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Abstract

Deep neural networks (DNNs) excel in computer
vision tasks, especially, few-shot learning (FSL),
which is increasingly important for generalizing
from limited examples. However, DNNs are com-
putationally expensive with scalability issues in
real world. Spiking Neural Networks (SNNs),
with their event-driven nature and low energy
consumption, are particularly efficient in pro-
cessing sparse and dynamic data, though they
still encounter difficulties in capturing complex
spatiotemporal features and performing accurate
cross-class comparisons. To further enhance the
performance and efficiency of SNNs in few-shot
learning, we propose a few-shot learning frame-
work based on SNNs, which combines a self-
feature extractor module and a cross-feature con-
trastive module to refine feature representation
and reduce power consumption. We apply the
combination of temporal efficient training loss
and InfoNCE loss to optimize the temporal dy-
namics of spike trains and enhance the discrimi-
native power. Experimental results show that the
proposed FSL-SNN significantly improves the
classification performance on the neuromorphic
dataset N-Omniglot, and also achieves competi-
tive performance to ANNs on static datasets such
as CUB and miniImageNet with low power con-
sumption.
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1. Introduction
Deep neural networks (DNNs) (Krizhevsky et al., 2012;
Szegedy et al., 2015; He et al., 2016) have demonstrated
remarkable performance across various computer vision
tasks, such as object detection and sematic segmentation.
DNNs rely on large-scale labeled datasets and deep architec-
tures, making them computationally expensive and energy-
intensive, which limits their scalability. Real-world data
is often scarce, dynamic, or non-stationary, which makes
few-shot learning with low energy consumption increasingly
important. Few-shot learning (FSL) (Fei-Fei et al., 2006;
Vinyals et al., 2016) enables models to generalize from only
few examples, which adapts to ever-changing conditions.
Moreover, Spiking Neural Networks (SNNs), recognized as
the third generation neural networks, are particularly well-
suited to few-shot learning due to the exceptionally low
energy consumption (Bu et al., 2023; Ding et al., 2022; Ma
et al., 2024; Hu et al., 2023; Liu et al., 2024a;b; 2025b)
compared to Artificial Neural Networks (ANNs) by lever-
aging event-driven nature. Furthermore, the spatiotemporal
dynamics of SNNs allow them effectively processing sparse
and temporal data, which are common in open environments.
This paper investigates the potential of SNNs to enhance
few-shot learning in these challenging circumstances, of-
fering a promising solution to real-world applications that
require both adaptability and efficiency.

Few-shot learning focuses on training models to address
the challenge of learning with minimal labeled data. Typi-
cal FSL approaches by ANNs rely on extensive parameter
optimization (Finn et al., 2017; Ravi & Larochelle, 2017;
Yoon et al., 2018) or metric learning (Qiao et al., 2019;
Jiang et al., 2020; Oreshkin et al., 2018), leveraging knowl-
edge acquired during the training phase to classify new data
points with few examples. However, a significant drawback
of these ANN-based methods is their high computational
cost and energy consumption. Since ANNs depend heavily
on floating-point operations, they incur substantial energy
costs, which can be prohibitive for deployment in energy-
constrained facilities such as embedded systems or Internet
of Things (IoT) devices (Madakam et al., 2015; Guo et al.,
2023b; Liu et al., 2024b). Additionally, the reliance on large
datasets and backpropagation algorithms (Cilimkovic, 2015)
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for effective learning limits the generalization capability in
few-shot learning scenarios.

To address these issues, researchers have turned to SNNs
(Maass, 1997; Cao et al., 2015; Sorbaro et al., 2020; Guo
et al., 2023a; Guan et al., 2023; Xu et al., 2023; 2024a; Shen
et al., 2025; 2024), which emulate the spiking mechanism
of biological neurons and offer the potential for significant
reductions in computational cost and energy consumption.
By encoding information through discrete spike trains and
performing computations in an event-driven manner, SNNs
exhibit an inherent advantage in energy efficiency(Xu et al.,
2024b), making them promising candidates for resource-
constrained applications. Recent studies have started to
explore SNNs for few-shot learning by utilizing spike-time
encoding and spike sequence processing to enable learning
from limited data. However, existing SNN-based few-shot
learning methods still face several challenges that need to
be addressed. Firstly, SNNs often struggle to effectively
capture features from complex spatiotemporal features of
inputs, which limits their capacity to extract rich image
features. Secondly, current approaches lack of cross-class
feature comparison and classification, making it difficult to
accurately map query samples to the appropriate support
sets.

