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ABSTRACT

Machine learning models are highly vulnerable to label flipping, i.e., the adversar-
ial modification (poisoning) of training labels to compromise performance. Thus,
deriving robustness certificates is important to guarantee that test predictions re-
main unaffected and to understand worst-case robustness behavior. However, for
Graph Neural Networks (GNNs), the problem of certifying label flipping has so
far been unsolved. We change this by introducing an exact certification method,
deriving both sample-wise and collective certificates. Our method leverages the
Neural Tangent Kernel (NTK) to capture the training dynamics of wide networks
enabling us to reformulate the bilevel optimization problem representing label
flipping into a Mixed-Integer Linear Program (MILP). We apply our method to
certify a broad range of GNN architectures in node classification tasks. Thereby,
concerning the worst-case robustness to label flipping: (i) we establish hierarchies
of GNNs on different benchmark graphs; (ii) quantify the effect of architectural
choices such as activations, depth and skip-connections; and surprisingly, (iii) un-
cover a novel phenomenon of the robustness plateauing for intermediate perturba-
tion budgets across all investigated datasets and architectures. While we focus on
GNNs, our certificates are applicable to sufficiently wide NNs in general through
their NTK. Thus, our work presents the first exact certificate to a poisoning attack
ever derived for neural networks, which could be of independent interest. The
code is available at https://github.com/saper0/qpcert.

1 INTRODUCTION

Machine learning models are vulnerable to data poisoning where adversarial perturbations are ap-
plied to the training data to compromise the performance of a model at test time (Goldblum et al.,
2023). In addition, data poisoning has been observed in practice and is recognized as a critical con-
cern for practitioners and enterprises (Kumar et al., 2020; Grosse et al., 2023; Cinà et al., 2024). The
practical feasibility was impressively demonstrated by Carlini et al. (2024), who showed that with
only $60 USD they could have poisoned several commonly used web-scale datasets.

Label flipping is a special type of data poisoning where a fraction of the training labels are corrupted,
leaving the features unaffected. This type of attack has proven widespread effectivity ranging from
classical methods for i.i.d. or graph data (Biggio et al., 2011; Liu et al., 2019), to modern deep
learning systems for images, text, or graph-based learning (Jha et al., 2023; Wan et al., 2023; Lingam
et al., 2024). Exemplary, Lingam et al. (2024) showed that one adversarial label flip could reduce
the accuracy of Graph Convolution Networks (GCNs) (Kipf & Welling, 2017) by over 17% on a
smaller version of Cora-ML (McCallum et al., 2000). Similarly, Fig. 1a demonstrates for the Karate
Club network (Zachary, 1977) that one label-flip can reduce the accuracy of a GCN by 50%.

Although several empirical defenses have been developed to counter label flipping attacks (Zhang
et al., 2020; Paudice et al., 2019), they remain vulnerable to increasingly sophisticated attacks (Koh
et al., 2022). This highlights the need for robustness certificates which offer formal guarantees
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(a) Worst-case robustness to one label flip of two GNNs. (b) Illustration of our label-flipping certificate.

Figure 1: (a) The Karate Club network is visualized with its labeled ( ) and unlabeled ( ) nodes.
The adversarial label flip ( ) calculated by our method outlined in (b) provably leads to most node
predictions being flipped ( ) for two GNNs (GCN & SGC). The certified accuracy refers to the
percentage of correctly classified nodes that remain robust to the attack.

that the test predictions remain unaffected under a given perturbation model. However, there are
currently no works on certifying label poisoning for Graph Neural Networks (GNNs) and as a result,
little is known about the worst-case (adversarial) robustness of different architectural choices. That
a difference in behavior can be expected is motivated in Fig. 1a, where exchanging the ReLU in
a GCN with an identity function forming a Simplified Graph Convolutional Network (SGC) (Wu
et al., 2019), results in significantly higher worst-case robustness to label flipping for Karate Club.

In general, robustness certificates can be divided into being exact (also known as complete), i.e.,
returning the exact adversarial robustness of a model representing its worst-case robustness to a
given perturbation model, or incomplete, representing an underestimation of the exact robustness.
Complete certificates allow us to characterize and compare the effect different architectural choices
have on worst-case robustness as exemplified in Fig. 1a, whereas incomplete certificates suffer from
having variable tightness for different models, making meaningful comparisons difficult (Li et al.,
2023). Currently, even for i.i.d. data there are no exact poisoning certificates for NNs, and ex-
isting approaches to certify label-flipping are limited to randomized smoothing (Rosenfeld et al.,
2020) and partition-based aggregation (Levine & Feizi, 2021), which offer incomplete guarantees
for smoothed or ensembles of classifiers. Thus, adapting these techniques to graphs will not enable
us to understand the effect of specific architectural choices for GNNs on their worst-case robustness.
The lack of exact certificates can be understood due to the inherent complexity of capturing the effect
a change in the training data has on the training dynamics and consequently, is an unsolved problem.
This raises the question: is it even possible to compute exact certificates against label poisoning?

In this work, we resolve this question by first deriving exact sample-wise robustness certificates for
sufficiently wide NNs against label flipping and evaluate them for different GNNs focusing on semi-
supervised node classification. Based on this we develop an exact collective certification strategy that
certifies the entire test set simultaneously. This is of particular importance for poisoning, as a model
is usually trained once on a given training set and then evaluated. Consequently, an attacker can only
choose one perturbation to the training set targeting the performance on all test points. To capture
the effect of label flipping on the training process of a network, our approach takes inspiration
from Gosch et al. (2024) and makes use of the Neural Tangent Kernel (NTK) of different GNNs
(Sabanayagam et al., 2023), which precisely characterizes the training dynamics of sufficiently wide
NNs (Arora et al., 2019). Concretely, we leverage the equivalence of a wide NN trained using
the soft-margin loss with a Support Vector Machine (SVM) that uses the NTK of the network as its
kernel (Chen et al., 2021). This allows us to reformulate the bilevel optimization problem describing
label flipping as a Mixed-Integer Linear Program (MILP) yielding a certificate for wide NNs as
illustrated in Fig. 1b. As the MILP scales with the number of labeled data, our method is a good fit
to certify GNNs for semi-supervised node-classification on graphs, due to the usually encountered
sparse labeling. While Gosch et al. (2024) were the first to use the NTK to derive model-specific
poisoning certificates, their work is limited to feature perturbations and incomplete sample-wise
certification. App. F.1 gives a more extensive discussion on prior work. Thus, our contributions are:

(i) We derive the first exact robustness certificates for NNs against label flipping. Next to sample-
wise certificates (Sec. 3.1), we develop exact collective certificates (Sec. 3.2) particularly important
for characterizing the worst-case robustness of different architectures to label poisoning. Concretely,
our certificates apply to infinite-width NNs and hold with high probability for wide finite-width NNs.
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(ii) We apply our certificates to a wide-range of GNNs for node-classification on both, real and
synthetic data (Sec. 4). Thereby, we establish that worst-case robustness hierarchies are highly
data-dependent, and quantify the effect of different graph properties and architectural choices (e.g.,
activations, depth, skip-connections) on worst-case robustness.

(iii) Using the collective certificate, we uncover a surprising phenomenon: across all datasets, most
architectures show a worst-case robustness plateaus for intermediate attack budgets so far not ob-
served with adversarial attacks (Lingam et al., 2024).

(iv) Beyond (wide) NNs, our MILP reformulation is valid for SVMs with arbitrary kernel choices.
Thus, it is the first certificate for kernelized SVMs against label flipping.

Notation. We use bold upper and lowercase letters to denote a matrix A and vector a, respectively.
The i-th entry of a vector a is denoted by ai, and the ij-entry of a matrix A by Aij . We use the floor
operator ⌊n⌋ for the greatest integer ≤ n, and [n] to denote {1, 2, . . . , n}. Further, ⟨., .⟩ for scalar
product, E [·] for the expectation and 1[.] for the indicator function. We use ∥·∥p with p = 2 for
vector Euclidean norm and matrix Frobenius norm, and p = 0 for vector 0-norm.

2 PROBLEM SETUP AND PRELIMINARIES

We consider semi-supervised node classification, where the input graph G = (S,X) contains n
nodes, each associated with a feature vector xi ∈ Rd aggregated in the feature matrix X ∈ Rn×d.
Graph structure is encoded in S ∈ Rn×n

≥0 , typically representing a type of adjacency matrix. Labels
y ∈ {1, . . . ,K}m are provided for a subset of m nodes (m ≤ n). Without loss of generality,
we assume that the first m nodes are labeled. The objective is to predict the labels for the n − m
unlabeled nodes in a transductive setting or to classify newly added nodes in an inductive setting.

GNNs. An L-layer GNN fθ with learnable parameters θ takes the graph G as input and outputs a
prediction for each node with fθ(G) ∈ Rn×K for multiclass and fθ(G) ∈ Rn for binary classifi-
cation; the output for a node i is denoted by fθ(G)i. We consider GNNs with a linear output layer
parameterized using weights W (L+1) and refer to Sec. 4 for details on the used architectures.

Infinite-width GNNs and the Neural Tangent Kernel. When the width of fθ goes to infinity
and the parameters are initialized from a Gaussian N (0, 1/width), the training dynamics of fθ are
exactly described by its NTK (Jacot et al., 2018; Arora et al., 2019). For node classification, the
NTK of a model fθ is defined between two nodes i and j as Qij = Eθ[⟨∇θfθ(G)i,∇θfθ(G)j⟩]
(Sabanayagam et al., 2023), where the expectation is taken over the parameter initialization.

On the Equivalence to Support Vector Machines. We focus on binary setting with yi ∈ {±1}
(multi-class in App. A) and learn θ of fθ(G) by optimizing the soft-margin loss by gradient descent:

min
θ

L(θ,y) = min
θ

m∑
i=1

max(0, 1− yifθ(G)i) +
1

2C
∥W(L+1)∥22 (1)

where C > 0 is a regularization constant. In the infinite-width limit, the training dynamics for
Eq. (1) are the same as those of an SVM with fθ’s NTK as kernel. Thus, solving Eq. (1) is equivalent
to solving the dual problem of an SVM without bias (Gosch et al., 2024; Chen et al., 2021):

P1(y) : min
α

−
m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQij s.t. 0 ≤ αi ≤ C ∀i ∈ [m] (2)

where α ∈ Rm are the SVM dual variables, and Qij the NTK of fθ between nodes i and j. The
solution to Eq. (2) is not guaranteed to be unique; hence, denote by S(y) the set of α vectors solving
P1(y). Given any α, an SVM predicts the label of a node t by computing sign(

∑m
i=1 yiαiQti).

