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ABSTRACT

Performance degradation on tasks outside the fine-tuning domain is often observed
while performing parameter-efficient fine-tuning (PEFT) on neural networks with
limited data. For example, fine-tuning on mathematical datasets may impair the
large language model’s coding ability. We analyze this issue and identify the con-
dition number of weight matrices as a key factor contributing to such degradation.
To address this, we propose Singular Values and Orthonormal Regularized Singu-
lar Vectors Adaptation, or SORSA, a novel PEFT method that explicitly improves
the conditioning of the adapted model parameters, thereby mitigating degradation
and preserving broader capabilities. Empirically, we demonstrate that SORSA
outperforms full fine-tuning, LoRA, PiSSA and AdaLoRA.

1 INTRODUCTION

Pre-trained large language models (LLMs) demonstrate strong generalization capabilities, enabling
them to perform a wide range of natural language processing (NLP) tasks (Brown et al., 2020;
Achiam et al., 2023; Touvron et al., 2023; Peng et al., 2024; Grattafiori et al., 2024). For adapting
LLMs to specific downstream tasks, the default approach is often full parameter fine-tuning (Full
FT), which updates all model parameters.

However, as LLMs continue to grow in scale, Full FT becomes increasingly impractical due to high
computational and memory demands. To alleviate this, Parameter-Efficient Fine-Tuning (PEFT)
methods have gained popularity, offering a cost-effective alternative by only updating a small subset
of parameters.

Among PEFT approaches, LoRA (Hu et al., 2022) has emerged as a preferred choice due to its sim-
plicity, efficiency, and minimal impact on inference-time latency. LoRA injects low-rank trainable
matrices into the model, enabling effective fine-tuning with significantly reduced resource require-
ments.

Despite its efficiency, LoRA and similar PEFT methods face a major challenge under low-data
regimes: they tend to overfit and degrade the model’s original generalization ability, and even cause
catastrophic forgetting (Xu et al., 2021a; Lin et al., 2024; Shuttleworth et al., 2024; van de Ven
et al., 2024). For instance, fine-tuning on a small mathematical dataset may cause the model to
forget previously acquired capabilities such as code generation or commonsense reasoning.

Previous works (Sinha et al., 2018; Saratchandran et al., 2024; Feng et al., 2025) have shown that
neural networks with well-conditioned weight is able to provide a more robust performance. We
further analyze this phenomenon in the context of PEFT, and identify the condition number of weight
matrices as a critical factor affecting generalization during fine-tuning. Our study shows that LoRA
often amplifies the condition number, making the adapted model increasingly ill-conditioned and
unstable.

To address this, we propose a new PEFT method that explicitly improves the conditioning of
the model during training. Our approach introduces orthonormal regularization to maintain well-
conditioned weights, thereby preserving the model’s generalization while enabling efficient adap-
tation. Empirical results show that our method significantly mitigates overfitting and outperforms
existing baselines across various tasks.

We summarize our main contributions as follows:
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Figure 1: Illustration of SORSA.

• We demonstrate that during PEFT, well-conditioned weights tend to have better general-
ization.

• We propose SORSA, a novel parameter-efficient fine-tuning (PEFT) method that combines
low-rank SVD-based initialization with orthonormal regularization.

• We provide the convergence rate of SORSA with gradient descent. (Theorem 5.4)

• We provide theoretical analysis showing that the orthonormal regularizer leads to better-
conditioned weight updates. (Theorem 5.6)

• We empirically demonstrate that SORSA consistently outperforms or matches the perfor-
mance of strong baselines, including full fine-tuning, LoRA, PiSSA, and AdaLoRA.

Roadmap. In Section 2, we present related work. In Section 3, we introduce the preliminary for
our work. In Section 4, we propose our PEFT method. In Section 5, we provide theoretical analysis
for SORSA. In Section 6, we conduct extensive experiments to validate SORSA’s capability. In
Section 7, we provide discussion and conclude the paper.

