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Abstract

Lately, propelled by phenomenal advances
around the transformer architecture, the legal
NLP field has enjoyed spectacular growth. To
measure progress, well-curated and challeng-
ing benchmarks are crucial. Previous efforts
have produced numerous benchmarks for gen-
eral NLP models, typically based on news or
Wikipedia. However, these may not fit specific
domains such as law, with its unique lexicons
and intricate sentence structures. Even though
there is a rising need to build NLP systems
for languages other than English, many bench-
marks are available only in English and no mul-
tilingual benchmark exists in the legal NLP
field. We survey the legal NLP literature and
select 11 datasets covering 24 languages, cre-
ating LEXTREME. To fairly compare models,
we propose two aggregate scores, i.e., dataset
aggregate score and language aggregate score.
Our results show that even the best baseline
only achieves modest results, and also Chat-
GPT struggles with many tasks. This indicates
that LEXTREME remains a challenging task
with ample room for improvement. To facili-
tate easy use for researchers and practitioners,
we release LEXTREME on huggingface along
with a public leaderboard and the necessary
code to evaluate models. We also provide a
public Weights and Biases project containing
all runs for transparency.

1 Introduction

In the last decade, Natural Language Processing
(NLP) has gained relevance in Legal Artificial In-
telligence, transitioning from symbolic to subsym-
bolic techniques (Villata et al., 2022). Such a shift
is motivated partially by the nature of legal re-
sources, which appear primarily in a textual for-
mat (legislation, legal proceedings, contracts, etc.).
Following the advancements in NLP technologies,
the legal NLP literature (Zhong et al., 2020; Ale-
tras et al., 2022; Katz et al., 2023) is flourishing
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Figure 1: Overview of multilingual models on LEX-
TREME. The bubble size and text inside indicate the
parameter count. The bold number below the model
name indicates the LEXTREME score (harmonic mean
of the language agg. score and the dataset agg. score).

with many new resources, such as large legal cor-
pora (Henderson et al., 2022), task-specific datasets
(Shen et al., 2022; Christen et al., 2023; Brugger
et al., 2023; Niklaus et al., 2023a), and pre-trained
legal-oriented language models (Chalkidis et al.,
2020; Zheng et al., 2021; Xiao et al., 2021; Niklaus
and Giofre, 2023; Hua et al., 2022; Chalkidis et al.,
2023). Greco and Tagarelli (2023) offer a compre-
hensive survey on the topic.

Specifically, the emergence of pre-trained Lan-
guage Models (PLMs) has led to significant perfor-
mance boosts on popular benchmarks like GLUE
(Wang et al., 2019b) or SuperGLUE (Wang et al.,
2019a), emphasizing the need for more challeng-
ing benchmarks to measure progress. Legal bench-
mark suites have also been developed to systemat-
ically evaluate the performance of PLMs, show-
casing the superiority of legal-oriented models
over generic ones on downstream tasks such as
legal document classification or question answer-
ing (Chalkidis et al., 2022a; Hwang et al., 2022).



Even though these PLMs are shown to be ef-
fective for numerous downstream tasks, they are
general-purpose models that are trained on broad-
domain resources, such as Wikipedia or News, and
therefore, can be insufficient to address tasks spe-
cific to the legal domain (Chalkidis et al., 2020;
Hua et al., 2022; Niklaus and Giofre, 2023). In-
deed, the legal domain is strongly characterized
both by its lexicon and by specific knowledge typ-
ically not available outside of specialized domain
resources. Laypeople even sometimes call the lan-
guage used in legal documents “legalese” or “legal
jargon”, emphasizing its complexity. Moreover,
the length of a legal document usually exceeds the
length of a Wikipedia or news article, and in some
tasks the relationships between its entities may span
across the entire document. Therefore, it is nec-
essary to develop specialized Legal PLMs trained
on extensive collections of legal documents and
evaluate them on standardized legal benchmarks.
While new PLMs capable of handling long docu-
ments have been developed in the last years, they
are predominantly trained for the general domain
and on English data only.

The rising need to build NLP systems for lan-
guages other than English, the lack of textual re-
sources for such languages, and the widespread
use of code-switching in many cultures (Torres Ca-
coullos, 2020) is pushing researchers to train mod-
els on massively multilingual data (Conneau et al.,
2020). Nonetheless, to the best of our knowledge,
no multilingual legal language model has been pro-
posed so far. Consequently, there is a need for
standardized multilingual benchmarks that can be
used to evaluate existing models and assess whether
more research efforts should be directed toward the
development of domain-specific models. This is
particularly important for legal NLP where inher-
ently multinational (European Union, Council of
Europe) or multilingual (Canada, Switzerland) le-
gal systems are prevalent.

In this work, we propose a challenging multi-
lingual benchmark for the legal domain, named
LEXTREME. We survey the literature from 2010
to 2022 and select 11 relevant NLU datasets cov-
ering 24 languages in 8 subdivisions (Germanic,
Romance, Slavic, Baltic, Greek, Celtic, Finnic,
and Hungarian) from two language families (Indo-
European and Uralic). We evaluate five widely
used multilingual encoder-based language models
as shown in Figure 1 and observe a correlation

between the model size and performance on LEX-
TREME. Surprisingly, at the low end, DistilBERT
(Sanh et al., 2019) strongly outperforms MiniLM
(Wang et al., 2020) (36.7 vs 19.0 LEXTREME
score) while only having marginally more parame-
ters (135M vs 118M).

For easy evaluation of future models, we release
the aggregate dataset on the huggingface hub 1

along with a public leaderboard and the necessary
code to run experiments on GitHub.2 Knowing that
our work can not encompass “Everything in the
Whole Wide Legal World” (Raji et al., 2021), we
design LEXTREME as a living benchmark and pro-
vide detailed guidelines on our repository and en-
courage the community to contribute high-quality
multilingual legal datasets.3 Finally, we integrated
LEXTREME together with the popular English le-
gal benchmark LexGLUE (Chalkidis et al., 2022a)
into HELM (Liang et al., 2022) (an effort to eval-
uate language models holistically using a large
number of datasets from diverse tasks) to ease the
adoption of curated legal benchmarks also for the
evaluation of large language models such as GPT-
3 (Brown et al., 2020), PALM (Chowdhery et al.,
2022) or LLaMA (Touvron et al., 2023).
Contributions of this paper are two-fold:

1. We review the legal NLP literature to find
relevant legal datasets and compile a multi-
lingual legal benchmark of 11 datasets in 24
languages from 8 language groups.

2. We evaluate several baselines on LEXTREME
to provide a reference point for researchers
and practitioners to compare to.

2 Related Work

2.1 Benchmarks

Benchmarking is an established method to enable
easy and systematic comparison of approaches.
GLUE (Wang et al., 2019b) is one of the first
benchmarks to evaluate general-purpose neural lan-
guage models. It is a set of supervised sentence
understanding predictive tasks in English that were
created through aggregation and curation of sev-
eral existing datasets. However, it became quickly
obsolete due to advanced contextual language mod-
els, such as BERT (Devlin et al., 2019), which

1https://huggingface.co/datasets/joelniklaus/
lextreme

2https://github.com/JoelNiklaus/LEXTREME
3Since the release of this call in February 2023, already

eleven new tasks have been contributed and integrated.

https://huggingface.co/datasets/joelniklaus/lextreme
https://huggingface.co/datasets/joelniklaus/lextreme
https://github.com/JoelNiklaus/LEXTREME


Name Source Domain Tasks Datasets Languages Agg. Score

GLUE (Wang et al., 2019b) Misc. Texts 7 9 English Yes
SUPERGLUE (Wang et al., 2019a) Misc. Texts 8 8 English Yes
MMLU (Hendrycks et al., 2021) Misc. Texts 1 57 English Yes
CLUE (Xu et al., 2020) Misc. Texts 9 9 Chinese Yes
XTREME (Hu et al., 2020) Misc. Texts 6 9 40 Yes
BLUE (Peng et al., 2019) Biomedical Texts 5 10 English Yes
CBLUE (Zhang et al., 2022) Biomedical Texts 9 9 Chinese Yes
LegalBench (Guha et al., 2022) Legal Texts 44 8. English No
LexGLUE (Chalkidis et al., 2022a) Legal Texts 7 6 English Yes
FairLex (Chalkidis et al., 2022b) Legal Texts 4 4 5 No
LBOX (Hwang et al., 2022) Legal Texts 5 5 Korean Yes
LEXTREME (our work) Legal Texts 18 11 24 Yes

SUPERB (Yang et al., 2021) Speech 10 10 English No
SUPERB-SG (Tsai et al., 2022) Speech 5 5 English No

TAPE (Rao et al., 2019) Proteins 5 5 n/a No

Table 1: Characteristics of popular existing NLP benchmarks.

excelled on most tasks. Subsequently, its updated
version, named SUPERGLUE (Wang et al., 2019a)
was proposed, incorporating new predictive tasks
that are solvable by humans but are difficult for
machines. Both benchmarks proposed an evalua-
tion score computed as an aggregation of the scores
obtained by the same model on each task. They
are also agnostic regarding the pre-training of the
model, and do not provide a specific corpus for
it. Inspired by these works, numerous benchmarks
have been proposed over the years. We describe
some well-known ones in Table 1.

The MMLU benchmark is specifically designed
to evaluate the knowledge acquired during the pre-
training phase of the model by featuring only zero-
shot and few-shot learning tasks (Hendrycks et al.,
2021). Similarly, SUPERB (Yang et al., 2021) and
SUPERB-SG (Tsai et al., 2022) were proposed for
speech data, unifying well-known datasets. How-
ever, they mainly vary in tasks, e.g., SUPERB-
SG includes both predictive and generative tasks,
which makes it different from the other benchmarks
discussed in this section. Additionally, SUPERB-
SG includes diverse tasks, such as speech transla-
tion and cross-lingual automatic speech recogni-
tion, which require knowledge of languages other
than English. Neither of the two (SUPERB or
SUPERB-SG) proposes an aggregated score.

XTREME (Hu et al., 2020) is a benchmark
specifically designed to evaluate the ability of cross-
lingual generalization of models. It includes six
cross-lingual predictive tasks over ten datasets of
miscellaneous texts, covering a total of 40 lan-
guages. While some original datasets in it were al-

ready designed for cross-lingual tasks, others were
extended by translating part of the data using hu-
man professionals and automatic methods.