Given these challenges, this paper introduces a novel net-
work to leverage SNNs for spatiotemporal feature extraction
in few-shot learning tasks. Our approach integrates a self-
feature extractor module and a cross-feature contrastive
module to further refine feature representation and classify
the query set into a specific support set. The proposed
method achieves a significant advancement by combining
the energy-efficient SNN with an innovative feature extrac-
tion mechanism, thereby enhancing feature representation
capability and classification accuracy in few-shot learning.
By addressing the high energy consumption of traditional
ANN approaches and improving the performance of SNNs
in few-shot scenarios, our approach achieves both outrang-
ing performance and practical significance. Our contribu-
tions are summarized as follows:

• This paper proposes a few-shot learning framework
based on spiking neural networks, which combines
self-feature extractor module and a cross-feature con-
trastive module to further refine feature representation
and greatly reduce power consumption.

• By combining TET Loss and InfoNCE Loss, our model
shows strong generalization ability and noise resis-
tance. TET Loss reduces computational overhead and
speeds up training, while InfoNCE Loss improves the
model’s ability to distinguish between positive and
negative samples, enhancing robustness to noisy data.

• We fully demonstrate the model’s effectiveness through

experiments on static and neuromorphic datasets. Par-
ticularly, we are the first to report an accuracy of 98.9%
on 5w5s on N-Omniglot and achieve great performance
close to ANNs on CUB and miniImageNet dataset,
which sets a new state-of-the-art performance of SNN-
based methods.

2. Related Work
Few-shot learning refers to the issue of training models
to generalize from a limited number of examples. Unlike
traditional machine learning tasks, where large datasets with
thousands of labeled examples are available for training,
FSL aims to train a model to recognize novel classes using
only few labeled instances. This challenge is particularly
relevant in scenarios where acquiring a large amount of
labeled data is impractical or expensive, such as medical
image analysis, where annotations require expert knowledge,
or personalized applications, where user-specific data is
scarce.

ANN FSL Recent studies have demonstrated various few-
shot learning methods utilizing ANNs. For instance, QS-
Former (Wang et al., 2023) enhances few-shot classifica-
tion performance through a unified Query-Support Trans-
former architecture, effectively integrating global and local
feature extraction. Similarly, DT-FSL (Ran et al., 2023)
merges deep Transformer models with meta-learning strate-
gies to improve hyperspectral image classification, apply-
ing domain adaptation techniques to mitigate distribution
discrepancies. CTFSL (Peng et al., 2023) combines convo-
lutional neural networks (CNNs) with Vision Transformers
to achieve cross-domain hyperspectral image classification,
enhancing generalization through domain alignment and dis-
crimination. Furthermore, Luo (Luo et al., 2023) suggests
that the independence of training and adaptation algorithms
can simplify the development of few-shot learning tech-
niques. A polyp classification system (Krenzer et al., 2023)
based on deep learning has also shown improved diagnos-
tic accuracy by leveraging few-shot and deep metric learn-
ing. Furthermore, EASY (Bendou et al., 2022) employs
a multi-backbone network and Y-shaped structure in train-
ing, achieving advanced few-shot classification performance
across multiple standard datasets. These studies collectively
illustrate that ANNs could achieve good performance in
few-shot learning.

SNN FSL Recent studies highlight the wide application
and potential of SNNs in few-shot learning. Efficient online
few-shot learning (Stewart et al., 2020a) has been applied
to the Intel Loihi neuromorphic processor through proxy
gradient descent and transfer learning for gesture recogni-
tion. Based on this, the natural e-prop method is proposed
to facilitate one-shot learning with the learning signals emit-
ted by recursive SNNs, aligning closely with biological
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learning mechanisms and allowing rapid adaptation to new
tasks (Scherr et al., 2020). Furthermore, the development
of SOEL system (Stewart et al., 2020b), which integrates
proxy gradient descent with error-triggered learning, has
significantly improved the efficiency of online learning on
neuromorphic hardwares. Jiang (Jiang et al., 2021) proposes
a multi-timescale optimization framework, introducing an
adaptive-gated LSTM to balance short-term learning with
long-term evolution to acquire prior knowledge through
example-level learning and task-level optimization. Stewart
proposes a method that combines of meta-learning (MAML)
and proxy gradient (Stewart & Neftci, 2022) to improve the
rapid learning capabilities of SNN, making it particularly
suitable for low-power and fast adaptation scenarios. HES-
FOL (Yang et al., 2022) boosts the robustness and accuracy
of SNNs in non-Gaussian noise through a heterogeneous
integrated loss function. Complementing this research, a
bionic SNN designed for gas recognition (Huo et al., 2023)
supports the incremental learning of few-shot classes while
effectively addressing sensor drift and aging issues. These
studies demonstrate that SNNs could achieve both efficient
performance and strong adaptability in few-shot learning.

