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Abstract

Instruction fine-tuning aligns language mod-
els with human intent but is computationally
costly. Continuous pretraining on domain-specific
data, while effective for adaptation, can degrade
instruction-following capabilities. We introduce
instruction residuals—the parameter delta be-
tween an instruction-tuned model and its base
model—as a lightweight mechanism to recover
instruction alignment post adaptation. Instruction
residuals can be transferred across checkpoints
within the same model family, enabling restora-
tion of instruction-following behavior without full
retraining. We evaluate our method on LLaMa
and Qwen models under domain shifts of up to 1B
tokens, showing that instruction residuals effec-
tively preserve alignment while allowing contin-
ual domain learning. Our results establish a prac-
tical framework for modular, compute-efficient
instruction retention in evolving language models.

1. Introduction
Recently, autoregressive Large Language Models (LLMs)
have demonstrated remarkable progress across a wide range
of natural language tasks, including understanding, reason-
ing, and coding (Achiam et al., 2023; Team et al., 2024; Tou-
vron et al., 2023; Roziere et al., 2023; Yang et al., 2024a).
These models are pre-trained using a causal language model-
ing objective, producing a Base model that excels at linguis-
tic coherence but lacks alignment with human preferences
(Ouyang et al., 2022). To bridge this gap, Instruction fine-
tuning is applied, refining models to better follow human
instructions (Rafailov et al., 2024; Ethayarajh et al., 2024),
resulting in Instruction models.

Instruction fine-tuning is costly, often requiring tens of mil-
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lions of human-annotated examples (e.g., 10M for LLaMa 3
Instruct(AI@Meta, 2024)), and complex optimization tech-
niques such as RLHF, PPO (Ouyang et al., 2022), and DPO
(Rafailov et al., 2024). Simultaneously, keeping LLMs
updated with new information necessitates continuous pre-
training, where the base model is further trained on newly
collected data (Gao et al., 2020; Tokpanov et al., 2024;
Ibrahim et al., 2024). For instance, the LLaMa 3.1 base
model incorporates more high-quality data over LLaMa 3
(Dubey et al., 2024), and Qwen 2.5 improves upon Qwen 2
(Team, 2024).

A major challenge arises when integrating new knowledge
while retaining instruction-following abilities. Continuous
pre-training may overwrite instruction-tuned parameters,
leading to a loss of instruction-following capabilities. While
prior research has explored mitigating catastrophic forget-
ting in base models (Xie et al., 2023; Ibrahim et al., 2024),
little attention has been given to its effects on instruction
models. These observations motivate three critical research
questions:; Q1: How does continuous pre-training affect the
instruction-following capabilities of an instruction-tuned
model? Q2: If instruction capabilities degrade, how can
they be recovered efficiently? Q3: Is full-scale instruction
fine-tuning necessary after updating a model’s knowledge?

We empirically investigate these questions by exploring
an alternative to traditional instruction fine-tuning: in-
struction residuals. Instead of re-running expensive
fine-tuning procedures, we propose a simple yet effective
method—extracting instruction residuals from an exist-
ing instruction-tuned model and applying them to a newly
pre-trained base model. This approach allows us to re-
cover instruction-following abilities while preserving newly
learned knowledge. Our key findings are:

• Continuous pre-training of an instruction model sig-
nificantly reduces its instruction-following capabilities
and should be avoided. Section 4.1.

• Continuous pre-training the base model first, followed
by instruction tuning, preserves both knowledge and
instruction capabilities. Section 4.4.

• Instruction capabilities can be transferred across mod-
els within the same base model lineage using instruc-
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Table 1: Key Notations

Symbol Meaning

θi Instruction-tuned LLM Params
θb Pretrained base LLM Params
θxi , θyb Instruction/base model at data x, y
Θz

r Instruction residual: θxi − θyb
θxb +Θz

r Reconstructed instruction model

tion residuals, computed as the difference between the
instruction-tuned and base models. Section 4.3.