2.2 Benchmarks for the Legal Domain

LEXGLUE (Chalkidis et al., 2022a) is the first
benchmark for the legal domain and covers six
predictive tasks over five datasets made of textual
documents in English from the US, EU, and Coun-
cil of Europe. While some tasks may not require
specific legal knowledge to be solved, others would
probably need, or at least benefit from, information
regarding the EU or US legislation on the specific
topic. Among the main limitations of their bench-
mark, Chalkidis et al. highlight its monolingual
nature and remark that “there is an increasing need
for developing models for other languages”. In
parallel, Chalkidis et al. (2022b) released FairLex,
a multilingual benchmark for the evaluation of fair-
ness in legal NLP tasks. With a similar aim, Hwang
et al. (2022) released the LBOX benchmark, cov-
ering two classification tasks, two legal judgment
prediction tasks, and one Korean summarization
task. Motivated by LEXGLUE and LBOX, we
propose a benchmark to encourage multilingual
models, diverse tasks, and datasets for the legal
domain. Guha et al. (2022) proposed the LEGAL-
BENCH initiative that aims to establish an open
and collaborative legal reasoning benchmark for
few-shot evaluation of LLMs where legal practi-
tioners and other domain experts can contribute by
submitting tasks. At its creation, the authors have
already added 44 lightweight tasks. While most
tasks require legal reasoning based on the common



law system (mostly prevalent in the UK and former
colonies), there is also a clause classification task.
For a more comprehensive overview of the many
tasks related to automated legal text analysis, we
recommend reading the works of Chalkidis et al.
(2022a) and Zhong et al. (2020).

2.3 Legal Language Models

Several works have proposed legal language mod-
els (models specifically trained for the legal do-
main) for several languages other than English.
For example, legal language models for En-
glish (Chalkidis et al., 2020; Yin and Habernal,
2022; Chalkidis et al., 2023), French (Douka
et al., 2021), Romanian (Masala et al., 2021), Ital-
ian (Tagarelli and Simeri, 2022; Licari and Co-
mandé, 2022), Chinese (Xiao et al., 2021), Ara-
bic (Al-Qurishi et al., 2022), Korean (Hwang
et al., 2022), and Portuguese (Ciurlino, 2021). Re-
cently, pre-trained multilingual legal language mod-
els (Niklaus et al., 2023b; Rasiah et al., 2023) have
been released. Unfortunately, these models were
not available at the time of submission, so we do
not present results as part of this work.

3 LEXTREME Datasets and Tasks

3.1 Dataset and Task Selection

To find relevant datasets for the LEXTREME
benchmark we explore the literature of NLP and
the legal domain, identifying relevant venues such
as ACL, EACL, NAACL, EMNLP, LREC, ICAIL,
and the NLLP workshop. We search the literature
on these venues for the years 2010 to 2022. We
search for some common keywords (case insensi-
tive) that are related to the legal domain, e.g., crim-
inal, judicial, judgment, jurisdictions, law, legal,
legislation, and dataset, e.g., dataset, and corpus
vie their union. These keywords help to select 108
potentially relevant papers. Then, we formulate
several criteria to select the datasets. Finally, three
authors analyze the candidate papers and perform
the selection. We handled the disagreement be-
tween authors based on mutual discussion and the
majority voting mechanism.

Inclusion criteria:
I1: It is about legal text (e.g., patents are not con-

sidered part of the legal text)
I2: It performs legal tasks (e.g., judgment pre-

diction) or NLU tasks on legal text in order
to have datasets that understand or reason

Task # Examples # Labels

BCD-J 3234 / 404 / 405 3 / 3 / 3
BCD-U 1715 / 211 / 204 2 / 2 / 2
GAM 19271 / 2726 / 3078 4 / 4 / 4
GLC-V 28536 / 9511 / 9516 47 / 47 / 47
GLC-C 28536 / 9511 / 9516 386 / 377 / 374
GLC-S 28536 / 9511 / 9516 2143 / 1679 / 1685
SJP 59709 / 8208 / 17357 2 / 2 / 2
OTS-UL 2074 / 191 / 417 3 / 3 / 3
OTS-CT 19942 / 1690 / 4297 9 / 8 / 9
C19 3312 / 418 / 418 8 / 8 / 8
MEU-1 817239 / 112500 / 115000 21 / 21 / 21
MEU-2 817239 / 112500 / 115000 127 / 126 / 127
MEU-3 817239 / 112500 / 115000 500 / 454 / 465
GLN 17699 / 4909 / 4017 17 / 17 / 17
LNR 7552 / 966 / 907 11 / 9 / 11
LNB 7828 / 1177 / 1390 13 / 13 / 13
MAP-C 27823 / 3354 / 10590 13 / 11 / 11
MAP-F 27823 / 3354 / 10590 44 / 26 / 34

Table 2: Dataset and task overview. # Examples and #
Labels show values for train, validation, and test splits.

about the legal text, similar to LEXGLUE
(Chalkidis et al., 2022a)

I3: The current tasks are set in a European lan-
guage, as per the scope of our present work,
but we aim to incorporate a broader range of
languages in future iterations of LEXTREME

I4: The dataset is annotated by humans directly or
indirectly (e.g., judgement labels are extracted
with regexes)

Exclusion criteria:
E1: The dataset is not publicly available
E2: The dataset does not contain a public license

or does not allow data redistribution
E3: The dataset contains labels generated with ML

systems
E4: It is not a peer-reviewed paper

After applying the above criteria, we select 11
datasets from 108 papers. We provide the list of all
these datasets in our repository.

3.2 LEXTREME Datasets

In the following, we briefly describe the selected
datasets. Table 2 provides more information about
the number of examples and label classes per split
for each task. For a detailed overview of the juris-
dictions as well as the number of languages cov-
ered by each dataset, see Table 3. Each dataset
can have several configurations (tasks), which are
the basis of our analyses, i.e., the pre-trained mod-
els have always been fine-tuned on a single task.
LEXTREME consists of three task types: Single



Dataset Jurisdiction Languages

BCD BR pt
GAM DE de
GLC GR el
SJP CH de, fr, it
OTS EU de, en, it, pl
C19 BE, FR, HU, IT, NL, PL,

UK
en, fr, hu, it, nb,
nl, pl

MEU EU 24 EU langs
GLN GR el
LNR RO ro
LNB BR pt
MAP EU 24 EU langs

Table 3: Overview of datasets, the jurisdiction, and the
languages. The 24 EU languages are: bg, cs, da, de, el,
en, es, et, fi, fr, ga, hu, it, lt, lv, mt, nl, pt, ro, sk, sv.

Label Text Classification (SLTC), Multi Label Text
Classification (MLTC), and Named Entity Recog-
nition (NER). We use the existing train, validation,
and test splits if present. Otherwise, we split the
data randomly ourselves (80% train, 10% valida-
tion, and 10% test).

Brazilian Court Decisions (BCD). Legal sys-
tems are often huge and complex, and the informa-
tion is scattered across various sources. Thus, pre-
dicting case outcomes from multiple vast volumes
of litigation is a difficult task. Lage-Freitas et al.
(2022) propose an approach to predict Brazilian
legal decisions to support legal practitioners. We
use their dataset from the State Supreme Court of
Alagoas (Brazil). The input to the models is always
the case description. We perform two SLTC tasks:
In the BCD-J subset models predict the approval or
dismissal of the case or appeal with the three labels
no, partial, yes, and in the BCD-U models predict
the judges’ unanimity on the decision alongside
two labels, namely unanimity, not-unanimity.

German Argument Mining (GAM). Identify-
ing arguments in court decisions is vital and chal-
lenging for legal practitioners. Urchs. et al. (2021)
assembled a dataset of 200 German court decisions
for sentence classification based on argumentative
function. We utilize this dataset for a SLTC task.
Model input is a sentence, and output is categorized
as conclusion, definition, subsumption, or other.

Greek Legal Code (GLC). Legal documents can
cover a wide variety of topics, which makes accu-
rate topic classification all the more important. Pa-
paloukas et al. (2021) compiled a dataset for topic
classification of Greek legislation documents. The

documents cover 47 main thematic topics which are
called volumes. Each of them is divided into the-
matic sub categories which are called chapters and
subsequently, each chapter breaks down to subjects.
Therefore, the dataset is used to perform three dif-
ferent SLTC tasks along volume level (GLC-V),
chapter level (GLC-C), and subject level (GLC-S).
The input to the models is the entire document, and
the output is one of the several topic categories.

Swiss Judgment Prediction (SJP). Niklaus et al.
(2021, 2022), focus on predicting the judgment
outcome of 85K cases from the Swiss Federal
Supreme Court (FSCS). The input to the models is
the appeal description, and the output is whether
the appeal is approved or dismissed (SLTC task).

Online Terms of Service (OTS). While multi-
lingualism’s benefits (e.g., cultural diversity) in
the EU legal world are well-known (Commission,
2005), creating an official version of every legal
act in 24 languages raises interpretative challenges.
Drawzeski et al. (2021) attempt to automatically
detect unfair clauses in terms of service documents.
We use their dataset of 100 contracts to perform a
SLTC and MLTC task. For the SLTC task (OTS-
UL), model inputs are sentences, and outputs are
classifications into three unfairness levels: clearly
fair, potentially unfair and clearly unfair. The
MLTC task (OTS-CT) involves identifying sen-
tences based on nine clause topics.

COVID19 Emergency Event (C19). The
COVID-19 pandemic showed various exceptional
measures governments worldwide have taken to
contain the virus. Tziafas et al. (2021), presented a
dataset, also known as EXCEPTIUS, that contains
legal documents with sentence-level annotation
from several European countries to automatically
identify the measures. We use their dataset to
perform the MLTC task of identifying the type of
measure described in a sentence. The input to the
models are the sentences, and the output is neither
or at least one of the measurement types.