2 RELATED WORK

Efficient Computation in Machine Learning. As the increasing scale of training data and model
parameters, developing efficient machine learning algorithms have become central focus of recent
AI research. In visual recognition, the acceleration of CNN (O’shea & Nash, 2015; He et al., 2016)
and ViT (Dosovitskiy et al., 2020) have long been a heated topic, especially for edge devices that
have limited computation resources. Representative acceleration techniques including architectural
simplification (Sandler et al., 2018; Ding et al., 2021), quantization (Wu et al., 2016; Liu et al., 2021),
and pruning (Yu et al., 2022). These techniques have significantly advance in real world applications,
e.g. autonomous driving (Jiang et al., 2023b), medical image segmentation (Han et al., 2022), re-
mote sensing (Xu et al., 2021b), emotion recognition (Zhang et al., 2021; Zhao et al., 2021; Liu et al.,
2022a), and industrial automation. In content creation, diffusion models (Ho et al., 2020; Rombach
et al., 2022) and flow matching models (Lipman et al., 2022; Liu et al., 2022c) are high-fidelity visual
content generators. Acceleration in this area focuses on model architecture design (Dao et al., 2023;
Frans et al., 2024; Chen et al., 2025; Cao et al., 2025a), fast ODE sampler (Xue et al., 2024b), com-
plexity analysis (Gupta et al., 2024; Ke et al., 2025), distillation (Meng et al., 2023). These works
have inspired many future applications, e.g. education, drug discovery (Wen et al., 2024), face syn-
thesis (Liu et al., 2022b), and advertising (Liu et al., 2024a), and directions, e.g. benchmarks (Cao
et al., 2025b; Guo et al., 2025a;b;c) and theoretical explorations (Hu et al., 2024). Graph Neural
Networks are fundamental tools to model complex relational data (Veličković et al., 2018; Xu et al.,
2019; Li et al., 2025), where important acceleration techniques include sparsification (Morris et al.,
2020; Liu et al., 2023), GNN to MLP distillation (Zhang et al., 2022a; Han et al., 2023), and lazy
computation (Narayanan et al., 2022; Zhang et al., 2024; Xue et al., 2024a). These techniques has
inspired applications including but not limited to spatio-temporal data mining (Zhang et al., 2022b;
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Wang et al., 2022), fake news detection (Xu et al., 2022; Chang et al., 2024), human skeleton-based
visual recognition (Li et al., 2021; Fu et al., 2021), while also inspired aspects of graph neural net-
works including mitigating sensitive data influence (Chien et al., 2023; Zhang, 2024; Yi & Wei,
2025), and robustness (Geisler et al., 2021; Deng et al., 2022).

PEFT Methods. PEFT methods have been proposed to alleviate the inefficiency of full-parameter
fine-tuning for large language models. These methods update only a small subset of parameters,
often keeping the majority of the pre-trained model frozen, which significantly reduces memory and
computational costs during training.

Adapter-based approaches were among the earliest PEFT methods, introduced by (Houlsby et al.,
2019), where small trainable modules are inserted between frozen layers. Subsequent works such
as (Lin et al., 2020) and (He et al., 2021) explored more compact or parallelized adapter designs.
However, all adapter-based methods generally incur additional inference-time latency, since the
inserted modules are not mergeable with the original model weights.

LoRA (Hu et al., 2022) gained popularity for introducing low-rank trainable matrices added to the
pre-trained weight matrices. This approach avoids inference latency while offering competitive per-
formance. Variants of LoRA expand upon this idea: AdaLoRA (Zhang et al., 2023) improves param-
eter efficiency by incorporating dynamic rank selection via singular value decomposition and prun-
ing. DoRA (Liu et al., 2024b) decouples the direction and magnitude of weight updates, achieving
higher expressiveness at the cost of higher training-time computation. OLoRA (Büyükakyüz, 2024)
uses orthogonal initialization via QR decomposition to improve convergence speed. PiSSA (Meng
et al., 2024) decomposes the pre-trained weight matrix and isolates a residual component, which
remains frozen during training to improve convergence and stability.

Prompt-based PEFT methods, such as prefix-tuning (Lester et al., 2021), prepend learnable tokens
to the model input. Although these methods are simple to implement, they often lead to longer input
sequences and require careful prompt engineering. Other recent advances include GaLore (Zhao
et al., 2024), which reduces memory usage through low-rank gradient accumulation, and LISA (Pan
et al., 2024), which selectively fine-tunes critical layers using layer-wise importance sampling.

