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Abstract
The multivariate hypergeometric distribution de-
scribes sampling without replacement from a dis-
crete population of elements divided into multiple
categories. Addressing a gap in the literature, we
tackle the challenge of estimating discrete distri-
butions when both the total population size and
the category sizes are unknown. Here, we pro-
pose a novel solution using the hypergeometric
likelihood to solve this estimation problem, even
in the presence of severe under-sampling. Our
approach accounts for a data generating process
where the ground-truth is a mixture of distribu-
tions conditional on a continuous latent variable,
as seen in collaborative filtering, using the vari-
ational autoencoder framework. Empirical data
simulation demonstrates that our method outper-
forms other likelihood functions used to model
count data, both in terms of accuracy of popu-
lation size estimate and learning an informative
latent space. We showcase our method’s versa-
tility through applications in NLP, by inferring
and estimating the complexity of latent vocabu-
laries in reading passage excerpts, and in biology,
by accurately recovering the true number of gene
transcripts from sparse single-cell genomics data.

1. Introduction
The classic Pólya urn model (Eggenberger & Pólya, 1923)
describes the process of randomly sampling from an urn
containing balls of various colors, and is used to illustrate
common discrete probability distributions that form the core
building block of many probabilistic machine learning mod-
els. When balls are sampled from the urn with replacement,
the distribution of counts of balls of each color is described
by the multinomial distribution, whereas the hypergeometric
distribution describes sampling without replacement. The
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hypergeometric distribution becomes important for success-
ful modelling when the selection of one element from the
distribution affects the probabilities of selecting subsequent
elements (i.e. the counts within as sample are not indepen-
dent), and when the number of elements sampled is signifi-
cant compared to the population size. The hypergeometric
distribution also enables the direct inference of category
counts, as opposed to category probabilities, which is often
of interest for downstream analyses and interpretability.

There are many settings where it is valuable to model count
data directly and to capture the dependence between cat-
egory counts. For example, in the context of collabora-
tive filtering, song or movie play counts (Van den Oord
et al., 2013) and shopping basket item counts (Faggioli
et al., 2020) can be thought of as being sampled from a
larger catalogue. Likewise, a text document can be viewed
as a bag-of-words that is sampled from a larger, underly-
ing bag-of-words (Goldberg, 2022). In all of these cases
the assumption of sampling without replacement is justi-
fiable because the magnitude of counts is relatively small,
and there is dependence between these counts. For exam-
ple, watching a movie changes the probability of it being
watched a second time, adding an item to a virtual shopping
basket changes the probability of it being added again, and
selecting one word changes the probability of its synonyms
and related terms also appearing in a text.

This setting is even more common in biology due to the
experimental sampling methods used (DePatta Pillar, 1998).
In the field of single-cell genomics, the quantity of gene
transcript count data measured at the resolution of individ-
ual cells is accumulating at an exponential rate (Svensson
et al., 2018). As we show in Section 4.4, high-throughput ex-
periments inherently sample without replacement, and with
careful interpretation this single-cell data promises to an-
swer important questions in biology and health. In the field
of microbiome research, another potential application is the
estimation of microbial population sizes and subsequent dif-
ferential abundance analysis (Morton et al., 2019a;b). Due
to the frequent occurrence of finite, discrete populations in
nature, there are many other natural phenomena that can be
modelled using the hypergeometric distribution (Holmes &
Huber, 2018).

Furthermore, the aforementioned applications are typically
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characterized by intrinsic low-rank structure. Movie and
music choices are driven by an underlying set of preferences
(Feuerverger et al., 2012), words in a text passage are as-
sociated with the document’s topic (Vayansky & Kumar,
2020), and a cell’s gene transcript counts depend strongly
on its cell type (Grønbech et al., 2020). This latent struc-
ture induces correlation between features, such as songs of
the same genre, and suggests that a latent-factor model is
appropriate.

Despite the fundamental importance of the hypergeometric
distribution - it being one of the few fundamental proba-
bility distributions for modeling sampling - there is cur-
rently no effective way of inferring its parameters in many
common settings of interest, including in the presence of
high-dimensional data with intrinsic low-rank structure. In
this paper, we present a simple yet powerful method to
solve an as yet unaddressed core problem for the hypergeo-
metric distribution, namely inferring a mixture of discrete
distributions where both the size of the total population
and its constituent categories are unknown. We first show
that parameter inference is tractable when there are two or
more categories using empirical simulations, and that our
method outperforms existing likelihood-based approaches.
To demonstrate its value in real-world settings, we use our
method to infer a latent vocabulary for reading passages,
which can be used to assess their complexity. Finally, we
address the technical limitations of genomics experimen-
tal methods and recover missing gene transcript counts in
high-throughput single-cell genomics measurements.

2. Background and Related Methods
2.1. The Hypergeometric Distribution

Consider an urn that contains N balls divided into K = 2
categories (e.g. colors): N1 balls are white and N2 =
N − N1 are black. Each ball has equal probability of
being selected from the urn. If we sample n < N balls
without replacement, obtaining c1 white ball counts and c2
black counts, the distribution of the number of sampled balls
of each color is given by the hypergeometric distribution,
whose joint probability mass function is (Moivre, 1711):

P (c1, c2|N1, N2) =

(
N1

c1

)(
N2

c2

)(
N1+N2

c1+c2

) (1)

In general, when we have K categories the joint probability
mass function is:

P (c1, . . . , cK |N1, . . . , NK) =

∏K
i=1

(
Ni

ci

)
(∑K

i=1Ni∑K
i=1 ci

) (2)

Typically N is assumed to be known, however here we
consider the setting where neither N nor any Ni are known.