MultiEURLEX (MEU). Multilingual transfer
learning has gained significant attention recently
due to its increasing applications in NLP tasks.
Chalkidis et al. (2021a) explored the cross-lingual
transfer for legal NLP and presented a corpus of
65K EU laws annotated with multiple labels from
the EUROVOC taxonomy. We perform a MLTC
task to identify labels (given in the taxonomy) for



each document. Since the taxonomy exists on mul-
tiple levels, we prepare configurations according to
three levels (MEU-1, MEU-2, MEU-3).

Greek Legal NER (GLN). Identifying various
named entities from natural language text plays an
important role for Natural Language Understand-
ing (NLU). Angelidis et al. (2018) compiled an
annotated dataset for NER in Greek legal docu-
ments. The source material are 254 daily issues
of the Greek Government Gazette over the period
2000-2017. In all NER tasks of LEXTREME the
input to the models is the list of tokens, and the
output is an entity label for each token.

LegalNERo (LNR). Similar to GLN, Pais et al.
(2021) manually annotated Romanian legal docu-
ments for various named entities. The dataset is
derived from 370 documents from the larger MAR-
CELL Romanian legislative subcorpus.4

LeNER BR (LNB). Luz de Araujo et al. (2018)
compiled a dataset for NER for Brazilian legal doc-
uments. 66 legal documents from several Brazilian
Courts and four legislation documents were col-
lected, resulting in a total of 70 documents anno-
tated for named entities.

MAPA (MAP). de Gibert et al. (2022) built a
multilingual corpus based on EUR-Lex (Baisa
et al., 2016) for NER annotated at a coarse-grained
(MAP-C) and fine-grained (MAP-F) level.

4 Models Considered

Since our benchmark only contains NLU tasks, we
consider encoder-only models for simplicity. Due
to resource constraints, we did not fine-tune models
larger than 1B parameters.

4.1 Multilingual

We considered the five multilingual models listed
in Table 4, trained on at least 100 languages each
(more details are in Appendix B). For XLM-R we
considered both the base and large version. Fur-
thermore, we used ChatGPT (gpt-3.5-turbo) for
zero-shot evaluation of the text classification tasks
with less than 50 labels.5 To be fair across tasks
we did not consider few-shot evaluation or more

4https://marcell-project.eu/deliverables.html
5We excluded MultiEurlex because it only contains nu-

meric labels and not textual ones, and because the inputs are
very long in 24 languages rendering a valid comparison with
reasonable costs impossible.

sophisticated prompting techniques because of pro-
hibitively long inputs in many tasks.

4.2 Monolingual

In addition to the multilingual models, we also
fine-tuned available monolingual models on the
language specific subsets. We chose monolingual
models only if a certain language was represented
in at least three datasets.6 We made a distinction
between general purpose models, i.e., models that
have been pre-trained on generic data aka Native-
BERTs, and legal models, i.e., models that have
been trained (primarily) on legal data aka NativeLe-
galBERTs. A list of the monolingual models can
be found in the appendix in Table 8.

4.3 Hierarchical Variants

A significant part of the datasets consists of very
long documents, the best examples being all vari-
ants of MultiEURLEX; we provide detailed using
different tokenizers on all datasets in our online
repository. However, the models we evaluated were
all pre-trained with a maximum sequence length
of only 512 tokens. Directly applying pre-trained
language models on lengthy legal documents may
necessitate substantial truncation, severely restrict-
ing the models. To overcome this limitation, we
use hierarchical versions of pre-training models for
datasets containing long documents.

The hierarchical variants used here are broadly
equivalent to those in (Chalkidis et al., 2021b;
Niklaus et al., 2022). First, we divide each doc-
ument into chunks of 128 tokens each. Second, we
use the model to be evaluated to encode each of
these paragraphs in parallel and to obtain the [CLS]
embedding of each chunk which can be used as a
context-unaware chunk representation. In order to
make them context-aware, i.e. aware of the sur-
rounding chunks, the chunk representations are fed
into a 2-layered transformer encoder. Finally, max-
pooling over the context-aware paragraph represen-
tations is deployed, which results in a document
representation that is fed to a classification layer.

Unfortunately, to the best of our knowledge mod-
els capable of handling longer context out of the
box, such as Longformer (Beltagy et al., 2020) and
SLED (Ivgi et al., 2023) are not available multilin-
gually and predominantly trained on English data
only.

6Which is why we did not include Norwegian pre-trained
models, even though Norwegian is covered in C19.

https://marcell-project.eu/deliverables.html


Model Source # Parameters Vocab # Steps Batch Size Corpus # Langs

MiniLM Wang et al. (2020) 118M 250K 1M 256 2.5TB CC100 100
DistilBERT Sanh et al. (2019) 135M 120K n/a < 4000 Wikipedia 104
mDeBERTa-v3 He et al. (2020, 2021) 278M 128K 500K 8192 2.5TB CC100 100
XLM-RBase/Large Conneau et al. (2020) 278M/560M 250K 1.5M 8192 2.5TB CC100 100

Table 4: Multilingual models. All models support a maximum sequence length of 512 tokens. The third column
shows the total number of parameters, including the embedding layer.

5 Experimental Setup

Multilingual models were fine-tuned on all lan-
guages of specific datasets. Monolingual models
used only the given model’s language subset.

Some datasets are highly imbalanced, one of
the best examples being BCD-U with a proportion
of the minority class of about 2%. Therefore, we
applied random oversampling on all SLTC datasets,
except for GLC, since all its subsets have too many
labels, which would have led to a drastic increase
in the data size and thus in the computational costs
for fine-tuning. For each run, we used the same
hyperparameters, as described in Section A.3.

As described in Section 4.3, some tasks contain
very long documents, requiring the usage of hier-
archical variants to process sequence lenghts of
1024 to 4096 tokens. Based on the distribution
of the sequence length per example for each task
(cf. Appendix H), we decided on suitable sequence
lengths for each task before fine-tuning. A list of
suitable sequence lengths are in A.1.

5.1 Evaluation Metrics.

We use the macro-F1 score for all datasets to en-
sure comparability across the entire benchmark,
since it can be computed for both text classification
and NER tasks. Mathew’s Correlation Coefficient
(MCC) (Matthews, 1975) is a suitable score for
evaluating text classification tasks but its applica-
bility to NER tasks is unclear. For brevity, we do
not display additional scores, but more detailed
(such as precision and recall, and scores per seed)
and additional scores (such as MCC) can be found
online on our Weights and Biases project.7

5.2 Aggregate Score

We acknowledge that the datasets included in LEX-
TREME are diverse and hard to compare due to
variations in the number of samples and task com-
plexity (Raji et al., 2021). This is why we always
report the scores for each dataset subset, enabling a

7https://wandb.ai/lextreme/paper_results

fine-grained analysis. However, we believe that by
taking the following three measures, an aggregate
score can provide more benefits than drawbacks,
encouraging the community to evaluate multilin-
gual legal models on a curated benchmark, thus
easing comparisons.

We (a) evaluate all datasets with the same score
(macro-F1) making aggregation more intuitive and
easier to interpret, (b) aggregating the F1 scores
again using the harmonic mean, since F1 scores
are already rates and obtained using the harmonic
mean over precision and recall, following Tatiana
and Valentin (2021), and (c) basing our final aggre-
gate score on two intermediate aggregate scores ––
the dataset aggregate and language aggregate score
– thus weighing datasets and languages equally
promoting model fairness, following Tatiana and
Valentin (2021) and Chalkidis et al. (2022a).

The final LEXTREME score is computed using
the harmonic mean of the dataset and the language
aggregate score. We calculate the dataset aggregate
by successively taking the harmonic mean of (i)
the languages in the configurations (e.g., de,fr,it
in SJP), (ii) configurations within datasets (e.g.,
OTS-UL, OTS-CT in OTS), and (iii) datasets in
LEXTREME (BCD, GAM). The language aggre-
gate score is computed similarly: by taking the har-
monic mean of (i) configurations within datasets,
(ii) datasets for each language (e.g., MAP, MEU
for lv), and (iii) languages in LEXTREME (bg,cs).

We do not address the dimension of the jurisdic-
tion, which we consider beyond the scope of this
work.

6 Results

In this section, we discuss baseline evaluations.
Scores and standard deviations for validation and
test datasets across seeds are on our Weights and
Biases project or can be found in Table 11, 12, 13,
14. Comparisons with prior results on each dataset
can be drawn from the tables provdided in section
G in the appendix. Aggregated results by dataset
and language are in Tables 5 and 6.

https://wandb.ai/lextreme/paper_results


Model BCD GAM GLC SJP OTS C19 MEU GLN LNR LNB MAP Agg.

MiniLM 52.0 73.3 12.3 67.7 21.8 4.5 12.2 43.5 46.4 86.1 52.9 19.9
DistilBERT 53.7 69.5 53.4 66.8 52.4 21.2 23.2 38.1 48.0 78.7 53.0 43.2
mDeBERTa v3 59.1 71.3 26.5 69.1 63.7 26.4 24.7 44.8 46.7 87.3 58.6 44.1
XLM-RBase 62.6 71.9 42.1 69.3 64.6 18.4 11.4 46.4 45.6 87.3 53.2 36.8
XLM-RLarge 58.0 73.1 71.7 68.9 73.8 20.6 27.9 45.1 55.4 88.4 55.1 48.5

Table 5: Dataset aggregate scores for multilingual models. The best scores are in bold.

Model bg cs da de el en es et fi fr ga hr hu it lt lv mt nl pl pt ro sk sl sv Agg.

