1/2

α2 , k2/3

αϵ1/3
, k1/3

α4/3ϵ2/3
,
√
k

αϵ

})
and it is capable of producing

numerical estimators directly from the data that explain its accept/reject decision.

Our Algorithm. The difference that makes learning substantially more difficult from equivalence
testing is that when having two distributions we are capable of “pitting one against the other”: roughly
speaking, we can partition the real line into intervals based on points from one distribution and see
whether this partition acts as a random partition for the batch of examples that come from the second
distribution. This involves only sorting all s points from our sample on the real line and dealing
with the order statistics. Our algorithm is based on privatizing the equivalence tester of [16], which
operates over the continuous real line. This algorithm works in two stages: In the first stage, it looks
at autocorrelation statistics that involve all (s − 1) pairs of adjacent (post-sorting) data points. In
the second stage, it equipartitions the data using into m bins using a random draw of m points and
repeatedly runs the following operation: run a closeness L2-norm based tester on the discretized
m-bins distribution that draws N new points, and should it not reject – merge every pair of adjacent
bins to create a m/2-bins discretization and continue.

Our DP-version of this tester also works in similar stages. The first stage is almost trivially privatized
(the statistics estimated in the first stage exhibits small global sensitivity) but numerous difficulties
arise in the privatization of the second stage. Most notably — the fact we use datapoints to define
a partition into bins. To that end, we replace it so that we use sorted-indices, implying that a bin is
composed of all datapoints in sorted indices from index πi to index πi+1 (not including). This asserts
that any single bin changes by at most two datapoints between neighboring samples. Combining
this with the fact that under the null-hypothesis the difference between the number of points from
P and Q in each bin is proportional to the square-root of the bin size, we can bound the sensitivity
in a Propose-Test-Release fashion [20] for any single bin. However, the approach of fixing sorted
indices raises two concerns. The first is that we have to revisit the utility analysis of [16] because
we no longer use re-sample new points to estimate the L2-norm difference of the two discretized
distributions but rather re-visit the same dataset from which the bin-defining datapoints are taken. We
bypass this difficulty by sampling ourselves Poisson-drawn subsample of each bin, and by focusing
our analysis on a single iteration that should cause us to reject.

The second concern lies in the privacy analysis, and it is the observation that a change to a single
bin isn’t enough to bound the sensitivity of our statistical estimator. The algorithm computes an
L2-approximation of the norm-difference using all bins, and in the extreme case of two neighboring
datasets that differ on the very first (sorted) datapoint that ends up as the very last datapoint in the
neighboring dataset we have that all bins shift. To that end we use the following novel idea: we add a
Ber(1/2)-random variable to each of the bin-defining indices. On the one hand, this possible shift
by 1 changes very little in terms of the analysis; on the other hand, it allows us to argue that within
log4(1/δ) random shifts we can correlate these Bernoulli random variables so that the bins identify.
Full details of our algorithm and its analysis appear in Section 3.

Applications. Having designed our private equivalence tester for continuous distributions under
Ak-norm, we can now apply it to test equivalence between two distributions from a family C of
distributions which, under suitable partition, yield large enough Ak-distance. The following fact is
immediate.
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Fact 1. Given a univariate distribution family C and α, let k = k(C, α) be
the smallest integer such that for any f1, f2 ∈ C it holds that ∥f1 − f2∥1 ≤
∥f1 − f2∥Ak

+ α/2. Then there exists a (ϵ, δ)-DP equivalence testing algorithm for C using
Õ
(
max

{
k4/5

/α6/5, k
2/3
/αϵ1/3, k

1/2
/α2, k

1/3
/α4/3ϵ2/3,

√
k/αϵ

})
samples.

In Section 4 we detail, much like [16], a variety of such hypothesis-families and the sample complex-
ities we obtain for their respective DP-equivalence testers.

1.1 Related Work

Over the past twenty years, significant progress has been made in distribution property testing.
Initially, research focused on the sample sizes required to assess properties of arbitrary distributions
with a specific support size. Goldreich and Ron [23] introduced uniformity testing, proposing an
algorithm using collision statistics with a sample complexity of

√
n

α4 . Batu et al [5] studied closeness
testing, evaluating whether two distributions are close in total variation. Paninski [27] established
the first lower bound for the sample complexity of uniformity testing at Ω(

√
n

α2 ) and proposed a new
uniformity test using unique element statistics. The works of [1, 10, 29] explored optimal bounds for
identity testing, focusing on χ2-based testers. They established a lower bound for closeness testing at
O
(

n2/3

α4/3 +
√
n

α2

)
, with [10] providing matching upper bounds for L2 closeness testing under certain

conditions. [14]. introduced a technique reducing distribution norms to O
(
1
n

)
by expanding the

domain size, demonstrating an efficient L2 tester for closeness testing. Recent works [11, 15, 16] have
leveraged structural assumptions for more efficient testers in various settings, including continuous
cases. These studies used the Ak metric, aligning with the Kolmogorov distance for k = 2 and
total variation distance for k being the domain size. Goldreich [22] showed that identity tests could
be reduced to uniformity testing. While earlier testers relied on proxy measures like L2 and χ2,
and [12, 13] demonstrated efficient sample complexity using direct L1 metric testers due to low
sensitivity. We refer the interested reader to Cannone’s excellent survey [9].

Several recent papers have examined hypothesis testing problems under the framework of differ-
ential privacy. Cai et al [8] used χ2 statistic for identity testing, achieving a sample complexity
of Õ

(
max

{√
n

α2 ,
√
n

α3/2ϵ
, n1/3

α5/3ϵ2/3

}
· log(1/β)

)
. Aliakbarpour et al [4] proposed three algorithms

for differentially private uniformity and closeness testing. They privatized unique element algo-
rithms, collision-based testers, and χ2 tests, each with specific sample complexities and limitations.
Acharya et al [2] established a lower bound for private identity testing, suggesting that small expected
Hamming distances might compromise privacy guarantees. They proposed a sample complexity con-
cerning privacy and distance parameters by privatizing an L1 statistic-based algorithm. Aliakbarpour
et al [3] also examined closeness testing between distributions with unequal sample sizes, introducing
a new technique to privatize the ‘flattening’ method through data permutation. Zhang [30] derived an
upper bound for closeness testing by privatizing an empirical total variation method, demonstrating
small sensitivity and sample complexity of O

(√
n

α2 + n2/3

α4/3 +
√
n

α
√
ϵ
+ n1/3

α4/3ϵ2/3
+ 1

αϵ

)
.

Comparison to Existing Lower Bounds. The well-known lower bound forAk closeness testing in
the non-private regime is given in [16]. It is equal to O

(
k4/5

α6/5 +
√
k

α2

)
. As far as we know, there is no

known lower bound for the private regime in that task. In [2], a lower bound for the private regime in
identity testing is presented as O

(√
n

α2 + n2/3

α4/3 +
√
n

α
√
ϵ
+ n1/3

α4/3ϵ2/3
+ 1

αϵ

)
(where n = k is the domain

size), which is a simpler task than closeness testing. Additionally, [30] provided an upper bound equal
to the lower bound of the closeness testing also in the private regime when he crucially relies on the L1

tester that is known with low sensitivity. We have established an upper bound that is asymptotically
close to the lower bound, given by Õ

(
max

{
k4/5

/α6/5, k
2/3
/αϵ1/3, k

1/2
/α2, k

1/3
/α4/3ϵ2/3,

√
k/αϵ

})
. The

difference between our upper bound and the lower bound lies in two specific terms:
√
k

αϵ and k2/3

αϵ1/3

The first term is a result of the high sensitivity in our algorithm due to the use of L2 norm testing,
which was selected to ensure the utility proof. Additionally, we did not focus on optimizing the term
log

(
k

αϵδ

)
.
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2 Preliminaries

Equivalence (Closeness) Testing. We assume oracle access to two distributions P,Q which gives
an i.i.d. example from the resp. distribution. We also use P(S) (resp. Q(S)) to denote the total
probability mass assigned by P (resp. Q) to a set S. We assume the two distributions are continuous
with no discrete point mass, which can always be obtained by concatenating each sample with a
uniformly drawn number ∈R [0, 1]. An equivalence tester between the two distributions should return
NULL w.p. ≥ 2/3 if it holds that P = Q and return ALT w.p. ≥ 2/3 if it holds that ∥P −Q∥Ak

≥ α.