In the typical setting the distribution for K = 2 is called the
univariate hypergeometric distribution, with K > 2 referred
to as multivariate, but because in our problem setting there
are already two unknown variables when K = 2, we use
the term hypergeometric distribution for any K ≥ 2.

2.2. Existing Maximum Likelihood Estimators

There are two standard maximum likelihood estimation
problems that have been investigated for the hypergeometric
distribution.

Known total population size: When the total population
size N is known, the object is to estimate the true number
of elements Ni in each constituent category i ∈ 1, . . . ,K.
The maximum likelihood estimator is then essentially the
known total population size scaled by the sample frequency
of each category, with adjustment to ensure a correct integer
solution (Oberhofer & Kaufmann, 1987).

Unknown total population size: In a more complex case
known as the capture-recapture problem (Darroch, 1958),
the total population size N is unknown. To estimate the
total population, a sample is first drawn from the underlying
distribution. All objects belonging to one of the categories
in this sample are tagged, and all sampled elements are re-
turned to the population. A second sample from the same
distribution is then drawn, and the number of tagged samples
that reappear permits the estimation of the total population
size using maximum likelihood. This method has found
important applications in biology and ecology. However, it
depends on the ability to tag and resample the same popu-
lation, which is often not possible in practice, and does not
extend to a mixture of distributions.

Additionally, Tohma et al. (1991) propose a number of ap-
proximate methods for the estimation of the parameters of
the hypergeometric distribution when the category sizes are
unknown, including an approximation using the likelihood,
however they do not maximize the likelihood directly.

2.3. Related Methods

The hypergeometric likelihood has for the most part been
neglected in the modern machine learning context. Sut-
ter et al. (2022) proposed a continuous relaxation of the
non-central hypergeometric distribution to allow for dif-
ferentiable sampling using the Gumbel-Softmax trick, and
use it to learn category weights. This method assumes that
the number of elements in each category are known, and
therefore that only the category weights are to be estimated.
Waudby-Smith & Ramdas (2020) presented a method for
uncertainty quantification when sequentially sampling with-
out replacement from a finite population, as defined by the
hypergeometric distribution, to estimate confidence bounds
as new data becomes available. Other parametric distribu-
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tional assumptions can also be used to directly model count
data, such as the Poisson and negative binomial, and a wide
range of methods have been developed making these explicit
parametric assumptions.

The multinomial distribution, which is the limiting form
of the hypergeometric distribution when the sample size is
negligible relative to the population (N >> n), appears
frequently in machine learning literature. For example, it is
often used to model counts based on their relative abundance.
Latent Dirichlet allocation (Blei et al., 2003) uses a hier-
archical generative framework to model the distribution of
topics, documents over topics, and word (category) counts
from a vocabulary (population) over documents. The distri-
butions over topics and words are multinomial, with word
counts being transformed into their relative frequency in the
document. (Liang et al., 2018) use a variational autoencoder
with multinomial likelihood applied to collaborative filtering
for recommender systems. The click data and play counts
are binarized to accommodate the multinomial likelihood.

Awasthi et al. (2022) argue for the use of maximum like-
lihood estimation instead of empirical risk minimization,
showing that it is better at capturing the appropriate induc-
tive bias and that its performance is competitive with direct
minimization of a target metric.

3. Method
3.1. Single Ground-Truth Distribution

We first assume that there exists a single true discrete popula-
tion of elements, with total number of elementsN belonging
to K categories. We consider the setting where none of the
category sizes are known, and we wish to estimate them
from the data; that is, we do not know any category size Ni,
nor the total population size N =

∑K
i=1Ni. We assume

under-sampling of the underlying distribution (n << N ) as
this is typical real-world applications.

We consider T independent trials, each producing an ob-
served count vector ct = {ct,1, . . . , ct,K}, t ∈ 1, . . . , T .
In trial t ∈ T we draw nt samples, without replace-
ment, from the discrete underlying population, such that∑K
i=1 ct,i = nt. The likelihood for the hypergeometric

distribution is:

L(N1, . . . , NK |c1, . . . , cT ) =
T∏
t=1

∏K
i=1

(
Ni

ct,i

)
(∑K

i=1Ni∑K
i=1 ct,i

) (3)

The log-likelihood is:

logL(N1, . . . , NK |c1, . . . , cT ) =
T∑
t=1

[
K∑
i=1

log

(
Ni
ct,i

)
− log

(∑K
i=1Ni∑K
i=1 ct,i

)] (4)

The hypergeometric distribution is not part of the exponen-
tial family, so it is not obvious that a closed-form maximum
likelihood estimator exists, and therefore we turn to numeri-
cal optimization methods. To enable continuous optimiza-
tion, we consider a continuous and differentiable relaxation
of the log-likelihood by replacing the factorials in the bi-
nomial coefficient with the gamma function, which is the
extension of the factorial to real-numbered arguments:(

a

b

)
=

a!

b!(a− b)!
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
(5)

Using the resulting log-likelihood for the parameter set
θ = {N1, . . . , NK}, we perform maximum likelihood
estimation to obtain the MLE θ̂ ≡ {N̂1, . . . , N̂K} =
argmax

θ
logL(θ|c1, . . . , cT ). During training, the continu-

ous estimates of Ni are used to perform gradient updates,
whereas during inference the estimates can be rounded to
the nearest integer if a discrete solution is required.