On Finite-width GNN Certification using NTK. Any exact certificate derived for SVM with NTK
as its kernel directly provides exact deterministic guarantees for infinite-width GNNs through their
equivalence. Concerning the finite-width case, where w denotes the smallest layer-width of the
GNN, the output difference to the SVM is bounded by O( lnw√

w
) with probability 1 − exp(−Ω(w))

as shown in Gosch et al. (2024); Liu et al. (2020) (see App. E for more model-specific guarantees).
Thus, for increasing w the output difference approaches 0 while the probability approaches 1. Note
that the certificate becomes incomplete for a fixed finite but not sufficiently wide network.
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Label Poisoning. We assume that before training the adversary A has control over the labels of an
ϵ-fraction of labeled nodes. Formally, A can choose perturbed labels ỹ ∈ A(y) := {ỹ ∈ [K]m |
∥ỹ−y∥0 ≤ ⌊ϵm⌋} with the goal to minimize the correct predictions of test nodes as described by an
attack objective Latt(θ, ỹ) after training on ỹ. This can be written as a bilevel optimization problem

min
θ,ỹ

Latt(θ, ỹ) s.t. ỹ ∈ A(y) ∧ θ ∈ argmin
θ′

L(θ′, ỹ). (3)

3 LABELCERT FOR LABEL POISONING

Our derivation of label flipping certificates follow three high-level steps depicted in Fig. 1b: (i)
we instantiate the bilevel problem in Eq. (3) for (kernelized) SVMs with a loss describing misclas-
sification and using properties of the SVM’s dual formulation, we transform it into a single-level
non-linear optimization problem; (ii) we introduce linearizations of the non-linear terms, allowing
us to further reformulate the non-linear problem into an equivalent mixed-integer linear program;
and (iii) by choosing the NTK of a network as the kernel, solving the resulting MILP yields a cer-
tificate for the corresponding sufficiently-wide NN. We present our sample-wise certificate for label
flipping in Sec. 3.1 and collective certificate in Sec. 3.2. We note that the reformulation process
requires no approximations; hence, the derived certificates are exact. In what follows, we choose an
SVM in its dual formulation as our model, hence the model parameters θ are the dual variables α.

3.1 SAMPLE-WISE CERTIFICATION

To obtain a sample-wise certificate, we have to prove that the model prediction for a test node t can’t
be changed by training on any ỹ ∈ A(y). Let α∗ be an optimal solution to the dual problem P1(y)
obtained by training on the original labels y and denote by p̂t =

∑m
i=1 yiα

∗
iQti the corresponding

SVM’s prediction for t. Similary, let α be an optimal solution to P1(ỹ) with perturbed labels ỹ
and the new prediction be pt =

∑m
i=1 ỹiαiQti. As an SVM assigns class based on the sign of its

prediction, the class prediction changes if and only if sign(p̂t) · pt < 0 1. Thus, the bilevel problem

P2(y) : min
α,ỹ

sign(p̂t)

m∑
i=1

ỹiαiQti s.t. ỹ ∈ A(y) ∧ α ∈ S(ỹ) (4)

certifies robustness, if the optimal solution is > 0. However, bilevel problems are notoriously hard
to solve (Schmidt & Beck, 2023), making P2(y) intractable in its current form. Now, notice that
the inner optimization problem α ∈ S(ỹ) consists of the SVM’s dual problem P1(ỹ), which is
convex and fulfills Slater’s condition for every ỹ (see App. B). Thus, we can replace α ∈ S(ỹ) with
P1(ỹ)’s Karush-Kuhn-Tucker (KKT) conditions to obtain a single-level problem P3(y) that shares
the same optimal solutions as P2(y) (Dempe & Dutta, 2012). The KKT conditions define three sets
of constraints. First, stationarity constraints from the derivate of the Lagrangian of P1(ỹ):

∀i ∈ [m] :

m∑
j=1

ỹiỹjαjQij − 1− ui + vi = 0 (5)

where u,v ∈ Rm are the Lagrangian dual variables. Secondly, feasibility ranges for all i ∈ [m]:
αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0, and lastly, the complementary slackness constraints:

∀i ∈ [m] : uiαi = 0, vi(C − αi) = 0. (6)

Thus, the resulting single-level optimization problem P3(y) now optimizes over α, ỹ,u and v.

A Mixed-Integer Linear Reformulation. P3(y) is a difficult to solve non-linear problem as Eq. (5)
defines multilinear constraints and both, the objective and Eq. (6) are bilinear. Thus, to make P3(y)
tractable, we introduce (exact) linearizations of all non-linearities, as well as linearly model the
adversary ỹ ∈ A(y).

(i) Modeling the adversary: First, we have to ensure that the variable ỹ ∈ {−1, 1}m. To do so,
we model ỹ as being continuous and introduce a binary variable y′ ∈ {0, 1}m that enforces ỹ ∈

1In our implementation, we treat the undefined case of p̂t · pt = 0 as misclassification.
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{−1, 1}m through adding the constraint ỹi = 2y′i−1 for all i ∈ [m]. Then, the bounded perturbation
strength ∥ỹ − y∥0 ≤ ⌊ϵm⌋ can be formulated as:

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋. (7)

(ii) Objective and Stationarity constraint: The non-linear product terms in the objective can be lin-
earized by introducing a new variable z ∈ Rm with zi = αiỹi. Since for all i ∈ [m] it holds that
0 ≤ αi ≤ C and ỹi ∈ {±1}, the multiplication zi = αiỹi can be modeled by

∀i ∈ [m] : −αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi. (8)

Thus, replacing all product terms αiỹi in P3(y) with zi and adding the linear constraints of Eq. (8)
resolves the non-linearity in the objective. As the product terms also appear in the stationarity
constraints of Eq. (5), they become bilinear reading ∀i ∈ [m],

∑m
j=1 ỹizjQij − 1 − ui + vi = 0.

As the non-linear product terms ỹizj in the stationarity constraints are also the multiplication of a
binary with a continuous variable, we linearize them following a similar strategy. We introduce a
new variable R ∈ Rm×m with Rij representing ỹizj and replace all occurrences of ỹizj with Rij .
Then, as −C ≤ zj ≤ C we model Rij = ỹizj by adding the linear constraints

∀i, j ∈ [m] : −C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi) (9)

resolving the remaining non-linearity in the stationarity constraint.

(iii) Complementary Slackness constraints: The bilinear complementary slackness constraints in
Eq. (6) represent conditionals: if αi > 0 then ui = 0 else ui ≥ 0 and similar for vi. Thus, we
model them using an equivalent big-M formulation:

∀i ∈ [m] : ui ≤ Mui
si, αi ≤ C(1− si), si ∈ {0, 1},

vi ≤ Mviti, C − αi ≤ C(1− ti), ti ∈ {0, 1}. (10)

where we introduce new binary variables s, t ∈ {0, 1}m and large positive constants Mui and
Mvi for each i ∈ [m]. Usually, defining valid big-M’s for complementary slackness constraints
is prohibitively difficult (Kleinert et al., 2020). However, in App. C we show how to use special
structure in our problem to set valid and small big-M values. With all non-linear terms in P3(y)
linearized and having modeled ỹ ∈ A(y), we can now state:

Theorem 1 (Sample-wise MILP) Given the adversary A and positive constants Mui and Mvi set
as in App. C for all i ∈ [m], the prediction for node t is certifiably robust if the optimal solution to
the MILP P(y), given below, is greater than zero and non-robust otherwise.

P(y) : min
α,ỹ,y′,z
u,v,s,t,R

sign(p̂t)

m∑
i=1

ziQti s.t.

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋, ∀i ∈ [m] : ỹi = 2y′i − 1

∀i, j ∈ [m] :

m∑
j=1

RijQij − 1− ui + vi = 0, 0 ≤ αi ≤ C, ui ≥ 0, vi ≥ 0, y′i ∈ {0, 1},

− C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi),

− αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi,

ui ≤ Mui
si, αi ≤ C(1− si), vi ≤ Mviti, αi ≥ Cti, si ∈ {0, 1}, ti ∈ {0, 1}.

3.2 COLLECTIVE CERTIFICATION

For collective certification, the objective is to compute the number of test predictions that are simul-
taneously robust to any ỹ ∈ A(y). This implies that the adversary is restricted to choose only one ỹ
to misclassify a maximum number of nodes. Thus, it is fundamentally different from sample-wise
certification, which certifies each test node independently. Let T be the set of test nodes. Then, the
collective certificate can be formulated using Eq. (3) by choosing to maximize

∑
t∈T 1[p̂t ̸= pt] as:

C1(y) :max
α,ỹ

∑
t∈T

1[p̂t ̸= pt] s.t. ỹ ∈ A(y) ∧ α ∈ S(ỹ). (11)
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Following the sample-wise certificate, we transform the bilevel problem C1(y) into a single-level
one, by replacing the inner problem α ∈ S(ỹ) with its KKT conditions. Then, we apply the same
linear modeling techniques for the stationarity and complementary slackness constraints, as well as
for the adversary. To tackle the remaining non-linear objective, we first introduce a new variable
c ∈ {0, 1}|T | where ct = 1[p̂t ̸= pt] ∀t ∈ T and write the single-level problem obtained so far as:

C2(y) : max
c,α,ỹ,y′,z
u,v,s,t,R

∑
t∈T

ct s.t. pt =

m∑
i=1

ziQti, constraints of P(y),

∀t ∈ T : if sign(p̂t) · pt > 0 then ct = 0 else ct = 1.

Now, notice that because −C ≤ zi ≤ C for all i ∈ [m], pt is bounded as −C
∑m

i=1 |Qti| ≤ pt ≤
C
∑m

i=1 |Qti| for all t ∈ T . Let lt and ht be the respective lower and upper bounds to pt. Then, we
can linearize the conditional constraints in C2(y):

∀t ∈ T : ∀p̂t > 0 : pt ≤ ht(1− ct), pt ≥ ltct, ∀p̂t < 0 : pt ≥ lt(1− ct), pt ≤ htct. (12)

As a result, we can now state the MILP C(y) corresponding to collective certification in Thm. 3 in
App. D. In App. F.3 we discuss the computational complexity of P(y) and C(y) from Thm. 1 and 3.

4 EXPERIMENTAL RESULTS

In Sec. 4.1 we thoroughly investigate our sample-wise and collective certificates. Sec. 4.2 discusses
in detail the effect of architectural choices and graph structure.

Datasets. We use the real-world graph datasets Cora-ML (Bojchevski & Günnemann, 2018) and
Citeseer (Giles et al., 1998) for multi-class certification. We evaluate binary class certification using
Polblogs (Adamic & Glance, 2005), and by extracting the subgraphs containing the top two largest
classes from Cora-ML, Citeseer, Wiki-CS (Mernyei & Cangea, 2020), Cora (McCallum et al., 2000)
and Chameleon (Rozemberczki et al., 2021) referring to these as Cora-MLb, Citeseerb, Wiki-CSb,
Corab and Chameleonb, respectively. To investigate the influence of graph-specific properties on
the worst-case robustness, we additionally generate synthetic datasets using random graph models,
namely the Contextual Stochastic Block Model (CSBM) (Deshpande et al., 2018) and the Contextual
Barabási–Albert Model (CBA) (Gosch et al., 2023). We refer to App. G for details on our datasets.