3. Preliminary
3.1. Spiking neuron model

Leaky Integrate-and-Fire (LIF) (Shamsi et al., 2017) is the
most commonly used neuron model in SNNs. It captures the
dynamic characteristics of spikes by simulating the behavior
of biological neurons. The LIF model mimics how neurons
work and generate spikes with membrane potential and a
certain threshold. The whole process can be described as:

U(t) = τU(t− 1) +X(t), (1)

S(t) = Θ(U(t)− Vth), (2)

U(t) = U(t) · (1− S(t)), (3)

where τ is a constant leaky factor, U(t) is the membrane
potential at time t, X(t) is the input, and Θ represents the
Heaviside step function. Given a certain threshold Vth, if
U(t) exceeds this threshold, the neuron generates a spike,
then U(t) is reset to 0. The firing function and hard reset
mechanism can be described as: when U(t)≥Vth, the neu-
ron generates a spike, and then U(t) is reset to 0 and enters
a recovery period until the membrane potential rises to the
threshold again; when U(t) reaches a certain threshold Vth,
the output spike S(t) is triggered by the step function. LIF
neurons are often used in SNNs to replace the activation
function in traditional ANNs with simulating the behavior
of biological neurons.

3.2. Few-shot Classification

Few-shot classification aims to solve the problem of effec-
tively classifying new samples when there are only few
labeled samples in each category. Due to the extremely
limited labeled data, traditional deep learning methods are
prone to overfit in this case and fail to unseen data. To
resolve this issue, few-shot learning usually adopts a meta-
learning framework and improves the adaptability through
episodic training.

In few-shot classification, FSL is usually defined as a N-way
K-shot task (i.e., K labeled samples of N unique classes) and
K is very small, e.g., 1 or 5. The model is initially trained
on training data Dtrain from a set of training classes Ctrain,
and then evaluated on test data Dtest from unseen classes
Ctest, where Ctrain ∩ Ctest = ∅, which is the most impor-
tant setting for few-shot learning. Both Dtrain and Dtest

consist of multiple episodes, each containing a query set
Q = {(xj , yj)}N×K

j=1 and support set S = {(xi, yi)}N×K
i=1

of K image-label pairs for each of the N classes, also known
as an N-way K-shot episode. During training, we iteratively
sample an episode from Dtrain and train the model to learn
a mapping from the support set S and query images Iq to
the corresponding query labels yq. This process involves
learning how to generalize from the limited information pro-
vided by the support set to predict accurately on the query
set. During testing, the model uses the learned mapping
to classify query images Iq as one of the N classes in the
support set S sampled from Dtest. The goal is to evaluate
the model’s ability to generalize to new, unseen classes with
limited data.

4. Methodology
In this section, we will introduce our network model ar-
chitecture, which uses a spiking neural network to extract
image features. The self-feature extractor module and the
cross-feature contrastive module further extract features and
classify the query set into a certain support set. The entire
network model architecture is shown in the figure 1. We
first briefly introduce the whole model structure, then specif-
ically introduce the technical details of each module, and
finally explain our specific training strategy.

4.1. Model Architecture

First, support set images spt and query set images qry are
sent to the spiking network backbone to extract the basic fea-
ture representation, where the weights of the two are shared,
and then enter the self-feature extractor(SFE) module to
analyze the internal correlation of the image, and finally
enter the cross-feature contrastive(CFC) module to classify
the query set into the nearest support set. We named our
model SSCF (Spiking Self-Cross Feature Network).

3



Self-cross Feature based Spiking Neural Networks for Efficient Few-shot Learning

Figure 1. Architecture of the proposed few-shot learning framework based on SNNs. It combines self-feature extractor module and a
cross-feature contrastive module to further refine feature representation and greatly reduce power consumption.

4.2. Backbone

The backbone network we use is VGGSNN, specifically,
the spiking form of VGG16, a total of 8 conv-bn-LIF layers.
Note that the backbone we use is relatively simple because
an overly complex backbone is prone to overfitting, which is
not conducive to the generalization ability of few-shot learn-
ing. We did not apply the average pooling layer since the
average pooling operation would lose spatial information. A
key feature of SNN is that they can operate sparsely, in other
words, neurons will only generate spikes when the input
stimulus exceeds a certain threshold. Avoiding the use of
average pooling could help maintain this sparsity and may
be more efficient in hardware implementation and reduce
unnecessary calculations. For the input format, we replicate
the static dataset T time steps to meet the input requirements
of our spiking backbone. For the neural morphology dataset,
due to its natural T -dimension, there is no need to perform
excessive operations. We will temporarily refer to the pre-
liminary features obtained through the spiking backbone
network as F0.