• Traditional instruction fine-tuning is not necessary for
continuously pre-trained base models—instruction ca-
pabilities can be restored via instruction residuals. Sec-
tion 4.2.

• Instruction residuals outperform both continuously pre-
trained and instruction-degraded models, recovering
capabilities with minimal performance trade-offs.

To our knowledge, this is the first systematic study analyz-
ing the portability of instruction capabilities across models
derived from the same base model. We validate our findings
on LLaMa 3, LLaMa 3.1, Qwen 2, and Qwen 2.5, conduct-
ing extensive experiments across varying pre-training data
sizes and model configurations (Section 3).

2. Background
In this investigation, we consider LLM families where both
the base and instruction-tuned models are publicly available.
Let θd1

b denote parameters of a base autoregressive model
trained on dataset d1, and θd1v1

i the parameters after instruc-
tion tuning on dataset v1. Given a new pretraining dataset
d2, our goal is to obtain a d2-specific LLM satisfying:

P1 Since d2 is small (e.g., <1B tokens), we want the
model to retain the language understanding acquired
from d1, as d2 alone is insufficient to train even
moderate-scale LLMs (e.g., 7B).

P2 The model should match the instruction-following ca-
pabilities of the instruction-tuned model.

We consider two possible strategies for adapting LLMs to a
new domain (d2) while retaining instruction capabilities:

Base-CP-Instruct: Start with the base model θd1

b , apply
continual pretraining (CP) on d2 to obtain θd1d2

b (preserv-
ing P1 via techniques like Ibrahim et al. (2024)), and then
instruction-tune on v1 to get θd1d2v1

i (gain P2). See Fig-
ure 1(a). This method retains prior knowledge while en-
abling domain adaptation but requires costly and often un-
stable instruction tuning, compounded by the lack of pub-
licly available instruction datasets (Sun et al., 2024; Wang
et al., 2022; Xu et al., 2023).

Figure 1: Overview of possible combinations for continu-
ous pre-training (CP) and instruction fine-tuning (IFT), a)
CP(d2) is applied on base LLM first and then IFT(v1) is
applied; b) CP(d2) is applied on instruct LLM; c) CP(d2) is
applied on base LLM and then Θ is added. Processes are
denoted as dotted squares. GREEN denotes pre-trained only
LLM and BLUE denotes instruction-tuned LLM.

Base-Instruct-CP: Begin with the instruction-tuned model
θd1v1
i and directly continue pretraining on d2, aiming to

retain both P1 and P2. See Figure 1(b). While this set-
ting is less expensive and bypasses the need for instruction
tuning, our experiments found no evidence supporting its ef-
fectiveness—rather, we observed degradation in instruction-
following ability, resulting in θd1v1d2

i .

2.1. Instruction Residuals

To avoid expensive re-tuning, we explore a lightweight al-
ternative: instruction residuals—parameter deltas between
instruction-tuned and base models. We hypothesize that
these residuals can be transferred to updated base models to
regain instruction-following behavior efficiently. As shown
in Figure 1 (c), we compute the instruction residual between
a instruction following LLM θd1v1

i and its corresponding
base model θd1

b in the parametric space as

Θv1
r = θd1v1

i − θd1

b . (1)

This residual computation is inspired by the parameter ef-
ficient fine-tuning of LLMs such as low-rank adaptation
(LoRA (Hu et al.), QLoRA(Dettmers et al., 2024), DoRA
(Liu et al., 2024) etc). In these techniques instead of fine-
tuning a large weight matrix W for a given layer, a low-
rank ∆W matrix is learned, which contains the new in-
formation to be integrated with the original model that is
Wupdated = W + ∆W . These techniques add new infor-
mation/capabilities to the original model often with fewer
parameters defined by rank of ∆W . With the full ∆W rank,
it is similar to fine-tuning the whole model (Hu et al.).