GNN Architectures. We evaluate a broad range of convolution-based and PageRank-based GNNs:
GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019), GraphSAGE (Hamilton et al., 2017), Graph
Isomorphism Network (GIN) (Xu et al., 2019), APPNP (Gasteiger et al., 2019), and GCN with two
skip-connection variants namely GCN Skip-PC and GCN Skip-α (Sabanayagam et al., 2023). All
results concern the infinite-width limit and are obtained by solving the MILPs in Thm. 1 and 3 using
Gurobi 11.0.1 (Gurobi Optimization, LLC, 2023) and the GNN’s NTKs as derived in Gosch et al.
(2024) and Sabanayagam et al. (2023). App. G.2 provides hyperparameter details.

Evaluation. We consider perturbation budgets ϵ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1} for the
adversary A, and define A’s strength as ‘weak’ if ϵ ∈ (0, 0.1], ‘intermediate’ if ϵ ∈ (0.1, 0.3] and
‘strong’ if ϵ ∈ (0.3, 1]. The test set for collective certificates consists of all unlabeled nodes on
CSBM and CBA, and random samples of 50 unlabeled nodes for real-world graphs. The sample-
wise certificate is calculated on all unlabeled nodes. We report certified ratios, referring to the
percentage of test-node predictions that are provably robust to A. For sample-wise certificates,
we also report certified accuracy, that is the percentage of correctly classified nodes that are also
provably robust to A. As our results are obtained with exact certificates, they establish a hierarchy
of the investigated models regarding worst-case robustness to label flipping for a given dataset and
ϵ, which we refer to as ‘robustness hierarchy’ or ‘robustness ranking’. Since no prior work on exact
certification for label flipping exists, the only baseline for comparison is an exhaustive enumeration
of all possible perturbations — infeasible for anything beyond one or two label flips.

4.1 CERTIFIABLE ROBUSTNESS OF GNNS TO LABEL POISONING

We start by demonstrating the effectiveness of our sample-wise certificate to certify a large spec-
trum of GNNs against label flipping on different datasets in Fig. 2a. Interestingly, our certificate
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(a) Sample-wise: Cora-MLb and CSBM
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(b) Collective vs Sample-wise: Cora-MLb and CSBM

Figure 2: (a) Certified accuracies as given by our sample-wise certificate, for multi-class Cora-ML
and Citeseer see App. J and other datasets in App. I.1. A clear and consistent hierarchy emerges
across perturbation budgets concerning the worst-case robustness of different GNNs. (b) Certified
ratios of selected GNNs as calculated with our sample-wise and collective certificates. We refer to
App. I.2.2 for collective results on all GNNs. Collective certification provides significantly higher
certified ratios, and uncovers a plateauing phenomenon for intermediate ϵ.

highlights: (i) a clear and nearly consistent hierarchy emerges across perturbation budgets ϵ. Ex-
emplary, for Cora-MLb (Fig. 2a left) and ϵ = 0.05, APPNP is most robust achieving a certified
accuracy of 79.1 ± 10.9%, whereas GraphSAGE achieves only 52.8 ± 5.8%, and an MLP even
drops to 22.7 ± 5%. In addition, the rankings of the GNNs stay nearly consistent across perturba-
tions for all datasets. (ii) The rankings of GNNs differ for each dataset. Exemplary, in contrast to
Cora-MLb, the most robust model for CSBM is SGC (Fig. 2a right). (iii) Our certificate identifies
the smallest perturbation beyond which no model prediction is certifiably robust for each dataset.
The thresholds for Cora-MLb is (0.15, 0.2], and for CSBM is (0.15, 0.2] except for GCN Skip-PC
at (0.2, 0.25] and SGC at (0.25, 0.3]. These findings underscore the capabilities of sample-wise
certificates to provide a detailed analysis of the worst-case robustness of GNNs to label poisoning.

We now move to collective certification which is a more practical setting from the adversary’s
perspective, where the attacker can change the training dataset only once to misclassify the entire
test set. Here, we demonstrate the capabilities of our Thm. 3 in certifying GNNs. In Fig. 2b,
we contrast the certified ratios obtained by sample-wise certification with those obtained by our
collective certificate for selected architectures. They highlight a stark contrast between sample-wise
and collective certification, with the collective certificate leading to significantly higher certified
ratios, and the capability to certify even strong adversaries. Exemplary, Fig. 2b (left) shows for the
intermediate perturbation ϵ = 0.2 that the sample-wise certificate cannot certify any GNN. However,
the collective certificate leads to certified ratios of > 40% for all shown GNNs. This substantial
difference is because the adversary is now restricted to creating only a single label perturbation to
attack the entire test data, but the magnitude of the difference in certified ratios is still significant.
Further, the most robust model may not coincide with the sample-wise case as e.g., for Cora-MLb
ϵ = 0.1 APPNP achieves the highest sample-wise, but SGC has the highest collective robustness.
This highlights the importance of collective certification to understand the worst-case robustness for
the more practical scenario. In App. I.2.4, we calculate average robustness rankings for GNNs for
more comprehensive ϵ ranges and show that collective robustness rankings too are data dependent.

Fig. 2b shows another surprising phenomenon uncovered by our collective certificate. The certified
ratio seems to plateau for intermediate budgets ϵ ∈ [0.15, 0.3]. Exemplary, Cora-MLb in Fig. 2b
(left) shows for SGC and APPNP, the certified ratio from ϵ = 0.2 to ϵ = 0.25 reduces by only 0.8%,
whereas the drop between ϵ = 0.05 to ϵ = 0.01 is 25.6% and 27.2%, respectively. The certified
ratio of a GCN for ϵ = 0.2 and ϵ = 0.25 stays even constant (Tab. 5), as is also observed for GCN
Skip-α (Fig. 3b). The plateau for intermediate ϵ appears for some architectures on Citeseerb, Wiki-
CSb and Chameleonb, but is less pronounced, whereas Polblogsb shows near perfect plateauing (see
App. I.2.3). On CSBM, SGC and GCN Skip-PC do not exhibit plateauing, while other architectures
show a prominent plateau for intermediate ϵ (Fig. 2b right); interestingly, a robustness plateau can
be provoked by increasing the density in the graph (Figs. 3c and 4d). However, graph structure alone
cannot explain this, as Fig. 2b (right) shows near constancy of an MLP from ϵ = 0.15 to ϵ = 0.2.
Another strong observation from the sample-wise and collective certificates is the importance of
graph structure in improving the worst-case robustness of GNNs. From the certified accuracies in
Fig. 2a, an MLP is always the least accurate model without any perturbation (ϵ = 0), and also less
robust than its GNN counterparts, as expected. Interestingly, the certified ratio plots in Fig. 2b show
that MLP is consistently the least robust and the most vulnerable model for weak perturbation bud-
gets. Thus, leveraging graph structure consistently improves sample-wise and collective robustness
to label flipping, which is studied in detail in App. H.
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(a) Srow vs Ssym in Cora-MLb (left) & Citeseerb (right)
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Figure 3: Selected architectural findings based on our collective certificates. (a) The effect of graph
normalizations Srow and Ssym is data-dependent. (b) For skip-connections, depth does not improve
robustness, shown for GCN Skip-α, see App. I.2.5 for other GNNs and datasets. (c) Graph density
induces plateauing, shown for GCN using CSBM, see App. I.2.6 for more results.

4.2 FINDINGS ON ARCHITECTURAL CHOICES

Leveraging our collective certificate, we investigate the influence of different architectural choices
on certifiable robustness. (I) Linear activations in GNNs are known to generalize well. Exem-
plary, SGC, which replaces the ReLU non-linearity in GCN to a linear activation, achieves better
or similar generalization performance as a GCN, both empirically (Wu et al., 2019) and theoreti-
cally Sabanayagam et al. (2023). Complementing these results, we find that SGC is consistently
better ranked than GCN across all datasets (Tab. 12), suggesting that linear activation is as good
as or better than ReLU for certifiable robustness as well. (II) Additionally, in SGC and GCN,
the graph normalization is a design choice with Srow and Ssym being popular. While previous works
(Wang et al., 2018; Sabanayagam et al., 2023) suggest that Srow leads to better generalization than
Ssym, our findings show that the effectiveness of these normalizations for certifiable robustness is
highly dataset-dependent, as demonstrated in Fig. 3a for Cora-MLb and Citeseerb. (III) Skip-
connections in GNNs are promoted to construct GNNs with large depths as it is shown to mitigate
over-smoothing (Chen et al., 2020). Our findings show that increasing the depth in GNNs with
skip-connections has either little or more pronounced negative effects on certifiable robustness,
as evidenced in Fig. 3b. For other GNNs and a more general study on depth we refer to Fig. 8.

5 CONCLUSION

By leveraging the NTK that describes the training dynamics of wide neural networks, we introduce
the first exact certificate for label flipping applicable to NNs. Crucially, we develop not only sample-
wise but also collective certificates, and establish several significant takeaways by evaluating a broad
range of GNNs on different node classification datasets:

Key Takeaways on Certifying GNNs Against Label Poisoning

1. There is no silver bullet: robustness hierarchies of GNNs are strongly data dependent.
2. Collective certificates complement sample-wise, providing a holistic picture of the

worst-case robustness of models.
3. Certifiable robustness plateaus at intermediate perturbation budgets.
4. Linear activation helps, and depth in skip-connections hurts certifiable robustness.
5. Graph structure helps improving robustness against label poisoning.

Generality of our certification framework. Our certification strategy extends beyond GNNs and
applies to general wide NNs through their NTKs and any kernelized SVM. Exemplary, we demon-
strate the applicability to an MLP in Sec. 4 and to a linear kernel XXT where X is the feature
matrix (a non-NN based model) in App. I.3. In addition, since our certificates leverage the NTK of
the NN, they hold with respect to expectation over network initializations. As a result, they provide
guarantees at the population level of the parameters, thus certifying NN for general parameteriza-
tion. This distinguishes our framework from most certification methods, which typically focus on
guarantees for a specific, fixed network parameterization. Note that exact certification, even for the
much simpler case of test-time attacks, where the model to be certified is fixed, is already NP-hard
(Katz et al., 2017). Thus, scaling to large-datasets remains challenging and we refer to App. F.4 for
a more detailed discussion on scalability and potential future work on this important direction.
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A MULTI-CLASS LABEL CERTIFICATION

To generalize the binary classification setting in Sec. 2 to multi-class classification, we use a one-vs-
all classification approach. This means, given K classes, K binary learning problems are created,
one corresponding to each class c ∈ [K], where the goal is to correctly distinguish instances of class
c from the other classes c′ ∈ [K], c′ ̸= c, which are collected into one ”rest” class. Assume that pc
is the prediction score of a classifier for the learning problem corresponding to class c. Then, the
class prediction c∗ for a node is constructed by c∗ = argmaxc∈[K] pc.

In the following, we first present an exact multi-class certificate in App. A.1 and present a relaxed
(incomplete) certificate in App. A.2 that significantly improves computational speed while being
empirically nearly as tight as the exact certificate.

A.1 EXACT CERTIFICATE

For the following development of an exact certificate for the multi-class case, we assume an SVM
given in its dual formulation (Eq. (2)) as our model. Further, without loss of generality, assume for
a learning problem corresponding to class c that nodes having class c will get label 1 and nodes
corresponding to the other classes c′ ∈ [K], c′ ̸= c have label −1. We collect the labels for the
learning problem associated to c in the vector yc. The original multi-class labels are collected in the
vector y. Thus, one y defines a tuple (y1, . . . ,yK). Thus, any ỹ ∈ A(y) spawns a perturbed tuple
(ỹ1, . . . , ỹK). We denote by ĉ the originally predicted class with prediction score pĉ.