4.3. Self Feature Extractor(SFE)

The SFE module pays more attention to the information
inside the image and provides a reliable input for the CFC
module. Given a feature representation F0 ∈ RT×C×H×W ,
where T is the timestep, C is the channel, and H×W de-
notes the spatial resolution. First, we use the unfolded
operation to make each position x ∈ [1, H] × [1,W ] in
T × C expanded U and V dimension. Hence, it turns
to F0 ∈ RT×C×H×W×U×V . We use time-channel self-

correlation to retain the rich semantics of the feature vector
for classification, which suppresses changes in appearance
and reveals structural patterns.

Then, we apply a convolutional block that follows the com-
putational efficiency bottleneck structure to obtain the self-
correlation pattern in F1, namely a 1×1 convolution layer
for reducing the number of channels and two 3×3 convolu-
tion layers for transformation, and a 1×1 convolution layer
to restore the size of the number of channels. This series
of convolution operations gradually aggregates local corre-
lation patterns without padding, reducing the dimension of
U×V to 1×1. After that, the LIF neuron layer is inserted
as the activation function. For the entire SFE module, the
feature dimension remains unchanged as T × C ×H ×W .
This feature extraction is complementary to the feature F
obtained after the spiking backbone, so we combine the
representation of the two modes, applying the residual struc-
ture so that the features sent to the CFC module are the sum
of the two, which strengthens the representation of basic
features with relational features and helps few-shot learning
better understand “observe yourself for what” in the image:

F = F0 + F1 . (4)

This approach helps in recognizing intra-class features and
facilitates generalization to unseen target categories.

4.4. Cross Feature Contrastive(CFC)

The CFC module takes the input pairs Fs and Fq of the
support set and the query set and generates the correspond-
ing attention maps Aq and As. We first take the average
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value of the T dimension to facilitate subsequent operations.
Then, the query and support representations Fq and Fs are
converted into more compact representations using point-
wise convolutional layers, reducing the channel dimension
C to C ′. We construct a four-dimensional cross-correlation
tensor C ∈ RH×W×H×W . Since the dimensions H and W
have been reduced after the convolutional layers of the spik-
ing backbone, the memory usage of the cross-correlation
tensor is not particularly large. However, due to some large
appearance changes in the few-shot learning setting, we
adopt a convolutional matching process. The tensor is fur-
ther refined using 4D convolutions with matching kernels,
specifically consisting of two 4D convolutional layers. The
first convolution generates multiple correlation tensors with
multiple matching kernels, increasing the number of chan-
nels to C1 , and the second convolution aggregates them
into a single 4D cross-correlation tensor. From the refined
cross-correlation tensor C, we generate joint attention maps
Aq and As, which reveal the relevant content between the
query set and the support set. The attention map for a query
Aq ∈ RH×W is computed by (Kang et al., 2021)

Aq(xq) =
softmax(C(xq,xs)/γ)

HW
, (5)

where x is the position on the feature map and γ is the
temperature factor. The attention value Aq(xq) can be
interpreted as the ratio of the matching score of xq, as the
average probability of matching the position at the query
image with the position at the support image. Similarly, the
attention map for the support is computed by switching the
query and support in equation 5. These joint attention maps
improve the accuracy of few-shot classification by cross-
correlating patterns and adjusting “important locations of
joint attention” with respect to the image given at the test
time.

4.5. Training Losses

We train the network in a single-stage way, combining
two losses to guide the model to classify precisely: TET-
based loss and contrast-based loss. First, we append a fully
connected classification layer after F to calculate LTET,
which guides the model to correctly classify queries of class
c ∈ Ctrain. The contrast-based metric loss Linfo calculates
the cosine similarity between the query and the support
prototype embeddings, separates the positive and negative
classes, and finally calculates the infoNCE loss to map the
query embedding to the support embedding of the same
class. When inferencing, the query class is predicted to be
the class of the closest support set.

Since SNN has an additional time dimension than ANNs,
our learning goal should be reconsidered. We use TET loss
to train our backbone network. It turns out that TET loss
is effective for spiking neural networks. The calculation of

TET loss is(Deng et al., 2022):

LTET = − 1

T

T∑
t=1

LCE(Fq,y), (6)

where T is the time step, LCE represents the cross-entropy
loss, and y is the sample label.