Differential Privacy. Two databases D and D′ are considered neighboring databases if they differ
by exactly one record, noted as d(D,D′) = 1, where d(·, ·) represents the Hamming distance. Given
a domain X , two multi-sets S, S′ ⊂ X are called neighbors if they differ on a single entry. An
algorithm (alternatively, mechanism)M is said to be (ϵ, δ)-differentially private (DP) [21, 19] if
for any two neighboring S, S′ and any set O of possible outputs we have: Pr[M(S) ∈ O] ≤
eϵ Pr[M(S′) ∈ O] + δ. If δ = 0 then we say the algorithmM is ϵ-DP.

The Global Sensitivity of a function f : X → Rd is defined as the maximal difference
maxS,S′ ∥f(S)−f(S′)∥1. It is known that adding Lap(GS(f)/ϵ) to each coordinate of f(S) is ϵ-DP;
where Lap(λ) denotes the Laplace Distribution with parameter λ, whose PDF is PDF(x) ∝ e−|x|/λ.
It is known [19] that if A1 and A2 are (ϵ1, δ1)-DP and (ϵ2, δ2)-DP resp., then their composition is
(ϵ1 + ϵ2, δ1 + δ2)-DP. It is also known [18] that the k-fold composition of k algorithms, each is (ϵ, δ)-
DP is (ϵ∗, kδ+δ′)-DP for any δ′ > 0 and ϵ∗ = kϵ(eϵ−1)+2ϵ

√
k log(1/δ′). Lastly, it is also known

that if there exists an event E such that under E holding, algorithmM satisfies that for any two neigh-
boring S and S′ and any set of outputs O we have that Pr[M(S) ∈ O| E ] ≤ eϵ Pr[M(S′) ∈ O| E ]+δ
then algorithmM is (ϵ, δ + Pr[¬E ])-DP.

Poisson Distribution. The Poisson distribution Poi(λ) is a discrete distribution over the Naturals
which satisfies Pr[k] = e−λλk/k!. It has multiple properties that make it easy to work with.
Proposition 2. • The sum of two ind. Poisson Poi(λ1) and Poi(λ2) is Poi(λ1 + λ2).

• Let X1, X2, ... be i.i.d. Bernoulli r.v.s. with parameter p; then drawing t ∼ Poi(λ), it holds
that

∑t
i=1 Xi is distributed like Poi(λp).

• If X ∼ Poi(λx) and Y ∼ Poi(λy) are two ind. Poisson r.v.s, then the distribution of X
conditioned on the event that X + Y = n is Binomial Bin(n, λx

λx+λy
).

• If Xi ∼ Poi(λ) then Pr[|X − λ| > k] ≤ 2 exp
(
− k2

2(λ+k)

)
. So for any β > 0, setting

k = 2
√

λ log(2/β) we get Pr[|X − λ| > 2
√
λ log(2/β)] ≤ β provided λ > 4 log(2/β).

Misc. We use Õ (resp. Ω̃) to denote big-O (resp. big-Ω) up to poly-log factors. We made no effort to
minimize constants or the degree of the poly-log.

3 Private Equivalence Testing for Continuous Distributions

In this section, we present our DP-tester for equivalence between two distributions with large Ak

distance and give both its formal privacy guarantee and its sample complexity bounds. The tester is
detailed in Algorithm 1 (which in turn invokes Algorithm 2), where cdkn denotes a large enough
constant detailed in [16].

The algorithm consists of two parts. In terms of the non-private algorithm, both parts function
similarly to the algorithm presented by [16]. Our main contribution is the privatization of this
algorithm. In the first part the main objective is to compute the estimator Z (line I.5) which is
privatized using a straightforward approach – since it has low sensitivity we merely add to is some
Laplace noise. The second part is more complex, as it involves discretizing the domain based on the
data itself, resulting in high sensitivity. We addressed this issue by creating the initial partition of
the domain and adding a Bernoulli random variable to each index position (line II.5). Consequently,
the algorithm can iteratively run j0 iterations of the L2-tester TestCloseness on based on the
randomized partition, where in each invocation of TestCloseness we sample a Poisson-size batch
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from each partition (line II.11). If the L2-tester doesn’t reject, then we merge adjacent partition
cells (line II.15) and move on to the next iteration. If either invocations of TestCloseness (or the
estimator Z has too high of a value) then we reject; but if all test pass we return NULL.

Algorithm 1 Private Equivalence Tester
Input: 2 continuous distributions P,Q, distance parameter α, privacy parameter ϵ, δ.
Output: “NULL" if P = Q; “ALT" if ∥P −Q∥Ak

≥ α

1: Part I:
1. Set m← 100cdkn

(
k

4
5/α

6
5 + k

2
3/αϵ

1
3

)
2. Draw s ∼ Poi(m) points from 1

2 (P +Q).
3. Label each xi drawn from P with ℓ(xi) = 1 and label each xj drawn fromQ as ℓ(xj) = −1.
4. Sort the sample, denote the outcome as x(1) < x(2) < · · · < x(s).

5. Z =
∑s−1

i=1 ℓ(x(i))ℓ(x(i+1))

6. Draw X ∼ Lap(6/ϵ).
7. Z̃ = Z +X

8. if Z̃ > m3α3

2k2 then return ALT

2: Part II:
1. Set N ← 107

(
k1/3

α4/3ϵ2/3
+

√
k

αϵ +
√
k

α2

)
log6(k/αϵδ) and assert m divides N .

2. Draw sp ∼ Poi
(
N
2

)
and sq ∼ Poi

(
N
2

)
ind. Set s← sp + sq .

3. S ← a sample of sp i.i.d. examples from P and sq i.i.d. examples from Q.
4. Sort S. Denote the outcome as x(1) < x(2) ≤ · · · < x(s).

5. For each 1 ≤ i ≤ m set πi ← i · N
m + Bi for ind. drawn Bi ∼ Ber(1/2). Also set

π0 ← 0, πm+1 ← s+ 1.
6. Form the Partition Π̄0 = {Π0

1,Π
0
2, ...,Π

0
m} where Π0

i = {x(i′) : πi < i′ < πi+1} for every
1 ≤ i ≤ m.

7. Set j0 ← 1 + ⌈log (m/k)⌉ and m0 ← m.
8. for j = 0, 1, . . . , j0 − 1 do:
9. for i = 1, 2, . . . ,mj do:

10. Draw NJ
i ∼ Poi( N

4mj ).

11. Pick a u.a.r. subset CJ
i of N j

i points from Πj
i . (If N j

i > |Πj
i | then use special ⊥ points.)

12. Set Xj
i (resp. Y j

i ) as #points from P (resp. Q) in Cj
i .

13. if TestCloseness
(∑

i

N j
i ,m

j , ⟨Xj
i ⟩, ⟨Y

j
i ⟩, α

12
√
2k+1·log(1/α) ,

ϵ

8
√

j0 log(2/δ)
, δ
2j0

, δ

)
= ALT then

14. return ALT
15. Merge cells: Set mj+1 ← ⌊mj

/2⌋, and for each 1 ≤ i ≤ mj+1 set:
Πj+1

i ← Πj
2i−1 ∪ {x(πi′ )

} ∪Πj
2i ▷ i′=the separating index of the two bins

3: return NULL

3.1 Privacy Proof

In this subsection, our goal is to proof the following theorem.
Theorem 3. Algorithm 1 is (2ϵ, 2δ)-DP.