Condition Numbers in Neural Networks

3 PRELIMINARY

In this section, we first introduce our notations, then provide preliminary for our work.

3.1 NOTATIONS

We used R to denote set of real numbers. We use A ∈ Rn×d to denote an n × d size matrix where
each entry is a real number. We use Id to denote the d × d identity matrix. We use A⊤ to denote
the transpose of a matrix A. We use A1/2 to denote element-wise square root of the matrix A,
i.e. (A1/2)i,j = (Ai,j)

1/2. We use ∥A∥F to denote Frobenius norm of matrix A. We use ∥A∥ to
denote spectral norm of matrix A. We use A ⪯ B to denote the positive semidefinite order, i.e. for
symmetric A,B ∈ Rd×d, A ⪯ B ⇐⇒ B −A ⪰ 0.

3.2 PEFT METHODS

LoRA LoRA (Hu et al., 2022) represents the weight as a low-rank decomposition:

W = W0 +BA,

where W0 ∈ Rm×n is the frozen pre-trained weight, A ∈ Rm×r is Gaussian-initialized, and B ∈
Rr×n is initialized with zeros.

AdaLoRA. AdaLoRA (Zhang et al., 2023) introduces dynamic rank adaptation via SVD, and
prunes less significant singular values to reduce parameter overhead.
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DoRA. DoRA (Liu et al., 2024b) reformulates the weight update as a normalized decomposition:

W = m · W0 +BA

∥W0 +BA∥c
,

where m = ∥W0 + BA∥c is the column-wise norm. This improves model capacity but increases
computational cost per step.

OLoRA. OLoRA (Büyükakyüz, 2024) initializes A and B using QR decomposition, ensuring
orthonormality in the initial adapter weights, which empirically speeds up convergence.

PiSSA. PiSSA (Meng et al., 2024) decomposes W0 via SVD as W0 = UΣV ⊤ and splits it into:

Wpri = AB, where A = UpS
1/2
p , B = S1/2

p V ⊤
p ,

with Up, Sp, Vp being the top-r components. The residual Wres = UrSrV
⊤
r remains frozen during

training. This results in faster convergence and improved model fit.

3.3 CONDITION NUMBER

We here provide a formal definition for the condition number.
Definition 3.1 (Condition Number). Let A ∈ Rm×n be a matrix with full column rank. The condi-
tion number of A with respect to the spectral norm is defined as

κ(A) :=
σmax(A)

σmin(A)
= ∥A∥ · ∥A−1∥,

where σmax(A) and σmin(A) are the largest and smallest nonzero singular values of A.

4 OUR METHOD

Giving a matrix W ∈ Rm×n, with m ≥ n (without loss of generality), we could perform SVD to
decompose W by W = U diag(S)V ⊤. Here, U ∈ Rm×k is a matrix of left singular vectors and has
orthonormal columns, V ∈ Rn×k is a matrix of right singular vectors and has orthonormal columns,
and S ∈ Rk are singular values σ1, σ2 . . . σk arranged in descending order. diag(S) is constructed
by placing the elements of S ∈ Rk along the main diagonal, with all other elements zero.

According to our SVD notations, given a rank r where r ≪ k, we could perform the low-rank
approximation by selecting the first r items on the diagonal of Σ, which is the first r most significant
singular values, and also select the first r columns of U and first r rows of V ⊤, which correspond
to the selected singular values. By performing SVD low-rank approximation, we could get a low-
rank matrix that preserves the largest significant values and vectors, containing the matrix’s “most
essential” data.

We use Σp ∈ Rn×n to denote a diagonal matrix where first r entries are non-zero and all the
remaining n− r entries. Similarly, we use Σr ∈ Rn×n to denote a diagonal matrix where first n− r
entries are non-zero and all the remaining r entries are zeros. Let Σ = Σp +Σr. Let SVD of W be
W = UΣV ⊤.

Therefore, for a pre-trained weight W0 ∈ Rm×n, we could split it based on its singular value into
principal weight Wp and residual weight Wr,

Wp := U︸︷︷︸
m×n

Σp︸︷︷︸
n×n

V ⊤︸︷︷︸
n×n

∈ Rm×n, Wr := U︸︷︷︸
m×n

Σr︸︷︷︸
n×n

V ⊤︸︷︷︸
n×n

∈ Rm×n.