To know whether the prediction can be changed by a particular ỹ ∈ A(y), we need to know if
pĉ − maxc∈[K]\{ĉ} pc can be forced to be smaller than 0 for any ỹ ∈ A(y). By collecting the
individual predictions pc in a vector p ∈ RK this problem can be formulated as the following
optimization problem:

M1(y) : min
p,p∗,ỹ1,...,ỹK

pĉ − p∗ (13)

s.t. p∗ = max
c∈[K]\{ĉ}

pc (14)

∀c ∈ [K] : pc = max
αc

m∑
i=1

ỹciα
c
iQti s.t. αc ∈ S(ỹc) (15)

(ỹ1, . . . , ỹK) ∈ A
(
(y1, . . . ,yK)

)
(16)

where we represented ỹ ∈ A(y) in Eq. (16) equivalently by the labels yc defined for each of the
K learning problems. First note that M1(ỹ) defines a complicated (trilevel) optimization problem
where Eq. (15) defines K bilevel problems that are independent of one another. However, observe
that the objective in Eq. (15) represents the prediction of an SVM for node t and thus,

∑m
i=1 ỹ

c
iα

c
iQti

has the same value for any choice of αc ∈ S(ỹc), i.e., while the optimal dual variables are not
unique, the prediction value is. As a result, problem M1(ỹ) can be written equivalently as

M2(y) : min
p,p∗,ỹ1,...,ỹK

pĉ − p∗ (17)

s.t. p∗ = max
c∈[K]\{ĉ}

pc (18)

∀c ∈ [K] : pc =

m∑
i=1

ỹciα
c
iQti (19)

αc ∈ S(ỹc) (20)

(ỹ1, . . . , ỹK) ∈ A
(
(y1, . . . ,yK)

)
(21)

Problem M2(y) now corresponds to a bilevel problem with K inner problems αc ∈ S(ỹc) that
are independent of one another. As the inner problems are independent of one another, M2(y) can
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actually be written as a single bilevel problem with a single inner-problem that decomposes into
K independent problems. This can be seen by the fact that solving the individual dual problems
αc ∈ S(ỹc) for all c ∈ [K] is equivalent to solving the following single optimization problem:

min
(α1,...,αK)

−
K∑
c=1

 m∑
i=1

αc
i +

1

2

m∑
i=1

m∑
j=1

yci y
c
jα

c
iα

c
jQij

 s.t. 0 ≤ αc
i ≤ C ∀i ∈ [m] ∧ c ∈ [K] (22)

Let’s denote the set of optimal solution to Eq. (22) similarly as S
(
(y1, . . . ,yK)

)
. Then, we can

rewrite M2(y) as follows:

M3(ỹ) : min
p,p∗,ỹ1,...,ỹK

pĉ − p∗ (23)

s.t. p∗ = max
c∈[K]\{ĉ}

pc (24)

pc =

m∑
i=1

ỹciα
c
iQti ∀c ∈ [K] (25)

(α1, . . . ,αK) ∈ S
(
(y1, . . . ,yK)

)
(26)

(ỹ1, . . . , ỹK) ∈ A
(
(y1, . . . ,yK)

)
(27)

Now, we want to formulate the bilevel problem M3(y) as a MILP. For this, we have to address how
to linearly model Eqs. (24), (26) and (27) in the following.

Inner Problem. To linearly model Eq. (26), recognize that it still is a convex optimization problem
fulfilling Slater’s condition by the same argumentation as provided in App. B. Thus, we can replace
(α1, . . . ,αK) ∈ S

(
(y1, . . . ,yK)

)
with its KKT conditions and won’t change the optimal solutions

to the optimization problem. The KKT conditions of (α1, . . . ,αK) ∈ S
(
(y1, . . . ,yK)

)
turn out

to be the KKT conditions of the individually involved subproblems αc ∈ S(ỹc) for all c ∈ [K]
due to their independence from one another. Then, the exact same linear modeling strategy for the
stationarity and complementary slackness constraints can be leveraged, as introduced in Sec. 3.1.
Note that we now get class-dependent dual variables vci and uc

i as well as class-dependent binary
variables sci and tci for each labeled node i and class c. Thus, we have successfully linearized Eq. (26)
and for all constraints written out, we refer to Thm. 2.

Max. To model the max in Eq. (24) note that pL = −C
∑m

i=1 |Qti| and pU = C
∑m

i=1 |Qti| define
a lower and upper bound to pc, respectively, valid for all c ∈ [K]. Now, the maximum constraint
Eq. (24) can be linearly modeled introducing a binary variable b ∈ {0, 1}K−1 with

∑
c∈[K]\{ĉ}

bc = 1 ∧ ∀c ∈ [K] \ {ĉ} : p∗ ≥ pc, p
∗ ≤ pc + (1− bk)(p

U − pL), bc ∈ {0, 1} (28)

Adversary. Lastly, we have to linearly model the adversary in Eq. (27). For this, we represent the
original labels in a new vector y′c ∈ {0, 1}m with y′ci = 1 if yci = 1 and 0 otherwise for all classes
c ∈ [K] and labeled nodes i ∈ [m]. Similarly, we introduce binary variables ỹ′c ∈ {0, 1}m with
ỹ′ci = 1 if ỹci = 1 and 0 otherwise. Our goal is to use ỹ′c to define ỹc and at the same time model
the adversaries’ strength. Setting ỹc can be achieved by the linear constraint ỹci = 2ỹ′ci − 1 for all
i ∈ [m] and c ∈ [K]. As a node i can only be in one class, ỹ′ci can only be 1 for one c and has to be
0 for all other classes. This can be ensured by the constraint

∑K
c=1 ỹ

′c
i = 1. Lastly, the adversaries’

strength can be modeled using

m∑
i=1

(1−
K∑
c=1

y′ci ỹ
′c
i ) ≤ ⌊ϵm⌋ (29)
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Thus, we have now successfully shown how to linearly model Eqs. (24), (26) and (27) and can state
the following theorem:

Theorem 2 (Multiclass MILP) Given the adversary A, positive constants M c
ui

and M c
vi set as

in App. C for all i ∈ [m] ∧ c ∈ [K], and pL, pU ∈ R with pL = −C
∑m

i=1 |Qti| and pU =
C
∑m

i=1 |Qti|, the prediction for node t is certifiably robust if the optimal solution to the MILP
M(y), given below, is greater than zero and non-robust otherwise.

M(y) : min
p∗,p,s,t,R,z,b,α,

ỹ1,...,ỹK ,ỹ′1,...,ỹ′K

pĉ − p∗ s.t.

m∑
i=1

(1−
K∑
c=1

y′ci ỹ
′c
i ) ≤ ⌊ϵm⌋,

K∑
c=1

ỹ′ci = 1,
∑

c∈[K]\{ĉ}

bc = 1

∀c ∈ [K] \ {ĉ} : p∗ ≥ pc, p
∗ ≤ pc + (1− bk)(p

U − pL), bc ∈ {0, 1}

∀c ∈ [K] : pc =

m∑
i=1

zciQti

∀c ∈ [K] ∧ i, j ∈ [m] :

m∑
j=1

Rc
ijQij − 1− uc

i + vci = 0

− C(1 + ỹci ) ≤ Rc
ij + zcj ≤ C(1 + ỹci )

− C(1− ỹci ) ≤ Rc
ij − zcj ≤ C(1− ỹci ),

∀c ∈ [K] ∧ i ∈ [m] : − αc
i ≤ zci ≤ αc

i , αc
i − C(1− ỹci ) ≤ zci ≤ C(1 + ỹci )− αc

i

ui ≤ M c
ui
sci , αc

i ≤ C(1− sci ), vi ≤ M c
vit

c
i , αc

i ≥ Ctci ,

sci ∈ {0, 1}, tci ∈ {0, 1}, uc
i ≥ 0, vci ≥ 0

ỹci = 2ỹ′ci − 1, ỹ′ci ∈ {0, 1}

Computation Complexity. The MILP has 3Km+K − 1 binary variables.

A.2 INEXACT CERTIFICATE

Thm. 1 can be extended to an incomplete multi-class certificate by a strategy similarly proposed in
Gosch et al. (2024). Assume that c∗ is the original prediction of our model without poisoning. Now,
we solve an optimization problem very similar to P (y) from Thm. 1 for each learning problem
defined by c ∈ [K], but change the objective min sign(p̂t)

∑m
i=1 ziQti either to min

∑m
i=1 ziQti

if c = c∗ or max
∑m

i=1 ziQti if c ̸= c∗. Then, the original prediction is certifiably robust, if the
solution to the minimization problem is still larger than the maximum solution to any maximization
problem.

Tightness. On first sight, one might expect that such a strategy trades of tightness significantly with
scalability. However, we surprisingly find on Citeseer that the inexact certificate provides mostly the
same certified accuracy, or a certified accuracy only very marginally below the exact certificate as
shown in Tab. 1. We hypothesise that this is due to the fact that the most effective label perturbation
may be one that flips the training labels of the predicted class to the runner-up (second highest logit
score) class until the budget is exhausted. While the relaxation allows for independent changes to
each of the K classifiers until the budget is used up, following the above argumentation, being able
to make these independent changes to the other classes (not the highest predicted or second-highest)
may not make the adversary significantly stronger.

Scalability. The exact multi-class certificate introduces K times as many binary variables as the
binary certificate. The inexact certificate manages to reduce the multi-class certification problem to
a binary one and thereby significantly improve scalability. Exemplary, for Cora-ML, the multi-class
certificate is not computable in reasonable runtimes due to the larger C values of the different GNNs.
However, running the incomplete certificate makes the problem running in a reasonable time with
an average certification runtime of around 20 minutes per node (using two CPUs) with some rare
cases taking up to 6h. The results for Cora-ML can be found in App. J.
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Table 1: Certified accuracy in [%] for Citeseer of the exact vs incomplete multiclass certificate.
ϵ ∈ {0, 0.01, 0.02, 0.03, 0.05} refers to the attack budget (fraction of flipped labels in the training
set.)

ϵ 0 (Clean Acc.) 0.01 0.02 0.03 0.05

GCN Exact 66± 3.3 10.7± 2.5 0± 0 0± 0 0± 0
Incomplete 66± 3.3 10.7± 2.5 0± 0 0± 0 0± 0

SGC Exact 65.3± 4.1 35.3± 5 9.3± 5.2 0.7± 0.9 0± 0
Incomplete 65.3± 4.1 34.7± 5.7 8.7± 4.7 0.7± 0.9 0± 0

GCN Skip-α Exact 63.3± 5.2 20± 5.9 2± 1.6 0± 0 0± 0
Incomplete 63.3± 5.2 20± 5.9 2± 1.6 0± 0 0± 0

GCN Skip-PC Exact 66.7± 1.9 20.3± 4.7 0.7± 0.9 0± 0 0± 0
Incomplete 66.7± 1.9 20.3± 4.7 0.7± 0.9 0± 0 0± 0

B SLATER CONDITION

It is generally known that the SVM dual problem is a convex quadratic program. We now show
that the SVM dual problem P1(ỹ) in α ∈ S(ỹ) fulfills (strong) Slater’s condition, which is a
constraint qualification for convex optimization problems, for any choice of ỹ ∈ A(y). This allows
to reformulate the bilevel problem in Sec. 3.1 to be reformulated into a single-level problem with the
same globally optimal solutions (Dempe & Dutta, 2012). Our argumentation is similar to (Gosch
et al., 2024) and adapted to the label-flipping case.