The proof of Theorem 3 shows that Part I of Algorithm 1 is ϵ-DP — which is very straight forward,
whereas Part II of the algorithm is (ϵ, 2δ)-DP — which involves more intricate arguments. In fact, all
that is required regarding the DP of Part I is the following claim. Its proof, as well as most proofs in
this section, is deferred to Appendix A.
Claim 4. The estimator Z =

∑s
i=1 ℓ(x(i))ℓ(x(i+1)) in Part I of Algorithm 1 (Line 5) has global

senstivity of 6.
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Algorithm 2 TestCloseness-(N,m, X̄, Ȳ , α, ϵ′, δ′, δ)

1: Set nmax ← maxi{|Xi − Yi|}.
2: Set n̂max ← nmax + Lap(8/ϵ)
3: Set Z ←

∑
i (Xi − Yi)

2 −Xi − Yi =
∑

i |Xi − Yi|2 − (Xi + Yi).

4: Set nz ←
√

6N
m log (800N) + 16 ln(1/δ′)

ϵ′ + 1

5: Set Ẑ ← Z + Lap(16 log4/3(
2/δ)nz/ϵ′)

6: if (n̂max <
√

6N
m log (800N) + 8 ln(1/δ′)

ϵ′ and Ẑ < 1
2α

2N2) then return NULL
7: else return ALT

We thus focus for now on Part II of Algorithm 1. In Part II our output is the (2j0)-long tuple
⟨n̂j

max, Z
j⟩j0−1

j=0 which we may return from the j0 invocations of TestCloseness. Thus, we denote
ϵ′ = ϵ

8
√

j0 log(2/δ)
, δ′ = δ

2j0
and note that each invocation of TestCloseness is with these parameters.

Throughout our analysis of Part II we assume that the Poisson random variables are known to us, but
leave the Bernoulli and the Laplace random variables unknown.

Each invocation of TestCloseness releases two statistics: an approximation of nmax and approxi-
mation of Z. The next two claims bounds their sensitivity (w.h.p.).

Claim 5. The Global Sensitivity of nmax is at most 4.

Lemma 6. There exists an event E where Pr[¬E ] < 3δ/2, and under E it holds that the sensitivity of

Z at any iteration j is at most 8 log4/3(2/δ)
(√

6N
m log (800) + 16 ln(1/δ′)

ϵ′ + 1
)

.

Proof. Denote E0 as the event that there exists an invocation of TestCloseness with m balls and

n bins in which nmax ≥
√

6m
n log (800m) + 16 ln(1/δ′)

ϵ′ , yet n̂max <
√

6m
n log (800m) + 8 ln(1/δ′)

ϵ′ .
It follows that there must exists an invocation of TestCloseness in which the noise added to nmax

(drawn from Lap(8/ϵ′)) must be smaller than − 8 ln(1/δ′)
ϵ′ . This holds w.p. < δ′/2, and from the

Union Bound it follows that Pr[E0] = j0·δ′
2 = δ

2 .

We now turn to the Bernoulli random variables. Fix S and S′ to be two neighboring inputs, and again,
we assume that the changed point appears in place (1) in S and in place (s) in S′. (Otherwise, our
analysis is only simpler.) It follows that the changed point falls in Π0

1 in S and in Π0
m in S′.

We now specify the coupling of the Bernoulli random variables between S and S′, which is the
following. We draw B1, B′

1. B2, B′
2 and so on, u.a.r. and independently, and apply Bi-s to the

invocation on S and B′
i-s to the invocation on S′, until the first occurrence of Bi = 0, B′

i = 1 from
which we give Bi+1, Bi+2 and so on to both invocation. This is depicted in Figure 1.

Denote Ej as the event that the first occurrence of Bi = 0, B′
i = 1 is at the j-th draw. Clearly

Pr[Ej ] = (3/4)j−1 · 1/4. Thus, from the disjointness of events, it follows that Pr
[⋃log4/3(2/δ)

j=1 Ej
]
=

1
4

∑log4/3(2/δ)

j=1 (3/4)j−1 = 1
4
1−(3/4)

log4/3(2/δ)

1−3/4 = 1− δ/2. Symmetrically, we apply the same coupling

Figure 1: Two neighboring inputs that differ on one datapoint, appearing first in S and last in S′.
In this example, the index defining the first bin, π1, is such that for S we go B1 = 0 and for S′ we
have B′

1 = 0; but the index defining the 2nd bin, π2 it does hold that B2 = 0, B′
2 = 1 so the indices

starting from bin 2 onwards align.
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to align the last bins, those affected by x(s), in the last position. We use the coupling that provides
Bm, B′

m, Bm−1, B
′
m1

, Bm−2, B
′
m−2 and so on until the first occurrence of (1, 0) then it switches to

the same variable Bj . Denoting E ′j as the event that the first occurrence of Bi = 1, B′
i = 0 is at the

m− j-th draw, we have that Pr
[⋃log4/3(2/δ)

j=1 E ′j
]
= 1− δ/2.

We thus denote E = E0 ∪
log4/3(2/δ)⋃

j=1

(Ej ∪ E ′j) and have that Pr[¬E ] = 3δ/2. Note, under E it follows

that at most 2 log4/3(2/δ) bins have a change in their |Xi − Yi|-value, which – due to Claim 5 – is at
most 4. (Observe that in the case where S and S′ are such that there are fewer than 2 log4/3(2/δ)
bins between the locations of the changed point then this statement holds w.p. 1.)

It follows that under E we have that the value of Z is affected by at most 2 log4/3(2/δ) bins,
where for each bin |Xi − Yi| changes by at most 4. It follows that Z can change by at most

2 log4/3(2/δ) · 4 · (nmax + 1) ≤ 8 log4/3(2/δ)
(√

6N
m log (800N) + 16 ln(1/δ′)

ϵ′ + 1
)

.

Completing the Proof of Theorem 3 is simple, and is deferred to Appendix A.

3.2 Utility Proof

In this subsection, our goal is to proof the following theorems.
Theorem 7. W.p. ≥ 2/3, Algorithm 1 returns NULL when P = Q.
Theorem 8. W.p. ≥ 2/3, Algorithm 1 returns ALT when ∥P −Q∥Ak

≥ α.

The proof of Theorem 7 is fairly simple, but the proof of Theorem 8 requires some preliminaries.
In fact, in order to argue the correctness of theorems we need to argue that both Parts I & II of the
algorithm are correct w.p. ≥ 5/6. Proving that Part I is correct is very straight-forward due to claims
from [16]. And so we focus on the correctness of Part II. Its correctness requires that we first assert a
few rudimentary propositions and claims.

3.2.1 Rudimentary Claims

Similarly to the analysis in [16] our goal is to compare the two continuous distributions to their
resp. discretizations that were forms under the various Π̄j . However, we do not have the luxury
of resampling the points from P and Q, and so our argument diverges from theirs as we fix one
particular j∗ and then argue from first principles that under large Ak-difference the specific partition
Π̄j∗ cause us to reject. (Arguing that when P = Q we return null is also fairly straight-forward.) Our
intermediate goal is to argue that the points from P (the X-s) and the points from Q (the Y -s) are
distributed like independent Poisson random variables. Thus, for the remainder of the discussion we
fix some particular iteration j and examine solely it, without considering the previous iterations.

