
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCIENCEAGENTBENCH:
TOWARD RIGOROUS ASSESSMENT OF LANGUAGE
AGENTS FOR DATA-DRIVEN SCIENTIFIC DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancements of language language models (LLMs) have piqued growing in-
terest in developing LLM-based language agents to automate scientific discovery
end-to-end, which has sparked both excitement and skepticism about the true ca-
pabilities of such agents. In this work, we argue that for an agent to fully automate
scientific discovery, it must be able to complete all essential tasks in the workflow.
Thus, we call for rigorous assessment of agents on individual tasks in a scien-
tific workflow before making bold claims on end-to-end automation. To this end,
we present ScienceAgentBench, a new benchmark for evaluating language agents
for data-driven scientific discovery. To ensure the scientific authenticity and real-
world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed
publications in four disciplines and engage nine subject matter experts to validate
them. We unify the target output for every task to a self-contained Python program
file and employ an array of evaluation metrics to examine the generated programs,
execution results, and costs. Each task goes through multiple rounds of manual
validation by annotators and subject matter experts to ensure its annotation quality
and scientific plausibility. We also propose two effective strategies to mitigate data
contamination concerns. Using our benchmark, we evaluate five open-weight and
proprietary LLMs, each with three frameworks: direct prompting, OpenHands,
and self-debug. Given three attempts for each task, the best-performing agent
can only solve 32.4% of the tasks independently and 34.3% with expert-provided
knowledge. These results underscore the limited capacities of current language
agents in generating code for data-driven discovery, let alone end-to-end automa-
tion for scientific research. In the long run, ScienceAgentBench will serve as a
benchmark for rigorously measuring progress toward developing language agents
to assist human scientists in data-driven scientific discovery. 1

1 INTRODUCTION

Large language models (LLMs) have shown remarkable capabilities beyond text generation, includ-
ing reasoning (Wei et al., 2022; Yao et al., 2023), tool learning (Schick et al., 2023; Wang et al.,
2024a), and code generation (Chen et al., 2021; Yang et al., 2024a). These abilities have piqued
significant research interests in developing LLM-based language agents to automate scientific dis-
covery end-to-end. For instance, Majumder et al. (2024a) urge the community to build automated
systems for end-to-end data-driven discovery, an increasingly important workflow in many disci-
plines (Hey et al., 2009) that leverages existing datasets to derive new findings. More recently, Lu
et al. (2024) claim to have built The AI Scientist, an agent that is capable of automating the entire re-
search workflow, from generating ideas to running experiments and writing papers. This ambitious
claim has sparked both excitement and skepticism about the true capabilities of such agents.

In this work, we contend that for a language agent to fully automate data-driven discovery, it must
be able to complete all essential tasks in the workflow, such as model development, data analysis,
and visualization. Thus, we advocate careful evaluations of the agents’ performance on these tasks,
before claiming they can automate data-driven discovery end-to-end. Such an assessment strategy

1Code and data will be released online.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Data Processing (23) Model Development (23) Data Analysis (59) Info Visualization (65)

Feature Engineering (20)

Feature Selection (2)

Deep Learning (14)

Machine Learning (9)

Statistical Analysis (9)

Geospatial Analysis (12)

Data Visualization (45)

Map Visualization (18)

Computational Analysis (38)Data Selection (1) Molecule Visualization (2)

(a) (b) (c) (d)

Figure 1: Top: Distribution of sub-tasks in ScienceAgentBench. Each task in our benchmark con-
sists of one or more of these sub-tasks and requires successful completion of all sub-tasks to achieve
the task goal. Bottom: Heterogeneous datasets involved: (a) a cell image in Bioinformatics, (b) a
molecular activity visualization in Computational Chemistry, (c) a flooding risk map in Geographi-
cal Information Science, and (d) an EEG time series in Psychology and Cognitive Neuroscience.

helps grasp a more solid understanding of an agent’s strengths and limitations than purely relying
on end-to-end evaluations, e.g., using an LLM-based reviewer to assess generated papers (Lu et al.,
2024). Yet, high-quality benchmarks focusing on individual tasks in real-world scientific workflows
are lacking for objective assessment and continued development of agents for data-driven discovery.