MiniLM 20.9 20.4 19.8 27.6 19.0 8.2 21.2 19.9 19.7 15.9 40.2 11.9 20.3 15.1 20.3 20.3 14.9 20.5 15.2 30.5 25.9 20.2 12.4 20.5 18.1
DistilBERT 33.7 32.7 32.1 47.4 35.1 38.0 36.1 31.0 30.8 38.8 43.8 22.5 31.5 41.0 31.7 31.6 29.9 19.0 25.0 44.5 37.6 32.0 22.9 33.3 31.9
mDeBERTa v3 34.6 34.4 33.6 49.9 33.5 41.0 36.6 34.6 33.9 39.8 49.4 24.7 35.6 44.5 34.9 35.0 33.4 24.5 29.2 46.3 39.5 35.6 24.8 35.9 34.8
XLM-RBase 19.9 19.4 18.8 33.3 25.6 27.6 19.4 18.8 18.6 27.3 44.9 11.6 13.4 31.0 18.7 18.9 16.0 15.2 21.4 30.3 24.1 18.9 11.7 19.4 19.7
XLM-RLarge 38.5 37.9 38.0 51.5 44.1 44.7 39.7 36.9 35.3 42.1 48.6 28.1 22.7 48.0 37.4 37.9 34.1 19.3 32.7 48.9 42.3 37.1 28.0 37.0 36.0
NativeLegalBERT - - - - - 43.8 40.3 - - - - - - 34.0 - - - - - - 38.8 - - - 38.9
NativeBERT 24.3 47.4 42.8 56.0 47.9 49.4 33.3 38.3 43.2 43.5 44.0 - 45.4 42.5 - - - 36.2 21.6 54.9 44.4 29.1 - 46.1 39,1

Table 6: Language aggregate scores for multilingual models. The best scores are in bold. For each language, we also
list the best-performing monolingual legal model under NativeLegalBERT and the best-performing monolingual
non-legal model under NativeBERT. Missing values indicate that no suitable models were found.

Larger models are better For both, we see a
clear trend that larger models perform better. How-
ever, when looking at the individual datasets and
languages, the scores are more erratic. Note that
XLM-RBase underperforms on MEU (especially on
MEU-3; see Table 11 and Table 12) leading to a
low dataset aggregate score due to the harmonic
mean. Additionally, low performance on MEU-3
has a large impact on its language aggregate score,
since it affects all 24 languages.

Differing model variance across datasets We
observe significant variations across datasets such
as GLC, OTS or C19, with differences as large
as 52 (in OTS) between the worst-performing
MiniLM and the best-performing XLM-R large.
MiniLM seems to struggle greatly with these three
datasets, while even achieving the best performance
on GAM. On other datasets, such as GAM, SJP,
and MAP the models are very close together (less
than 6 points between best and worst model). Even
though XLM-RLarge takes the top spot on aggre-
gate, it only has the best performance in six out of
eleven datasets.

Less variability across languages In contrast to
inconsistent results on the datasets, XLM-RLarge
outperforms the other multilingual models on most
languages (21 out of 24). Additionally, we note that
model variability within a language is similar to
the variability within a dataset, however, we don’t
see extreme cases such as GLC, OTS, or C19.

Monolingual models are strong Monolingual
general-purpose models (NativeBERT in Table 6)

Task XLM-RLarge ChatGPT

BCD-J 58.1 52.1
BCD-U 70.4 48.2
GAM 73.0 35.5
GLC-V 58.2 32.9
SJP 60.9 51.2
OTS-UL 79.8 15.1
OTS-CT 64.5 12.7
C19 27.7 23.6

Table 7: Results with ChatGPT on the validation sets
performed on June 15, 2023. Best results are in bold.

show strong performance with only a few excep-
tions (on Bulgarian, Spanish, Polish, and Slovak).
In 13 out of 19 available languages they reach the
top performance, leading to the top language aggre-
gate score. The few available models pre-trained on
legal data (NativeLegalBERT) slightly outperform
multilingual models of the same size.

ChatGPT underperforms We show a compar-
ison of ChatGPT with the best performing mul-
tilingual model XLM-RLarge in Table 7. To save
costs, we limited the evaluation size to 1000 sam-
ples for ChatGPT. We use the validation set instead
of the test set to be careful not to leak test data
into ChatGPT, possibly affecting future evaluation.
Chalkidis (2023) showed that ChatGPT is still out-
performed by supervised approaches on LexGLUE.
Similarly, we find that much smaller supervised
models clearly outperform ChatGPT in all of tested
tasks, with very large gaps in GAM and OTS.



7 Conclusions and Future Work

Conclusions We survey the literature and select
11 datasets out of 108 papers with rigorous crite-
ria to compile the first multilingual benchmark for
legal NLP. By open-sourcing both the dataset and
the code, we invite researchers and practitioners
to evaluate any future multilingual models on our
benchmark. We provide baselines for five popu-
lar multilingual encoder-based language models
of different sizes. We hope that this benchmark
will foster the creation of novel multilingual legal
models and therefore contribute to the progress of
natural legal language processing. We imagine this
work as a living benchmark and invite the commu-
nity to extend it with new suitable datasets.

Future Work In future work, we plan to extend
this benchmark with other NLU tasks and also gen-
eration tasks such as summarization, simplifica-
tion, or translation. Additionally, a deeper analysis
of the differences in the behavior of monolingual
general-purpose models versus models trained on
legal data could provide useful insights for the de-
velopment of new models. Another relevant aspect
that deserves further studies is the impact of the
jurisdiction and whether the jurisdiction informa-
tion is predominantly learned as part of the LLM
or is instead learned during fine-tuning. Finally,
extending datasets in more languages and evaluat-
ing other models such as mT5 (Xue et al., 2021)
can be other promising directions.
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Limitations

It is important to not exceed the enthusiasm for
language models and the ambitions of benchmarks:
many recent works have addressed the limits of
these tools and analyzed the consequences of their
misuse. For example, Bender and Koller (2020)

argue that language models do not really learn
“meaning”. Bender et al. (2021) further expand the
discussion by addressing the risks related to these
technologies and proposing mitigation methods.
Koch et al. (2021) evaluate the use of datasets in-
side scientific communities and highlight that many
machine learning sub-communities focus on very
few datasets and that often these dataset are “bor-
rowed” from other communities. Raji et al. (2021)
offer a detailed exploration of the limits of popu-
lar “general” benchmarks, such as GLUE (Wang
et al., 2019b) and ImageNET (Deng et al., 2009).
Their analysis covers 3 aspects: limited task design,
de-contextualized data and performance reporting,
inappropriate community use.

The first problem concerns the fact that typically
tasks are not chosen considering proper theories
and selecting what would be needed to prove gener-
ality. Instead, they are limited to what is considered
interesting by the community, what is available, or
other similar criteria. These considerations hold
also for our work. Therefore, we cannot claim that
our benchmark can be used to assess the “gener-
ality” of a model or proving that it “understands
natural legal language”.

The second point addresses the fact that any task,
data, or metric are limited to their context, there-
fore “data benchmarks are closed and inherently
subjective, localized constructions”. In particular,
the content of the data can be too different from
real data and the format of the tasks can be too
homogeneous compared to human activities. More-
over, any dataset inherently contains biases. We
tackle this limitation by deciding to include only
tasks and data that are based on real world scenar-
ios, in an effort to minimize the difference between
the performance of a model on our benchmark and
its performance on a real world problem.

The last aspect regards the negative conse-
quences that benchmarks can have. The compet-
itive testing may encourage misbehavior and the
aggregated performance evaluation does create a
mirage of cross-domain comparability. The pres-
ence of popular benchmarks can influence a sci-
entific community up to the point of steering to-
wards techniques that perform well on that specific
benchmark, in disfavor of those that do not. Fi-
nally, benchmarks can be misused in marketing to
promote commercial products while hiding their
flaws. These behaviours obviously cannot be fore-
casted in advance, but we hope that this analysis of



the shortcomings of our work will be sufficient to
prevent misuses of our benchmark and will also in-
spire research directions for complementary future
works. For what specifically concerns aggregated
evaluations, they provide an intuitive but impre-
cise understanding of the performance of a model.
While we do not deny their potential downsides,
we believe that their responsible use is beneficial,
especially when compared to the evaluation of a
model on only an arbitrarily selected set of datasets.
Therefore, we opted to provide an aggregated eval-
uation and to weigh languages and tasks equally to
make it as robust and fair as possible.

While Raji et al. and Koch et al. argument
against the misrepresentations and the misuses of
benchmarks and datasets, they do not argue against
their usefulness. On the contrary, they consider the
creation and adoption of novel benchmarks a sign
of a healthy scientific community.

Finally, we want to remark that for many datasets
the task of outcome prediction is based not on the
document provided by the parties, but on the docu-
ment provided by the judge along with its decision.
For example, Semo et al. (2022) provide a more
realistic setup of judgment prediction than other
datasets, using actual complaints as inputs. How-
ever, due to very limited access to the complaint
documents, especially multilingually, creating such
datasets is extremely challenging. Thus, most re-
cent works used text from court decisions as prox-
ies. However, predicting the judgment outcome
based on text written by the court itself can still be a
hard task (as evidenced by results on these datasets).
Moreover, it may still require legal reasoning capa-
bilities from models because of the need to pick out
the correct information. Additionally, we believe
that these tasks can also be interesting to conduct
post hoc analyses of decisions.

Ethics Statement

The scope of this work is to release a unified multi-
lingual legal NLP benchmark to accelerate the
development and evaluation of multilingual legal
language models. A transparent multilingual and
multinational benchmark for NLP in the legal do-
main might serve as an orientation for scholars and
industry researchers by broadening the discussion
and helping practitioners to build assisting tech-
nology for legal professionals and laypersons. We
believe that this is an important application field,
where research should be conducted (Tsarapatsanis

and Aletras, 2021) to improve legal services and
democratize law, while also highlight (inform the
audience on) the various multi-aspect shortcomings
seeking a responsible and ethical (fair) deployment
of legal-oriented technologies.

Nonetheless, irresponsible use (deployment) of
such technology is a plausible risk, as in any other
application (e.g., online content moderation) and
domain (e.g., medical). We believe that similar
technologies should only be deployed to assist hu-
man experts (e.g., legal scholars in research, or
legal professionals in forecasting or assessing legal
case complexity) with notices on their limitations.

All datasets included in LEXTREME, are pub-
licly available and have been previously published.
We referenced the original work and encourage
LEXTREME users to do so as well. In fact, we
believe this work should only be referenced, in
addition to citing the original work, when experi-
menting with multiple LEXTREME datasets and
using the LEXTREME evaluation infrastructure.
Otherwise, only the original work should be cited.
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A Experiment Details

A.1 Maximum Sequence Lengths

Brazilian Court Decisions: 1024 (128 x 8)
CoVID19: 256
German Argument Mining: 256
Greek Legal Code: 4096 (if speed is important:
2048) (128 x 32 / 16)
Greek Legal NER: 512 (max for non-hierarchical)
LegalNERo: 512 (max for non-hierarchical)
LeNER: 512 (max for non-hierarchical)
MAPA: 512 (max for non-hierarchical)
MultiEURLEX: 4096 (or for maximum perfor-
mance 8192) (128 x 32 / 64) Online Terms of
Service: 256
Swiss Judgment Prediction: 2048 (or for maximum
performance on fr: 4096) (128 x 16 / 32)

A.2 Total compute

We used a total of 689 GPU days.