Due to space constraint, we defer nearly all the claims in this section to Appendix B, but they all lead
to towards the following main lemma.
Lemma 9. Fix index j. For each index i denote by Ii as the interval (x(πj

i )
, x(πj

i+1)
) which is the

interval defining bin i in the partition Π̄j . Then the estimator Z computed by TestCloseness satisfies
that E[Z] =

∑mj

i=1(pi − qi)
2 where

pi =
NP(Ii)

4m(P(Ii) +Q(Ii))
, qi =

NQ(Ii)
4m(P(Ii) +Q(Ii))

.

and that Var[Z] =
∑mj

i=1 4(pi + qi)(pi − qi)
2 + 2(pi + qi)

2.

In Lemma 9 we established the expectation and variance of our estimator using the notation pi which
in turn is defined as NP(I)

4m(P(I)+Q(I)) (and qi similarly). The following claim is going to assist us in
bounding the denominators of pi and qi.
Claim 10. If N > 3000m log(2m), then with a probability of 1− 1

m , any I that forms a bin Π0
i in

Π
0
, has that 1

1.01m ≤
P(I)+Q(I)

2 ≤ 1.01
m .
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Unfortunately, due to space constraints, we defer proof of Claim 10 as well as the entire proof of
Theorem 7 to Appendix B.

3.2.2 Proof of Theorem 8

We now turn our attention to proving Theorem 8, however, we need one more technical lemma, whose
proof – like all proofs in this section – is deferred to Appendix B. Then we can proof Theorem 8.

Lemma 11. Fix p ∈ (0, 1). Suppose there exists n non-negative random variables X1, X2, . . . , Xn,
such that for each i it holds that for some fixed number ai we have Pr[Xi ≥ ai] ≥ p. Then, given a
constant c > 0 there exists another constant C > 0 such that with a probability at least C it holds
that

∑n
i=1 Xi ≥ c

∑n
i=1 ai.

Proof of Theorem 8. In the alternative case, where ∥P −Q∥Ak
≥ α, we know that there exists

k intervals I ∈ I such that
∑

I∈I |P(I) − Q(I)| ≥ α. We denote for each interval γ(I) =
|P(I)−Q(I)|. For the sake of analyze we use two different kinds of interval, small and large.

Definition 12. Interval I ∈ I is called small if there exists a subinterval J ⊆ I such that P(J) +
Q(J) < 1/m and |P(J)−Q(J)| ≥ γ(I)/10, and large otherwise.

Note that α ≤ ∥P −Q∥Ak
=

∑
I∈I |P(I) − Q(I)| =

∑
I∈I, I small γ(I) +

∑
I∈I, I large γ(I), so

half of the discrepancy comes from either small or large intervals. We consider first the case where
half of the discrepancy comes from small intervals. In this case, Lemma 9 in [14] states that the
expectation of statistic Z in Line 5 of Part I is bounded by E[Z] ≥ cN

3α3

k2 for some constant c > 0.
Just like we did in the soundness case, Proposition 21 gives that the variance Var[Z] ≤ 9m. Therefore

for some large constant cdkn, setting m = 100cdkn

(
k

4
5

α
6
5
+ k

2
3

αϵ
1
3

)
then by Chebyshev’s inequality

we get that with probability 5
6 it holds that Z̃ ≥ E[Z] − 10

√
m − |X| ≥ m3α3

2k2 (with X being the
random noise sampled in Line 6 of Part I of the algorithm).

Now consider the case where
∑

I∈I, I is large |P(I)−Q(I)| ≥
α
2 . We prove that Part II of Algorithm 1

must return ALT on at least one invocation of TestCloseness. In order to do this, we first need to
show that the discretization of the domain with m samples preserves most of the Ak-distance. Take
any interval I ∈ I that gives the Ak distance, and denote I = [a, b] as its boundaries.

Now, consider the total probability mass between a and πi, then the first datapoint selected for the
partition that is greater than a. Since the total number of points is taken from a Poisson distribution,
it is known that the mass from one point to the next has Exponential distribution Exp(N) [28]; and
so the total mass from a to π is distributed like the sum of Exponential random variables, namely, a
Gamma-distribution with mean ≤ N

m ·
1
N = 1

m , and variance ≤ N
m · (

1
N )2 = 1

mN < 1
3000m2 log(m) . It

follows that w.p. ≤ 0.01 we have that 1
2 (P[a, πi]+Q[a, πi]) >

1.01
m . A similar analysis shows that for

πj , the last datapoint selected for the partition before b, we also have P([πj , b]) +Q([πj , b]) <
2.02
m .1

Note that a large interval must have a total probability mass P(I) +Q(I) ≥ 10
m and so w.p. ≥ 0.98

we have formed the subinterval I ′ = [πi, πj ] ⊂ I . Moreover, by the subinterval property of
large intervals, we have that because P([a, πi]) +Q([a, πi]) + P([πj , b]) +Q([πj , b]) <

4.04
m then

γ(I ′) ≥ γ(I)− 5γ(I)
10 = γ(I)/2.

Therefore, denote NI as the indicator of the event that |P(I ′)−Q(I ′)| ≥ γ(I)
2 , and we denotePΠ0

and
QΠ0

as the reduced discretized distribution formed by the partition point. We show it preserves most of
the total variation ∥PΠ0 −QΠ0∥1 =

∑
I′ |P(I ′)−Q(I ′)| ≥

∑
I∈I NI

γ(I)
2 ≥

∑
I∈I, I large NI

γ(I)
2 .

We have established that if I is large interval then Pr[NI ] ≥ 0.98, and so, for the random variables,(
NI

γ(I)
2

)
-s (one for each large interval) where for each variable with probability 0.98 it holds

that NI
γ(I)
2 ≥ γ(I)

2 , we apply Lemma 11 with c = 0.36 and have that there for the constant

1if a = −∞ or b = ∞ our analysis is even simpler, as we take π0 and πm+1 as the respective partition
point.
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C = 1− 0.98(1−0.98)
0.982(1−0.36)2 > 0.95 such that with probability C > 0.95∑

I∈I, I large

NI
γ(I)

2
≥ 0.36

∑
I∈I, I large

γ(I)

2
>

α

12

Therefore, with probability > 0.95, ∥PΠ0 −QΠ0∥1 ≥ α
12 .

Observe that the TV-distance follows from finding suitable subintervals I ′ inside large intervals with
large discrepancy. Thus, each of the ≤ k large intervals now gives (at most) 2 points that form I ′, so
these ≤ 2k points partition the real line to ≤ 2k + 1 intervals where the various I ′-s are part of this
partition. It follows that ∥PΠ0 −QΠ0∥A2k+1

≥ α
12 .

Now, to complete the proof, we need to show that Part I of the algorithm detects the discrepancy. We
deploy the following lemma from [16] where for a vector v the notation ∥v∥1,k refers to the sum of
the largest k bins/coordinates of v.

Lemma 13. For any two distributions P and Q on [m] such that ∥P −Q∥Ak
> α, there iteration

j ∈ [log(m/k)] such that ∥PΠj −QΠj∥1,k > α/ log(m/k).

So since ∥PΠ0 −QΠ0∥A2k+1
≥ α

12 , we know that by Lemma 13, there exists some j∗ ∈ [log(m/k)]

such that
∥∥∥PΠj∗ −QΠj∗

∥∥∥
1,2k+1

≥ α
12 log(m/k) and therefore by Cauchy–Schwarz inequality∥∥∥PΠj∗ −QΠj∗

∥∥∥
2
≥ α

12
√
2k+1 log(m/k)

. We know that
∥∥∥PΠj∗ −QΠj∗

∥∥∥
1,2k+1

≥ α
12 log(m/k) . De-

note the set of indices of these 2k + 1 intervals as S, we get from Lemma 9 that

E[Z] =
mj∑
i=1

(pi − qi)
2 ≥

∑
i′∈S

(pi′ − qi′)
2

Cau.Sch.
≥ (

∑
i′∈S |pi′−qi′ |)

2

2k+1 ≥ 1
2k+1

( ∑
i′∈S

N |P(I)−Q(I)|
4mj |P(I)+Q(I)|

)2

.