The binomial coefficient is not defined if ck > N̂k, which
would correspond to the impossible scenario of sampling
more balls of a given color than are present in the urn. To im-
pose the requirement N̂k ≥ ck, we add a violation penalty
Cviol to the negative log-likelihood we seek to minimize
(Equation 6), and we threshold any estimates of N̂k < ck at
ck before evaluating the likelihood (Equation 7). The use
of a violation function is a common approach to solving
constrained optimization problems (Bertsekas, 2014). We
threshold Ni at the observed sample value ct,i as opposed to
the minimum across all samples mint ct,i to remain as gen-
eral as possible. This is because in the case of a mixture of
distributions we do not know which observation originates
from which underlying distribution, and hence do not know
what the correct minimum is.

Cviol =

K∑
i=1

max(0, ci − N̂i) (6)

N̂i ← max(ci, N̂i) i ∈ 1, . . . ,K (7)

In this paper we are interested in modelling scenarios where
we have access to many samples drawn from the same un-
derlying population, but where this population is under-
sampled. Specifically, if N is the total population size, we
assume that we obtain samples with at most nmax objects
drawn from the ground-truth distribution in each trial, giv-
ing a sample fraction fmax = nmax/N . For example, if
fmax = 0.5 and the true distribution has 100 elements, no
observation will contain more than 50 samples.

3.2. Mixture of Ground-Truth Distributions

While the hypergeometric likelihood can be used to directly
estimate the ground truth for a single underlying distribution
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using maximum likelihood (Section 4.1), data generated by
real world processes is often better represented by a mixture
of distributions. Therefore, we next propose a generative
latent variable model p(c, z) = p(c|z)p(z) to jointly model
the observed counts conditional on a continuous latent vari-
able z.

We extend our approach to allow for the estimation of a
high-dimensional distribution that is conditional on a con-
tinuous latent variable, allowing it to capture a continuous
mixture of count distributions. This modelling assumption
is essential when the true distribution is considerably under-
sampled, leading to sparsity, and so information needs to be
shared between similar observations to successfully model
the data. The variational autoencoder (VAE) (Kingma &
Welling, 2014) is a powerful framework for performing ef-
ficient estimation of the generative distribution parameters
in the presence of a continuous latent variable and high-
dimensional data.

Following the VAE framework, we assume a data generating
process where a latent variable z is first drawn from a prior
distribution p(z), then a count vector c is generated from the
conditional hypergeometric likelihood p(c|z). Note again
that because we are using the continuous relaxation of the
hypergeometric distribution, the generated c are continuous.
The marginal hypergeometric likelihood that we are inter-
ested in maximizing, p(c) =

∫
p(c|z)p(z)dz, is intractable.

We approximate the true unknown posterior for the latent
variable p(z|c) with the variational distribution qϕ(z|c), pa-
rameterized by a deep feed-forward neural network with
parameters ϕ. Similarly, we represent the conditional hyper-
geometric likelihood pψ(c|z) with another neural network
parameterized by ψ. We choose a factorized multivariate
Gaussian (diagonal covariance) as the prior p(z) over the la-
tent variable. We optimize the variational lower bound, also
known as the Evidence Lower Bound (ELBO), regularized
by the violation penalty:

L(ψ, ϕ; ct) =−DKL(qϕ(z|ct)||p(z)) + Eqϕ [log pψ(ct|z)]

+

K∑
i=1

max(0, ci − N̂i)

(8)

The first term is the KL divergence between the approximate
posterior and the prior, the second term is the expected log-
likelihood under the approximate posterior, and the third
term is the violation penalty. Optimization of this objective
enables the estimation of counts under-sampled from a mix-
ture of distributions. The MLE estimate for θi is obtained by
first computing zi = f(ci), where ci is the observed count
vector, then computing θi = g(zi), where the output layer
of g is a linear layer with K features and a ReLU activation.

4. Experiments
4.1. Tractability of Inferring Ground-Truth

Distributions

Using empirical data simulation, we begin by demonstrat-
ing that this inference problem is tractable in the ideal
case where observations are sampled from a single discrete
ground-truth distribution. Despite its simplicity, this sce-
nario has yet to have been shown tractable, and in fact
appears to have generally been assumed to be intractable.

To simulate data, we first select the true number of objects
Ni in each category k ∈ K. We then generate observa-
tions from T independent trials, where in trial t ∈ 1, . . . , T
we sample nt objects from the true distribution, without
replacement. For each trial, we first determine the extent
of under-sampling by choosing the number of objects to
draw nt ∼ Uniform(2, nmax), where nmax < N is the
maximum number of objects that can be sampled in any
trial.

To demonstrate the typical behavior, we show results for a
simulation for the scenario where N1 = 70 and N2 = 30
(N = 100, K = 2, fmax = 0.4), evaluating the negative
log-likelihood (NLL) for all possible combinations of N̂1

and N̂2. Figure 1 shows the resulting loss landscape, and we
see that the minimum NLL value corresponds to the true N1

and N2 values. The lowest NLL region lies along the line
of correct N2/N1 ratio. We note that the difference in NLL
between the optimum and surrounding estimates is small,
especially for estimates with the same ratio N2/N1.