Next, we use the pooling to obtain the final feature expres-
sion based on the contrast metric loss. The support set is
first divided into positive and negative classes according to
the labels so that the network can better learn the correct
category, and then the following contrast loss is calculated:

S = FsAs,Q = FqAq, (7)

LinfoNCE = − log
exp(sim(S+,Q)/τ)∑
exp(sim(S,Q)/τ)

, (8)

where sim(·, ·) is cosine similarity and τ is a scalar temper-
ature factor. At inference process, the class of the query
is predicted as that of the nearest prototype. The final loss
function combines these two losses, where λ is a hyper-
parameter that balances the loss terms:

LTotal = λLTET + (1− λ)Linfo. (9)

5. Experiments
5.1. Datasets

We adopt the following datasets for experiments: N-
Omniglot, CUB-200-2011, and miniImageNet. Meanwhile,
as a few-shot learning study, we must ensure that the train-
ing set and the test set are different, that is, their intersection
is empty.
N-Omniglot(Li et al., 2022) is a neuromorphic dataset built
based on the original Omniglot dataset, which consists of
1623 handwritten characters from 50 different languages.
Each character has only 20 different samples.
CUB-200-2011 is a dataset focused on the fine-grained clas-
sification of birds and is widely used in the field of few-shot
learning. It has a total of 200 categories, of which 100, 50,
and 50 are used for training, validation, and testing, respec-
tively.
miniImageNet(Vinyals et al., 2016) is a derived dataset
from ImageNet that comprises a total of 60,000 images,
which are evenly distributed across 100 different object cat-
egories. Of these categories, 64 are designated for training,
16 for validation, and 20 are reserved for testing.

5.2. Experimental Results

We conducted experiments on the N-Omniglot dataset under
different time steps and scenario settings for performance
evaluation. Experimental results are shown in Table 1. For
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method backbone T 20w1s 20w5s 5w1s 5w5s

Siamese(Koch et al., 2015) SCNN
4 53.3±1.6 74.9±1.6 72.6±0.9 88.4±1.0
8 50.8±0.4 72.2±0.8 74.4±0.7 90.7±0.1
12 49.8±1.3 71.3±1.0 69.3±0.8 85.7±0.6

MAML(Finn et al., 2017) SCNN
4 - - 74.4±0.7 90.7±0.1
8 - - 71.1±0.3 88.6±0.4
12 - - 70.3±0.9 87.3±0.3

SSCF(ours) SCNN
4 67.0±0.8 79.0±0.7 79.3±0.7 95.0±0.6
8 67.6±0.6 80.2±0.6 79.5±0.8 95.5±0.2
12 67.8±0.5 79.7±0.5 80.0±0.3 96.2±0.4

SSCF(ours) VGGSNN
4 83.7±0.7 94.8±0.3 94.3±0.8 98.6±0.3
8 84.2±0.6 94.7±0.3 94.8±0.7 98.9±0.3
12 84.4±0.6 94.9±0.2 95.3±0.6 98.8±0.2

Table 1. Performance comparison among different SNNs-based FSL models on the N-Omniglot dataset

the convenience of comparison, we conducted experiments
on both the SCNN backbone network and the VGGSNN
backbone network. The experimental results on the SCNN
backbone network surpassed maml and siamese, proving the
effectiveness of our model architecture. The experimental
results on the VGGSNN backbone network were further
improved, which proved the power of VGGSNN as a spik-
ing neural backbone network.We can observe that when the
number of ways remains constant, increasing the number
of shots leads to a higher classification accuracy. When
the number of shots remains constant, reducing the number
of ways results in higher accuracy. In the 1-shot scenario,
as the time step T increases, the accuracy consistently im-
proves. However, with an increase in the number of shots,
such as in our 5-shot experiments, the impact of the time
step T on accuracy becomes minimal. This is because, in the
1-shot scenario, the limited number of samples means that a
longer time step can provide more information to the model,
thereby enhancing its performance. In the 5-way 1-shot
(5w1s) setting, our model achieves an accuracy of 95.3%
at T=12, representing a 25.0% improvement over MAML.
In the 5-way 5-shot (5w5s) setting, the performance of our
model is relatively stable across different time steps, with
the accuracy consistently around 98.8%, which is a 11.5%
improvement over MAML. In the 20-way 1-shot (20w1s)
and 20-way 5-shot (20w5s) settings, our model achieves ac-
curacies of 84.4% and 94.2%, respectively, representing im-
provements of 34.6% and 23.6% over the Siamese method
reported in the original paper. Results show particularly sig-
nificant improvements in the 1-shot setting, which further
proves its strong generalization performance and suitabil-
ity for solving few-shot learning problems. These results
clearly demonstrate that our model performs exceptionally
well on neuromorphic datasets. In figure 2, we visualize the
t-SNE graph at different time steps and different ways.