A.3 Hyperparameters

We used learning rate 1e-5 for all models and
datasets without tuning. We ran all experiments
with 3 random seeds (1-3). We always used batch
size 64. In case the GPU memory was insuffi-
cient, we additionally used gradient accumulation.
We trained using early stopping on the validation
loss with an early-stopping patience of 5 epochs.
Because MultiEURLEX is very large and the ex-
periment very long, we just train for 1 epoch and
evaluated after every 1000th step when finetuning
multilingual models on the entire dataset. For
finetuning the monolingual models on language-
specific subsets of MultiEURLEX, we evaluated
on the basis of epochs. We used AMP mixed
precision training and evaluation to reduce costs.
Mixed precision was not used in combination with
microsoft/mdeberta-v3-base because it led to er-
rors. For the experiments we used the following
NVIDIA GPUs: 24GB RTX3090, 32GB V100 and
80GB A100.

B Model Descriptions

MiniLM. MiniLM (Wang et al., 2020) is the
result of a novel task-agnostic compression tech-
nique, also called distillation, in which a compact
model — the so-called student — is trained to
reproduce the behaviour of a larger pre-trained
model — the so-called teacher. This is achieved
by deep self-attention distillation, i.e. only the
self-attention module of the last Transformer layer
of the teacher, which stores a lot of contextual
information (Jawahar et al., 2019), is distilled.
The student is trained by closely imitating the
teacher’s final Transformer layer’s self-attention
behavior. To aid the learner in developing a better
imitation, (Wang et al., 2020) also introduce the
self-attention value-relation transfer in addition to
the self-attention distributions. The addition of a
teacher assistant results in further improvements.
For the training of multilingual MiniLM, XLM-
RBASE was used.

DistilBERT DistilBERT (Sanh et al., 2019) is a
more compressed version of BERT (Devlin et al.,
2019) using teacher-student learning, similar to
MiniLM. DistilBERT is distilled from BERT, thus
both share a similar overall architecture. The pooler
and token-type embeddings are eliminated, and the
number of layers is decreased by a factor of 2 in
DistilBERT. DistilBERT is distilled in very large
batches while utilizing gradient accumulation and
dynamic masking, but without the next sentence
prediction objective. DistilBERT was trained on
the same corpus as the original BERT.

mDEBERTa He et al. (2020) suggest a new
model architecture called DeBERTa (Decoding-
enhanced BERT with disentangled attention),
which employs two novel methods to improve the
BERT and RoBERTa models. The first is the disen-
tangled attention mechanism, in which each word
is represented by two vectors that encode its con-
tent and position, respectively, and the attention
weights between words are calculated using disen-
tangled matrices on their respective contents and
relative positions. To predict the masked tokens
during pre-training, an enhanced mask decoder is
utilized, which incorporates absolute positions in
the decoding layer. Additionally, the generaliza-
tion of models is enhanced through fine-tuning us-
ing a new virtual adversarial training technique.
He et al. (2021) introduce mDEBERTa-v3 by fur-
ther improving the efficiency of pre-training by

https://doi.org/10.18653/v1/2020.acl-main.466
https://doi.org/10.18653/v1/2020.acl-main.466
https://doi.org/10.18653/v1/2020.acl-main.466


replacing Masked-Language Modeling (MLM) in
DeBERTa with the task of replaced token detec-
tion (RTD) where the model is trained to predict
whether a token in the corrupted input is either
original or replaced by agenerator. Further im-
provements are achieved via gradient-disentangled
embedding sharing (GDES).

XLM-RoBERTa XLM-R (Conneau et al., 2020)
is a multilingual language model which has the
same pretraining objectives as RoBERTa (Liu et al.,
2019), such as dynamic masking, but not next sen-
tence prediction. It is pre-trained on a large corpus
comprising 100 languages. The authors report a sig-
nificant performance gain over multilingual BERT
(mBERT) in a variety of tasks with results com-
petitive with state-of-the-art monolingual models
(Conneau et al., 2020).

C Monolingual Models Overview



Model Language Source Params Vocab Specs

general

iarfmoose/roberta-base-bulgarian bg - 126M 52K 200K steps / BS 8
UWB-AIR/Czert-B-base-cased cs (Sido et al., 2021) 109M 31K 50K steps
Maltehb/danish-bert-botxo da (Hvingelby et al., 2020) 111M 32K 1M steps / BS 1280
dbmdz/bert-base-german-cased de - 110M 31K 1.5M steps
deepset/gbert-base de (Chan et al., 2020) 110M 31K 30K steps / BS 1024
nlpaueb/bert-base-greek-uncased-v1 el (Koutsikakis et al., 2020) 113M 35K 1M steps / BS 256
roberta-base en (Liu et al., 2019) 125M 50K 500K steps / BS 8K
bertin-project/bertin-roberta-base-spanish es (de la Rosa et al., 2022) 125M 50K 250K steps / BS 2048
PlanTL-GOB-ES/roberta-base-bne es (Gutiérrez-Fandiño et al., 2021b) 125M 50K 10K steps / BS 2048
tartuNLP/EstBERT et (Tanvir et al., 2021) 124M 50K 600K steps / BS 16
TurkuNLP/bert-base-finnish-cased-v1 fi (Virtanen et al., 2019) 125M 50K 1M steps / BS 1120
camembert-base fr (Martin et al., 2020) 111M 32K 100K steps / BS 8192
dbmdz/bert-base-french-europeana-cased fr - 111M 32K 3M steps / BS 128
DCU-NLP/bert-base-irish-cased-v1 ga (Barry et al., 2021) 109M 30K 100K steps / BS 128
SZTAKI-HLT/hubert-base-cc hu (Nemeskey, 2020) 111M 32K 600K steps / BS 384
Musixmatch/umberto-commoncrawl-cased-v1 it - 111M 32K -
dbmdz/bert-base-italian-cased it - 110M 31K 2-3M steps
GroNLP/bert-base-dutch-cased nl (de Vries et al., 2019) 109M 30K 850K steps
pdelobelle/robbert-v2-dutch-base nl (Delobelle et al., 2020) 117M 40K 16K / BS 8192
dkleczek/bert-base-polish-uncased-v1 pl 132M 60K 100K steps / BS 256
neuralmind/bert-base-portuguese-cased pt (Souza et al., 2020) 109M 30K 1M steps
dumitrescustefan/bert-base-romanian-uncased-v1 ro (Dumitrescu et al., 2020) 124M 50K 100K steps / BS 20
gerulata/slovakbert sk (Pikuliak et al., 2021) 125M 50K 300K steps / BS 512
KB/bert-base-swedish-cased sv (Malmsten et al., 2020) 125M 50K 100K steps / BS 128

legal

zlucia/custom-legalbert en (Zheng et al., 2021) 111M 32K 2M steps
nlpaueb/legal-bert-base-uncased en (Chalkidis et al., 2020) 109M 31K 1M steps / BS 256
PlanTL-GOB-ES/RoBERTalex es (Gutiérrez-Fandiño et al., 2021a) 126M 52K BS 2048
dlicari/Italian-Legal-BERT it (Licari and Comandé, 2022) 111M 32K 8.4M steps / BS 10
readerbench/jurBERT-base ro (Masala et al., 2021) 111M 33K -

Table 8: Monolingual models. BS is short for batch size. For a detailed overview of the pretraining corpora, we
refer to the publications. For some models we were not able to find publications/specs.

.
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G Original Paper Results

In this section, we present an overview of scores for each configuration of the LEXTREME dataset as
provided in the original papers. When certain configurations were not available, no scores were obtained.
It should be noted that different papers provide varying scores, making direct comparisons with our
results challenging. Additionally, the variability in the training and evaluation procedure used across
different papers may impact the resulting scores, which is an important factor to consider. To gain a
better understanding of the training and evaluation procedure please refer to the cited references. The
LEXTREME scores are calculated by taking the arithmetic mean of each seed (three in total).

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 precision recall accuracy

Lage-Freitas et al. (2022) BERT-Imbau pt pt - - 73.0 - - - 66.0 63.0 73.0
Lage-Freitas et al. (2022) Bidirectional Long Short-Term Memory (BiLSTM) pt pt - - 55.0 - - - 43.0 41.0 55.0
Lage-Freitas et al. (2022) Convolutional Neural Networks (CNN) pt pt - - 61.0 - - - 65.0 59.0 70.0
Lage-Freitas et al. (2022) decision tree pt pt - - 63.0 - - - 67.0 61.0 72.0
Lage-Freitas et al. (2022) eXtreme Gradient Boosting (XGBoost) pt pt - - 70.0 - - - 73.0 68.0 77.0
Lage-Freitas et al. (2022) Gated Recurrent Unit (GRU) pt pt - - 72.0 - - - 66.0 61.0 72.0
Lage-Freitas et al. (2022) Gaussian Naive Bayes (GNB) pt pt - - 48.0 - - - 47.0 48.0 55.0
Lage-Freitas et al. (2022) Long Short-Term Memory (LSTM) pt pt - - 71.0 - - - 64.0 61.0 71.0
Lage-Freitas et al. (2022) random forest pt pt - - 29.0 - - - 52.0 36.0 61.0
Lage-Freitas et al. (2022) support vector machine pt pt - - 68.0 - - - 72.0 66.0 76.0
lextreme distilbert-base-multilingual-cased pt pt 51.3 51.9 50.3 54.0 54.0 54.0 - - 54.0
lextreme microsoft/mdeberta-v3-base pt pt 66.2 69.1 67.2 71.5 71.5 71.5 - - 71.5
lextreme microsoft/Multilingual-MiniLM-L12-H384 pt pt 51.9 53.8 49.4 50.2 50.2 50.2 - - 50.2
lextreme neuralmind/bert-base-portuguese-cased pt pt 64.5 68.5 64.5 67.2 67.2 67.2 - - 67.2
lextreme xlm-roberta-base pt pt 64.7 68.3 65.4 69.1 69.1 69.1 - - 69.1
lextreme xlm-roberta-large pt pt 53.3 59.2 55.1 63.2 63.2 63.2 - - 63.2