Inspired by this idea of weight addition to learning a new
capability, we first extract the instruction capability by
subtracting the base LLM weights from its corresponding
instruction-tuned LLM weights as in 1, termed as instruction
residuals, and add this instruction residual to the continu-
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Table 2: Impact of continual pretraining on LLaMa 3 Base (L3b) and the LLaMa 3 instruction tuned (L3i) models w.r.t
varying number of new tokens. Also, depicts the usefulness of the instruction residual technique to regain instructional
capabilities. Refer to Appendix A for clear notation meaning.

Benchmark Metric L3b L3i L3b + 3Lr

# of new tokens → org. +100M +500M +1B org. +100M +500M +1B 100M 500M 1B

IFEval

ILL acc 19.06 17.75 19.30 20.14 53.36 45.68 45.32 41.01 57.67 56.47 57.79
ILS acc 17.87 16.31 17.87 17.87 47.84 40.41 38.61 35.25 51.68 51.44 51.68
PLL acc 09.98 09.61 10.54 11.09 41.77 34.20 33.64 28.10 44.18 42.88 44.36
PLS acc 09.06 08.69 09.61 09.80 35.30 29.21 26.80 22.55 37.52 36.78 37.52

MMLU acc 62.14 63.76 63.77 63.62 63.83 66.04 65.38 65.52 67.69 67.16 67.51
MMLU-Pro EM 34.51 34.92 34.70 35.49 39.70 36.39 35.76 35.52 40.72 40.84 40.27

GSM8K EM 49.58 48.14 47.54 47.08 75.06 69.22 68.08 68.01 74.83 73.92 73.16
strict-EM 49.20 34.04 36.62 39.04 74.98 65.35 59.74 55.42 46.93 55.27 49.51

Sub-Average 31.43 29.15 29.99 30.52 53.98 48.31 46.67 43.92 52.65 53.10 52.73

Winogrande acc 73.16 72.14 71.59 71.27 71.74 72.22 71.74 71.74 71.43 72.06 71.19

Hellaswag acc 60.12 60.17 60.27 60.23 57.70 58.69 58.73 59.00 59.30 59.16 59.39
acc n 79.22 78.62 78.20 78.36 75.76 77.84 77.68 77.80 79.01 79.14 79.00

ARC easy acc 80.39 81.14 80.60 80.60 81.52 79.71 79.63 79.46 82.20 82.32 82.03
acc n 77.78 80.30 79.67 79.38 79.63 77.53 77.65 77.44 79.00 79.25 79.08

Piqa acc 79.54 80.09 80.30 80.20 78.56 79.87 79.49 79.49 80.25 80.20 80.41
acc n 80.74 81.56 81.34 80.96 78.62 80.41 79.98 79.98 80.63 80.74 80.90

Sub-Average 75.85 76.29 76.00 75.86 74.79 75.18 74.99 74.99 75.97 76.12 76.00

T mc2 acc 43.94 47.64 47.29 47.41 51.67 51.80 51.55 51.68 56.13 55.73 56.17

Average 51.64 50.93 51.20 51.41 62.94 60.28 59.36 58.00 63.07 63.34 63.12

ously pre-trained base LLM on new skill d2 i.e.

θd1d2v1
i = θd1d2

b ⊕Θv1
r , (2)

where ⊕ represents element-wise addition. These tensor
addition and subtraction to regain the instruction capabilities
do not incur heavy computation costs making the instruction-
tuned LLM readily available once the new knowledge is
learned by the base LLM. One major limitation of this work
is that if the base LLM and its corresponding instruction-
tuned LLM are not available then the instruction residuals
from 1 won’t be available and hence requires a full cycle of
instruction fine-tuning to regain this ability.

3. Experiment Settings
We conduct experiments on two popular LLM families:
LLaMa (v3, v3.1) and Qwen (v2, v2.5). For all experi-
ments, we select only those models where both the base
and corresponding instruction-tuned variants are publicly
available. We use a carefully curated news dataset from Dec
2023 to Sep 2024 for continual pretraining, ensuring no data
contamination. Evaluation is performed using 9 standard
benchmarks for instruction following (4), knowledge and
reasoning (4), and truthfulness (1), using EleutherAI’s eval-
uation harness (Gao et al., 2021). Full details on datasets, ar-
chitectures, and preprocessing are provided in Appendix B.