Next, we evaluate the performance on static datasets.

We perform experiments on the CUB and miniImageNet
datasets. Results are shown in Table 2 and Table 3.On the
CUB dataset, our model achieves an accuracy of 76.27%
in the 5-way 1-shot (5w1s) setting and 87.00% in the 5-
way 5-shot (5w5s) setting. On the miniImageNet dataset,
our model achieves an accuracy of 60.97% in the 5w1s set-
ting and 75.61% in the 5w5s setting. These results surpass
many classic ANNs methods and are close to the current
state-of-the-art performance of ANNs.

We found that, since the CUB dataset is a fine-grained im-
age dataset, balancing the loss terms favors self-correlation
features. Given that all images in the dataset are of birds,
inter-class features are less important. This does not mean
that inter-class feature comparison can be omitted; both
types of features still need to be appropriately balanced.
The miniImageNet dataset, on the other hand, contains many
classes with significant differences, making cross-class fea-
tures more important than in the CUB dataset. However, the
optimal λ coefficient is still greater than 0.5, as inter-class
features are derived from self-class features. Table 4 shows
our experimental results with different values of λ, which
supports the above observations.

5.3. Ablation Studies

Table 5 presents the results of our ablation study, which is
conducted on the N-Omniglot and CUB datasets. Results
show that both modules are beneficial to the model, with
the SFE (Self-Feature Extraction) module being particularly
crucial for improving the performance. Specifically, on the
N-Omniglot dataset, removing the SFE module leads to a
significant drop in accuracy, from 94.34% to 93.17% in the
5-way 1-shot (5w1s) setting. Similarly, on the CUB dataset,
the removal of the SFE module causes a substantial decrease
in accuracy, from 76.27% to 71.84% in the 5w1s setting.
This indicates that the SFE module is essential for capturing
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method backbone 5-way 1-shot 5-way 5-shot
ProtoNet(Snell et al., 2017) ResNet12 66.09±0.92 82.50±0.58

RelationNet(Sung et al., 2018) ResNet34 66.20±0.99 82.30±0.58
DEML+Meta-SGD(Zhou et al., 2018) ResNet50 66.95±1.06 77.11±0.78

MAML(Finn et al., 2017) ResNet34 67.28±1.08 83.47±0.59
MergeNet-MAX(Atanbori & Rose, 2022) MobileNetV2 72.90±0.24 81.76±0.25

S2M2(Mangla et al., 2020) ResNet34 72.92±0.83 86.55±0.51
FEAT(Ye et al., 2020) ResNet12 73.27±0.22 85.77±0.14

MergeNet-MAX(Atanbori & Rose, 2022) EfficientNetB0 75.34±0.21 83.42±0.29
DeepEMD(Zhang et al., 2020) ResNet12 75.65±0.83 88.69±0.50

RENet(Kang et al., 2021) ResNet12 79.49±0.44 91.11±0.24
SSCF(ours) VGGSNN 76.27±0.46 87.00±0.30

Table 2. Performance comparison on CUB dataset

method backbone 5-way 1-shot 5-way 5-shot
MAML(Finn et al., 2017) ResNet34 48.70±1.84 63.11±0.92

Meta-SGD(Zhou et al., 2018) ResNet50 50.47±1.87 64.66±0.89
adaResNet(Munkhdalai et al., 2018) ResNet12 56.88±0.62 71.94±0.57

RelationNet(Sung et al., 2018) ResNet34 57.02±0.92 71.07±0.69
Dual TriNet(Chen et al., 2019) ResNet18 58.12±1.37 76.92±0.69

ProtoNet(Snell et al., 2017) ResNet12 62.39±0.21 80.53±0.14
S2M2(Mangla et al., 2020) ResNet34 63.74±0.18 79.45±0.12

DeepEMD(Zhang et al., 2020) ResNet12 65.91±0.82 82.41±0.56
RENet(Kang et al., 2021) ResNet12 67.60±0.44 82.58±0.30

SSCF(ours) VGGSNN 60.97±0.45 75.61±0.34

Table 3. Performance comparison on miniImageNet dataset

λ 0.2 0.4 0.6 0.7 0.8 1.0
cub 45.98 66.67 73.56 76.27 72.17 68.37
mini 35.89 50.02 60.97 60.71 60.74 53.19