First, we define Slater’s condition for the SVM problem:

Def. 1 (Slater’s condition) A convex optimization problem P1(ỹ) fulfills strong Slater’s Constraint
Qualification, there exists a point α in the feasible set of P1(ỹ) such that no constraint in P1(ỹ) is
active, i.e. 0 < αi < C for all i ∈ [m].

Proposition 1 P1(ỹ) fulfills Slater’s condition for any choice ỹ ∈ A(y).

Proof. It is easy to see that for a given fixed ỹ, Slater’s condition holds: choose αi = C/2 for
all i ∈ [m], this is a feasible (but not optimal) solution with no active constraints. That Slater’s
condition for P1(ỹ) holds for any ỹ ∈ A(y) can again be seen by noting, that the feasible solution
defined by setting αi = C/2 for all i ∈ [m] is independent of a given ỹ and and stays a feasible
solution without active constraints for any choice of ỹ. □

C BIG-M

Proposition 1 Replacing the complementary slackness constraints Eq. (6) in P3(y) with the big-M
constraints given in Eq. (10) does not cut away solution values of P3(y), if for all i ∈ [m], the big-M
values are set following Eqs. (30) and (31).

Mui =

m∑
j=1

C|Qij | − 1 (30)

Mvi
=

m∑
j=1

C|Qij |+ 1 (31)

Furthermore, Eqs. (30) and (31) define the tightest possible big-M values.

Proof. The proof strategy follows Gosch et al. (2024) and is adapted to the label flipping case. First,
we lower and upper bound the term

∑m
j=1 RijQij for any i ∈ [m] in the stationarity constraints.

As Rij = ỹizj and −C ≤ zj ≤ C and ỹi ∈ {−1, 1}, it follows that LB = −∑m
j=1 C|Qij | ≤∑m

j=1 RijQij ≤
∑m

j=1 C|Qij | = UB. It is easy to see, that the bounds are tight.

Now, the dual variable ui and vi are coupled with the other variables in the overall MILP only
through the stationarity constraints

∑m
j=1 RijQij − 1 − ui + vi for all i ∈ [m] and do not feature
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in the objective of P3(rvy). Thus, we only have to ensure that any upper bound on ui or vi, cannot
affect any optimal choice for the other optimization variables. This is achieved if no feasible choice
of Rij is cut from the solution space, which in turn is guaranteed, if any bound on ui or vi, still
allow the term

∑m
j=1 RijQij in the stationarity constraint, to take any value between LB and UB.

Using these bounds, we get

UB − ui + vi ≥ 1 (32)
LB − ui + vi ≤ 1 (33)

For the first inequality, assume UB > 1, then by setting vi = 0 and ui ≤ UB − 1 fullfils all
constraints and does not cut away any solution value. Similarly, if UB < 1, set ui = 0 and
vi ≤ 1− UB. For the second inequality, for LB > 1 set vi = 0 and ui ≤ LB − 1 and for LB < 1
set ui = 0 and vi ≤ 1 − LB. By only enforcing the so mentioned least constraining bounds for
ui and vi, we exactly arrive at Eqs. (30) and (31) where tightness follows from the tighness of the
bounds. □

D COLLECTIVE CERTIFICATE

We present the collective MILP formulation in Thm. 3. Thm. 4 provides the full version of the same
collective certificate, meaning with all constraints written out explicitly.

Theorem 3 (Collective MILP) Given the adversary A, positive constants Mui and Mvi set as in
App. C for all i ∈ [m], and l,h ∈ R|T | with lt = −C

∑m
i=1 |Qti| and ht = C

∑m
i=1 |Qti|, the

maximum number of test nodes that are certifiably non-robust is given by the MILP C(y).

C(y) : max
c,α,ỹ,y′,z
u,v,s,t,R

∑
t∈T

ct s.t. constraints of P(y), ∀t ∈ T : pt =

m∑
i=1

ziQti, ct = {0, 1},

∀t ∈ T : ∀p̂t > 0 : pt ≤ ht(1− ct), pt ≥ ltct, ∀p̂t < 0 : pt ≥ lt(1− ct), pt ≤ htct.

Theorem 4 (Collective MILP (Full Form)) Given the adversary A, positive constants Mui
and

Mvi set as in App. C for all i ∈ [m], and l and h ∈ R|T | with lt = −C
∑m

i=1 Qti and ht =
C
∑m

i=1 Qti, the maximum number of test nodes that are certifiably non-robust is given by the MILP
C(y).

C(y) : max
α,ỹ,y′,z,

u,v,s,t,R,c

∑
t∈T

ct s.t. pt =

m∑
i=1

ziQti,

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋, ∀i ∈ [m] : ỹi = 2y′i − 1,

∀t ∈ T : ct = {0, 1}, ∀p̂t > 0 : pt ≤ ht(1− ct), pt > ltct,

∀p̂t < 0 : pt ≥ lt(1− ct), pt < htct,

∀i, j ∈ [m] :

m∑
j=1

RijQij − 1− ui + vi = 0, 0 ≤ αi ≤ C, ui ≥ 0, vi ≥ 0, y′i ∈ {0, 1},

− C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi),

− αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi,

ui ≤ Mui
si, αi ≤ C(1− si), vi ≤ Mviti, αi ≥ Cti, si ∈ {0, 1}, ti ∈ {0, 1}.

E FINITE-WIDTH MODEL-SPECIFIC GUARANTEES

We derive model-specific guarantees for finite-width setting that includes the depth, width, and ac-
tivation functions used. To obtain this, we follow the derivation in Liu et al. (2020); Chen et al.
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(2021) and consider normalized input node features, bounded spectral norm of the graph convolu-
tion, Lipschitz and smooth activation function. Concretely, we consider a graph neural network with
depth L, width w and activation function with Lipschitz constant ρ, and trained using regularized
Hinge loss with C as the regularization constant. Let the network parameters W during training
move within a fixed radius R > 0 to initialization Winit, i.e. {W | ||W −Winit|| ≤ R}. Then, the
output difference between an infinite-width network and a finite-width network is determined by the
deviation of the finite-width NTK at time t from the NTK at initialization, similar to standard neural
networks (Chen et al., 2021, Section F.1). Now, this NTK deviation is determined by the Hessian
spectral norm of the network as shown in Liu et al. (2020). Thus, we bound the Hessian spectral
norm by bounding the parameters, each layer outputs, their gradients and second-order gradients.
Since we consider the node features X are normalized and the spectral norm of graph convolution S

is bounded2, we get the Hessian spectral norm to be bounded as O(R
3L+1 lnw

w ). Consequently, using
this, we get the bound for the output difference between an infinite-width network and a finite-width
network as O(R

3L+1ρ lnw
Cw ) with probability p = 1−L exp(−Ω(w)). This is the same as the bounds

in Liu et al. (2020). Note that this theoretical bound is not directly computable unless constants in
the derivation are preserved and applied to specific inputs. Unfortunately, the literature on the NTK
so far is mainly concerned with providing convergence statements in big-O notation and not with
calculating the individually involved constants. Thus, it is an interesting open question to derive the
explicit constants involved in the bounds.

F DISCUSSIONS

F.1 PRIOR WORK ON POISONING AND ITS BILEVEL FORMULATION

Developing poisoning attacks by approximately solving the associated bilevel problem is common
for SVMs (Biggio et al., 2012), deep networks (Muñoz-González et al., 2017; Koh et al., 2022),
and GNNs alike (Zügner & Günnemann, 2019). From these, we highlight Mei & Zhu (2015) who
focus on SVMs and similar to us, transform the bilevel problem into a single-level one, but only
approximately solve it with a gradient-based approach and don’t consider label flipping. Regarding
label flipping, Biggio et al. (2011) and Xiao et al. (2012) develop attacks for SVMs solving Eq. (3)
with non-gradient based heuristics; Lingam et al. (2024) create an attack for GNNs by solving Eq. (3)
with a regression loss, replacing the GCN with a surrogate model given by the NTK. Concerning
certificates for data poisoning, there are only few works with none providing exact guarantees. The
approaches based on differential privacy (Ma et al., 2019), randomized smoothing (Rosenfeld et al.,
2020; Lai et al., 2024), and majority voting (Levine & Feizi, 2021) are inherently incomplete. In
contrast, similar to us, Gosch et al. (2024) directly solve the bilevel formulation to obtain sample-
wise feature poisoning certificates for wide (G)NNs. However, their reformulation it not exact or
applicable to the label flipping problem, and they do not provide a collective certificate. We detail
the technical differences in App. F.2.

F.2 COMPARISON TO QPCERT GOSCH ET AL. (2024)

While Gosch et al. (2024) also reformulates the bilevel problem associated to data feature poisoning
using the SVM equivalence, similar to our approach on a high level, the technical challenges and
resulting contributions are fundamentally different, as outlined below: (i) Difference in adversary:
Gosch et al. (2024) addresses the feature poisoning setting, whereas we focus on a different problem
of label poisoning. (ii) Difference in the final outcome: While Gosch et al. (2024) derives an
incomplete sample-wise certificate, we derive exact certificates for both sample-wise and collective
cases. Note that collective certificates are as important as sample-wise certificates as substantially
established in Sec. 4.(iii) Technical differences: In Gosch et al. (2024), the single-level reformu-
lation is a bilinear optimization (product of two continuous variables). As a product between two
continuous variables can’t be modeled exactly in a linear way, Gosch et al. (2024) relax the original
optimization problem resulting in the incompleteness of their certificate. In contrast, our single-level
reformulation is a nonlinear optimization, involving products of a continuous variable with two bi-
nary variables (Eq. (9)), along with bilinear terms (Eqs. (4) and (6)). These distinctions make the
techniques in Gosch et al. (2024) not applicable to our problem. However, the techniques we intro-

2The spectral norm of S is ≤ 1 for all practically used convolutions.
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duce in Sec. 3.1 allow us to model these new non-linearities linearly in an exact fashion, resulting in
an exact certificate.

F.3 COMPUTATIONAL COMPLEXITY

The inputs to the MILP P(y) from Thm. 1 are computed in polynomial time: the NTK Q in O(m2)
and the positive constants Mu and Mv in O(m), and similar for C(y) from Thm. 3. While these
contribute polynomial complexity, the overall computation of the certificate is dominated by the
MILP solution process, which is NP-hard. Thus, the computation is dominated by the MILP whose
runtime strongly correlates with the number of integer variables. P(y) has in total 3m binary vari-
ables and thus, it gets more difficult to solve as the number of labeled training data increases. C(y)
has 3m+ |T | binary variables. Thus, for C(y) the larger the set to verify, the more complex to solve
the MILP.