Here, U represents the matrix of left singular vectors, S represents the singular values, diag(W )
denotes a function to form a diagonal matrix from W , and V represents the matrix of right singular
vectors. Since Σp is zeroed out in the last n − r entries, and Σr is zeroed out in the first r entries,
we can easily find low-rank equivalents of Wp and Wr. Specifically,

Wp = Up︸︷︷︸
m×r

Sp︸︷︷︸
r×r

V ⊤
p︸︷︷︸

r×n

, Wr = Ur︸︷︷︸
m×(n−r)

Sr︸︷︷︸
(n−r)×(n−r)

V ⊤
r︸︷︷︸

(n−r)×n

,
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where Up is the first r columns of U , Sp is the first r columns and rows of Σp, Vp is the first r
columns of V , Ur is the last n− r columns of U , Sr is the last n− r columns and rows of Σr, Vr is
the last n− r column of V .

The initialization of Wr in SORSA is same as PiSSA (Meng et al., 2024). Nevertheless, unlike
PiSSA which merge Sp with Up and V ⊤

p into A and B by A = UpS
1/2
p and B = S

1/2
p V ⊤

p , SORSA
remains Up, Sp, and V ⊤

p in separate weight. SORSA is defined by Eq. (1), initially equivalent to the
pre-trained weight W0. During training, Wr remains frozen, and only Up, Sp, and V ⊤

p are updated.

SORSA is defined as:
SORSA(x) := x(Wr +Wp) = xWr + xUp diag(Sp)V

⊤
p . (1)

We adopt an orthonormal regularizer for Up and Vp.
Definition 4.1 (Orthonormal regularizer). The orthonormal regularizer is defined as

Lreg(Up, Vp) := ∥U⊤
p Up − Im∥2F + ∥V ⊤

p Vp − In∥2F .

The regularizer could enhance their orthonormality during training. We discuss and verify its im-
portance and effectiveness in 5.

Therefore, parameter updating of Wp in a SORSA adapter at training step t could be expressed as:
Wp,t+1 =Wp,t − ηt∇Wp,t

Ltrain − γt∇Wp,t
Lreg. (2)

At training step t, ∇Wp,t
Ltrain denotes the gradient of Ltrain respect to Wp,t, and ∇Wp,t

Lreg denotes
the gradient of the orthonormal regularizer loss Lreg respect to Wp,t. ηt and γt are the learning rates
for training loss and regularizer loss at step t, respectively.

We update the SORSA as the following for implementation simplicity

Wp,t+1 =Wp,t − ηt

(
∇Wp,tLtrain +

γ

ηd
∇Wp,t

Lreg

)
, (3)

ηd is the maximum learning rate from the scheduler. This implementation allows us to use only one
optimizer and scheduler to deal with two different learning rates separately.

5 THEORETICAL ANALYSIS

5.1 CONVERGENCE RATE

We begin by analyzing the convergence behavior of gradient descent when applied to our objective
function, which consists of a data-fitting loss Ltrain and our orthonormal regularizer Lreg.
Lemma 5.1 (Lipschitz continuity of Lreg). Suppose ∥Up∥F ≤ MU and ∥Vp∥F ≤ MV . Then Lreg

is Lipschitz continuous in the Frobenius norm:
|Lreg(U

1
p , V

1
p )− Lreg(U

2
p , V

2
p )| ≤ Lreg(∥U1

p − U2
p∥F + ∥V 1

p − V 2
p ∥F ),

where
Lreg = 4MU (M

2
U + 1) + 4MV (M

2
V + 1).

Proof. Compute the partial gradients

∇Up
Lreg = 4Up(U

⊤
p Up − Im),

∇Vp
Lreg = 4Vp(V

⊤
p Vp − In).

Hence
∥∇Lreg∥F ≤ 4∥Up∥∥U⊤

p Up − Im∥F + 4∥Vp∥∥V ⊤
p Vp − In∥F

≤ 4MU (M
2
U + 1) + 4MV (M

2
V + 1).

By the mean value theorem for vector functions,
|Lreg(X)− Lreg(Y )| ≤ max

Z
∥∇Lreg(Z)∥F ∥X − Y ∥F ,

and the claimed bound follows.