To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for
data-driven discovery. The construction of ScienceAgentBench follows three key design principles.
(1) Scientific authenticity through co-design with subject matter experts: We ensure the authen-
ticity of tasks in our benchmark by directly extracting them from peer-reviewed publications and
engaging nine subject matter experts (incl. senior Ph.D. students and professors) from the respec-
tive disciplines to validate them. This approach also minimizes the generalization gap for agents
developed on our benchmark to real-world scenarios. In total, we curate 102 diverse tasks from
44 peer-reviewed publications in four disciplines: Bioinformatics, Computational Chemistry, Geo-
graphical Information Science, and Psychology & Cognitive Neuroscience (Figure 1). (2) Rigorous
graded evaluation: Reliable evaluation for language agents is notably difficult due to the open-
endedness and complexity of data-driven discovery tasks. We first unify the target output for every
task as a self-contained Python program, and then employ an array of evaluation metrics that ex-
amine the generated programs, execution results (e.g., rendered figures or test set predictions), and
costs. We also provide step-by-step rubrics specific to each task to enable graded evaluation. (3)
Careful multi-stage quality control: Each task goes through multiple rounds of manual validation
by annotators and subject matter experts to ensure its quality and scientific plausibility. We also
propose two effective strategies to mitigate data contamination concerns due to LLM pre-training.

We comprehensively evaluate five open-weight and proprietary LLMs, each with three frameworks:
direct prompting, OpenHands (Wang et al., 2024c), and self-debug. Surprisingly, without expert-
provided knowledge, Claude-3.5-Sonnet using self-debug can successfully solve 10.8% more tasks
than using OpenHands while costing 17 times less API fees. This result resonates with recent
findings that agent designs should jointly consider costs and performance to maximize their practical
utility (Kapoor et al., 2024). Still, given three attempts for each task, the best agent can only solve
32.4% of the tasks independently and 34.3% of them with expert-provided knowledge. These results
also suggest language agents cannot yet automate essential tasks in data-driven discovery nor the
research pipelines end-to-end, in contrast to claims in recent work such as Lu et al. (2024).

Despite their current mediocre performance, we believe language agents hold significant potential
in augmenting human scientists’ productivity: For each task in our benchmark, it takes a trained
annotator at least 2.5–3 hours on average to adapt an existing program from public sources, and
potentially much longer for a subject matter scientist to write the program from scratch. In contrast,
a language agent can usually generate a meaningful program draft within 10 minutes. In the long run,
ScienceAgentBench will serve as a benchmark for rigorously measuring progress toward developing
language agents to assist scientists in data-driven scientific discovery.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Train a multitask model on the Clintox dataset to predict a 
drug's toxicity and FDA approval status. Save the test set 
predictions, including the SMILES representation of 
drugs and the probability of positive labels, to 
"pred_results/clintox_test_pred.csv".

Dataset Directory:
|-- clintox/
|---- clintox_test.csv
|---- clintox_train.csv

Dataset Preview:
[START Preview of clintox/clintox_train.csv]
smiles,FDA_APPROVED,CT_TOX
CCC(/C=C/Cl)(C#C)O,1,0
C[C@H]1C[C@H]2[C@@H]3CC[C@@H]([C@]3(C[C
@@H]([C@@H]2[C@@]4(C1=CC(=O)CC4)C)O)C)C(
=O)C,1,0
C[C@@H]1CCN([C@H](C1)C(=O)[O-])C(=O)[C@H](
CCC[NH+]=C(N)N)NS(=O)(=O)c2cccc3c2NC[C@@H](
C3)C,1,0
...
[END Preview of clintox/clintox_train.csv]

1. *On the task*: The ClinTox dataset contains drugs approved by ……
2. *On featurization*: To represent the molecular structure, use Extended-Connectivity 
Fingerprints (ECFPs) featurization in deepchem……

(a) Task Instruction

(b) Dataset Information

(c) Expert-Provided Knowledge

import deepchem as dc
……
from deepchem.molnet.load_function.molnet_loader import 
_MolnetLoader

class MyClintoxLoader (_MolnetLoader):
    def create_dataset (self):
        ……

CLINTOX_TASKS = ['FDA_APPROVED', 'CT_TOX']
train_loader = MyClintoxLoader ('ECFP', ……)
train_dataset = ……
test_loader = MyClintoxLoader ('ECFP', ……)
test_dataset = ……
……
model = dc.models. MultitaskClassifier (……)
model.fit(train_dataset)
test_scores = model. predict(test_dataset, ……)
……
test_scores_df. to_csv('pred_results/clintox_test_pred.csv')

(d) Annotated Program

Figure 2: An example Computational Chemistry task in ScienceAgentBench with four components.