F.4 SCALABILITY

As mentioned in the conclusion, exact certification, even for the much simpler case of test-time
attacks, where the model to be certified is fixed, is already NP-hard (Katz et al., 2017). Thus, it
is inherently difficult and a current, unsolved problem to scale exact certificates to large datasets.
In fact, state-of-the-art exact certificates against test-time (evasion) attacks for image classification
scale up to CIFAR-10 (Li et al., 2023), and for GNNs to graphs the size of Citeseer (Hojny et al.,
2024). Similarly, we find that the scaling limits of our certificates are graphs the size of Cora-ML
or Citeseer, even though the exact certification of poisoning attacks adds additional complexity with
the model being certified is not fixed and the training dynamics must be included in the certification.
As a result, improving scalability is a valuable direction for future research and we touch upon one
strategy to relax exactness to improve scalability in App. A.

F.5 ETHICS STATEMENT

Our work allows for the first time exact quantification of the worst-case robustness of different
(wide) GNNs to label poisoning. While a potentially malicious user could misuse these insights,
we are convinced that understanding the robustness limitations of neural networks in general and
GNNs, in particular, is crucial to enable a safe deployment of these models in the present and future.
Thus, we believe the potential benefits of robustness research outweigh its risks. Additionally, we
do not see any immediate risk stemming from our work.

G EXPERIMENTAL DETAILS

Datasets. We consider multi-class Cora-ML and Citeseer. Using these, we create binary datasets,
Cora-MLb and Citeseerb. In addition we generate synthetic datasets using CSBM and CBA random
graph models. In Tab. 2, we provide the statistics for the datasets. We sample a graph of size n = 200
from CSBM and CBA. We refer to App. G for the sampling scheme and dataset statistics. We
choose 10 nodes per class for training for all datasets, except for Citeseer, for which we choose 20.
No separate validation set is needed as we perform 4-fold cross-validation (CV) for hyperparameter
tuning. All results are averaged over 5 seeds (multiclass datasets: 3 seeds) and reported with their
standard deviation.

G.1 GENERATING GRAPHS FROM RANDOM GRAPH MODELS

CSBM. A CSBM graph G with n nodes is iteratively sampled as (a) Sample label yi ∼
Bernoulli(1/2) ∀i ∈ [n]; (b) Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c) Sample adja-
cency Aij ∼ Bernoulli(p) if yi = yj , Aij ∼ Bernoulli(q) otherwise, and Aji = Aij . Following
prior work Gosch et al. (2023), we set p, q through the maximum likelihood fit to Cora (Sen et al.,
2008) (p = 3.17%, q = 0.74%), and µ element-wise to Kσ/2

√
d with d = ⌊n/ ln2(n)⌋, σ = 1, and

K = 1.5, resulting in an interesting classification scheme where both graph structure and features
are necessary for good generalization.
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Dataset # Nodes # Edges # Classes
Cora-ML 2,810 7,981 7
Cora-MLb 1,245 2,500 2
Citeseer 2,110 3,668 6
Citeseerb 1,239 1,849 2
Wiki-CSb 4,660 72,806 2
Polblogs 1,222 16,714 2
Corab 1,200 1,972 2
Chameleonb 294 1,182 2
CSBM 200 367±16 2
CBA 200 389±3 2

Table 2: Dataset statistics

CBA. Similar to CSBM, we sample nodes in a graph G using CBA following Gosch et al. (2023).
The iterative process for each node i ∈ [n] follows: (a) Sample label yi ∼ Bernoulli(1/2); (b)
Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c) Choose m neighbors based on a multinomial
distribution, where the fixed parameter m is the degree of each added node. The probability of
choosing neighbour j is pj =

(1+degj)wij∑i−1
m=1(1+degm)wim

where degj is the degree of node j and wij is
the fixed affinity between nodes i and j based on their class labels. When a neighbor node j gets
sampled more than once, we set Aij = 1.

G.2 HYPERPARAMETERS

We set the hyperparameters based on 4-fold Cross-Validation (CV), and regarding the regularization
parameter C, we choose the smallest one within the standard deviation of the best validation accu-
racy for simulated datasets and the best one based on the validation accuracy for all real datasets. We
investigate choosing L = {1, 2, 4} hidden layers, if not explicitly stated, L = 1 is used. All other
hyperparameters are chosen based on 4-fold CV. We define the row and symmetric normalizations
of the adjacency matrix as Srow = D̂−1Â, Ssym = D̂−1/2ÂD̂−1/2 with D̂ and Â as the degree and
adjacency matrices of the given graph G with an added self-loop. By default, we use Srow for GCN,
its skip-connection variants, and SGC; and Ssym for APPNP (Gasteiger et al., 2019).

For CSBM, we choose S to Srow for GCN, SGC, GCN Skip-α and GCN Skip-PC, Ssym for APPNP
with its α = 0.1. GIN and GraphSAGE are with fixed S. In the case of L = 1, the regularization
parameter C is 0.001 for all GNNs except APPNP where C = 0.5. For L = 2, C = 0.001 for all,
except GCN with C = 0.25 and GCN Skip-α with C = 0.25. For L = 4, again C = 0.001 for all,
except GCN with C = 0.25 and GCN Skip-α with C = 0.5.

For CBA, the best S is Ssym for GCN, SGC, GCN Skip-α, GCN Skip-PC, and APPNP with its
α = 0.3. GIN and GraphSAGE are with fixed S. In the case of L = 1, the regularization parameter
C is 0.001 for all GNNs. For L = 2, C = 0.001 for all, except GCN with C = 0.25 and GCN
Skip-α with C = 0.25. For L = 4, again C = 0.001 for all, except GCN with C = 0.5 and GCN
Skip-α with C = 0.25.

We outline the hyperparameters for real world datasets. All hyperparameter choices for all architec-
ture and experiments can be found in the experiment files in the linked code.

For Cora-MLb, further, the following architectures were used with row normalization:

• GCN L=2: C=0.05
• GCN L=4: C=0.1
• GCN Skip-PC L=2: C=0.05
• GCN Skip-PC L=4: C=0.01
• GCN Skip-α L=2: C=0.075, α = 0.1

• GCN Skip-α L=4: C=0.1, α = 0.2

• GCN 0.25A: C=0.05
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C-values Cora-MLb Citeseerb Cora-ML Citeseer

GCN (Row Norm.) 0.075 0.75 0.004 0.0001
GCN (Sym. Norm.) 0.075 0.1 - -
SGC (Row Norm.) 0.075 2.5 0.004 0.0001
SGC (Sym Norm.) 0.05 1 - -

APPNP (Sym. Norm.) 0.5, α = 0 0.5, α = 0.2 - -
MLP 0.025 0.025 - -

GCN Skip-α (Row Norm.) 0.1, α = 0.1 0.25, α = 0.3 0.004,α = 0.2 0.0001, α = 0.5
GCN SkipPC (Row Norm.) 0.075 0.075 0.003 0.0001

GIN 0.025 0.005 - -
GraphSAGE 0.0075 0.025 - -

Table 3: Best Hyperparameters Real World.

C-values Wiki-CSb Polblogs Corab Chameleonb

GCN (Row Norm.) 1 10 0.25 10
SGC (Row Norm.) 0.5 10 0.1 0.5

APPNP (Sym. Norm.) 5, α = 0 - 0.25, α = 0.2 0.75, α = 0.3
MLP 0.75 0.001 0.25 0.1

GCN Skip-α (Row Norm.) 1, α = 0.1 10, α = 0.1 0.5,α = 0.1 -
GCN SkipPC (Row Norm.) 1 2.5 0.25 -

GIN 0.175 0.075 0.025 0.01
GraphSAGE - 0.75 0.01 0.75

Table 4: Best Hyperparameters Real World.

• GCN 0.5A: C=0.075
• GCN 0.75A: C=0.075

We choose the best C given by 4-fold CV, except for Cora-ML, where we choose the smallest C in
the standard deviation of the best validation parameters in CV.

G.3 HARDWARE

We used Gurobi to solve the MILP problems and all our experiments are run on CPU on an internal
cluster. The memory requirement to compute sample-wise and collective certificates depends on the
length MILP solving process. The sample-wise certificate for Cora-MLb and Citeseerb requires less
than 2 GB of RAM and has a runtime of a few seconds to minutes. For the multi-class case, the exact
certificate took up to 3 GB RAM and had a runtime between 1 minute to 30 minutes. The collective
certificate for Cora-MLb required between 1 to 25 GB of RAM with an average requirement of 2.8
GB. The solution time took between a few seconds, and for some rare instances up to 3 days, the
average runtime was 4, 2h. The runtime and memory requirements for collective certification on
Citeseerb were similar to Cora-MLb.

G.4 REPRODUCIBILITY STATEMENT

We undertook great efforts to make our results reproducible. In particular, the experimental de-
tails are outlined in detail in Sec. 4 and App. G. All chosen hyperparameters are listed in App. G.
Randomness in all experiments is controlled through the setting of seeds in involved pseudorandom
number generators. The code to reproduce our results, including all experimental configuration files,
can be found at https://github.com/saper0/qpcert.

H FINDINGS ON GRAPH STRUCTURE

Building on the importance of graph information in Sec. 4.2, we conduct a deeper study into the
influence of graph structure and its connectivity on certifiable robustness. (I) We first explore the
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(a) Cora-MLb: APPNP
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(b) Cora-MLb: GCN
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(c) CSBM: Density
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(d) CSBM: Homophily

Figure 4: Graph structure findings based on our collective certificates. (a)−(b) The higher amount of
graph information improves certifiable robustness. (c)−(d) Graph density and homophily positively
affect the certifiable robustness, shown for GCN using CSBM, see App. I.2.6 for more results.

role of graph input in the GNNs: in APPNP, the α parameter controls the degree of graph information
incorporated into the network—lower α implies more graph information. Similarly, in convolution-
based GNNs, the graph structure matrix S in GCN can be computed using weighted adjacency
matrix βA. These experiments clearly confirm that increasing the amount of graph information
improves certifiable robustness up to intermediate attack budgets, as demonstrated for Cora-
MLb in Figs. 4a and 4b. Interestingly, for stronger budgets, the observation changes where more
graph information hurts certifiable robustness, a pattern similarly observed in Gosch et al. (2024)
for feature poisoning using an incomplete sample-wise certificate. (II) We then analyze the effect
of graph density and homophily by taking advantage of the random graph models. To assess graph
density, we proportionally vary the density of connections within (p) and outside (q) the classes,
while for homophily, we vary only p keeping q fixed. The results consistently show that higher
graph density and increased homophily improves certifiable robustness with an inflection point
for stronger budgets as observed in Figs. 4c and 4d. Additionally, our results generalize to changing
the number of labeled nodes (App. I.2.7) and to dynamic graphs that evolve over time (App. I.4).