5
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We now make two standard assumptions to ensure well-behaved optimization.
Assumption 5.2 (Smoothness and strong convexity of Ltrain). The data term Ltrain(Wp) is twice
differentiable, µtrain-strongly convex and Ltrain-smooth:

µtrainI ⪯ ∇2Ltrain(W ) ⪯ LtrainI for all Wp.

Assumption 5.3 (Hessian lower bound for Lreg). There is a constant Creg ≥ 0 such that

∇2Lreg(W ) ⪰ −CregI for all W = (Up, Vp).

The next theorem establishes that, under these assumptions, SORSA converges linearly.
Theorem 5.4 (Linear convergence of SORSA). Let

F (Wp) = Ltrain(Wp) + γLreg(Wp),

and suppose Assumptions 5.2 and 5.3 hold. If

0 < γ <
µtrain

Creg
, η ∈ (0,

2

Ltrain + γLreg
),

then gradient descent

W t+1
p = W t

p − η∇F (W t
p)

satisfies

F (W t
p)− F (W ∗

p ) ≤ (1− η(µtrain − γCreg))
t(F (W 0

p )− F (W ∗
p )).

In particular, setting η = 1/(Ltrain + γLreg) gives

F (W t
p)− F (W ∗

p ) ≤ (1− µtrain − γCreg

Ltrain + γLreg
)t(F (W 0

p )− F (W ∗
p )).

Proof. By Assumption 5.2, ∇2Ltrain ≥ µtrainI and by Assumption 5.3, ∇2(γLreg) ≥ −γCregI .
Hence,

∇2F = ∇2Ltrain + γ∇2Lreg ≥ (µtrain − γCreg)I,

and also ∇2F ≤ (Ltrain + γLreg)I . The claimed rate follows from standard gradient descent
guarantees.

5.2 CONDITION NUMBER

We now analyze how the regularizer in SORSA helps maintain a smaller condition number for
the weight matrix. A well-conditioned weight matrix is essential for stable optimization and good
generalization.

We begin with a lemma that shows the singular values of the regularized weight matrix stay close to
those of the unregularized one, provided the regularizer gradient is small.
Lemma 5.5. Let

W unreg,t
p = Uunreg,t

p Sunreg,t
p (V unreg,t

p )⊤, W reg,t
p = U reg,t

p Sreg,t
p (V reg,t

p )⊤

be the outputs of one step of SORSA at step t with and without regularizer, respectively.

If ∥∇Wp
Lreg∥F ≤ ϵ∇, then for each singular value σi,

(1− ϵ)σunreg,t
i ≤ σreg,t

i ≤ (1 + ϵ)σunreg,t
i ,

where ϵ = γϵ∇.

Proof. We have

W reg
p −W unreg,t

p = γ∇WpLreg, ∥W reg
p −W unreg,t

p ∥F = γϵ∇.

By Weyl’s inequality,

|σreg,t
i − σunreg,t

i | ≤ ∥W reg,t
p −W unreg,t

p ∥ ≤ ∥W reg,t
p −W unreg,t

p ∥F ≤ γϵ∇.

The last inequality follows directly.

6
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We now prove our main theorem: the condition number of the regularized weight matrix is strictly
smaller than that of the unregularized one.
Theorem 5.6. Under the setup of Lemma 5.5, assume that ∇Ltrain is invariant for all t > 0. Let
the orthonormal regularizer be defined in Definition 4.1 Then for every iteration t > 0,

κ(W reg,t
p ) < κ(W unreg,t

p ),

where κ is defined in Definition 3.1.

Proof. We divide the proof into four steps to illustrate how regularization improves conditioning.

Step 1. Factor-wise bounds. For any factorization W = USV ⊤ with diagonal S,

∥W∥ ≤ ∥U∥∥S∥∥V ∥, ∥W−1∥ ≤ ∥V ∥∥S−1∥∥U−1∥.

Hence,

κ(W ) ≤ κ(U)κ(S)κ(V ).

Step 2. Singular value perturbation. According to Lemma 5.5,

|σreg,t
i − σunreg,t

i | ≤ ϵt,

which implies

κ(Sreg,t
p ) ≤ 1 + ϵt

1− ϵt
κ(Sunreg,t

p ).