Table 4. Performance comparison under different λ on CUB and
miniImageNet with time steps T=2

SFE CFC N-Omniglot CUB
✓ ✓ 92.13 69.97
× ✓ 94.07(+1.94) 72.20(+2.23)
✓ × 93.17(+1.04) 71.84(+1.87)
✓ ✓ 94.34(+2.21) 76.27(+6.30)

Table 5. Ablation studies on SFE and CFC components

fine-grained details and improving classification accuracy,
especially in datasets with closely related classes. While the
other module also contributes to the model’s performance,
its impact is less pronouned compared to the SFE module.
These findings highlight the importance of both modules
and demonstrate the effectiveness of our model in handling
both fine-grained and general classification tasks.

The primary challenge in few-shot learning is the lack of
rich and diverse data. For instance, in identifying rare an-
imal species and rare diseases, the environments in which
we collect data are often complex and difficult, leading to in-

noise 0.0 0.4 0.8
CE(Wang et al., 2019) 55.135 40.649 32.725

infoNCE(He et al., 2020) 55.302 43.699 36.485

Table 6. Performance under different levels of noise on CUB

evitable noises. To address this issue, we modified the data
preprocessing steps and introduced Gaussian noise to the
dataset. Specifically, we selected the bird dataset CUB and
added noise rates of 0.0, 0.4, and 0.8 for our experiments.
The comparison results, shown in Table 6, demonstrate that
using the infoNCE loss function yields better performance
compared to using only the ordinary cross-entropy (CE) loss.
At a noise rate of 0.0, the model using infoNCE achieves an
accuracy of 55.302%, while the model using CE achieved
55.135%. As the noise rate increases to 0.4, the infoNCE
model maintains a higher accuracy of 43.699%, whereas the
CE model’s accuracy drops to 40.649%. Even at the highest
noise rate of 0.8, the infoNCE model outperforms the CE
model with an accuracy of 36.485% compared to 32.725%.
These results clearly indicate that our model, when using
the infoNCE loss, exhibits superior robustness and is better
equipped to handle noisy data, which is a common issue in
few-shot learning scenarios.

Our model has significant advantages over traditional ANN
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Figure 2. T-SNE visualization on N-Omniglot in different time steps.We can intuitively see the clustering effect in the feature space and
the impact of the time step on the feature distribution. At a shorter time step (such as T=4), the feature distribution is more dispersed and
the distinction between categories is low. As the time step increases (such as T=12), the feature distribution gradually becomes more
compact and the distinction between categories is significantly improved.

Method acc SOP FLOPs Energy
ReNet 79.49 - 4.84G 22.264mJ
ours 76.27 1.39G 0.13G 1.849mJ

Table 7. Comparison of the energy consumption with ANNs

in terms of deploying on neuromorphic hardware. Next,
we will perform theoretical synaptic operation and energy
consumption calculation (Liu et al., 2025a). For SNNs, we
must first calculate the synaptic operation and then calcu-
late the energy consumption. The energy consumption is
proportional to the number of operations. The calculation
is:

SOPs = fr × T × FLOPs, (10)
ESNN = 0.9pJ × SOPs, (11)
EANN = 4.6pJ × FLOPs, (12)

where fr is the firing rate of the input spike train of the
block/layer and T is the simulation time step of spike neu-
ron. 0.9pJ is the energy consumption of each SOP(Hu et al.,
2021; Indiveri et al., 2015). For ANNs, 4.6pJ is the en-
ergy consumption of each FLOP. From Table 7, we can see
that our experiment is compared with the ANNs method.
When T=2, the energy consumption of our method is only
8.30% of the ANNs’. This proves that SNN is particularly
good in power consumption optimization with its unique
event-driven computing method and sparse data processing
capabilities.

6. Conclusion
This paper mainly focuses on implementing few-shot learn-
ing with SNN to alleviate the issue of insufficient general-
ization ability and improve the energy efficiency. We com-
bine self-feature extractor module and a cross-feature con-
trastive module to further refine feature representation and
greatly reduce power consumption. Our training strategy
combines TET loss and infoNCE loss at the same time. This
method has good performance on the neuromorphic dataset
N-Omniglot and also obtains competitive performance with
ANNs on static datasets such as CUB and miniImageNet.
The energy estimation also shows the effiency priority of
our model.