Figure 1. Example of negative log-likelihood landscape for K = 2
and N = 100 (104 trials).

We next investigate the robustness of the maximum likeli-
hood estimate for a wide range of numbers of observations
(trials) T and max sample fractions fmax. As the data is dis-
crete, we use the Manhattan distance between the true and
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estimated counts to quantify the estimation error. In Figure
2, we see that the location of the minimum NLL converges
to the true value as the number of observations increases, for
different levels of under-sampling. As expected, a higher
max sample fraction results in faster convergence and more
accurate estimates, as quantified by lower error for the same
number of samples. We extend this experiment to K = 3
(Figure 7, Appendix E), and find that increasing the number
of categories reduces the number of observations required to
reach zero error. Here we use a confidence interval of 50%
for visual clarity, and the same figure with a 90% confidence
interval is included in Appendix E.

Figure 2. Maximum likelihood estimate Manhattan error for dif-
ferent numbers of trials at different max sample fractions. 50%
confidence interval over 50 random seeds. K = 2, N = 100
(N1 = 40, N2 = 60)

Next, in Figure 3 we show that the maximum likelihood
estimate can be obtained using gradient descent with the
hypergeometric negative log-likelihood objective. We gen-
erate samples as before, and perform gradient descent us-
ing Adam with a learning rate of 0.1 and using a zero-
initialization for the count parameters N̂i. We find that
increasing the number of categories (Figure 8, Appendix
E) improves the rate of convergence of the estimate and
reduces the final error for the same number of samples. This
provides empirical evidence that the bias of the maximum
likelihood estimator decreases with increasing K. Addi-
tional experiments with different fmax are included in Ap-
pendix E, and we show representative results for a mixture
of distributions in Figure 9 and Figure 10 (Appendix E).

4.2. Benchmarks

Having demonstrated that the inference problem is tractable,
we turn to our complete latent-variable model. To show
the advantages of using the hypergeometric distribution for
inference, we compare it to other common distributional
assumptions.

Multinomial: The multinomial likelihood is commonly used
in recommender systems - while it cannot be used to infer
absolute counts, it can used to perform unsupervised clus-

Figure 3. Maximum likelihood estimate Manhattan error per train-
ing epoch obtained with gradient descent, for different numbers
of trials. The accuracy increases and the variance of the estimate
decreases with increasing number of samples. The increase in error
following an initial decrease occurs because we measure absolute
error, and this behavior corresponds to the estimate overshooting
the true value. 50% confidence interval over 20 random seeds.
K = 2, fmax = 0.4, N = 100 (N1 = 30, N2 = 70)

tering and estimate relative category frequency (Liang et al.,
2018).

Poisson: The Poisson distribution is a discrete distribution
often used to model count data (Inouye et al., 2017), how-
ever the distribution is univariate which removes the pos-
sibility of directly capturing dependence between features.
To account for sparsity caused by under-sampling, a zero-
inflation component is sometimes added to account for ex-
cess zeros (Lambert, 1992), but that is unnecessary here as
we know our simulated datasets are not zero-inflated.

To directly compare the impact of likelihood choice, we use
the exact same VAE architecture and training procedure and
swap out the likelihood models.

4.2.1. COUNT ESTIMATION EXPERIMENT

Since we are proposing a generative model for count data,
we first show that our VAE with hypergeometric likelihood
is able to better estimate the data than using alternate likeli-
hoods. We simulate datasets with K = 100, 1000, or 10,000
categories, each consisting of a mixture of either 3 or 10 dis-
crete distributions (simulation details in Appendix A). We
train the base model with each likelihood until convergence
and then quantify the estimation error as the discrepancy
between the ground truth distribution and the model’s esti-
mate, using both mean absolute error (MAE) and median
percentage error (MPE) metrics.

Representative results are shown in Table 3, with further
results in Appendix D. Our method clearly outperforms
the Poisson likelihood in its ability to correctly estimate
the under-sampled ground truth distribution, and produces

5



Estimating Unknown Population Sizes Using the Hypergeometric Distribution

Table 1. Representative results comparing the hypergeometric (HG), multinomial (MN) and Poisson (P) likelihood estimates on simulated
datasets (additional results in Appendix D). Ground-truth distributions are uniformly under-sampled by 20− 60%. Metrics are adjusted
Rand index (ARI), median percentage error (MPE), and mean absolute error (MAE), averaged over 5 simulation random seeds.

ARI MPE MAE
HG (OURS) MN P HG (OURS) P HG (OURS) P

3 DISTRIBUTIONS (2 UNIQUE), 103 CATEGORIES,
103 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

0.45
±0.01

0.45
±0.15

2.8
±0.3%

26.1
±0.1%

416
±49

3471
±2

3 DISTRIBUTIONS (2 UNIQUE), 104 CATEGORIES,
104 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

0.45
±0.01

0.50
±0.01

3.9
±0.9%

23.3
±0.8%

573
±152

3744
±23

10 DISTRIBUTIONS (9 UNIQUE), 103 CATEGORIES,
105 OBS/DISTRIBUTION, 105 GROUND-TRUTH TOTAL

0.99
±0.01

0.89
±0.01

0.87
±0.01

1.6
±0.1%

6.5
±0.1%

225
±6

7309
±43

10 DISTRIBUTIONS, 101 CATEGORIES,
103 OBS/DISTRIBUTION, 103 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.978
±0.023

2.5
±0.2%

64
±1%

27
±3

6.2
±0.1

10 DISTRIBUTIONS, 10 CATEGORIES,
105 OBS/DISTRIBUTION, 103 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.78
±0.01

5.2
±1.5%

6.3
±0.1%

52
±15

63
±1

estimates with significantly lower absolute and percent error.