Step 3. Orthonormal regularizer bounds factor condition numbers. By definition of Lreg in
Definition 4.1, and ∇Ltrain is invariant for all t > 0,

κ(U reg,t
p ) < κ(Uunreg,t

p ), κ(V reg,t
p ) < κ(V unreg,t

p ).

Step 4: Combine bounds to compare condition numbers. By the above,

κ(W reg,t
p ) ≤ κ(U reg,t

p )κ(Sreg,t
p )κ(V reg,t

p )

≤ κ(U reg,t
p )κ(V reg,t

p )
1 + ϵt
1− ϵt

κ(Sunreg,t
p ),

and

κ(W unreg,t
p ) ≥ κ(Uunreg,t

p )κ(Sunreg,t
p )κ(V unreg,t

p ).

So,

κ(W reg,t
p )

κ(W unreg,t
p )

≤
κ(U reg,t

p )κ(V reg,t
p )

κ(Uunreg,t
p )κ(V unreg,t

p )
· 1 + ϵt
1− ϵt

< 1.

Thus, κ(W reg,t
p ) < κ(W unreg,t

p ), completing the proof.

6 EXPERIMENTS

We conducted comparative experiments on different NLP tasks, including natural language genera-
tion (NLG) between SORSA, PiSSA (Meng et al., 2024), LoRA (Hu et al., 2022), AdaLoRA (Zhang
et al., 2023), and full parameter fine-tuning.

We conducted NLG tests on Llama 2 7B (Touvron et al., 2023), RWKV6 7B (Peng et al., 2024),
Mistral 7B v0.1 (Jiang et al., 2023a) and Gemma 7B (Gemma Team, 2024). We trained the models
using the first 100K data in MetaMathQA (Yu et al., 2023) and evaluated the model on GSM-8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). We also trained the model on the first
100K data in CodeFeedback Filtered Instruction (Zheng et al., 2024) dataset and evaluated it on
HumanEval (Chen et al., 2021). The training process followed identical setups as the experiments
conducted in PiSSA (Meng et al., 2024). All reported values are accuracy in percentage. See

7
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Figure 2: The training loss and gradient norm comparison between SORSA, PiSSA, and LoRA on
MetaMathQA training of RWKV6 7B and Llama 2 7B. LoRA and PiSSA curves of Llama 2 7B are
from (Meng et al., 2024).

Table 1: Comparing SORSA with other methods on NLG tasks. † denotes results from (Meng et al.,
2024). We use TPara. to represent trainable parameters.

Model Method TPara. GSM-8K MATH HumanEval
Llama 2 7B Full FT 6738M 49.05† 7.22† 21.34†

Llama 2 7B LoRA 320M 42.30† 5.50† 18.29†

Llama 2 7B PiSSA 320M 53.07† 7.44† 21.95†

Llama 2 7B AdaLoRA 320M 47.30 6.48 19.51
Llama 2 7B SORSA 320M 56.03 10.36 24.39
RWKV6 7B LoRA 176M 8.041 7.38 15.24
RWKV6 7B PiSSA 176M 32.07 9.42 17.07
RWKV6 7B AdaLoRA 176M 33.28 8.08 15.85
RWKV6 7B SORSA 176M 45.87 11.32 22.56
Mistral 7B Full FT 7242M 67.02† 18.60† 45.12†

Mistral 7B LoRA 168M 67.70† 19.68† 43.90†

Mistral 7B PiSSA 168M 72.86† 21.54† 46.95†

Mistral 7B AdaLoRA 168M 72.25 21.06 45.73
Mistral 7B SORSA 168M 73.09 21.86 47.56
Gemma 7B Full FT 8538M 71.34† 22.74† 46.95†