4. Results and Analysis
We evaluate how continual pretraining affects the
instruction-following abilities of both base (L3b) and
instruction-tuned (L3i) LLaMa 3 models.

4.1. Impact of Continual Pretraining

Continual pretraining on newly collected data (100M–1B
tokens) significantly degrades instruction performance in
L3i. As shown in Table 2, L3i loses up to 10 points on in-
struction tasks (53.8 to 43.92 sub-average), with an average
drop of 3 points. This decline grows with more data due
to the shift in learned representations, disrupting earlier in-
struction alignment. In contrast, L3b remains stable across
pretraining sizes, confirming that base models do not suffer
catastrophic forgetting in instruction tasks.

Key takeaway: Updating model knowledge via continual
pretraining degrades instruction performance, particularly
in instruction-tuned models, and requires a correction.

4.2. Restoring Instructional Abilities

We apply instruction residuals—the parameter delta be-
tween the base and instruction-tuned model—to recover
instruction-following performance in pretrained models. As
seen in the last block of Table 2, this technique (L3b + 3Lr)
not only restores but improves performance, surpassing the
original L3i model by up to 5 points on 1B tokens (43.92 to
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52.73 sub-average). This gain is consistent across different
sub-averages.

Key takeaway: Instruction residuals offer a lightweight and
effective alternative to full re-tuning, efficiently restoring
instruction alignment after continual pretraining.

4.3. Instruction Portability across LLM Families

We investigate the portability of instruction tuning across
models using instruction residuals—defined as the parame-
ter delta between instruction-tuned and base models. Specif-
ically, we evaluate whether applying these residuals to com-
patible base models improves instruction-following per-
formance. For instance, applying residuals from LLaMa
3.1’s instruction-tuned variant to LLaMa 3’s base model
(+3.1Lr) boosts its average score from 51.64 to 64.25,
even outperforming the directly fine-tuned LLaMa 3 model
(L3i) (see Table 4, Appendix A).

In the LLaMa family, residuals from the more capable
LLaMa 3.1 instruction-tuned model consistently uplift both
LLaMa 3 and LLaMa 3.1 bases. Similarly, within the Qwen
family, applying Qwen 2.5 residuals to Qwen 2 leads to no-
table gains. Importantly, in all cases, models with residuals
outperform their original base variants—highlighting that
instruction capabilities are portable within the same model
family. However, cross-family transfer fails: applying resid-
uals across different architectures (e.g., Qwen to LLaMa)
yields suboptimal or degraded performance. This behavior
mirrors LoRA’s architecture-specific nature—residuals en-
code family-specific inductive biases that do not generalize
across tokenization schemes or pretraining corpora. Overall,
instruction residuals offer a low-cost, modular method to
improve instruction-following without full fine-tuning—but
only within the bounds of a shared architecture.

4.4. Instruction Residual Applicability to Derived LLMs

We evaluate the portability of instruction residuals to LLMs
derived from a common base model. Specifically, we apply
LLaMa 3 and 3.1 residuals to cerebras/Llama3-DocChat-
1.0-8B, a model fine-tuned on the ChatQA dataset for
document-based QA. As shown in Table 3, both residuals
enhance instruction-following ability, with LLaMa 3.1 resid-
uals providing up to a 6-point improvement. This demon-
strates that instruction residuals are transferable across
models derived from the same base, even when task spe-
cialization is introduced.