Also from Lemma 9 we can infer that

Pr

[
|Z − E[Z]| ≤ 1

4
E[Z]

]
≤ 16Var[Z]

E[Z]2
≤

∑mj

i=1 64(pi + qi)(pi − qi)
2 + 32(pi + qi)

2

(
∑mj

i=1(pi − qi)2)2

=

∑mj

i=1 64(
N(P(I)+Q(I)

4mj(P(I)+Q(I) )(pi − qi)
2 + 32( N(P(I)+Q(I)

4mj(P(I)+Q(I) )
2

(
∑mj

i=1(pi − qi)2)2
=

2N2/mj

(
∑mj

i=1(pi − qi)2)2
+

16N/mj∑mj

i=1(pi − qi)2

mj≥k

≤ 6 · 5882(2k + 1) log2(m/k)

N2α4
+

28224 log(m/k)

Nα2
< 0.01

when N ≥ 106
√
k log2(m/k)

α2 . Now we assert that the noise we added is also proportional to at most
1
4E[Z], and indeed if we draw a random variable R ∼ Lap

(
∆(Z)
ϵ′

)
with ∆(Z) as defined in Line

5 of TestCloseness, then we get Pr
[
R ≥ N2α2

2500(2k+1) log(m/k)

]
≤ exp

(
N2α2ϵ′

2500(2k+1)∆(Z)

)
≤ 0.01.

which holds if

N > 106
√

k∆(Z)

α
√
ϵ′
≥ 106

α
√
ϵ′

√√√√k · 16 log4/3(2/δ)max

{√
N

2k
log (10N),

16 ln(1/δ′)

ϵ′

}

so we get N = Ω̃
(

k1/3

α4/3ϵ2/3
+

√
k

αϵ

)
. Combining it all together, we have that w.p. ≥ 5/6 Part II of

the algorithm also returns ALT.

4 Applications

Our algorithm is designed for continuous distributions, but it can also be used for discrete distributions.
The process is simple: for a given discrete distribution P , for each example xj ∼ P we draw a
number ij ∈R [0, 1], and then sort all the examples ⟨(xj , ij)⟩mj=1 using lexicographic order. This
process gives a simple privatization of the "Flattening method" proposed by Diakonikolas et al [14],
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as it does so without looking at the example drawn. Our algorithm method is quite simple: draw m
samples from 1

2 (P +Q), then calculate the autocorrelation to identify discrepancies within small
intervals. Next, use 2min(m,n) for flatting to test for total variation distance. It’s important to
remember that if n = k, where n is the size of the domain, then Ak distance is equal to L1. However,
the sample complexity of the first part, which involves finding discrepancies in small intervals using
the analysis of [16], requires n4/5

α6/5 . Fact 1 indicates however that the size of the domain is not always
the most suitable parameter for distribution testing. Having knowledge about the structure of the
distribution enables more efficient testing, as we illustrate below. In Table 1, we give a brief summary
of the various statistical inference tasks that can be conducted using our algorithm.

Table 1: Private equivalence testers derived from our algorithm for continuous distributions

Distrib.
Family

Num of
Intervals

Private upper bound

t-
piecewise
constant

t Õ
(
max

{
t4/5

α6/5 ,
t2/3

αϵ1/3
, t1/2

α2 , t1/3

α4/3ϵ2/3
,
√
t

αϵ

})

t-
piecewise
degree-d

t(d+ 1) Õ

(
max

{
(t(d+1))4/5

α6/5 , (t(d+1))2/3

αϵ1/3
, (t(d+1))1/2

α2 , (t(d+1))1/3

α4/3ϵ2/3
,

√
(t(d+1))

αϵ

})

log-
concave

1√
α

Õ
(
max

{
1

α9/5 ,
1

α4/3ϵ1/3
, 1

α3ϵ2/3
, 1

α5/4ϵ

})
k-
mixture
of log-
concave

k√
α

Õ
(
max

{
t4/5

α8/5 ,
k2/3

α4/3ϵ1/3
, k1/2

α9/5 ,
k1/3

α3ϵ2/3
,

√
k

α5/4ϵ

})

t-model
over [n]

t log(n)
α

Õ

(
max

{
(t log(n))4/5

α2 , (t log(n))2/3

α5/2ϵ1/3
, (t log(n))1/2

α5/2 , (t log(n))1/3

α5/3ϵ2/3
,

√
t log(n)

α3/2ϵ

})
MHR
over [n]

log(n/α)
α

Õ

(
max

{
(log(n/α))4/5

α2 , log(n/α)2/3

α5/3ϵ1/3
, (log(n/α))1/2

α5/2 , (log(n/α))1/3

α5/3ϵ2/3
,

√
log(n/α)

α3/2ϵ

})
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A Missing Proofs — Privacy

Claim 14 (Claim 4 restated). The estimator Z =
∑s

i=1 ℓ(x(i))ℓ(x(i+1)) in Part I of Algorithm 1
(Line 5) has global senstivity of 6.

Proof. Consider omitting a single datapoint, x(i). It is easy to check cases and see that when
ℓ(x(i−1)) = ℓ(x(i+1)) = −ℓ(x(i)) then before omitting x(i) the three entries contributed −2 to Z
andafter the omittance they contribute 1 to Z. Thus the change is 3. Considering S and S′ that are
different on a single entry, we have that this change to a triplet of consecutive datapoints occurs twice,
hence the global senstivity of Z is 2 · 3 = 6.

Claim 15 (Claim 5 restated). The Global Sensitivity of nmax is at most 4.

Proof. Fix S and S′ to be two neighboring inputs that differ on a single point, and assume that the
changed point appears in first place in S and the last (s-th) place in S′. Now, it is simple to see that
each bin changes by at most two points (its first and last), as shown in Figure 1. However, since we
may not know the beginning-points and end-points of each bin due to the Bernoulli random noise
added to each, then in the extreme case the bin from S has addition more point and from S′ missed
a point. This sums to 4 points that may belong to one bin and not the other, shifting the value of
Xi − Yi by at most 4.

Proof of Theorem 3. First, we discuss Part I. In this part we only release the noisy estimator(∑s
i=1 ℓ(x(i))ℓ(x(i+1))

)
+ X . Due to Claim 4 we know that adding Lap(6/ϵ) to this estimator

is ϵ-DP. We now move to Part II of the algorithm.

In this part we release j0-times a pair of outputs: (i) a noisy estimator of nmax and (ii)
a noisy estimator of Z. Assume the event from Lemma 6 holds. Adding Lap(8/ϵ′)-
noise to nmax which has global sensitivity of 4 (Claim 5) is ϵ′/2-DP. Adding noise of

Lap
(
16 log4/3(2/δ)

(√
6m
n log (800m) + 16 ln(1/δ′)

ϵ′ + 1
)
/ϵ′

)
is ϵ′/2-DP. It follows that under E ,

each pair of outputs preserves ϵ′-DP. Note that we set ϵ′ = ϵ

8
√

j0 log(2/δ)
, so it follows from Advanced

Composition, that overall we preserve (ϵ, δ/2)-DP under E .

Summing both Parts together, Algorithm 1 preserves (2ϵ, δ/2)-DP under an event that holds w.p.
1− 3δ/2; so overall Algorithm 1 is (2ϵ, 2δ)-DP.

B Missing Proofs — Utility

B.1 Proof of Utility - Rudimentary Claims

Recall that in Part II we partition the domain into bins by using a list of sorted samples, and see if the
examples in those bins pass our L2 test – TestCloseness. Moreover should TestCloseness return
NULL we unify bins, using the same sets of points. Throughout the analysis we assume that we know
the endpoint of each bin, namely that the result of the Bernoulli r.v.s have been disclosed. Now that
each bin Πj

i has ti points we argue that the distribution of the number of points following a binomial
distribution from P (resp. Q).