2 SCIENCEAGENTBENCH

In this section, we introduce ScienceAgentBench, which aims to evaluate agents on essential tasks
in a data-driven discovery workflow. Before automating the entire workflow end-to-end, we envi-
sion language agents to first serve as science co-pilots that can write code to process, analyze, and
visualize data. Similar to co-pilots for software development, we target scientist users who might
know how to write such code but want to save hours of programming effort with language agents.
Hence, we formulate each task as a code generation problem, whose output is easily verifiable and
directly usable by a scientist without additional modification efforts.

2.1 PROBLEM FORMULATION

Given a natural language instruction, a dataset, and some optional expert-provided knowledge, an
agent shall generate a program to complete the assigned task and save it to Python source code file.
Each instance in our benchmark contains four components (Figure 2):

(a) Task Instruction, which describes the goal of an essential task in data-driven discovery and its
output requirements. To resemble real-world settings, we keep the instructions concise and avoid
unnecessary details when describing task goals. This setup also retains the open-endedness of data-
driven discovery and encourages the development of practical agents that do not rely on prescriptive
directions from scientists. We provide example task instructions in Appendix B for each discipline.

(b) Dataset Information, which contains the dataset’s directory structure and a preview of its con-
tent. For agents without file navigation tools, they need such information to correctly use the dataset
in their generated programs. For agents that can navigate file systems, it also helps them save a few
turns of interactions to read datasets from the programming environment.

(c) Expert-Provided Knowledge, which includes explanations for scientific terms, formulas to con-
duct analysis, and example usages of programming tools. These pieces of knowledge are provided
by subject matter experts, including senior Ph.D. students and professors, and are optional inputs to
an agent. In Section 4, we show that while with such information, language agents’ knowledge gap
in involved disciplines can be mitigated to some extent, they still fall short utilizing it effectively.

(d) Annotated Program, which is adapted from an open-source code repository released by a peer-
reviewed scientific publication. As shown in Figure 2, each program is self-contained with package
imports, function and class implementations, and a main procedure to carry out the task. An agent
is expected to produce similar programs that can be executed independently, e.g. by a Python inter-
preter, but not necessarily using the same tools as those in the annotated programs.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DATA COLLECTION

Task Annotation. We start by forming a group of nine graduate students to annotate the tasks
in four disciplines: Bioinformatics, Computational Chemistry, Geographical Information Science,
and Psychology & Cognitive Neuroscience. Within each discipline, we search for peer-reviewed
publications that release their code and data under permissive licenses (Appendix I). Then, we follow
five steps to annotate each task: (1) Identify a reasonably documented code example that is self-
contained and convert it into a task in our benchmark. (2) Collect and preprocess datasets used in
the code. (3) Annotate the reference program by revising the referred code to analyze datasets in
our benchmark. (4) Implement task-specific success criteria as an executable script and use GPT-4o
to draft fine-grained rubrics for evaluation. (5) Write the instruction and dataset information for
this task. We gathered 110 tasks initially but discarded four because their programs require long
execution time or nontrival environment setup. This leaves us with 106 tasks for validation.

Data Contamination and Shortcut Mitigation. In our preliminary studies, we have noticed that
some agents, such as OpenHands, may take shortcuts to solve a task. For example, when asked to
develop a machine learning model, they may directly read and report the ground-truth labels in the
test set without writing the training code. Such perfect results are actually cheating and will hurt
evaluation validity. In addition, because datasets and programs in our benchmark are open-sourced,
they are subject to data contamination in LLM training. To mitigate these issues, we devise two
strategies to modify the datasets: (1) For each dataset, we randomly remove five data points from
its test set. If an LLM-generated program uses automatic data loaders that appeared in the training
corpora, it will produce results misaligned to our setup and fail the success criteria. In some cases,
we have to skip this step if it would break the completeness of a dataset, e.g., if it results in an
incomplete geographical map. (2) For tasks involving model development, we re-split the dataset,
keep the test set labels only for evaluation, and replace them with dummy values, such as -1 for
classification tasks. These two strategies effectively mitigate data contamination and agent shortcut
concerns by failing agents that recite memorized code or attempt to directly report test set labels.
See Appendix E.2: Example E.4 for a case study.