Gemma 7B LoRA 200M 74.90† 31.28† 53.66†

Gemma 7B PiSSA 200M 77.94† 31.94 † 54.27†

Gemma 7B AdaLoRA 200M 78.99 31.44 55.49
Gemma 7B SORSA 200M 78.09 29.52 55.49

Section A for more details and hyperparameters of the training. We quoted some PiSSA, LoRA, and
full parameter fine-tuning results from (Meng et al., 2024). Some of our experiments were conducted
on a single NVIDIA A100-SXM4 (80GB) GPU, and others were conducted on a single NVIDIA
H100-SXM4 (80GB) GPU. See Table 1 for the results and Figure 2 for the loss and gradient norm
comparison.
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The results showed that across all models tested, SORSA generally outperformed other methods,
though with some notable exceptions. For mathematical evaluations on Llama 2 7B, SORSA scored
56.03% on GSM-8K and 10.36% on MATH, significantly outperforming other methods. For the
RWKV6 7B model, SORSA achieved 45.87% accuracy on GSM-8K and 11.32% on MATH, sur-
passing both PiSSA and AdaLoRA, with AdaLoRA showing competitive performance on GSM-8K
at 33.28%. On Mistral 7B, SORSA reached 73.09% on GSM-8K and 21.86% on MATH, showing
modest improvements over AdaLoRA’s strong performance of 72.25% and 21.06%, respectively.
With Gemma 7B, the results were mixed - while AdaLoRA achieved the highest GSM-8K score at
78.99% and competitive MATH performance at 31.44%, SORSA maintained strong performance
with 78.09% on GSM-8K. However, its MATH score of 29.52% was lower than other methods. In
coding evaluations, SORSA and AdaLoRA showed strong performance on HumanEval, with both
methods achieving 55.49% on Gemma 7B, while SORSA maintained an edge across other model
variants. Additionally, we did not include loss and gradient norm curves in our figure because the
regularizer in AdaLoRA and Gaussian initialization caused significantly higher initial loss values,
making direct comparisons with other methods inappropriate.

The Figure 2 reveals that SORSA and PiSSA exhibit nearly identical loss curves at the beginning
and even slightly higher than PiSSA on RWKV-6 training. However, when the training step is
approximately t > 300, SORSA steadily decreases its loss. In contrast, LoRA and PiSSA show a
deceleration in their loss reduction. The observations on loss curves are also valid for the changing
rate of gradient norm, where SORSA showed a more consistent decrease in gradient norm compared
to LoRA and PiSSA. This can be explained by Theorem 5.6, especially at later stages of training.

7 DISCUSSION AND CONCLUSION

In this paper, we introduced SORSA, a novel parameter-efficient fine-tuning (PEFT) method de-
signed to enhance the adaptation of large language models (LLMs) for downstream tasks. SORSA
utilizes singular value decomposition (SVD) to split pre-trained weights into principal and residual
components, only training the principal singular values and vectors while freezing the residuals. We
implemented an orthonormal regularizer to maintain the orthonormality of singular vectors during
training, ensuring efficient parameter updates and preserving the integrity of singular values.

Our experiments demonstrated that SORSA outperforms existing PEFT methods, such as LoRA
and PiSSA, in both convergence speed and accuracy on the NLG tasks. Specifically, Llama 2 7B,
tuned with SORSA, achieved significant improvements in the GSM-8K and MATH benchmarks,
highlighting the effectiveness of our approach.

We adopted singular values and vector analysis, comparing SORSA with FT and LoRA. SORSA
is superior in preserving the pre-trained weight’s singular values and vectors during training. This
suggests an explanation for SORSA’s supreme performance demonstrated in the experiment. We
also show the significance of the orthonormal regularizer through analysis.

Our theoretical analysis provided a mathematical foundation for SORSA, demonstrating its con-
vexity, Lipschitz continuity, and the crucial role of the regularizer in improving the optimization
landscape. This theoretical framework explains SORSA’s empirical superior performance and of-
fers valuable insights for future developments in adaptive learning algorithms.

SORSA retains the advantages of LoRA and variants, including low training VRAM requirements,
no inference latency, and versatility across different neural network architectures. By offering a
more efficient fine-tuning mechanism, SORSA presents a promising direction for future research
and application in the field of LLMs.

Overall, SORSA gives a new perspective on parameter-efficient fine-tuning, showcasing exceptional
efficiency and robust performance. It outperforms existing methods like LoRA and PiSSA in sev-
eral downstream tasks and maintains the practical benefits of low VRAM requirements, no inference
latency, and ease of implementation. This innovative approach offers a promising direction of sin-
gular values and vector analysis for future research and practical applications in adapting pre-trained
models, making it a pivotal development in the field.