4.2.2. CLUSTERING EXPERIMENT

We next show that the hypergeometric likelihood can cor-
rectly infer the latent structure in cases where other like-
lihood functions fail. A major benefit of using a latent
variable model is that we can make use of the learned latent
representation z to perform deep unsupervised clustering
(Lim et al., 2020). Both the multinomial and Poisson likeli-
hoods have been used to learn useful latent representations
of count data (Bouguila, 2010). The assumptions of the
hypergeometric distribution, which considers both absolute
and relative counts, can be thought of as a superset of the
assumptions of the multinomial distribution, which only con-
siders relative counts. For example, this difference would
become important in datasets composed of a mixture of
distributions with similar count fractions but different total
counts.

For certain simulated datasets from the preceding experi-
ment, we assign two of the count distributions to have a
different number of total elements but similar probability
distributions over categories. As a practical example, these
could represent two similar ecosystems with comparable
fractions of animal species, but different total populations
due to differences in climate. We train our base model with
different likelihoods on these datasets in an unsupervised
fashion. We cluster the final latent representation of the
samples using k-means (with the true number of distribu-
tions), and compare the cluster labels to the ground-truth.
We use the adjusted Rand index (ARI) as the clustering
metric (Santos & Embrechts, 2009), taking the best result
over ten random centroid initializations.

Representative results for this experiment are again shown
in Table 3. Our method outperforms all other likelihoods
in its ability to learn a latent space that is able to differenti-
ate between underlying distributions. In particular, it is the
only examined method able to distinguish between count
distributions with similar probability distributions over fea-

tures. These results are consistent across a wide variety of
simulated datasets (Appendix D).

4.3. Application to Reading Passage Complexity

In the field of NLP, it is valuable to be able to measure the
linguistic complexity of a text. For example, quantifying
the readability of text passages is essential in the education
context, as it allows texts to be correctly matched to students
at the appropriate level of reading skill (Sarti et al., 2021).
We hypothesize that any short text passage can be thought
of as a bag-of-words (BoW) that is sampled from a larger
latent BoW, and that the size and complexity of this under-
lying BoW provides a better measure of the readability of a
passage than the passage itself. That is, a text passage that is
generated from a richer underlying vocabulary will demand
a higher level of reading comprehension from its reader.

We test this hypothesis using the CommonLit Ease of
Readability (CLEAR) Corpus (Crossley et al., 2023), an
open-source dataset consisting of almost 5000 text excerpts
sourced from Grade 3-12 reading curricula. Numerous met-
rics have been proposed to estimate the complexity of read-
ing passages, and each excerpt has been annotated with a
number of well-established readability indices, including
those can be automatically calculated by ARTE, the Au-
tomatic Readability Tools for English (Choi & Crossley,
2022). Additionally, each passage has a Bradley-Terry read-
ing ease score (Bradley & Terry, 1952) derived from the
qualitative assessment by teachers of the relative reading
difficulty between pairs of passages.

This scenario presents an ideal application of our proposed
hypergeometric method, which can capture both the depen-
dence between the choice of words (the selection of one
word comes at the cost of its synonyms, and to the benefit
of words from the same topic) and the vocabulary size as
measured in token counts. Additionally, since there is no
clear classification of the texts, a continuous latent variable
model is well suited. We create a bag-of-words represen-
tation by tokenizing the 4724 text excerpts in the CLEAR
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(a) Total number of tokens (ttotal)

(b) Unique number of tokens (tunique)

Figure 4. Comparison of association strength between reading
passage complexity metrics and total/unique tokens in the orig-
inal/latent bag-of-words. Readability indices are BT easiness
(BT), Flesch-Reading-Ease (FRE), Flesch-Kincaid-Grade-Level
(FKGL), Automated Readability Index (ARI), SMOG Readability
(SMOG), New Dale-Chall Readability Formula (DCR), CAREC,
CAREC-M, and CML2RI.

Corpus, producing a count matrix over the resulting tokens
(Appendix C for details). We then train our unsupervised
model on this BoW representation of the excerpts, which
enables us to infer a latent BoW that underlies each pas-
sage. We use this estimate as a proxy for passage readability
using both the total estimated number of tokens ttotal and
the number of unique tokens tunique (tokens with non-zero
count) in each passage’s latent BoW. We then calculate the
Pearson correlation across the 4724 passages between each
of our proposed metrics (ttotal and tunique) and the read-
ability indices provided in the CLEAR dataset, in order to
assess the association strength.

Figure 4 shows the correlations between established read-
ability indices and our proposed complexity metrics. In
Figure 4a, we see that initially the there is a near-zero as-
sociation between the total number of tokens in the BoW
representation of the passages and the readability indices
before applying our model. This demonstrates that more
complex excerpts do not have a larger token count in their
raw form, and hence this is not a good naive metric for read-

ability. However, our model’s estimate for the size of the
latent BoW exhibits a strong association with all of the read-
ing complexity metrics. Therefore, our model successfully
infers that a larger latent BoW underlies the more com-
plex reading passages. Note that for metrics BT, FRE and
CML2RI, a higher value indicates a less complex passage,
hence the negative correlations.