5. Related Work
Continual Learning: Continual or continuous pre-training
enables LLMs to adapt to new data without forgetting prior
knowledge (Caccia et al., 2020; Le Scao et al., 2023; Ibrahim
et al., 2024). This approach has been widely used to acquire

Table 3: Applicability of instruction residual approach
on publicly available Llama3-DocChat-1.0-8B (DocChat)
LLM that was built on top of LLaMa 3 base model. Here,
+3Lr and +3.1Lr are the instruction residuals from LLaMa
3 and LLaMa 3.1, respectively integrated to the original
DocChat LLM.

Benchmark Metric DocChat +3Lr +3.1Lr

IFEval

ILL acc 38.25 49.64 56.71
ILS acc 34.65 46.04 53.12
PLL acc 24.95 37.34 44.36
PLS acc 20.89 32.90 39.74

MMLU acc 62.96 62.31 65.35
MMLU-Pro EM 36.36 39.66 39.36

GSM8K EM 57.09 78.54 74.53
strict-EM 56.94 77.48 69.90

Winogrande acc 74.27 71.27 73.32

Hellaswag acc 61.68 57.57 59.51
acc n 80.36 75.79 78.39

ARC easy acc 82.11 81.02 80.22
acc n 81.52 79.00 77.99

Piqa acc 80.47 78.13 78.78
acc n 81.61 77.97 78.62

T mc2 acc 45.35 49.54 50.82

Average 57.47 62.14 63.80

domain-specific skills and languages (Yadav et al., 2023; Ma
et al., 2023; Yang et al., 2024b; Gogoulou et al., 2023). For
instance, Yang et al. (2024b) combine continual pre-training
with instruction tuning to specialize models, though the
mechanisms behind its effectiveness remain underexplored.

Model Merging: Combining models to integrate special-
ized capabilities has gained traction through methods like
Task Arithmetic (Ilharco et al., 2022), TIES (Yadav et al.,
2024), and Model Breadcrumbs (Davari & Belilovsky,
2023). We adopt Task Arithmetic to extract instruction
residuals, though analyzing how different merging strate-
gies affect capability transfer is left for future work.

6. Conclusion
In conclusion, this study delves into the effects of continuous
pre-training on base and instruction-tuned large language
models (LLMs) and their instruction capabilities. The find-
ings suggest that while continuous pre-training of instruction
models may lead to catastrophic forgetting of instruction
capabilities, a more efficient approach is to continuously
pre-train the base model with new data, followed by instruc-
tion tuning. This method preserves both domain knowledge
and instruction capabilities. Interestingly, the study also
reveals that instruction capabilities are transferable across
models from the same ancestor, eliminating the need for
additional instruction tuning.
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A. Instruction Portability Quality Comparison

B. Detailed Experiment Settings
B.1. Datasets

B.1.1. PRE-TRAININIG DATASET

We need this pre-training dataset to test the impact on in-
struction capabilities of the continuously pre-trained model.
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Table 4: Instruction portability quality comparison with LLaMa 3 and 3.1 8B LLMs. Where the BOLD represents the best
quality and the underline shows the second-best score for that column block.

LLM (Params) → LLaMa 3 (8B) LLaMa 3.1 (8B) Qwen 2 (1.5B) Qwen 2.5 (1.5B)

Benchmark Metric L3b L3i +3.1Lr L3.1b L3.1i +3Lr Q2b Q2i +2.5Qr Q2.5b Q2.5i +2Qr

IFEval

ILL acc 19.06 53.36 57.19 15.59 54.80 48.32 25.84 29.02 27.22 28.15 39.09 26.50
ILS acc 17.87 47.84 51.92 14.63 49.88 43.76 23.62 26.74 23.86 25.72 35.21 25.06
PLL acc 09.98 41.77 43.81 07.76 41.59 34.38 16.08 17.93 17.19 20.01 25.67 20.33
PLS acc 09.06 35.30 37.52 07.02 35.49 29.39 14.05 15.71 14.23 17.65 22.04 18.85

MMLU acc 62.14 63.83 66.02 63.40 68.03 64.89 55.10 55.80 55.16 59.75 59.75 59.75
MMLU-Pro EM 34.51 39.70 38.53 35.32 40.97 40.40 21.21 21.70 21.10 27.13 29.89 27.00