Table 15: BCD-J. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 precision recall accuracy

Lage-Freitas et al. (2022) BERT-Imbau pt pt - - 98.0 - - - 59.0 53.0 98.0
Lage-Freitas et al. (2022) Bidirectional Long Short-Term Memory (BiLSTM) pt pt - - 99.0 - - - 80.0 65.0 99.0
Lage-Freitas et al. (2022) Convolutional Neural Networks (CNN) pt pt - - 99.0 - - - 88.0 69.0 99.0
Lage-Freitas et al. (2022) decision tree pt pt - - 81.0 - - - 88.0 77.0 99.0
Lage-Freitas et al. (2022) eXtreme Gradient Boosting (XGBoost) pt pt - - 81.0 - - - 92.0 74.0 99.0
Lage-Freitas et al. (2022) Gated Recurrent Unit (GRU) pt pt - - 99.0 - - - 84.0 65.0 99.0
Lage-Freitas et al. (2022) Gaussian Naive Bayes (GNB) pt pt - - 64.0 - - - 73.0 61.0 98.0
Lage-Freitas et al. (2022) Long Short-Term Memory (LSTM) pt pt - - 99.0 - - - 89.0 66.0 99.0
Lage-Freitas et al. (2022) random forest pt pt - - 50.0 - - - 49.0 50.0 98.0
Lage-Freitas et al. (2022) support vector machine pt pt - - 67.0 - - - 85.0 62.0 98.0
lextreme distilbert-base-multilingual-cased pt pt 57.6 61.4 58.8 96.4 96.4 96.4 - - 96.4
lextreme microsoft/mdeberta-v3-base pt pt 51.9 57.3 53.2 96.4 96.4 96.4 - - 96.4
lextreme microsoft/Multilingual-MiniLM-L12-H384 pt pt 55.9 69.8 56.7 88.7 88.7 88.7 - - 88.7
lextreme neuralmind/bert-base-portuguese-cased pt pt 70.3 73.9 70.6 96.9 96.9 96.9 - - 96.9
lextreme xlm-roberta-base pt pt 61.5 62.1 61.6 97.7 97.7 97.7 - - 97.7
lextreme xlm-roberta-large pt pt 64.5 61.8 62.3 97.1 97.1 97.1 - - 97.1

Table 16: BCD-U. The best scores are in bold.



Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 precision recall accuracy

Tziafas et al. (2021) XLM-RoBERTa all all - - 59.2 - - - 62.6 60.0 54.6
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all all - - 59.8 - - - 55.9 62.8 57.7
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all fr-be - - 72.0 - - - 84.9 64.5 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all pl - - 58.3 - - - 53.3 66.7 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all fr - - 81.8 - - - 82.9 84.7 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all it - - 58.0 - - - 64.6 56.7 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 nl nl - - 55.0 - - - 62.5 50.0 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all nb - - 41.4 - - - 40.5 47.7 -
Tziafas et al. (2021) XLM-RoBERTa pretrained on C19 all en - - 69.0 - - - 69.5 70.4 -
Tziafas et al. (2021) gated recurrent unit all all - - 46.6 - - - 42.1 51.1 40.0
Tziafas et al. (2021) multi-layered perceptron all all - - 25.7 - - - 18.5 50.4 24.7
Tziafas et al. (2021) support vector machine all all - - 37.2 - - - 29.5 50.8 39.5
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without fr-be fr-be - - 43.7 - - - 55.9 36.6 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without pl pl - - 58.3 - - - 53.3 66.7 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without fr fr - - 31.8 - - - 27.0 39.3 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without it it - - 33.5 - - - 43.1 36.9 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without nl nl - - 20.6 - - - 37.5 23.6 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without nb nb - - 15.5 - - - 13.5 18.9 -
Tziafas et al. (2021) zero-shot classification XLM-RoBERTa pretrained on C19 all without en en - - 38.4 - - - 42.3 37.0 -
lextreme bert-base-cased en en 44.8 16.5 22.1 89.2 34.4 49.6 - - 55.1
lextreme bert-base-uncased en en 36.6 18.0 22.3 79.6 37.5 50.9 - - 54.7
lextreme camembert-base fr fr 31.5 9.5 13.7 77.7 22.0 34.3 - - 62.5
lextreme dbmdz/bert-base-french-europeana-cased fr fr 38.2 34.4 36.0 76.1 64.7 69.9 - - 75.7
lextreme dbmdz/bert-base-italian-cased it it 37.7 25.5 29.5 78.8 55.6 65.1 - - 65.9
lextreme distilbert-base-multilingual-cased all all 50.6 33.9 39.5 75.6 54.4 63.2 - - 66.3
lextreme distilbert-base-uncased en en 31.2 12.3 16.6 87.4 28.6 43.1 - - 52.7
lextreme dkleczek/bert-base-polish-uncased-v1 pl pl 20.8 7.8 11.3 100.0 29.6 45.5 - - 36.7
lextreme dlicari/Italian-Legal-BERT it it 36.3 18.0 22.3 81.1 41.5 54.9 - - 61.3
lextreme GroNLP/bert-base-dutch-cased nl nl 8.3 3.1 4.4 66.7 12.5 20.7 - - 61.1
lextreme microsoft/mdeberta-v3-base all all 50.8 37.9 40.7 75.6 64.7 69.8 - - 69.1
lextreme microsoft/Multilingual-MiniLM-L12-H384 all all 18.4 3.7 5.8 55.0 8.2 14.3 - - 49.4
lextreme Musixmatch/umberto-commoncrawl-cased-v1 it it 21.4 13.3 16.3 88.5 37.2 52.4 - - 58.8
lextreme nlpaueb/legal-bert-base-uncased en en 50.6 22.3 29.4 87.1 42.7 57.2 - - 58.8
lextreme pdelobelle/robbert-v2-dutch-base nl nl 0.0 0.0 0.0 0.0 0.0 0.0 - - 55.6
lextreme roberta-base en en 50.0 31.0 37.0 81.3 51.6 63.1 - - 61.3
lextreme roberta-large en en 40.5 32.1 35.1 73.3 53.6 61.9 - - 56.8
lextreme SZTAKI-HLT/hubert-base-cc hu hu 0.0 0.0 0.0 0.0 0.0 0.0 - - 90.0
lextreme xlm-roberta-base all all 57.0 41.3 45.9 74.5 60.6 66.8 - - 67.8
lextreme xlm-roberta-large all all 67.2 47.6 54.2 80.0 63.0 70.4 - - 70.7
lextreme zlucia/custom-legalbert en en 50.2 26.3 32.7 79.5 47.4 59.2 - - 60.1

Table 17: C19. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 precision recall f1 accuracy

Urchs. et al. (2021) tf-idf/decision stump de de - - - - - - 13.0 25.0 17.0 53.0
Urchs. et al. (2021) tf-idf/logistic regression de de - - - - - - 79.0 63.0 68.0 77.0
Urchs. et al. (2021) tf-idf/support vector machine de de - - - - - - 74.0 67.0 70.0 77.0
Urchs. et al. (2021) Unigram/decision stump de de - - - - - - 13.0 25.0 17.0 53.0
Urchs. et al. (2021) Unigram/logistic regression de de - - - - - - 74.0 67.0 70.0 77.0
Urchs. et al. (2021) Unigram/support vector machine de de - - - - - - 67.0 66.0 66.0 74.0
lextreme dbmdz/bert-base-german-cased de de 69.4 79.4 72.6 80.2 80.2 80.2 - - - 80.2
lextreme deepset/gbert-base de de 72.6 80.0 75.1 82.8 82.8 82.8 - - - 82.8
lextreme distilbert-base-multilingual-cased de de 66.9 75.9 69.5 77.9 77.9 77.9 - - - 77.9
lextreme microsoft/mdeberta-v3-base de de 68.9 80.1 71.2 79.0 79.0 79.0 - - - 79.0
lextreme microsoft/Multilingual-MiniLM-L12-H384 de de 70.6 78.2 73.3 80.8 80.8 80.8 - - - 80.8
lextreme xlm-roberta-base de de 69.3 78.3 72.0 79.6 79.6 79.6 - - - 79.6
lextreme xlm-roberta-large de de 70.9 78.9 73.1 81.0 81.0 81.0 - - - 81.0

Table 18: GAM. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Papaloukas et al. (2021) BIGRU-ATT el el - - - 81.0 81.0 81.0 -
Papaloukas et al. (2021) BIGRU-LWAN el el - - - 77.0 77.0 77.0 -
Papaloukas et al. (2021) BIGRU-MAX el el - - - 78.0 78.0 78.0 -
Papaloukas et al. (2021) GREEK-BERT el el - - - 82.0 82.0 82.0 -
Papaloukas et al. (2021) GREEK-LEGAL-BERT el el - - - 84.0 84.0 84.0 -
Papaloukas et al. (2021) MBERT el el - - - 80.0 80.0 80.0 -
Papaloukas et al. (2021) Support Vector Machines + Bag-of-Words (SVM-BOW) el el - - - 78.0 78.0 78.0 -
Papaloukas et al. (2021) XGBOOST-BOW el el - - - 68.0 68.0 68.0 -
Papaloukas et al. (2021) XLM-ROBERTA el el - - - 81.0 81.0 81.0 -
lextreme distilbert-base-multilingual-cased el el 74.7 69.1 70.0 80.5 80.5 80.5 80.5
lextreme microsoft/mdeberta-v3-base el el 61.7 59.7 58.6 77.2 77.2 77.2 77.2
lextreme microsoft/Multilingual-MiniLM-L12-H384 el el 42.6 41.2 39.4 66.1 66.1 66.1 66.1
lextreme nlpaueb/bert-base-greek-uncased-v1 el el 78.9 76.5 76.5 85.3 85.3 85.3 85.3
lextreme xlm-roberta-base el el 71.7 69.9 69.3 82.3 82.3 82.3 82.3
lextreme xlm-roberta-large el el 77.2 74.9 74.7 84.5 84.5 84.5 84.5