Similarly, Figure 4b shows that the vocabulary size of the
latent BoW (the number of unique non-zero tokens for a pas-
sage) inferred by our model also aligns with the complexity
of the passage much better than if we used the original text’s
vocabulary. These results demonstrate that our method is
able to infer a latent vocabulary underlying each reading pas-
sage that convincingly reflects the independently-assessed
readability of the text.

4.4. Application to Single-Cell Genomics

The detailed measurement of the contents of individual cells
promises to vastly improve our understanding of funda-
mental biology. In recent years, the advancement of high-
throughput techniques in the field of single-cell genomics
has enabled the collection of large numbers of gene tran-
scripts from individual cells, resulting in vast count matrices.
Each cell has a finite population of transcripts that can be
captured - on the order of one hundred thousand to a mil-
lion - and a transcript can only be captured once prior to
sequencing (De Simone et al., 2019). It is accepted that the
main source of technical noise in this data is due to under-
sampling (Kuo et al., 2023), leading to the well-known
phenomenon of dropout (inflated occurrence of zeros in the
final count matrix). This technical noise hinders scientists’
ability to draw meaningful scientific conclusions from these
experiments.

The hypergeometric distribution is well-suited to modelling
this capture process, as the number of captured gene tran-
scripts in an experiment is significant relative to the total
population size, and capture occurs without replacement,
leading to dependence between gene feature counts. The
high-dimensional distribution of gene transcript counts can
be effectively represented by latent variable models (Lopez
et al., 2018; Zhao et al., 2021), as individual genes are
often members of co-expression networks which result in
highly correlated counts. We therefore use our method, with
genes as categories, in order to infer the true gene transcripts
counts in each cell from the sparse, under-sampled count
data.

Because there is typically no way of knowing the true num-
ber of transcripts of each gene in a given cell, we focus on
what is known as a spike-in experiment, which does provide
a ground-truth. In the experiment we consider (Ziegen-
hain et al., 2022), a known concentration of a solution of
synthetic RNA is placed in small wells, and human cells

7



Estimating Unknown Population Sizes Using the Hypergeometric Distribution

are individually placed in a subset of these wells. After
the transcripts present in the wells have been captured and
sequenced, we obtain experimental counts corresponding
to both the human RNA (for which the true amount is un-
known) and the synthetic RNA (true amount is known). The
wells that did not have cells in them should have an equal
amount of the synthetic RNA across measurements, so we
can therefore use the measured counts of synthetic RNA
in both empty and cell-containing wells as a ground-truth
reference to evaluate our estimated human gene transcript
counts.

Dataset: The SPIKE dataset consists of counts for 43k genes
(categories) across 1126 observations (cells). Of these, 181
observations contain a mixture of synthetic RNA and human
kidney cells (labelled “HEK293T”), and the remainder 945
contain only the synthetic RNA (labelled “empty”).

Figure 5 compares the distribution of measured counts in
this dataset for one specific synthetic RNA (#12) for the
empty and HEK293T measurements. This difference be-
tween these distributions exemplifies the stochastic under-
sampling that occurs, as the true counts should be identical
across all observations - approximately 4000 for this par-
ticular spike-in RNA. It is also clear that the presence of
the additional human RNA in the HEK293T observations
significantly lowers the amount of synthetic RNA that is
captured, which supports the assumption that there is de-
pendence between counts, i.e. a transcript is captured at the
cost of another.

Figure 5. Measured counts for synthetic spike-in RNA #12 with
and without human cells present. Red dashed line is ground-truth
count (ideally all measurements would be equal).

We train our hypergeometric model on the SPIKE dataset
to infer the ground-truth count distribution. We use the top
K = 10, 000 genes (categories) by mean transcript count,
for computational efficiency and because many genes are
not expressed in this celltype. Model and training hyperpa-
rameters are given in Appendix B. Summary results of the
final estimated count matrix are shown in Figure 6.

(a) Total counts

(b) Spike-in #12 counts

Figure 6. Histograms of the number of transcript counts when only
synthetic RNA is present (top) and when both synthetic RNA and
human RNA (from kidney cells) are present (bottom). The original
(measured) distribution is in grey, and the red dashed line shows
the ground-truth amount of synthetic RNA #12.

Figure 6a shows the inferred total number of counts per mea-
surement well (the sum of the estimated count matrix rows).
We can see that the variance of the total number of spike-in
RNA, which is known to be constant, is significantly re-
duced in our estimate. The experiment’s authors estimated
the total amount of synthetic RNA per observation as ap-
proximately 30,000, which aligns with our model estimate.
The unknown total amount of RNA in the human kidney
cells is estimated by our model to have a median of 260,000,
in line with a previous estimate of 200,000 (Shapiro et al.,
2013). Note that the number of observations available in this
dataset is very small compared to typical single-cell datasets
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(without ground-truth), and this estimate is expected to be
even more accurate and have a lower variance with a larger
number of observed cells. Figure 6b shows the estimated
counts specifically for spike-in #12, whose ground-truth
value is approximately 4000. We can see that although the
initial distribution of counts for this synthetic RNA has a
significantly different mean in the empty and cell-containing
observations, our model produces an estimate near the true
value, and brings both distributions into alignment (this is
also true in the other spike-in RNA). These results show that
we are able to recover the known ground-truth distribution
of synthetic RNA that has been corrupted by the stochastic
capture process.