Expert Validation. We engage nine subject matter experts, including senior Ph.D. students and pro-
fessors from the four involved disciplines, to validate each task and provide additional knowledge.
For each task, we present to experts with its instruction, dataset information, annotated program, and
task rubrics. The experts are asked to validate the tasks by completing a questionnaire (Appendix
F), which can be summarized as four steps: (1) Validate if an annotated task represents a realistic
task in their data-driven discovery workflow. (2) Review whether a task instruction gives an accurate
high-level description of the program and uses professional languages in their disciplines. (3) Pro-
vide up to three pieces of knowledge that might be needed for solving each task. (4) Make necessary
revisions to the rubrics for grading the program. Then, following the experts’ feedback, we revise 41
task instructions and remove three tasks that are not representative enough for scientific workflows
in their disciplines. With 103 tasks remaining, our publication-oriented annotation strategy is shown
to be effective in collecting real-world tasks.

Annotator Verification. To ensure data quality, we work with the nine annotators for another round
of task verification. We ask the annotators to verify tasks that are not composed by themselves and
execute programs to reproduce the results. During this process, we refine 29 task annotations and
discard one more task whose result is hard to replicate with the same program due to randomness.
We finalize ScienceAgentBench with 102 high-quality tasks for data-driven scientific discovery.

2.3 EVALUATION

While it is a preferable feature, the open-endedness of tasks in our benchmark introduces a cru-
cial evaluation challenge. Specifically, our evaluation strategy has to accommodate diverse setup
requirements of programs generated by different agents. To address this challenge, we implement
a pipeline to set up a conda environment flexibly for any program. Before evaluation, the conda
environment is initialized with seven basic Python packages: numpy, pandas, matplotlib, pytorch,
tensorflow, rdkit, and tf keras. To evaluate each program, we first use pipreqs2 to analyze it and
generate a file listing all packages used. Then, according to the file, we use pip-tools3 and hand-

2https://github.com/bndr/pipreqs
3https://github.com/jazzband/pip-tools

4

https://github.com/bndr/pipreqs
https://github.com/jazzband/pip-tools


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Representative examples of task-specific success criteria in ScienceAgentBench. To keep
the table concise, we omit output requirements in the task instructions and show the task goals. We
provide more details about how these criteria are established in Appendix C.2.

Task Instruction Subtasks Success Criteria

Train a multitask model on the Clintox Feature Engineering The trained model gets ≥ 0.77
dataset to predict a drug’s toxicity Deep Learning ROC-AUC score on the test set.
and FDA approval status.

Develop a drug-target interaction mod- Feature Engineering The top-5 repurposed drugs
el with the DAVIS dataset to repurpose Deep Learning match the gold top-5 drugs.
the antiviral drugs for COVID.

Analyze the inertial measurement unit Computational Each computed endpoint is close
(IMU) data collected during sleep and Analysis (math.isclose in Python)
compute sleep endpoints: time of to the corresponding gold answer.
falling asleep, time of awakening,
and total duration spent sleeping.

Analyze Toronto fire stations and their Map Visualization The resulting figure gets ≥ 60
service coverage. Visualize the results score by the GPT-4o Judge.
to identify coverage gaps.

crafted rules to update the conda environment and properly configure the packages. We execute each
program in the customized environment and calculate the evaluation metrics.

Program Evaluation. We comprehensively evaluate each generated program with four metrics. (1)
Valid Execution Rate (VER) checks if the program can execute without errors and save its output
with the correct file name. (2) Success Rate (SR) examines whether a program output meets the
success criteria for each task goal (Table 1), such as test set performance, prediction-answer matches,
and visualization quality. To automatically check these criteria, we implement them as evaluation
programs for each task during annotation. By nature, SR is conditioned on valid execution: If a
program has execution errors or does not save its output correctly, its SR will be 0. Both VER and
SR are binary metrics. (3) CodeBERTScore (CBS) measures how closely the generated program
resembles the annotated one with contextual embeddings and calculates the F1 metric for matched
token embeddings (Zhou et al., 2023). If SR = 1 for a program, we change its CBS to 1.0 as well to
reflect task success. (4) API Cost (Cost) calculates the average cost (in USD) to complete one task
in our benchmark, since it is important for language agents to control their cost and optimize their
design for better practical utility (Kapoor et al., 2024).