GSM8K EM 49.58 75.06 75.13 50.11 76.19 73.84 54.51 58.30 57.01 57.39 56.86 58.76
strict-EM 49.20 74.98 74.98 49.81 75.36 73.84 54.44 57.39 56.79 57.16 53.37 58.30

Sub-Average 31.43 53.98 55.64 30.46 55.29 51.10 33.11 35.32 34.07 36.62 40.24 36.82

Winogrande acc 73.16 71.74 72.77 73.64 73.40 73.01 66.38 65.19 65.82 63.22 65.19 63.22

Hellaswag acc 60.12 57.70 59.00 60.02 59.10 58.25 48.61 49.30 48.58 50.16 50.94 50.08
acc n 79.22 75.76 78.88 78.90 79.19 76.68 65.43 66.07 65.42 67.81 68.34 67.76

ARC easy acc 80.39 81.52 81.57 81.40 81.94 82.91 66.25 69.99 66.37 75.42 76.56 75.67
acc n 77.78 79.63 78.83 81.14 79.76 81.86 60.86 66.54 60.14 71.84 76.26 72.26

Piqa acc 79.54 78.56 79.00 80.09 80.03 79.16 75.41 76.17 75.95 75.68 76.39 75.84
acc n 80.74 78.62 80.14 81.07 81.12 79.22 75.41 75.90 75.79 76.06 76.12 75.79

Sub-Average 75.85 74.79 75.74 76.61 76.36 75.87 65.48 67.02 65.48 68.60 69.97 68.66

T mc2 acc 43.94 51.67 52.73 45.17 53.92 52.20 45.95 43.36 45.95 46.64 46.65 46.45

Average 51.64 62.94 64.25 51.57 64.42 62.01 48.07 49.69 48.54 51.24 53.65 51.35

We want the new pre-training data such that none of the
base models and the corresponding instruct model have
seen that data previously. Since the data contamination is a
serious concern as noted in Jiang et al. (2024), the existing
pre-training datasets may not be the right choice to continu-
ously pre-train the model. Therefore, we manually scraped
around 2M articles using a static news crawler FUNDUS1

(Dallabetta et al., 2024).

We choose the news articles that are new to LLaMa 3.1
models that is we choose the articles published in the date
range from December 2023 to September 2024 from all
existing publishers in FUNDUS. The average length of the
articles is 650 LLaMa tokens with 6981 max tokens and 156
min tokens. These articles are then packed with a sequence
length of 4096 (LLaMa maximum sequence length is 8K
but we choose 4K to efficiently utilize the existing GPU
vRAM), and similar to Kosec et al. (2021) we use attention
masks for each article to avoid cross article contamination.

B.1.2. EVALUATION DATASET

In this section, we describe the test dataset used to evaluate
our hypothesis. To perform a comprehensive evaluation

1https://github.com/flairNLP/fundus

Table 5: Evaluation dataset categorization.

Category Sub Category Benchmark

Instruction
following

Language
understanding

IFEval

MMLU
MMLU-Pro

Math and logic GSM8K

Reasoning
and

problem
solving

Commonsense Winogrande
Hellaswag

Factual knowledge ARC easy

Physical reasoning Piqa

Truthfulness Truthfulqa mc2

and to maintain reproducibility we use the evaluation har-
ness framework from EleutherAI (Gao et al., 2021). We
particularly target to evaluate the following capabilities:

Instruction following

IFEval focuses on natural language instruction following
capabilities of LLMs (Zhou et al., 2023). It contains 25
types of verifiable instructions such as write in more than
400 words, mention the keyword of AI at least 3 times with
500 prompts. This evaluation is performed on 4 metrics:
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(1) Prompt-level strict-accuracy (PLS-acc): The percentage
of prompts that all verifiable instructions in each prompt
are followed, (2) Inst-level strict-accuracy (ILS-acc): The
percentage of verifiable instructions that are followed, (3)
Prompt-level loose-accuracy (PLL-acc): Prompt-level accu-
racy computed with the loose criterion, and (4) Inst-level
loose-accuracy (ILL-acc): Instruction-level accuracy com-
puted with a loose criterion.