5. Conclusion
We propose a method for estimating the unknown popula-
tion sizes for a mixture of discrete distributions of elements
using the hypergeometric likelihood. Through empirical
data simulation we show for the first time that inference of
the true population size is tractable over a range of max-
imum sample fractions, and that our method outperforms
other common distributional assumptions used for count
data. We address the real-world problems of estimating
reading passage complexity and reversing gene transcript
count sparsity, and show that our method is able to recover
the true number of transcripts in a cell. Due to the preva-
lence of finitely sampled discrete populations in biology and
other matrix completion settings, we expect this method can
be successfully used in many other application domains.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, in particular through its applications
to genomics experimental data.
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Eggenberger, F. and Pólya, G. Über die Statistik verketteter
Vorgänge. ZAMM - Zeitschrift für Angewandte Mathe-
matik und Mechanik, 3(4), 1923.

Faggioli, G., Polato, M., and Aiolli, F. Recency aware
collaborative filtering for next basket recommendation.
In Proceedings of the 28th ACM Conference on User
Modeling, Adaptation and Personalization, pp. 80–87,
2020.

Feuerverger, A., He, Y., and Khatri, S. Statistical signifi-
cance of the netflix challenge. 2012.

Goldberg, Y. Neural network methods for natural language
processing. Springer Nature, 2022.

Grønbech, C. H., Vording, M. F., Timshel, P. N., Sønderby,
C. K., Pers, T. H., and Winther, O. scvae: variational
auto-encoders for single-cell gene expression data. Bioin-
formatics, 36(16):4415–4422, 2020.

Holmes, S. H. and Huber, W. Modern statistics for modern
biology. Cambridge university press, 2018.

Inouye, D. I., Yang, E., Allen, G. I., and Ravikumar, P. A
review of multivariate distributions for count data derived
from the poisson distribution. Wiley Interdisciplinary
Reviews: Computational Statistics, 9(3):e1398, 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint, 2014.

Kuo, A., Hansen, K. D., and Hicks, S. C. Quantification
and statistical modeling of droplet-based single-nucleus
RNA-sequencing data. Biostatistics, May 2023.

9



Estimating Unknown Population Sizes Using the Hypergeometric Distribution

Lambert, D. Zero-inflated poisson regression, with an appli-
cation to defects in manufacturing. Technometrics, 34(1):
1–14, 1992.

Liang, D., Krishnan, R. G., Hoffman, M. D., and Jebara,
T. Variational autoencoders for collaborative filtering. In
Proceedings of the 2018 World Wide Web Conference, pp.
689–698, 2018.

Lim, K.-L., Jiang, X., and Yi, C. Deep clustering with
variational autoencoder. IEEE Signal Processing Letters,
27:231–235, 2020.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef,
N. Deep generative modeling for single-cell transcrip-
tomics. Nature Methods, 15(12), December 2018.

Moivre, A. De mensura sortis, seu, de probabilitate even-
tuum in ludis a casu fortuito pendentibus. 1711.

Morton, J. T., Aksenov, A. A., Nothias, L. F., Foulds, J. R.,
Quinn, R. A., Badri, M. H., Swenson, T. L., Van Goethem,
M. W., Northen, T. R., Vazquez-Baeza, Y., et al. Learn-
ing representations of microbe–metabolite interactions.
Nature methods, 16(12):1306–1314, 2019a.

Morton, J. T., Marotz, C., Washburne, A., Silverman, J.,
Zaramela, L. S., Edlund, A., Zengler, K., and Knight, R.
Establishing microbial composition measurement stan-
dards with reference frames. Nature communications, 10
(1):2719, 2019b.

Oberhofer, W. and Kaufmann, H. Maximum Likelihood
Estimation of a Multivariate Hypergeometric Distribution.
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A. Data Simulation

Algorithm 1 Dataset simulation

Input: # distributions M , # categories K, # trials (observations/distribution) T , true total counts per distribution N ,
sample depths fmin,fmax
for each distribution m ∈M do

Draw distribution p over K categories (p ∼ Dirichlet)
Ground-truth count distribution P = p ∗N (round to nearest integer)
for T observations do

Draw sample depth n from Uniform(fmin ∗N , fmax ∗N )
Draw n samples from ground-truth count distribution P without replacement

end for
end for

B. Training Hyperparameters

Table 2. Model hyperparameters
Parameter Simulated CLEAR SPIKE

Encoder layers 128, 128 128, 128 128, 128
Decoder layers 128, 128 128, 128 256, 256
Latent space dimension 10 10 16
Learning rate 0.01 0.001 0.01
Batch size 100 100 563
Violation penalty (min/max) 1 1 1/100

C. CLEAR Reading Passage Complexity Implementation Details
We download v6.01 of the CLEAR dataset, which contain 4724 excerpts from books and other documents. We tokenize all
passages using the scikit-learn function CountVectorizer(strip accents=’unicode’), resulting in a sparse array X of counts
for 34,015 tokens across the passages corpus. We use this as input to our model, training until convergence, and obtain the
in-sample inferred vocabulary counts X̂ . We calculate the total number of tokens ttotal as the row-sum of X or X̂ , and the
unique tokens tunique as the row-sum of the binarized arrays.
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D. Additional Results

Table 3. Representative results comparing the hypergeometric (HG), multinomial (MN) and Poisson (P) likelihood estimates on simulated
datasets (additional results in Appendix D). Ground-truth distributions are uniformly under-sampled by 20− 60%. Metrics are adjusted
Rand index (ARI), median percentage error (MPE), and mean absolute error (MAE), averaged over 5 simulation random seeds.