Figure Evaluation. If the task output is a figure, we follow existing work (Wu et al., 2024; Yang
et al., 2024b) to evaluate its quality using GPT-4o as a judge, which is shown to correlate reason-
ably well with human raters. We use Yang et al. (2024b)’s prompt to request GPT-4o to compare
the program-produced figure with the ground-truth and respond with a score on its quality. For
evaluation stability, we sample 3 responses and use the average score to compute success rates.

Rubric-Based Evaluation. Outcome-based evaluation metrics, which require a program to cor-
rectly implement all steps for the task, can sometimes be too stringent. For example, an agent would
be underrated by these metrics if it gets all steps right but output formatting wrong. As a comple-
ment to the outcome-based metrics, we introduce rubric-based evaluation to assess the generated
programs at more fine-grained levels. Considering the characteristics of data-driven discovery tasks,
we structure the rubrics into five stages: Data Loading, Data Processing, Modeling or Visualization,
Output formatting, and Output Saving. To accelerate the annotation process, we first use GPT-4o
to generate the rubrics by designating multiple milestones with scores for the five stages. Then,
each rubric is refined by an expert (Appendix G). In this work, we leverage the rubrics to conduct
human evaluation for generated programs (Section 4.2). We deem that automating this rubric-based
evaluation approach, such as developing an LLM-based judge, is a meaningful future direction.

2.4 COMPARISON WITH EXISTING BENCHMARKS

ScienceAgentBench differs from other benchmarks with a unique ensemble of research challenges
(Table 2). (1)Tasks in our benchmark require an agent to generate a standalone program file from
scratch, in contrast to JSON API calls in TaskBench, abstract workflow descriptions in Discovery-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Comparison of ScienceAgentBench to representative benchmarks. † DiscoveryBench-Real
is evaluating the quality of generated programs indirectly through the natural language hypothesis,
while ScienceAgentBench’s focus is to rigorously assess the programs and their execution results.

Benchmark Code Gen Task Heterogeneous Shortcut Scientific # Test
Complexity Sources Data Processing Prevention Subjects Tasks

TaskBench (Shen et al., 2024) No Code Gen Synthetic ✗ ✗ 0 28,271
SWE-Bench (Jimenez et al., 2024) File-Level Edit GitHub ✗ ✗ 1 2,294
BioCoder-Py (Tang et al., 2024c) Function-Level GitHub ✗ ✗ 1 1,126
ML-Bench (Tang et al., 2024b) Line-Level GitHub ✓ ✗ 1 260
MLAgentBench (Huang et al., 2024b) File-Level Edit Kaggle ✗ ✗ 1 13

DiscoveryBench-Real
Code Gen† 27 Publications ✓ ✗ 6 239(Majumder et al., 2024b)

SciCode (Tian et al., 2024) Function-Level Publications ✗ ✓ 5 80
BLADE (Gu et al., 2024) Function-Level 31 Publications ✗ ✗ 6 12

ScienceAgentBench (Ours) File-Level Gen 44 Publications ✓ ✓ 4 102

Bench, or a few lines of code completion or edits in other benchmarks. To do so, an agent needs
to have a deep understanding of the task, decompose it into classes and functions appropriately, and
implement them. (2) Our benchmark adapts 44 peer-reviewed publications and covers a variety of
real-world datasets in four different disciplines. Compared to ML-Bench and DiscoveryBench, our
ScienceAgentBench includes more heterogeneous datasets that have complex structures (Figure 1),
such as cell images, chemical structure-activity relationships, and geographical maps with multiple
layers. (3) ScienceAgentBench is also one of the two benchmarks that tries to mitigate data contam-
ination and agent shortcut issues, which helps establish valid evaluation. (4) Our benchmark has a
medium scale of 102 tasks. Although smaller than benchmarks with synthetic or easier tasks, this
scale is reasonable to evaluate agents, considering the annotation difficulty and evaluation cost.

3 EXPERIMENTAL SETUP

We experiment with three open-weight LLMs, Llama-3.1-Instruct-70B, 405B (Dubey et al., 2024),
and Mistral-Large-2 (123B) (MistralAI, 2024), and two proprietary LLMs, GPT-4o (OpenAI, 2024)
and Claude-3.5-Sonnet (Anthropic, 2024). For all experiments, we use the same hyperparameters,
temperature = 0.2 and top p = 0.95, and perform 0-shot prompting4 via the APIs. The prompts are
included in Appendix H. We evaluate the LLMs under three different (agent) frameworks:

Direct Prompting. Direct prompting is a simple framework that does not interact with any program-
ming environment. Given the task inputs, it prompts an LLM to generate a corresponding program
in one pass. We use this framework to show the basic code generation capability of each LLM.