Claim 16. Fix index j. Fix index i. Denote I as the interval (x(πj
i )
, x(πj

i+1)
) which is some interval

defining a bin in the partition Πj
i , which contains ti points overall. Then the number of points in an

interval Πj
i coming from P follow Bin

(
ti,

P(I)
P(I)+Q(I)

)
. Moreover, for any two disjoint bins Πj

i and

Πj
i′ it holds that the number of points from P (resp. Q) in each bin is independent of the other.

Proof. We draw s from a Poisson distribution with parameter N , representing the number of samples
we take from 1

2 (P + Q). As a result, we can determine that within any fixed interval, including
the interval I , the number of points we denote as X̃I follows a Poisson distribution with parameter
1
2 (P(I)). However, we know that the number of points within interval I is exactly ti.
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So now, conduct a thought experiment, where we re-sample S until precisely ti points from S fall in I .
Replacing our original t points in Π0

i with the new points is indistinguishable as they are distributed
precisely the same. Denote X̃i (resp. Ỹi) as the number of points from P (resp. Q) in our repeated
thought experiment that fall in I , and define XI (resp. YI ) as the number of points from P (resp.
Q) that fall within interval I in the draw where precisely ti points fall in I from both distributions
together. Therefore

XI ∼ X̃I |
(
X̃I + ỸI = ti

)
We can recall that by the definition of our sampling from Poisson distribution, we get that X̃I ∼
Poi

(
N
2 P(I)

)
, ỸI ∼ Poi

(
N
2 Q(I)

)
, hence by Proposition 2 it follows that XI ∼ Bin(ti,

P(I)
P(I)+Q(I) ).

Note also that XI and XI′ are independent for every I and I ′. This is due to the fact that the number
of points in any given interval, taken from the set P , follows a Poisson distribution. As a result, the
number of points in any two disjoint intervals I and I ′ are independent.

We now prove that our new selection of points in each bin follows a Poisson distribution.

Claim 17. For each interval I defining a bin Πj
i , as in Claim 16, it holds that Xj

i ∼
Poi

(
NP(I)

4m(P(I)+Q(I))

)
and Y j

i ∼ Poi
(

NQ(I)
4m(P(I)+Q(I))

)

Proof. Using the same notation as in Claim 16 — we know that for each interval I defining a bin Πj
i ,

the following holds: XI is distributed according to a binomial distribution with parameters ti and
P(I)

P(I)+Q(I) . Now, let us take a subset of points Cj
i of size N j

i from I , where N j
i is a Poisson random

variable with parameter λ = N
4mj , and denote Xj

i as the sum of Bernoulli i.i.d. random variables br,
such that each br is distributed according to a Bernoulli distribution Ber( P(I)

P(I)+Q(I) ). In other words,

Xj
i =

∑Ni

r=1 br. Based on Proposition 2 in the preliminaries, it holds that Xj
i is distributed like a

Poisson r.v. with parameter λ · P(I)
P(I)+Q(I) . The proof for Y j

i is symmetrical. To prove independence

of Xj
i =

∑Nj
i

i=1 Ber(p) and Y j
i =

∑Nj
i

i=1 Ber(1− p), and we have

Pr[Xi = a , Yi = b] = Pr[Xi = a ,Xi + Yi = a+ b]

= Pr[Xi = a |Xi + Yi = a+ b] · Pr[Xi + Yi = a+ b]

=

(
a+ b

a

)
pa(1− p)b ·

e−(
N
4m ) ( N

4m

)a+b

(a+ b)!

=
1

a!b!
pa(1− p)b ·

e−(
N
4m )p+( N

4m )(1−p)
(

N
4m

)a+b

(a+ b)!

=

(
N
4mp

)a
e−(

N
4m )p

a!
·
(

N
4m (1− p)

)b
e−(

N
4m )(1−p)

b!
= Pr[Xi = a] · Pr[Yi = b]

Moreover, we need to ensure that each selection of a subset of points does not require more points
than we already have, which is no more than N

m for each bin, meaning no bin holds any ⊥ points.

Claim 18. If N > 32/3 ·m ln(2m), then with probability 1− 1
2m it holds that for each bin i, the size

of the chosen subset Ci is no greater than N
m − 1.

Proof. The proof follows from standard tail bounds of the Poisson distribution. Given a random
variable X ∼ Poi(λ), we have

Pr[X > λ+ 3λ] ≤ exp

(
− (3λ)2

3 · (3 + 1)λ

)
≤ exp

(
−3λ

4

)
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Therefore, if we want each of the m0 +m1 +m2 + ...+mj ≤ 2m bins to have a subset size that
doesn’t exceed N

mj , we get

Pr

[
∀ i,∀ j, |Cj

i | <
N

mj

]
≥ 1−

∑
i,j

Pr[N j
i < 4

N

4mj
] ≥ 1−

∑
j

mj exp

(
− 3N

16mj

)

≥ 1− 2m exp

(
− 3N

16m0

)
= 1− 2me−2 ln(2m) = 1− 1

2m

Lemma 19 (Lemma 9 restated). Fix index j. For each index i denote by Ii as the interval
(x(πj

i )
, x(πj

i+1)
) which is the interval defining bin i in the partition Π̄j . Then the estimator Z

computed by TestCloseness satisfies that E[Z] =
∑mj

i=1(pi − qi)
2 where

pi =
NP(Ii)

4m(P(Ii) +Q(Ii))
, qi =

NQ(Ii)
4m(P(Ii) +Q(Ii))

.

and that Var[Z] =
∑mj

i=1 4(pi + qi)(pi − qi)
2 + 2(pi + qi)

2.

Proof. For brevity, we denote Xj
i as Xi and the same for Yi. We want to calculate the expectation of

the statistic Z =
∑

i (Xi − Yi)
2 −Xi − Yi. Therefore

E[Z] = E

mj∑
i=1

(Xi − Yi)
2 −Xi − Yi

 =

mj∑
i=1

E[X2
i − 2XiYi + Y 2

i −Xi − Yi]

=

mj∑
i=1

pi + p2i − 2piqi + qi + q2i − pi − qi =

mj∑
i=1

(pi − qi)
2

We now want to calculate the variance of Z =
∑nj

i=1(Xi − Yi)
2 −Xi − Yi. Therefore

Var[Z] = Var

 nj∑
i=1

(Xi − Yi)
2 −Xi − Yi

 =

nj∑
i=1

Var
[
(Xi − Yi)

2 −Xi − Yi

]
Let’s denote Zi = (Xi − Yi)

2 −Xi − Yi and calculate E
[
Z2
i

]
:

E
[
Z2
i

]
= E

[(
(Xi − Yi)

2 −Xi − Yi

)2]
= E

[
(Xi − Yi)

4 − 2(Xi + Yi)(Xi − Yi)
2 + (Xi + Yi)

2
]

We analyze the expectations of each term separately, based on known first to fourth moments of the
Poisson distribution [25] and the independence of Xi and Yi, we know that

E
[
(Xi − Yi)

4
]
= E[X4

i − 4X3
i Yi + 6X2

i Y
2
i − 4XiY3 + Y 4

i ]

= p4i + 6p3i + 7p2i + pi − 4pi(q
3
i + 3q2i + qi) + 6(pi + p2i )(qi + q2i )

− 4qi(p
3
i + 3p2i + pi) + q4i + 6q3i + 7q2i + qi

= (pi − qi)
4 + 6p3i + 7p2i + pi − 4pi(3q

2
i + qi) + 6piqi + 6piq

2
i + 6p2i qi

− 4qi(3p
2
i + pi) + 6q3i + 7q2i + qi

= (pi − qi)
4 + 7(pi − qi)