1This significant under-perform due to LoRA failed to learn the GSM-8K required answer formatting be-
havior.
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Appendix
Roadmap. In the appendix, we present the experiments details in Section A.

A EXPERIMENTS DETAILS

For our NLG tasks, we adapted Llama 2 7B (Touvron et al., 2023), RWKV6 7B (Peng et al., 2024),
Mistral 7B v0.1 (Jiang et al., 2023a) Gemma 7B (Gemma Team, 2024) models by SORSA. For
GSM-8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) evaluations, we trained those
models with the first 100K data in MetaMathQA (Yu et al., 2023) dataset. For HumanEval (Chen
et al., 2021) evaluation, we use the first 100K data in CodeFeedback Filtered Instruction (Zheng
et al., 2024) dataset.

We used AdamW (Loshchilov & Hutter, 2017) optimizer and cosine annealing scheduler in training.
SORSA adapters were applied on all linear matrices in every layer. We only calculated the loss on
the response part. The models are loaded in FP32 and trained with TF32 & BF16 mix precision. In
our experiments, we selected a higher learning rate for SORSA than other methods to counterbalance
the negative effect of orthonormal regularizer on optimizing toward lower training loss. See Table 2
and 3 for hyperparameters.

Table 2: Hyperparameters for training with SORSA, LoRA and PiSSA on different models for
GSM-8K and MATH

Model Llama 2 7B RWKV6 7B RWKV6 7B Mistral 7B Gemma 7B
Method SORSA SORSA LoRA&PiSSA SORSA SORSA
Mix-Precision TF32+BF16 TF32+BF16 TF32+BF16 TF32+BF16 TF32+BF16
Epoch 1 1 1 1 1
Batch Size 128 128 128 128 128
Max Length 512 512 512 512 512
Weight Decay 0 0 0 0 0
Warm-up Ratio 0.03 0.03 0.03 0.03 0.03
Learning Rate 3e-5 3e-5 2e-5 3e-5 3e-5
Grad Clip 1.0 1.0 1.0 1.0 1.0
SORSA γ 4e-4 4e-4 N/A 4e-4 4e-4
Rank 128 64 64 64 64

Table 3: Hyperparameters for evaluation with SORSA, LoRA and PiSSA on different models for
GSM-8K and MATH. ML denotes Max Length.

Model Llama 2 7B RWKV6 7B RWKV6 7B Mistral 7B Gemma 7B
Method SORSA SORSA LoRA & PiSSA SORSA SORSA
Precision BF16 FP32 FP32 BF16 BF16
Sampling False False False False False
Top-P 1.0 1.0 1.0 1.0 1.0
ML for GSM-8K 1024 1024 1024 1024 1024
ML for MATH 2048 2048 2048 2048 2048
ML for HumanEval 2048 2048 2048 2048 2048

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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Table 4: Hyperparameters of training for with AdaLoRA on different models for GSM-8K and
MATH

Model Llama 2 7B Mistral 7B Gemma 7B RWKV6 7B
Method AdaLoRA AdaLoRA AdaLoRA AdaLoRA
Mix-Precision TF32+BF16 TF32+BF16 TF32+BF16 TF32+BF16
Epoch 1 1 1 1
Batch Size 128 128 128 128
Max Length 512 512 512 512
Weight Decay 0 0 0 0
Warm-up Ratio 0.03 0.03 0.03 0.03
Learning Rate 2e-5 2e-5 2e-5 2e-5
Grad Clip 1.0 1.0 1.0 1.0
β1 0.85 0.85 0.85 0.85
β2 0.85 0.85 0.85 0.85
rinit 128 64 64 64
rtarget 128 64 64 64
tinit 100 100 100 100
tfinal 600 600 600 600

Table 5: Hyperparameters of evaluation for with AdaLoRA on different models for GSM-8K and
MATH. ML denotes Max Length.

Model Llama 2 7B Mistral 7B Gemma 7B RWKV6 7B
Method AdaLoRA AdaLoRA AdaLoRA AdaLoRA
Precision BF16 BF16 BF16 FP32
Sampling False False False False
Top-P 1.0 1.0 1.0 1.0
ML for GSM-8K 1024 1024 1024 1024
ML for MATH 2048 2048 2048 2048
ML for HumanEval 2048 2048 2048 2048
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