I ADDITIONAL RESULTS

I.1 SAMPLE-WISE CERTIFICATE FOR CBA AND POLBLOGS
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(a) CBA
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(b) Polblogs
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(c) Citeseerb

Figure 5: Certified accuracy computed with our sample-wise certificates for CBA, Polblogs and
Citeseerb datasets.

Fig. 5 shows the certified accuracy computed with our sample-wise certificates for all considered
GNNs. See Fig. 2 for other datasets.

I.2 COLLECTIVE CERTIFICATE

I.2.1 FULL CERTIFIED RATIO TABLES

Certified ratios for all architectures and all ϵ for Cora-MLb (Tab. 5), Citeseerb (Tab. 6), WikiCSb
(Tab. 7), Polblogs (Tab. 8), Corab (Tab. 9), Chamelonb (Tab. 10), and CSBM (Tab. 11). We note that
we do not report ϵ = 1 as the mean certified ratio is 0 for all architectures.
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Table 5: Certified ratios in [%] calculated with our exact collective certificate on Cora-MLb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 86.4 ± 6.1 55.6 ± 10.7 46.8 ± 6.0 43.6 ± 2.3 43.6 ± 2.3 41.6 ± 2.0 8.4 ± 3.9

GCN 86.4 ± 6.1 55.6 ± 10.7 46.8 ± 6.0 43.6 ± 2.3 43.6 ± 2.3 41.6 ± 2.0 8.4 ± 3.9

SGC +2.4 ± 5.2 +7.6 ±9.2 +2.8 ±6.1 +2.4 ±4.4 +1.6 ±3.5 +0.4 ±2.8 +0.0 ± 3.4

APPNP +3.2 ±7.9 +6.8 ± 12.2 -1.2 ± 2.7 -0.8 ± 1.6 -1.6 ± 1.8 -2.8 ± 2.7 -8.0 ± 0.8

GIN -4.8 ± 4.1 +6.0 ± 4.5 -2.0 ± 5.5 -5.6 ± 5.2 -6.8 ± 5.7 -8.0 ± 6.4 +4.8 ± 3.0

GraphSAGE -6.0 ± 6.5 +1.2 ± 5.2 +1.6 ± 6.1 +1.6 ± 4.1 -1.2 ± 3.9 -4.0 ± 3.9 +3.6 ± 2.8

GCN Skip-α -1.2 ± 6.4 +1.6 ± 10.2 +0.8 ± 5.6 +0.8 ± 2.9 +0.0 ± 2.3 -0.4 ± 3.2 +0.8 ± 3.9

GCN Skip-PC -2.0 ± 6.0 +2.4 ± 3.3 +2.4 ± 3.5 +1.6 ± 3.0 -0.0 ± 3.4 -2.4 ± 3.7 +2.0 ± 4.1

MLP -20.4 ± 5.1 -11.6 ± 5.8 -6.8 ± 5.2 -4.8 ± 5.3 -6.0 ± 5.9 -7.2 ± 6.4 +8.8 ±5.3

Table 6: Certified ratios in [%] calculated with our exact collective certificate on Citeseerb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 65.6 ± 12.5 50.0 ± 9.7 41.6 ± 7.1 35.6 ± 5.4 29.2 ± 5.2 21.6 ± 4.1 6.8 ± 3.0

SGC +3.6 ± 9.9 +0.4 ± 10.8 -0.4 ± 10.5 -0.8 ± 10.0 -0.0 ± 9.7 3.6± 7.0 +2.8 ± 3.2

APPNP +4.0 ± 4.5 +0.8 ± 5.9 -2.4 ± 7.1 +1.2 ± 8.1 +1.6 ± 8.0 +4.8 ± 7.9 +2.0 ± 2.7

GIN +6.8 ± 6.6 +0.8 ± 8.6 +1.2 ± 6.1 +6.0 ±6.4 +9.6 ±6.8 +11.6 ±4.5 +4.0 ± 3.2

GraphSAGE +9.6 ± 5.6 +5.2 ± 5.3 +2.4 ± 5.2 +4.4 ± 4.9 +7.6 ± 4.7 +8.8 ± 6.6 +4.8 ± 2.9

GCN Skip-α +10.0 ± 6.5 +3.2 ± 7.0 +2.0 ± 5.4 +3.2 ± 4.7 +5.2 ± 5.1 +6.0 ± 6.6 +3.6 ± 3.2

GCN Skip-PC +15.6 ±3.9 +9.2 ±5.9 +3.6 ±6.0 +4.8 ± 4.5 +4.0 ± 5.5 +7.6 ± 7.7 1.6± 3.2

MLP -0.4 ± 3.2 -6.8 ± 5.3 -0.4 ± 6.5 +3.2 ± 5.5 +6.8 ± 3.6 +11.2 ± 3.7 +11.6 ±2.9

Table 7: Certified ratios in [%] calculated with our exact collective certificate on WikiCSb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 80.0 ± 6.1 71.6 ± 4.8 54.4 ± 5.4 42.0 ± 7.6 36.4 ± 6.9 31.6 ± 9.5 4.0 ± 2.8

SGC +9.2 ±9.1 +2.4 ±15.8 -6.0 ± 11.1 -0.4 ± 5.1 +2.4 ±6.6 +0.0 ± 13.3 -2.8 ± 1.0

APPNP +7.2 ± 6.3 -20.0 ± 5.0 -9.2 ± 4.8 +0.0 ± 5.1 -6.8 ± 13.8 -22.8 ± 9.2 -4.0 ± 0.0

GCN Skip-α +2.8 ± 4.7 -0.0 ± 5.1 -3.6 ± 10.3 +0.0 ± 9.1 -1.2 ± 8.8 -0.8 ± 9.7 -1.2 ± 2.0

GCN Skip-PC +2.4 ± 3.9 +2.0 ± 5.0 +1.2 ±3.9 +4.0 ±5.7 +2.0 ± 7.1 +0.8 ±5.0 +4.8 ± 3.0

MLP -5.6 ± 5.6 -12.0 ± 11.6 -5.2 ± 9.7 -0.8 ± 8.8 -3.2 ± 6.5 -5.6 ± 5.4 +8.4 ±3.7
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Table 8: Certified ratios in [%] calculated with our exact collective certificate on Polblogs for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 73.2 ± 14.1 42.4 ± 3.9 42.0 ± 3.6 42.0 ± 3.6 42.0 ± 3.6 42.0 ± 3.6 4.4 ± 2.9

SGC +22.4 ±2.0 +47.2 ±3.9 +26.4 ±12.9 +3.2 ±4.5 +0.4 ±5.3 -0.4 ± 4.5 -2.8 ± 1.5

GCN SkipPC +10.8 ± 5.5 +15.2 ± 10.0 +2.0 ± 2.8 +1.2 ± 2.7 -0.4 ± 2.0 -0.8 ± 1.6 +5.2 ± 5.4

GCN Skip-α -1.2 ± 13.4 +0.0 ± 4.8 +0.4 ± 4.8 +0.0 ± 4.2 +0.0 ± 4.2 +0.0 ±4.2 +1.2 ± 3.9

GIN +4.8 ± 4.0 +13.2 ± 5.6 +0.8 ± 3.7 -2.8 ± 2.0 -3.6 ± 1.5 -9.6 ± 3.4 +5.6 ± 4.4

GraphSAGE +2.4 ± 3.2 +10.4 ± 6.3 +0.8 ± 3.7 -1.6 ± 6.0 -3.6 ± 5.6 -5.2 ± 5.7 +6.0 ±1.5
MLP -73.2 ± 0.0 -42.4 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -4.4 ± 0.0

Table 9: Certified ratios in [%] calculated with our exact collective certificate on Corab for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 77.6 ± 6.5 50.4 ± 13.5 33.6 ± 3.9 29.6 ± 4.6 28.8 ± 4.7 25.2 ± 6.0 11.2 ± 2.7

SGC +6.0 ±2.3 +0.8 ± 11.1 +2.8 ± 5.9 +2.4 ±4.6 +1.2 ±5.5 +2.0 ±5.0 -0.4 ± 3.2

APPNP -1.6 ± 7.3 -5.2 ± 8.6 -2.8 ± 5.7 -1.6 ± 7.2 -2.4 ± 8.0 -1.6 ± 6.9 -2.4 ± 3.5

GIN -3.2 ± 5.6 -2.4 ± 12.1 +2.0 ± 9.2 -0.8 ± 6.5 -2.4 ± 6.2 -2.4 ± 5.5 -0.4 ± 4.5

GraphSAGE +0.0 ± 4.6 -3.2 ± 7.3 +0.4 ± 6.7 +0.8 ± 6.7 -0.4 ± 6.6 +1.2 ± 6.7 +1.6 ±3.0
GCN Skip-α -0.4 ± 5.3 -1.6 ± 9.0 +3.6 ±6.8 +1.2 ± 3.2 -1.6 ± 5.2 -1.2 ± 5.2 -0.4 ± 2.0

GCN Skip-PC -3.6 ± 5.8 +1.2 ±7.3 +2.0 ± 5.4 +1.6 ± 5.2 -1.2 ± 5.4 -2.0 ± 5.3 -0.8 ± 1.5

MLP -15.6 ± 3.6 -9.2 ± 8.1 +1.2 ± 10.9 +2.4 ± 9.0 -2.4 ± 7.0 -2.8 ± 5.6 +0.4 ± 3.4

Table 10: Certified ratios in [%] calculated with our exact collective certificate on Chameleonb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 69.6 ± 5.3 52.4 ± 11.7 41.6 ± 12.8 33.2 ± 10.4 26.8 ± 10.5 22.8 ± 10.9 9.6 ± 6.4

SGC -0.0 ± 6.2 +2.8 ±6.0 +4.4 ±5.8 +5.2 ±4.6 +5.6 ±3.9 +4.8 ±4.6 +1.2 ±1.6
APPNP -2.8 ± 14.6 -3.2 ± 9.2 -8.0 ± 7.7 -7.6 ± 6.4 -6.4 ± 3.9 -8.0 ± 5.3 -4.0 ± 3.4

GIN -26.8 ± 8.6 -28.4 ± 10.0 -23.2 ± 8.9 -18.8 ± 8.9 -16.4 ± 7.1 -13.6 ± 6.6 -5.2 ± 3.2

GraphSAGE -5.2 ± 4.5 -8.4 ± 12.6 -6.4 ± 11.6 -2.4 ± 11.9 -1.2 ± 11.4 -0.4 ± 11.5 +0.0 ± 8.0

MLP -29.6 ± 22.1 -38.8 ± 4.5 -29.2 ± 4.6 -21.2 ± 4.7 -16.0 ± 4.1 -12.4 ± 4.1 -6.0 ± 2.3
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Table 11: Certified ratios in [%] calculated with our exact collective certificate on CSBM for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 85.7 ± 6.5 67.0 ± 9.7 48.0 ± 6.0 44.7 ± 4.3 40.8 ± 5.2 34.7 ± 7.0 2.9 ± 1.7