2 + 6(p3i − p2i qi − piq
2
i + q3i ) + pi + qi + 12piqi

It is to see that E[(Xi + Yi)
2] = pi + p2i + qi + q2i + 2piqi = (pi + qi)

2 + pi + qi, so now

E[(Xi + Yi)(Xi − Yi)
2] = E[X3

i − 2X2
i Yi +XiY

2
i + YiX

2
i − 2XiY

2
i + Y 3

i ]

= p3i + 3p2i + pi − qi(pi + p2i )− pi(qi + q2i ) + q3i + 3q2i + qi

= p3i − qip
2
i − piq

2
i + q3i + 3(pi − qi)

2 + pi + qi + 4piqi

15



Combining all three terms, we get
E
[
Z2
i

]
= (pi − qi)

4 + 7(pi − qi)
2 + 6(p3i − p2i qi − piq

2
i + q3i ) + pi + qi + 12piqi

− 2(p3i − qip
2
i − piq

2
i + q3i + 3(pi − qi)

2 + pi − qi + 4piqi) + (pi + qi)
2 + pi + qi

= (pi − qi)
4 + 4(p3i − p2i qi − piq

2
i + q3i ) + (pi − qi)

2 + (pi + qi)
2 + 4piqi

= (pi − qi)
4 + 4(pi + qi)(pi − qi)

2 + 2(pi + qi)
2

And so we get that
Var[Zi] = E[Z2

i ]− E[Zi]
2 = (pi − qi)

4 + 4(pi + qi)(pi − qi)
2 + 2(pi + qi)

2 − (pi + qi)
4

= 4(pi + qi)(pi − qi)
2 + 2(pi + qi)

2

So overall by independence we get

Var[Z] =

mj∑
i=1

Var[Zi] =

mj∑
i=1

4(pi + qi)(pi − qi)
2 + 2(pi + qi)

2

Claim 20 (Claim 10 restated). If N > 3000m log(2m), then with a probability of 1− 1
m , any I that

forms a bin Π0
i in Π

0
, has that 1

1.01m ≤
P(I)+Q(I)

2 ≤ 1.01
m .

Proof. Let I be an interval determining a bin Π0
i , and denote SI = 1

2 (P(I) + Q(I)). From our
process of partitioning the domain and creating the intervals, we know that SI ∼

∑N/m
i=1 Exp (N).

Therefore, as the sum of independent Exponential r.v.s we can conclude that SI ∼ Gamma
(
N/m, 1

N

)
.

Using the tail bound of the sum of the exponential distribution [24], we get the following inequality:

∀t > 0, Pr[SI > tE[SI ]] ≤ min

{
1

t
, 1

}
exp(−α(t− 1− log(t)))

where α = E[SI ]
1/N . In our case, we have E[SI ] =

N/m
N , so α = N

m . By setting t = 1.01, we arrive at
the following result:

Pr

[
SI >

1.01

m

]
= Pr

[
SI >

1.01N

mα
· 1
m

]
≤ 1

1.01
e−

N
m (1.01−1−log(1.01)) < e−

0.00049N
m ≤ 1

2m2

And now if t = 1
1.01 ≤ 1, then we get

Pr

[
SI ≤

1

1.01m

]
≤ e−

N
m (1/1.01−1−log(1/1.01)) ≤ e−

0.00049N
m ≤ 1

2m2

So by the Union-Bound, we get that Pr[∃I, SI > 1.01/m or SI < 1/1.01m] ≤ m( 1
2m2 +

1
2m2 ) = 1

m .

B.1.1 Proof of Theorem 7

Having acquired the rudimentary tools, we can now prove Theorem 7.

Proof of Theorem 7. We can see that in the Part I of the algorithm, we have s ∼ Poi(m) samples
such that for all 1 ≤ i ≤ s ℓ(xi) ∈ {1,−1} with equal probability and independent from each
other, therefore, by linearity of expectation we get that for the estimator Z from Line 5 of Part I of
Algorithm 1 we have E[Z] =

∑
i E[ℓ(xi)ℓ(xi+1)] =

∑
i E[ℓ(xi)]E[ℓ(xi+1)] = 0. We can bound the

variance of Z using O(m) by the Effron Stein inequality / Jackknife principle.

Proposition 21. Var[Z] ≤ 9m.

Proof of Proposition 21. Denote our points X = (x1, x2, . . . , xi, . . . , xs) ∈ {1,−1}s, and it is clear
to see that if we change one of the points independently X(i) = (x1, x2, . . . , x

′
i, . . . , xs) then

Var[Z|s] ≤ 1

2

s∑
i=1

E
[(

Z(X)− Z
(
X(i)

))2
]

≤ 1

2

s∑
i=1

E
[
(ℓ(xi−1)ℓ(xi) + ℓ(xi)ℓ(xi+1)− ℓ(xi−1)ℓ(x

′
i)− ℓ(x′

i)ℓ(xi+1))
2
]
≤ 1

2
· 16s = 8s
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And we know that Var[E[Z|s]] ≤ Var[s] = m. Therefore we get

Var[Z] = E[Var[Z|s]] + Var[E[Z|s]] ≤ E[8s] +m = 9m

Therefore by Chebyshev’s inequality, it follows that

Pr[Z ≤ 10
√
m] ≥ 1− Pr[|Z − E[Z]| > 10

√
m] ≥ 1− 9m

100m
≥ 0.91.

Now we prove that our Laplace noise does not exceed m3α3

8k2 , provided m ≥ 100k
2
3/αϵ

1
3 .

Pr[|Z̃ − Z| ≥ 1

4

m3α3

2k2
] = Pr

[
Lap

(
6

ϵ

)
≥ 1

4

m3α3

2k2

]
≤ exp

(
−m3α3ϵ

48k2

)
≤ 0.01 (1)

And so , with probability ≥ 0.9 it holds that Z̃ ≤ 10
√
m + 1

4
m3α3

2k2 < m3α3

2k2 , provided m ≥
40 k

4
5

α
6
5
+ 100 k

2
3

αϵ
1
3

. It follows that Part I of Algorithm 1 returns NULL.

In Part II, we also need to argue that all invocations of TestClosenessreturn NULL. Fix an iteration
j and observe that for any i it holds that Xj

i and Y j
i are distributed like Poi( N

8mj ) as the labeling
of points as coming from P or Q is completely random Ber(1/2). We next bound |Xj

i − Y j
i | and∑

i(X
j
i − Y j

i ))
2 using known tail bounds on Poisson random variables (Proposition2).

Proposition 22. Assume that for all j we have N/8mj > 4 log(800m). Then with probability > 0.99
it holds that for any j and any i we have

|Xj
i − Y j

i | ≤
√

6N

mj
log (800m)

Proof. We have that N j
i ∼ Poi( N

4mj ), Poi( N
8mj ) and Yi = N j

i − Xj
i . Therefore, |Xj

i − Y j
i | =

|2Xj
i −N j

I | ≤ 2|Xj
i −E[Xj

i ]|+ |N
j
i −E[N j

i ]|+ |2E[X
j
i ]−E[N j

i ]|. Seeing as 2E[Xj
i ]−E[N j

i ] = 0
we bound the other two terms using known tail bounds on the Poisson distribution from Proposition 2.

Pr[|Xj
i − E[Xj

i ]| > 2
√

N/8mj log(800m)] <
1

400m

Pr[|N j
i − E[N j

i ]| > 2
√

N/4mj log(800m)] <
1

400m

Provided N/8mj > 4 log(800m). And so, w.p. ≥ 1 − 1
200m it follows that |Xj

i − Y j
i | ≤

4
√

N/8mj log(800m) + 2
√

N/4mj log(800m) ≤
√
6N/mj log(800m). Applying the Union Bound

on all m0 +m1 + ...+mj0 ≤ 2m bins, we have the required.