Thus, advancing FSL research not only addresses critical
limitations in current AI methodologies but also meets the
growing demand for adaptive, efficient, and scalable solu-
tions in real-world applications. Future work will focus
on further refining the model to improve its performance
on even more challenging datasets and tasks. We aim to
explore advanced techniques for feature extraction and loss
function optimization to enhance the model’s generalization
ability. Additionally, we plan to investigate the integration
of additional spiking attention-based mechanisms and tem-
poral dynamics to better capture the temporal aspects of
data, which are often crucial in real-world applications.
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A. Supplementary Materials
In order to gain a deeper understanding of the encoder’s performance during feature extraction, we extracted the encoder part
of the model and added a spike visualization module to intuitively display the spike activity in the spiking neural network
(SNN). With this method, we can clearly observe the activation patterns and their changing patterns of spiking neurons at
different time steps. The experimental results show that within the initial time step, the spike activity is mainly focused on
capturing the key features of the input data, showing the encoder’s high sensitivity to important information. As the time
step increases, more and more features are activated and emit spikes, indicating that the encoder can gradually identify more
subtle features. This phenomenon reveals that the encoder not only maintains sensitivity to the main features at long time
steps, but also gradually captures more complex detail features, thereby enhancing the overall performance of the model.
The introduction of spike visualization not only helps us better understand the internal working mechanism of the encoder,
but also provides valuable insights for further optimizing the model.

T=1 T=2

Figure 3. Visualization of spiking activities at different time steps.In the above picture, we can clearly see the changes in the activity of the
spiking. The features at time T=2 are significantly more than those at time T=1. This shows that as the time step increases, more and more
features are activated and spikings are emitted, thereby capturing more features.

In order to further explore the performance of spiking neural networks (SNNs) on static datasets, we conducted experiments
with different time steps on two commonly used static datasets, CUB and miniImageNet, and used pulse visualization
techniques to show the changes in pulse activity. The experimental results show that within the initial time step, the encoder
mainly captures the key features of the input data, showing a high sensitivity to important information. As the time step
increases, more and more features are activated and emit pulses, indicating that the encoder can gradually identify more
subtle features. Specifically, on the CUB dataset, as the time step increases from 2 to 4 and 8, the model’s ability to
capture complex features is significantly improved, and the classification accuracy also increases accordingly. Similarly, on
the miniImageNet dataset, a longer time step enables the model to better process detailed features in the image, thereby
improving the overall classification performance.
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Dataset T acc

CUB
2 71.43±0.48
4 73.27±0.47
8 76.42±0.46

miniImageNet
2 60.26±0.45
4 60.43±0.46
8 60.75±0.57

Table 8. Accuracy under different T values on CUB and miniImageNet datasets.

In this study, we further explored the impact of different levels of Gaussian noise on model performance, especially
comparing the performance of the InfoNCE loss function with the cross entropy (CE) loss function on neuromorphic datasets
and static datasets. Experimental results show that under various noise conditions, whether it is a neuromorphic dataset
or a static dataset, the InfoNCE loss function exhibits superior noise resistance compared to the traditional cross entropy
loss function. As the noise level increases, the InfoNCE loss function not only maintains a high classification accuracy, but
its advantage over the CE loss function also becomes more obvious. These results show that the InfoNCE loss function
is significantly more robust than traditional methods in dealing with high noise environments, and exhibits stronger noise
resistance when the noise level increases, with higher reliability and applicability.

Dataset Noise Loss Acc

N-Omniglot

0.0 CE 93.8
InfoNCE 94.3

0.4 CE 84.2
InfoNCE 86.5

0.8 CE 75.6
InfoNCE 79.4

CUB

0.0 CE 74.1
InfoNCE 77.4

0.4 CE 59.8
InfoNCE 65.7

0.8 CE 36.5
InfoNCE 43.6

Table 9. Performance of InfoNCE and cross entropy loss functions on different datasets at different noise levels

We have also added some of the latest SNN few-shot learning methods for comparison, The performance comparison is
show as follows:

Dataset method backbone Task acc

N-Omniglot

plain SCNN

20-way 1-shot

63.4
Knowledge-Transfer(He et al., 2024) SCNN 64.1

SSCF(ours) SCNN 67.8
SSCF(ours) VGGSNN 84.4

Table 10. Performance comparison of recent SNN methods on N-Omniglot dataset under 20-way 1-shot classification task

Dataset method backbone Task acc

miniImageNet

OWOML (Rosenfeld et al., 2021) SNN-ResNet-12

5-way 1-shot

45.2
CESM (Zhan et al., 2024) SNN-WideResNet-28-10 51.8
MESM(Zhan et al., 2024) SNN-WideResNet-28-10 53.6

SSCF(ours) VGGSNN 60.9

Table 11. Performance comparison of recent SNN methods on miniImageNet dataset for 5-way 1-shot classification
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