SGC +7.8±2.8 +21.9±5.0 +34.3±8.3 +22.3±16.0 +9.2±20.8 -7.1 ± 19.4 -1.7 ± 0.8
APPNP -2.1 ± 7.4 -6.2 ± 7.2 -1.7 ± 3.4 -0.3 ± 2.4 +1.8 ± 1.8 -0.3 ± 6.7 +1.7 ± 1.6
GIN -3.4 ± 8.7 -2.8 ± 13.0 +2.6 ± 9.0 -5.1 ± 7.3 -9.4 ± 5.8 -10.4 ± 7.4 +2.3 ± 2.7
GraphSAGE -0.2 ± 4.7 -2.3 ± 8.0 +0.6 ± 4.4 -3.0 ± 2.1 -3.0 ± 3.9 -3.4 ± 9.1 +1.4 ± 2.0
GCN Skip-α -0.1 ± 6.4 -0.9 ± 8.0 +2.1 ± 6.6 -0.3 ± 3.7 +0.6 ± 3.9 -2.7 ± 10.0 +0.8 ± 2.2
GCN Skip-PC +4.9 ± 3.0 +15.0 ± 6.2 +20.1 ± 9.6 +7.6 ± 12.0 -2.2 ± 13.2 -5.4 ± 13.1 -0.8 ± 1.0
MLP -9.6 ± 2.3 -16.3 ± 4.3 -4.2 ± 3.2 -1.3 ± 3.2 -4.0 ± 4.5 -5.1 ± 7.9 +6.0±2.6
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I.2.2 COLLECTIVE ROBUSTNESS OF ALL ARCHITECTURES

Fig. 6 shows the certified ratio as computed with our collective certificate for all investigated archi-
tectures on different datasets.
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(a) Cora-MLb
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(b) Citeseerb
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(c) Wiki-CSb
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(d) Polblogs
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(e) Corab
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(f) Chameleonb
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(g) CSBM
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(h) CBA

Figure 6: Certified ratio computed with our collective certificate for all investigated models.

I.2.3 ROBUSTNESS PLATEAUING PHENONMENON

The strength of plateauing appears to depend on both the dataset and the model architecture. The
Polblogs dataset shows the strongest plateauing effect out of all datasets. This indicates, as Polblogs
has no features, that in a graph context, the effect is more strongly pronounced if the features carry
less information compared to the structure. While for Polblogs for all architectures, for Cora-MLb
for all architectures and for CSBM for many architectures, the emergence of a robustness plateau for
intermediate ϵ is strikingly visible (see e.g., Fig. 6), the picture is more subtle for Citeseerb, Wiki-
CSb and Chameleon. Focusing on Citeseerb, while for all architectures, the effect of increasing ϵ
reduces for larger ϵ, it is not immediately visible from Fig. 6b if this effect is particularly pronounced
at intermediate budgets or continuously goes on until ϵ = 1. Indeed, some architectures seem to
show a continuous plateauing to 0 for ϵ = 1. However, if one compares the mean certified ratio
difference from ϵ = 0.1 to ϵ = 0.3 (∆med) to the one from ϵ = 0.3 to ϵ = 0.5 (∆strong), we can
find architectures showing a stronger plateauing phenomenon for intermediate ϵ. Exemplary, for
GIN ∆med = 17.6% compared to ∆strong = 22.4% and for MLP ∆med = 10.4% compared to
∆strong = 14.4% (also see Tab. 6). This closer study suggests that both structural and statistical
properties of the data, as well as architectural design choices, jointly influence this behavior.

I.2.4 ROBUSTNESS RANKINGS BASED ON COLLECTIVE CERTIFICATION

To compare robustness rankings for different perturbation budgets and datasets, Tab. 12 computes
average ranks based on the average certified ratio computed by our collective certificate for ‘weak’
(ϵ ∈ (0, 0.1]), ‘intermediate’ (ϵ ∈ (0.1, 0.3]) and ‘strong’ (ϵ ∈ (0.3, 1)) perturbation strengths (we
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exclude ϵ = 1, as all models have a certified ratio of 0). Tab. 12 shows that robustness rankings
are highly data dependent as already seen in the sample-wise case, and also highly depend on the
strength of the adversary.

Table 12: Average rank based on the average certified ratio computed using our exact collective
certificate for ‘weak’ (ϵ ∈ (0, 0.1]), ‘intermediate’ (ϵ ∈ (0.1, 0.3]) and ‘strong’ (ϵ ∈ (0.3, 1))
perturbation strengths and different datasets. The most robust model is highlighted in bold and the
least robust in red. Total refers to ϵ ∈ (0, 1).

Cora-MLb Citeseerb CSBM
ϵ (0, 0.1] (0.1, 0.3] (0.3, 1) total (0, 0.1] (0.1, 0.3] (0.3, 1) total (0, 0.1] (0.1, 0.3] (0.3, 1) total

GCN 5.0 3.5 6.0 4.29 7.0 6.75 8.0 7.0 3.0 3.5 6.0 3.71
SGC 1.5 1.0 6.0 1.86 6.0 7.5 5.0 6.71 1.0 2.5 8.0 2.86
APPNP 1.5 5.75 8.0 4.86 4.5 6.5 6.0 5.86 6.5 3.75 3.0 4.43
GIN 4.5 7.75 2.0 6.0 4.0 1.75 3.0 2.57 6.5 6.75 2.0 6.0
GraphSAGE 6.5 4.0 3.0 4.57 2.5 2.5 2.0 2.43 5.0 5.5 4.0 5.14
GCN Skip-α 4.5 3.25 5.0 3.86 2.5 4.0 4.0 3.57 4.0 3.5 5.0 3.86
GCN Skip-PC 4.5 3.0 4.0 3.75 1.0 3.0 7.0 3.0 2.0 3.75 7.0 3.71
MLP 8.0 7.25 1.0 6.57 8.0 3.75 1.0 4.57 8.0 6.5 1.0 6.14

I.2.5 EFFECT OF DEPTH

We analyze the influence of depth in detail in this section and present (i) across depths and datasets,
skip-connections, GCN Skip-PC and GCN Skip-α, results in certifiable robustness that is consis-
tently better or as good as the GCN. Fig. 7 demonstrates it for Cora-MLb, CSBM and CBA for
L = {1, 2, 4}. (ii) depth, in general, decreases the certifiable robustness as observed in Fig. 8. In
some cases, it is as good as L = 1 and only in Cora-MLb for GCN, L = 4 is better for small
perturbations while L = 2 is still worse than L = 1.
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(a) CSBM L = 1
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(b) CSBM L = 2
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(c) CSBM L = 4
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(d) CBA L = 1
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(e) CBA L = 2
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(f) CBA L = 4
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(g) Cora-MLb L = 1
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(h) Cora-MLb L = 2
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Figure 7: Effect of skip-connections showing GCN Skip-PC and GCN Skip-α results in certifiable
robustness that is consistently better than GCN across Cora-MLb, CSBM and CBA and depths
L = {1, 2, 4}.
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(a) Cora-MLb
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(b) Cora-MLb
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(c) CSBM
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(d) CSBM
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(e) CSBM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.5 1

Perturbation budget ε

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
R

at
io

GCN Skip-α L = 1
GCN Skip-α L = 2
GCN Skip-α L = 4

(f) CSBM

Figure 8: Effect of depth for GCN, SGC, and GCN with skip-connections showing the depth in
general affects certifiable robustness negatively.

I.2.6 EFFECT OF GRAPH CONNECTIVITY

Fig. 9 shows the increased connection density and homophily in the graphs increases certifiable
robustness across GNNs such as GCN and SGC, using CSBM and CBA. Sample-wise certificates
for all considered GNNs showing the same observation is demonstrated in Fig. 10. It is interesing
to also note that the hierarchy of GNNs remains consistent across the settings.
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(a) CSBM: Density, SGC
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(b) CSBM: Homophily,
SGC
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(c) CBA: Density, GCN
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(d) CBA: Density, SGC

Figure 9: Effect of graph structure showing increased connection density and homophily in the
graphs increases certifiable robustness.
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(a) Density 2×
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(b) Density 0.5×
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(c) Homophily 2p, q
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(d) Homophily 0.5p, q

Figure 10: Sample-wise certificates for CSBM on the effect of graph structure showing increased
connection density and homophily in the graphs increases certifiable robustness evaluated on CSBM.

I.2.7 EFFECT OF GRAPH SIZE

In this section, we show that the results are consistent when the number of labeled nodes are in-
creased to 20 nodes per class using CSBM. Fig. 11 shows the sample-wise and collective certificates
showing similar behavior as the ones computed using n = 10. It is interesting to note that the hierar-
chy of GNNs observed in sample-wise certificate for n = 20 is the same as n = 10. The plateauing
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phenomenon is also observed. Fig. 15 shows representative results showing the depth analysis and
graph structure analysis also results in the same finding.
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(a) CSBM: sample-wise
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(b) CSBM: collective

Figure 11: The results are consistent when n = 20 per class is considered for CSBM. Figure showing
sample-wise and collective certificates
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(a) CSBM: GCN
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(b) CSBM: SGC
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(c) CSBM: Sparsity, GCN

Figure 12: Consistency of results for a larger number of labeled nodes shown using CSBM.

I.3 GENERALITY OF CERTIFICATES TO OTHER MODELS

In addition to MLP (a non-graph neural network architecture), we demonstrate the applicability of
our certificates to other non-GNN based models such as linear kernel XXT , where X is the feature
matrix. The collective certificate results for Cora-MLb and the random graph models CSBM and
CBA is provided in Fig. 13. Our experiments demonstrate that the certificates are directly applicable
to kernels and standard networks, such as fully connected and convolutional networks. Since our
primary focus is on the graph node classification problem, convolutional networks were not included
in this study, but their inclusion would follow the same methodology.
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(a) Cora-MLb
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(b) CSBM
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(c) CBA

Figure 13: Generality of certificates to other models demonstrated using linear kernel on Cora-MLb,
CSBM and CBA.
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I.4 CERTIFICATES FOR DYNAMIC GRAPHS

Our certification framework is easily adaptable to dynamic graph settings depending on the learning
strategy. To demonstrate it, we consider an inductive setting where the training graph grows during
inference. In Fig. 14, we provide the collective certificate results for Cora-MLb by inductively
adding the test nodes to the training graph. Results are comparable to the static graph analysis.
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Figure 14: Certified accuracy computed with our sample-wise certificates for CBA dataset.

Furthermore, other learning methods such as aggregating temporal structural and/or feature informa-
tion through summing over the temporal information (Kazemi et al., 2020) is also possible without
any modification to the certificate and adapting only the adjacency and/or feature matrices in NTK
computation. While we demonstrate adaptability to certain dynamic graph learning settings, we ac-
knowledge that extending the framework to handle highly dynamic scenarios with frequent structural
changes remains a promising area for future research. Incorporating temporal NTK computation or
online certification methods could further enhance its applicability.

J MULTI-CLASS EXPERIMENTAL RESULTS

We run our exact sample-wise multi-class certificate for Citeseer for selected architectures (Fig. 15a)
and the inexact sample-wise variant for Cora-ML (Fig. 15b). Fig. 15b highlights that the relaxed
multi-class certificate from App. A still provides useful guarantees.
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(a) Citeseer
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Figure 15: Sample-wise certificates for multi-class datasets.
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