ARI MPE MAE
HG (OURS) MN P HG (OURS) P HG (OURS) P

3 DISTRIBUTIONS (2 UNIQUE), 103 CATEGORIES,
103 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

0.45
±0.01

0.45
±0.15

2.8
±0.3%

26.1
±0.1%

416
±49

3471
±2

3 DISTRIBUTIONS (2 UNIQUE), 104 CATEGORIES,
104 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

0.45
±0.01

0.50
±0.01

3.9
±0.9%

23.3
±0.8%

573
±152

3744
±23

10 DISTRIBUTIONS (9 UNIQUE), 103 CATEGORIES,
105 OBS/DISTRIBUTION, 105 GROUND-TRUTH TOTAL

0.99
±0.01

0.89
±0.01

0.87
±0.01

1.6
±0.1%

6.5
±0.1%

225
±6

7309
±43

10 DISTRIBUTIONS, 101 CATEGORIES,
103 OBS/DISTRIBUTION, 103 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.978
±0.023

2.5
±0.2%

64
±1%

27
±3

6.2
±0.1

100 DISTRIBUTIONS, 103 CATEGORIES,
104 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

0.97
±0.01

0.10
±0.04

0.98
±0.01

0.8
±0.1%

0.7
±0.1%

99
±11

65
±1

3 DISTRIBUTIONS (2 UNIQUE), 103 CATEGORIES,
103 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

0.89
±0.18

0.50
±0.01

0.50
±0.01

6.6
±1.2%

23.0
±0.2%

1438
±101

3772
±17

10 DISTRIBUTIONS, 103 CATEGORIES,
103 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.72
±0.11

4.8
±1.2%

10.3
±0.1%

485
±119

943
±13

10 DISTRIBUTIONS, 103 CATEGORIES,
103 OBS/DISTRIBUTION, 105 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.51
±0.11

9.0
±5.5%

10.3
±0.1%

8767
±5331

9538
±86

10 DISTRIBUTIONS, 10 CATEGORIES,
105 OBS/DISTRIBUTION, 103 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.78
±0.01

5.2
±1.5%

6.3
±0.1%

52
±15

63
±1

10 DISTRIBUTIONS, 100 CATEGORIES,
104 OBS/DISTRIBUTION, 104 GROUND-TRUTH TOTAL

1.00
±0.01

1.00
±0.01

0.89
±0.01

4.8
±0.1%

6.3
±0.1%

481
±12

633
±1

10 DISTRIBUTIONS (9 UNIQUE), 10 CATEGORIES,
104 OBS/DISTRIBUTION, 103 GROUND-TRUTH TOTAL

0.89
±0.01

0.89
±0.01

0.89
±0.01

3.5
±0.1%

6.5
±0.1%

48
±12

73
±1

E. Additional Figures

Figure 7. Maximum likelihood estimate Manhattan error for different numbers of observations at different max sample fractions (N = 100).
50% confidence interval over 50 random seeds. K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)
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Figure 8. Maximum likelihood estimate Manhattan error per training epoch for different numbers of trials (N = 100, max sample
fraction 0.4). The apparent increase in error following an initial decrease occurs because we measure absolute error, and this behavior
corresponds to the estimate approaching and overshooting the true value. 50% confidence interval over 20 random seeds. K=3, N = 100
(N1 = 50, N2 = 30, N3 = 20)

Figure 9. Vertical binning of the estimated total counts per observation vs training epochs. Black lines are true total counts for the two
distributions. The final estimate recovers the ground-truth population sizes for both distributions. We emphasize that despite the model
not known the true number of distributions, and therefore not having access to the labels of the observations, it is correctly able to learn a
latent space that perfectly separates the two sets of samples. Note that both distributions are sampled to the same nmax, so this distinction
is not due simply to differences in total observed counts for each distribution
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(a) Total counts per observation.

(b) Counts for a subset of features (categories) for distribution 1 (left column) and 2 (right column).

Figure 10. Histograms comparing the observed (blue) and estimated (orange) counts to the ground-truth underlying distribution. Our
model estimate shifts the count distributions away from zero and close to ground-truth value (dashed line). For the two ground-truth
distributions with different N , the estimates are shifted away from the observed distribution and approach the true values. We see that the
variance of the estimate is higher when the under-sampling is more drastic (20% vs 60%). Figure 10b shows the original and estimated
count distributions for the top three categories by mean ground-truth count, again showing that the estimates approach the ground-truth
values.
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(a) K=2, N = 100 (N1 = 40, N2 = 60) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 11. Maximum likelihood estimate Manhattan error for different numbers of observations at different max sample fractions
(N = 100). 90% confidence interval over 50 random seeds.

(a) K=2, N = 100 (N1 = 30, N2 = 70) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 12. Maximum likelihood estimate Manhattan error per training epoch for different numbers of trials (N = 100, max sample
fraction 0.4). 90% confidence interval over 20 random seeds.

(a) fmax = 0.2 (b) fmax = 0.6 (c) fmax = 0.8

Figure 13. Maximum likelihood estimate Manhattan error per training epoch for different numbers of trials and different fmax (K =
3, N = 100, N1 = 50, N2 = 30, N3 = 20). 50% confidence interval over 20 random seeds.
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