MMLU mainly focuses on extensive world knowledge
across 57 subjects which includes all major domains like
math, computer science, medicine, philosophy, and law
(Hendrycks et al., 2020). This dataset contains a total of
15908 development and test questions with 4 possible an-
swers each.

MMLU-Pro is introduced to further increase the complex-
ity of the MMLU benchmark since the existing LLMs are
excelled at MMLU (Wang et al., 2024) by eliminating some
trivial and noisy questions from MMLU and by introducing
reasoning-focused questions to MMLU which has mostly
knowledge-driven questions.

GSM8K dataset consists of 8.5K high-quality linguisti-
cally diverse grade school math problems (Cobbe et al.,
2021). These problems take between 2 and 8 steps to solve,
and solutions primarily involve performing a sequence of
elementary calculations using basic arithmetic operations
(+,−,×,÷) to reach the final answer.

Reasoning and problem-solving

Winogrande is a large scale 44k commonsense reasoning
dataset. It mainly tests a model’s ability to resolve ambigu-
ous pronouns based on contextual understanding (Sakaguchi
et al., 2021).

Hellaswag is designed to benchmark commonsense reason-
ing in AI models (Zellers et al., 2019). It contains 10,000
multiple-choice questions for validation and testing. The
dataset focuses on predicting the most plausible continua-
tion of a given scenario.

ARC easy dataset consists of a collection of 7787 natural
science questions (Clark et al., 2018). The dataset con-
tains only natural, grade-school science questions. ARC
questions appeal to both different styles of knowledge and
different styles of reasoning.

Piqa evaluates the model on the physical commonsense
questions without experiencing the physical world (Bisk
et al., 2020). Each instruction has a goal to reach in the
physical world, given the description of the environment if
required, and 2 options (solutions) to reach the goal.

Truthfulness measure the truthfulness of a language model
in answering questions (Lin et al., 2021). This dataset con-
sists of 817 questions across 38 categories and captures hu-

man misconceptions, false beliefs, conspiracies, and aware-
ness between real-world knowledge and fictional knowledge
across 38 domains including health, law, finance, and poli-
tics. Because of space constraints, we abbreviate this dataset
as T mc2.

We choose these datasets as these are commonly evaluated
for most of the newly released LLMs (Touvron et al., 2023;
Yang et al., 2024a). Table 5 summarizes all the evaluation
datasets used in this work for each category. We used the
latest versions of these datasets available on EleutherAI2

as of writing this work. Only MMLU, MMLU-Pro, and
GSM8K are evaluated with 5-shot, rest of the datasets are
evaluated on zero-shot.

B.2. Language Model Architectures

We used two distinct families of language models LLaMa
(Dubey et al., 2024) and Qwen (Yang et al., 2024a). Specifi-
cally, we target the LLaMa 3, 3.1 family of models, and the
Qwen 2, 2.5 family of models. Both LLaMa 3 and 3.1 are
available in 8B, 70B parameters size with the exception that
the 3.1 family also has a 405B parameters model. For all
our LLaMa experiments we focused only on the 8B models
because of the resource constraints. Similarly, both Qwen
2 and 2.5 come in 0.5B, 1.5B, and 7B parameter models
with the exception that the 2.5 family also has 3B, 14B, 32B,
and 72B parameter models. For all Qwen experiments, we
choose 0.5B, 1.5B, and 7B models. Further, by design, we
are required to choose a family of models for which both
the base and the instruction-tuned variants of the same size
exist.