We now can complete the proof that Part II also returns NULL. Note that in each invocation of
TestClosenesswe use m =

∑
j N

j
i points over n = mj bins. It was already established in the proof

of Lemma 6 that the probability that there exists an invocation where nmax ≤
√

6m
n log (800m)

yet due to the Laplace noise n̂max >
√

6m
n log (800m) + 8 log(2/j0δ)

ϵ′ is upper bounded by δ
2 . We

show a similar result for the difference of Ẑ − Z, which we denote as a random variable R ∼
Lap(16 log4/3(

2/δ)nz/ϵ′). Standard properties of the Laplace distribution give that the probability that
exists even a single invocation of TestCloseness where R is greater than log(10j0)16 log4/3(

2/δ)nz/ϵ′

is at most 0.01. Lastly, we argue that Z isn’t too large. Based on Lemma 9 we know that at any
iteration j we have E[Z] =

∑mj

i=1(
N
8m −

N
8m ) = 0 and Var[Z] ≤ 2 · (N/8mj + N/8mj)2mj = N2

8mj .
Using the Chebyshev Inequality and the Union Bound that Pr[∃j, Z > 10N

√
log(1/α)/8mj ] ≤

j0 · 1
100 log(1/α) < 0.01.
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And so, w.p. ≥ 0.97− δ ≥ 0.96 we get that

Ẑ = Z +R ≤ 10N
√
log(1/α)/8mj +

16 log(10j0) log4/3(2/δ)nz

ϵ′

(∗)
≤ 10N

√
log(1/α)/8mj +

( α
12

√
2k+1·log(1/α) )

2N2

16

(∗∗)
≤

( α
12

√
2k+1·log(1/α) )

2N2

16
+

α2N2

16
=

( α
12

√
k+1·log(1/α) )

2N2

8

(∗∗∗)
≤ 1

2
α2

TestCloseness(
∑
i

N j
i )

Where inequality (∗) holds when

16 log(10j0) log4/3(2/δ)

(√
6m
n log (800m) +

256
√

j0 log(2/δ) ln(2j0/δ)

ϵ

)
ϵ

8
√

j0 log(2/δ)

<
( α
12

√
2k+1·log(1/α) )

2N2

16
⇔

144
√

log(1/α) log(2/δ) log(10 log(1/α)) log4/3(2/δ)

(√
12N

mj log(800m)+
256

√
log(1/α) log(2/δ) ln(2j0/δ)

ϵ

)
ϵ < α2N2

6912k log2(1/α)

which in turn holds when N ≥ Ω̃( k1/3

ϵ2/3α4/3 ) and N ≥ Ω̃(k
1/2

ϵα );
inequality (∗∗) holds when

10N

√
log(1/α)

8mj
≤ 10N

√
log(1/α)

8k
≤ α2N2

6912k log2(1/α)

which in turn holds when N ≥ Ω(k
1/2 log(1/α)5/2

α2 ); and inequality (∗ ∗ ∗) holds due to Proposition 22
when ∑

i

N j
i ≥ N −mj · 2

√
N/4mj log(800m) ≥ N/2

when N ≥ 3000m log(800m).

B.2 Proof of Theorem 8

Lemma 23 (Lemma 11 restated). Fix p ∈ (0, 1). Suppose there exists n non-negative random
variables X1, X2, . . . , Xn, such that for each i it holds that for some fixed number ai we have
Pr[Xi ≥ ai] ≥ p. Then, given a constant c > 0 there exists another constant C > 0 such that with a
probability at least C it holds that

∑n
i=1 Xi ≥ c

∑n
i=1 ai.

Proof. Define the random variables Yi =

{
ai with probability p

0 with probability 1− p
. We can see that

E [
∑n

i=1 Yi] = p
∑n

i=1 ai and that the variance is Var [
∑n

i=1 Yi] =
∑n

i=1 Var[Yi] =
p(1 − p)

∑n
i=1 a

2
i . Fix c > 0. Using Chebyshev’s inequality, we can bound the probability of

being far from their expectation.

Pr

[
n∑

i=1

Yi ≤ c · E

[
n∑

i=1

Yi

]]
≤ Pr

[∣∣∣∣∣
n∑

i=1

Yi − E

[
n∑

i=1

Yi

]∣∣∣∣∣ ≥ (1− c)E

[
n∑

i=1

Yi

]]

≤
Var [

∑n
i=1 Yi]

(1− c)2 · E [
∑n

i=1 Yi]
2 ≤

p(1− p)
∑n

i=1 a
2
i

(1− c)2p2 (
∑n

i=1 a
2
i )

2 ≤
p(1− p)

p2(1− c)2

Now, since we have Pr[Xi ≥ ai] ≥ p = Pr[Yi = ai] and Pr[Xi ∈ (0, ai)] ≤ 1 − p = Pr[Yi = 0]
for each i, it is easy to see that Pr[

∑n
i Xi ≥ a] ≥ Pr[

∑n
i Yi ≥ a] for any a. Hence

Pr

[
n∑

i=1

Xi ≥ c

n∑
i=1

ai

]
≥ Pr

[
n∑
i

Yi ≥ c

n∑
i=1

ai

]
≥ 1− p(1− p)

p2(1− c)2
= C

Lemma 24. [17] For any two distributionsP andQ on [m], letP ′ andQ′ be the merged distributions,
Then,

∥P −Q∥Ak
≤ ∥P ′ −Q′∥Ak

+ 2∥P −Q∥1,k
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Proof. Let I be the partition of [m] into k intervals so that ∥P −Q∥Ak
=

∑
i∈I |P(I)−Q(I)|. Let

I ′ be obtained from I by rounding each upper endpoint of each interval (except for the last) down
to the nearest even integer, and rounding the lower endpoint of each interval up to the nearest odd
integer. Note that∑

I∈I′

|P(I)−Q(I)| =
∑
I∈I′

|P ′(I/2)−Q′(I/2)| ≤ ∥P ′ −Q′∥Ak

seeing as the partition I ′ is obtained from I by taking at most k points and moving them from
one interval to another. Therefore, the difference

∣∣∑
I∈I |P(I)−Q(I)| −

∑
I∈I′ |P(I)−Q(I)|

∣∣
is at most twice the sum of |P(i)−Q(i)| over these k points, and therefore at most 2∥P − Q∥1,k.
Combining this with the above gives our result.

Lemma 25 (Lemma 13 restated). [17] For any two distributions P and Q on [m] such that
∥P −Q∥Ak

> α, there iteration j ∈ [log(m/k)] such that ∥PΠj −QΠj∥1,k > α/ log(m/k).

Proof. Lemma 24 asserts that

α < ∥P −Q∥Ak
≤ ∥PΠ1

−QΠ1

∥Ak
+ 2∥PΠ0

−QΠ0

∥1,k

We apply this recursively when we know that in the final level j0 = log(m/k), we get that ∥PΠj −
QΠj∥Ak

= ∥PΠj −QΠj∥1,k because the distribution there has at most k bins. Thus

log(m/k)∑
j=1

∥PΠj

−QΠj

∥1,k ≥ α

Therefore, by the average principle one of the j ∈ [log(m/k)] must satisfy ∥PΠj − QΠj∥1,k ≥
α/ log(m/k); which, by Cauchy–Schwarz, gives ∥PΠj −QΠj∥2 ≥ α/

(√
k log(m/k)

)
.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction ensure that the paper focuses on adapting the
algorithm tester provided by [16] to preserve differential privacy. It also discusses the
difficulties that arise and how they will be addressed.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: see [1]

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We briefly state the positive importance of using our tester as a way for
differential privacy to dissipate into other fields in the first paragraph.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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