Table 19: GLC-C. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Papaloukas et al. (2021) BIGRU-ATT el el - - - 75.0 75.0 75.0 -
Papaloukas et al. (2021) BIGRU-LWAN el el - - - 65.0 65.0 65.0 -
Papaloukas et al. (2021) BIGRU-MAX el el - - - 63.0 63.0 63.0 -
Papaloukas et al. (2021) GREEK-BERT el el - - - 79.0 79.0 79.0 -
Papaloukas et al. (2021) GREEK-LEGAL-BERT el el - - - 81.0 81.0 81.0 -
Papaloukas et al. (2021) MBERT el el - - - 77.0 77.0 77.0 -
Papaloukas et al. (2021) Support Vector Machines + Bag-of-Words (SVM-BOW) el el - - - 38.0 38.0 38.0 -
Papaloukas et al. (2021) XGBOOST-BOW el el - - - 55.0 55.0 55.0 -
Papaloukas et al. (2021) XLM-ROBERTA el el - - - 78.0 78.0 78.0 -
lextreme distilbert-base-multilingual-cased el el 34.5 36.8 33.2 64.4 64.4 64.4 64.4
lextreme microsoft/mdeberta-v3-base el el 13.3 15.7 12.4 40.7 40.7 40.7 40.7
lextreme microsoft/Multilingual-MiniLM-L12-H384 el el 5.5 7.3 5.2 28.2 28.2 28.2 28.2
lextreme nlpaueb/bert-base-greek-uncased-v1 el el 64.0 65.5 62.8 80.3 80.3 80.3 80.3
lextreme xlm-roberta-base el el 15.8 18.6 15.4 42.2 42.2 42.2 42.2
lextreme xlm-roberta-large el el 39.6 41.3 39.1 53.6 53.6 53.6 53.6

Table 20: GLC-S. The best scores are in bold.



Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Papaloukas et al. (2021) BIGRU-ATT el el - - - 86.0 86.0 86.0 -
Papaloukas et al. (2021) BIGRU-LWAN el el - - - 84.0 84.0 84.0 -
Papaloukas et al. (2021) BIGRU-MAX el el - - - 84.0 84.0 84.0 -
Papaloukas et al. (2021) GREEK-BERT el el - - - 88.0 88.0 88.0 -
Papaloukas et al. (2021) GREEK-LEGAL-BERT el el - - - 89.0 89.0 89.0 -
Papaloukas et al. (2021) MBERT el el - - - 86.0 86.0 86.0 -
Papaloukas et al. (2021) Support Vector Machines + Bag-of-Words (SVM-BOW) el el - - - 85.0 85.0 85.0 -
Papaloukas et al. (2021) XGBOOST-BOW el el - - - 77.0 77.0 77.0 -
Papaloukas et al. (2021) XLM-ROBERTA el el - - - 85.0 85.0 85.0 -
lextreme distilbert-base-multilingual-cased el el 85.8 84.9 85.2 87.3 87.3 87.3 87.3
lextreme microsoft/mdeberta-v3-base el el 85.8 85.5 85.6 87.8 87.8 87.8 87.8
lextreme microsoft/Multilingual-MiniLM-L12-H384 el el 82.3 81.6 81.7 84.8 84.8 84.8 84.8
lextreme nlpaueb/bert-base-greek-uncased-v1 el el 88.5 88.0 88.1 89.8 89.8 89.8 89.8
lextreme xlm-roberta-base el el 86.3 85.6 85.9 88.1 88.1 88.1 88.1
lextreme xlm-roberta-large el el 58.4 59.0 58.3 62.0 62.0 62.0 62.0

Table 21: GLC-V. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Angelidis et al. (2018) BILSTM-BILSTM-LR el el 91.0 85.0 88.0 - - - -
Angelidis et al. (2018) BILSTM-CRF el el 87.0 80.0 83.0 - - - -
Angelidis et al. (2018) BILSTM-LR el el 89.0 79.0 84.0 - - - -
lextreme distilbert-base-multilingual-cased el el 67.5 76.0 71.0 97.3 96.8 97.0 96.6
lextreme microsoft/mdeberta-v3-base el el 73.5 74.5 73.3 97.4 97.1 97.3 96.9
lextreme microsoft/Multilingual-MiniLM-L12-H384 el el 75.3 73.2 74.0 97.5 97.2 97.3 96.9
lextreme nlpaueb/bert-base-greek-uncased-v1 el el 74.8 71.4 72.6 97.3 97.0 97.1 96.8
lextreme xlm-roberta-base el el 75.7 73.8 74.6 97.5 97.3 97.4 97.0
lextreme xlm-roberta-large el el 73.1 76.3 74.1 97.6 97.3 97.4 97.1

Table 22: GLN. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Pais et al. (2021) CoRoLa word embeddings + MARCELL word embeddings+BiLSTM-CRF ro ro - - 84.7 - - - -
Pais et al. (2021) CoRoLa word embeddings + MARCELL word embeddings+BiLSTM-CRF + gazetteers ro ro - - 84.8 - - - -
Pais et al. (2021) CoRoLa word embeddings + MARCELL word embeddings+BiLSTM-CRF + gazetteers + affixes ro ro - - 83.4 - - - -
Pais et al. (2021) CoRoLa word embeddings+BiLSTM-CRF ro ro - - 83.9 - - - -
Pais et al. (2021) CoRoLa word embeddings+BiLSTM-CRF + gazetteers ro ro - - 85.0 - - - -
Pais et al. (2021) CoRoLa word embeddings+BiLSTM-CRF + gazetteers + affixes ro ro - - 83.9 - - - -
Pais et al. (2021) Intersection ro ro - - 86.1 - - - -
Pais et al. (2021) Longest span ro ro - - 87.3 - - - -
Pais et al. (2021) MARCELL word embeddings+BiLSTM-CRF ro ro - - 83.5 - - - -
Pais et al. (2021) MARCELL word embeddings+BiLSTM-CRF + gazetteers ro ro - - 85.3 - - - -
Pais et al. (2021) MARCELL word embeddings+BiLSTM-CRF + gazetteers + affixes ro ro - - 83.4 - - - -
Pais et al. (2021) Reunion ro ro - - 90.4 - - - -
Pais et al. (2021) Voting algorithm ro ro - - 89.4 - - - -
lextreme distilbert-base-multilingual-cased ro ro 85.5 85.1 85.3 97.3 96.6 96.9 96.4
lextreme dumitrescustefan/bert-base-romanian-uncased-v1 ro ro 85.2 82.4 83.6 96.8 96.8 96.8 96.2
lextreme microsoft/mdeberta-v3-base ro ro 85.9 84.6 85.1 97.4 96.8 97.1 96.7
lextreme microsoft/Multilingual-MiniLM-L12-H384 ro ro 85.2 83.9 84.5 97.4 97.1 97.2 96.8
lextreme readerbench/jurBERT-base ro ro 83.1 86.6 84.7 97.0 97.2 97.1 96.6
lextreme xlm-roberta-base ro ro 84.9 87.0 85.8 97.4 97.2 97.3 96.9
lextreme xlm-roberta-large ro ro 85.0 85.3 85.0 97.5 97.2 97.3 96.9

Table 23: LNR. The best scores are in bold.

Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 precision recall f1 accuracy

Luz de Araujo et al. (2018) LSTM-CRF (long short-term memory + conditional random field) pt pt - - - - - - 93.2 91.9 92.5 -
lextreme distilbert-base-multilingual-cased pt pt 89.9 89.6 89.6 98.5 98.6 98.6 - - - 98.0
lextreme microsoft/mdeberta-v3-base pt pt 94.7 94.9 94.8 99.0 99.4 99.2 - - - 98.8
lextreme microsoft/Multilingual-MiniLM-L12-H384 pt pt 93.9 93.4 93.6 98.9 99.2 99.1 - - - 98.7
lextreme neuralmind/bert-base-portuguese-cased pt pt 94.7 93.5 94.1 99.0 99.2 99.1 - - - 98.8
lextreme xlm-roberta-base pt pt 94.3 94.0 94.1 99.0 99.2 99.1 - - - 98.7
lextreme xlm-roberta-large pt pt 95.5 95.2 95.3 99.1 99.4 99.2 - - - 98.9

Table 24: LNB. The best scores are in bold.



Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy mean r-precision

Chalkidis et al. (2021a) xlm-roberta-base all all - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base all en - - - - - - - 66.4
Chalkidis et al. (2021a) xlm-roberta-base all da - - - - - - - 66.2
Chalkidis et al. (2021a) xlm-roberta-base all de - - - - - - - 66.2
Chalkidis et al. (2021a) xlm-roberta-base all nl - - - - - - - 66.1
Chalkidis et al. (2021a) xlm-roberta-base all sv - - - - - - - 66.1
Chalkidis et al. (2021a) xlm-roberta-base all ro - - - - - - - 66.3
Chalkidis et al. (2021a) xlm-roberta-base all es - - - - - - - 66.3
Chalkidis et al. (2021a) xlm-roberta-base all fr - - - - - - - 66.2
Chalkidis et al. (2021a) xlm-roberta-base all it - - - - - - - 66.3
Chalkidis et al. (2021a) xlm-roberta-base all pt - - - - - - - 65.9
Chalkidis et al. (2021a) xlm-roberta-base all bg - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base all cs - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base all hr - - - - - - - 65.8
Chalkidis et al. (2021a) xlm-roberta-base all pl - - - - - - - 65.6
Chalkidis et al. (2021a) xlm-roberta-base all sk - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base all sl - - - - - - - 65.8
Chalkidis et al. (2021a) xlm-roberta-base all hu - - - - - - - 65.2
Chalkidis et al. (2021a) xlm-roberta-base all fi - - - - - - - 65.8
Chalkidis et al. (2021a) xlm-roberta-base all et - - - - - - - 65.6
Chalkidis et al. (2021a) xlm-roberta-base all lt - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base all lv - - - - - - - 65.8
Chalkidis et al. (2021a) xlm-roberta-base all el - - - - - - - 65.1
Chalkidis et al. (2021a) xlm-roberta-base all mt - - - - - - - 62.3
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all all - - - - - - - 66.4
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all en - - - - - - - 67.3
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all da - - - - - - - 67.1
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all de - - - - - - - 66.3
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all nl - - - - - - - 67.1
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all sv - - - - - - - 67.0
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all ro - - - - - - - 67.4
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all es - - - - - - - 67.2
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all fr - - - - - - - 67.1
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all it - - - - - - - 67.4
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all pt - - - - - - - 67.0
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all bg - - - - - - - 66.6
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all cs - - - - - - - 67.0
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all hr - - - - - - - 67.0
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all pl - - - - - - - 66.2
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all sk - - - - - - - 66.2
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all sl - - - - - - - 66.8
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all hu - - - - - - - 65.5
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all fi - - - - - - - 66.6
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all et - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all lt - - - - - - - 65.8
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all lv - - - - - - - 66.7
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all el - - - - - - - 65.7
Chalkidis et al. (2021a) xlm-roberta-base + Adapters layers all mt - - - - - - - 61.6
lextreme bert-base-cased en en 21.1 42.2 25.5 40.7 75.2 52.8 0.5 -
lextreme bert-base-uncased en en 21.7 39.8 25.3 41.9 73.8 53.4 0.8 -
lextreme bertin-project/bertin-roberta-base-spanish es es 26.0 12.8 15.4 79.1 46.0 58.2 2.7 -
lextreme camembert-base fr fr 23.2 16.9 17.4 70.3 56.3 62.5 2.1 -
lextreme dbmdz/bert-base-french-europeana-cased fr fr 21.6 33.5 23.7 44.8 69.6 54.5 1.4 -
lextreme dbmdz/bert-base-german-cased de de 21.7 39.0 25.0 42.6 73.5 53.9 0.7 -
lextreme dbmdz/bert-base-italian-cased it it 20.0 36.6 23.1 41.5 72.6 52.8 0.4 -
lextreme deepset/gbert-base de de 20.2 36.8 23.6 41.8 72.4 53.0 0.6 -
lextreme distilbert-base-multilingual-cased all all 15.9 13.1 12.0 55.9 51.9 53.8 1.6 -
lextreme distilbert-base-uncased en en 30.6 29.6 27.6 61.9 65.7 63.7 1.9 -
lextreme dkleczek/bert-base-polish-uncased-v1 pl pl 23.2 31.4 23.4 45.9 69.4 55.3 0.7 -
lextreme dlicari/Italian-Legal-BERT it it 16.0 31.5 18.8 37.5 70.8 48.8 0.4 -
lextreme dumitrescustefan/bert-base-romanian-uncased-v1 ro ro 23.7 31.0 23.5 48.2 69.6 56.9 0.8 -
lextreme gerulata/slovakbert sk sk 16.8 11.1 11.9 73.8 48.5 58.5 1.5 -
lextreme GroNLP/bert-base-dutch-cased nl nl 26.0 26.3 23.4 57.1 64.6 60.6 3.7 -
lextreme iarfmoose/roberta-base-bulgarian bg bg 4.6 2.9 3.2 38.7 18.2 24.8 0.6 -
lextreme KB/bert-base-swedish-cased sv sv 23.5 35.1 25.1 46.4 72.2 56.5 0.8 -
lextreme Maltehb/danish-bert-botxo da da 22.2 34.6 24.3 45.1 72.0 55.4 0.9 -
lextreme microsoft/mdeberta-v3-base all all 12.7 19.2 13.1 39.7 62.0 48.1 0.2 -
lextreme microsoft/Multilingual-MiniLM-L12-H384 all all 8.4 4.9 5.6 76.2 30.2 43.3 0.9 -
lextreme Musixmatch/umberto-commoncrawl-cased-v1 it it 25.7 19.6 20.3 68.9 57.9 62.9 2.5 -
lextreme neuralmind/bert-base-portuguese-cased pt pt 21.8 33.2 23.5 45.5 70.5 55.3 1.0 -
lextreme nlpaueb/bert-base-greek-uncased-v1 el el 19.8 39.0 23.5 40.5 73.1 52.1 0.5 -
lextreme nlpaueb/legal-bert-base-uncased en en 19.6 43.4 24.3 38.6 77.0 51.4 0.4 -
lextreme pdelobelle/robbert-v2-dutch-base nl nl 19.3 15.3 15.3 66.0 54.9 60.0 1.6 -
lextreme PlanTL-GOB-ES/roberta-base-bne es es 21.8 10.9 13.1 80.5 45.2 57.9 2.2 -
lextreme PlanTL-GOB-ES/RoBERTalex es es 23.3 21.9 20.1 58.9 62.5 60.6 1.3 -
lextreme readerbench/jurBERT-base ro ro 21.0 25.7 20.8 48.4 65.5 55.7 0.8 -
lextreme roberta-base en en 0.0 0.0 0.0 0.0 0.0 0.0 0.3 -
lextreme roberta-large en en 12.8 17.6 13.3 37.4 35.9 31.1 0.9 -
lextreme SZTAKI-HLT/hubert-base-cc hu hu 25.6 30.2 24.7 50.8 66.7 57.7 1.1 -
lextreme tartuNLP/EstBERT et et 20.0 31.7 21.9 43.6 69.3 53.5 0.5 -
lextreme TurkuNLP/bert-base-finnish-cased-v1 fi fi 22.9 35.4 25.1 46.6 70.8 56.2 0.8 -
lextreme UWB-AIR/Czert-B-base-cased cs cs 23.4 35.7 25.2 45.4 70.9 55.3 0.6 -
lextreme xlm-roberta-base all all 7.1 4.2 4.7 77.2 30.6 43.8 0.7 -
lextreme xlm-roberta-large all all 19.5 14.3 14.2 66.9 54.5 60.0 1.2 -
lextreme zlucia/custom-legalbert en en 19.6 36.8 22.6 40.4 73.7 52.1 0.4 -

Table 25: MEU-3. The best scores are in bold.



Source Method TrainLang TestLang macro-precision macro-recall macro-f1 micro-precision micro-recall micro-f1 accuracy

Niklaus et al. (2021) French BERT fr fr - - 58.6 - - 74.7 -
Niklaus et al. (2021) French Hierarchical BERT fr fr - - 70.2 - - 80.2 -
Niklaus et al. (2021) French Long BERT fr fr - - 68.0 - - 77.2 -
Niklaus et al. (2021) German Hierarchical BERT de de - - 68.5 - - 77.1 -
Niklaus et al. (2021) German Long BERT de de - - 67.9 - - 76.5 -
Niklaus et al. (2021) German-BERT de de - - 63.7 - - 74.0 -
Niklaus et al. (2021) Italian BERT it it - - 55.2 - - 76.1 -
Niklaus et al. (2021) Italian Hierarchical BERT it it - - 57.1 - - 75.8 -
Niklaus et al. (2021) Italian Long BERT it it - - 59.8 - - 77.1 -
Niklaus et al. (2021) Multilingual BERT de de - - 58.2 - - 68.4 -
Niklaus et al. (2021) Multilingual BERT fr fr - - 55.0 - - 71.3 -
Niklaus et al. (2021) Multilingual BERT it it - - 53.0 - - 77.6 -
Niklaus et al. (2021) Multilingual Hierarchical BERT de de - - 57.1 - - 76.8 -
Niklaus et al. (2021) Multilingual Hierarchical BERT fr fr - - 67.2 - - 76.3 -
Niklaus et al. (2021) Multilingual Hierarchical BERT it it - - 55.5 - - 72.4 -
Niklaus et al. (2021) Multilingual Long BERT de de - - 66.5 - - 75.9 -
Niklaus et al. (2021) Multilingual Long BERT fr fr - - 64.3 - - 73.3 -
Niklaus et al. (2021) Multilingual Long BERT it it - - 58.4 - - 76.0 -
lextreme camembert-base fr fr 68.2 73.3 69.7 78.9 78.9 78.9 78.9
lextreme dbmdz/bert-base-french-europeana-cased fr fr 69.7 72.2 70.2 80.4 80.4 80.4 80.4
lextreme dbmdz/bert-base-german-cased de de 67.5 72.0 68.7 77.3 77.3 77.3 77.3
lextreme dbmdz/bert-base-italian-cased it it 63.3 56.8 57.3 79.8 79.8 79.8 79.8
lextreme deepset/gbert-base de de 68.6 71.6 69.3 78.7 78.7 78.7 78.7
lextreme distilbert-base-multilingual-cased all all 65.8 72.3 66.7 74.3 74.3 74.3 74.3
lextreme dlicari/Italian-Legal-BERT it it 65.1 60.2 60.6 80.3 80.3 80.3 80.3
lextreme microsoft/mdeberta-v3-base all all 67.7 71.4 69.0 78.6 78.6 78.6 78.6
lextreme microsoft/Multilingual-MiniLM-L12-H384 all all 66.4 71.9 67.6 76.1 76.1 76.1 76.1
lextreme Musixmatch/umberto-commoncrawl-cased-v1 it it 62.1 56.9 57.4 78.4 78.4 78.4 78.4
lextreme xlm-roberta-base all all 67.1 72.9 68.3 76.4 76.4 76.4 76.4
lextreme xlm-roberta-large all all 67.1 72.5 68.3 76.6 76.6 76.6 76.6

Table 26: SJP. The best scores are in bold.



H Histograms

In the following, we provide the histograms for the distribution of the sequence length of the input
(sentence or entire document) from each dataset. The length is measured by counting the tokens using the
tokenizers of the multilingual models, i.e., DistilBERT, MiniLM, mDeBERTa v3, XLM-R base, XLM-R
large. We only display the distribution within the 99th percentile; the rest is grouped together at the end.

Figure 2: Histogram for dataset BCD-J

Figure 3: Histogram for dataset BCD-U



Figure 4: Histogram for dataset GAM

Figure 5: Histogram for dataset GLC-V



Figure 6: Histogram for dataset GLC-C

Figure 7: Histogram for dataset GLC-S



Figure 8: Histogram for dataset SJP

Figure 9: Histogram for dataset OTS-UL



Figure 10: Histogram for dataset OTS-CT

Figure 11: Histogram for dataset C19



Figure 12: Histogram for dataset MEU-1

Figure 13: Histogram for dataset GLN



Figure 14: Histogram for dataset LNR

Figure 15: Histogram for dataset LNB



Figure 16: Histogram for dataset MAP-C

Figure 17: Histogram for dataset MAP-F