C. Overview of Experimental Hardware
C.1. GPU Specifications

• GPU: NVIDIA A100 40GB SXM

• GPU Memory: 40GB

• FP16/BF16 Tensor Core: 312 TeraFLOPs

• TF32: 156 TeraFLOPs

C.2. FLOPs Requirements

Instruction Fine-tuning

• Number of Parameters, N : 8B.
2https://github.com/EleutherAI/

lm-evaluation-harness
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• Number of tokens, tokens

tokens : 25Msamples

≈ 25M × 8192

= 204, 800M tokens

• Number of Epochs, E: Fine-tuning generally requires
fewer epochs; often 3 to 10 epochs are sufficient.

Continued Pre-training The below calculations assume
continuous pre-training with 100M Tokens.

• Number of Parameters, N : 8B.

• Number of tokens, tokens: 100M tokens

• Sequence Length, S: 4096

• Number of Epochs, E: 5

Estimate FLOPs per Tokens

The FLOPs per training step depend on the number of op-
erations performed per token per layer. Assuming each
parameter needs about 6 floating-point operations (forward
and backward):

FLOPs/token/parameter ≈ 6

Given the structure of transformers with multiple layers and
self-attention, let’s simplify and assume each token requires
6 operations per parameter across all layers:

FLOPs/token = 6×N

C.3. A Comparison

Here, we perform the comparison between LLaMa8B In-
struction Tuning and 100M continuous pre-training (CP) in
terms of the number of FLOPs.

ratio =
Instruct(6× 8× 109 × tokens× E)

CP(6× 8× 109 × tokens× E)

=
6× 109 × 204800Million× 5

6× 109 × 100Million× 5

≈ 2048

This calculation provides a rough estimate of the FLOPs
required to continue pre-training the model on 100M to-
kens across 5 epochs and instruction fine-tuning FLOPs,
estimates numbers from Llama3 Paper.

D. MMLU Performance vs Compute Cost
we demonstrate how our model maintained a good enough
performance on the MMLU benchmark while optimizing for
low computational costs. The results reflect efficient usage
of available compute resources, particularly by leveraging
hardware such as the NVIDIA A100.

D.1. Comparison of MMLU Scores and Compute Costs

Our approach achieved high accuracy in various tasks under
the MMLU benchmark, matching the performance of more
compute-intensive models. Despite this, we successfully
reduced the total compute cost by optimizing training and
fine-tuning processes, as shown in Figure 2.

Figure 2: Comparison of MMLU performance and compute
costs across different models. Our model (marked in green)
balances compute efficiency while maintaining competitive
performance.

E. A Note on Notation
• L3b: is the LLaMa 3 base model

(
θd1

L3b

)
.

• L3i: is the LLaMa 3 instruct model
(
θd1v1

L3i

)
.

• 3Lr: is the instruction residuals from LLaMa 3(
θd1v1

L3i − θd1
L3b

)
.

• org: means the corresponding model with no domain
adaptation

• +100M for L3b: means L3b is continuously fine-
tuned for 100M new tokens.

• +100M for L3i: means L3i is continuously fine-
tuned for 100M new tokens.
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• 100M for L3b+3Lr: means L3b is continuously
finetuned for 100M new tokens and the instruction
capability is added via insturction residuals 3Lr.

Table 6: Key Notations

Symbol Meaning

θi Instruction-tuned LLM Params
θb Pretrained base LLM Params
θxi , θyb Instruction/base model trained on datasets x/y
Θz

r Instruction residual: θxi − θyb
θxb +Θz

r Reconstructed instruction model

Specific notation meaning

θd1

b Base LLM pretrained on d1 dataset
θd1d2

b Base LLM pretrained on d1 dataset and then
continuous pretrained on d2 dataset

θd1v1
i Base LLM pretrained on d1 dataset and then

instruction fine-tuned on v1 dataset
θd1d2v1
i Base LLM pretrained on d1 dataset, continuous

pretrained on d2 dataset and instruction fine
tuned on v1

θd1v1d2
i Base LLM pretrained on d1 dataset, instruction

fine tuned on v1 and further continuous pre-
trained on d2 dataset.
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