OpenHands. OpenHands (Wang et al., 2024c) is a generalist agent framework for code generation
and software development. It supports three kinds of interactions within its sandbox environment:
Python code execution, bash commands, and web navigation. Additionally, it incorporates the agent-
computer interface commands in Yang et al. (2024a) to read and edit local files. These interactions
and commands form a large action space with different tools for the backbone LLM to choose from.
We experiment with its CodeActAgent v1.9 (Wang et al., 2024b) using different LLMs to test the
effectiveness of its agent designs for code generation tasks in data-driven discovery.

Self-Debug. Self-debug (Chen et al., 2024a) is a code generation framework for LLMs to execute
their generated programs, access execution results, and then reflect on the results to improve each
program iteratively. In this work, we re-implement self-debug with three modifications. First, we
do not instruct the LLMs to generate reflections before debugging the code, since self-reflection
may not always yield better results (Chen et al., 2024b; Huang et al., 2024a; Jiang et al., 2024).
Second, we allow early exits if the backbone LLM generates the same program for two consecutive
debugging turns. Finally, before running each program, we use pipreqs and pip-tools to set
up the environment. We do not initialize the self-debug environment with any of the basic packages
or provide the rules to configure some packages that are used for evaluation (Section 2.3). Even
though self-debug might not be able to use some packages due to this design choice, we want to
ensure fair comparisons with other baselines, which also have no access to these information.

4OpenHands has a built-in 1-shot example to demonstrate response formats, tool usages, and other plugins
like web browser. We do not provide any examples from our benchmark when evaluating OpenHands.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Results on ScienceAgentBench. The best performances (with and without domain knowl-
edge) for each framework are in bold. The overall best performances for each metric are underlined.

Models
Without Knowledge With Knowledge

SR CBS VER Cost ↓ SR CBS VER Cost ↓
Direct Prompting

Llama-3.1-Instruct-70B 5.9 81.5 29.4 0.001 4.9 82.1 27.5 0.001
Llama-3.1-Instruct-405B 3.9 79.4 35.3 0.010 2.9 81.3 25.5 0.011
Mistral-Large-2 (2407) 13.7 83.2 47.1 0.009 16.7 84.7 39.2 0.009

GPT-4o 11.8 82.6 52.9 0.011 10.8 83.8 41.2 0.012
Claude-3.5-Sonnet 17.7 83.6 51.0 0.017 21.6 85.4 41.2 0.017

OpenHands

Llama-3.1-Instruct-70B 6.9 63.5 30.4 0.145 2.9 65.7 25.5 0.252
Llama-3.1-Instruct-405B 5.9 65.8 52.0 0.383 8.8 71.4 58.8 0.740
Mistral-Large-2 (2407) 9.8 72.5 53.9 0.513 13.7 78.8 50.0 0.759

GPT-4o 19.6 83.1 78.4 0.803 27.5 86.3 73.5 1.094
Claude-3.5-Sonnet 21.6 83.6 87.3 0.958 24.5 85.1 88.2 0.900

Self-Debug

Llama-3.1-Instruct-70B 13.7 82.7 80.4 0.007 16.7 83.4 73.5 0.008
Llama-3.1-Instruct-405B 14.7 82.9 78.4 0.047 13.7 83.6 79.4 0.055
Mistral-Large-2 (2407) 23.5 85.1 83.3 0.034 27.5 86.8 78.4 0.036

GPT-4o 22.6 84.4 83.3 0.047 23.5 85.6 71.6 0.046
Claude-3.5-Sonnet 32.4 86.4 92.2 0.057 34.3 87.1 86.3 0.061

To improve evaluation stability, we repeat each task with three independent runs in all experiments.
Then we select the best run according to the metrics in the following order: maximum SR, maximum
VER, maximum CBS, and minimum Cost. We refer to the next metric in this order to break ties.
For example, if two programs generated for a task both have SR = 0, we pick the one with higher
VER. Finally, we report each metric based on the average performance of selected runs. We also
include the mean performances out of three runs and standard deviations in Appendix D.1.

4 RESULTS AND ANALYSIS

Through comprehensive experiments (Table 3), we show that the latest LLMs and agents can only
achieve low-to-moderate task success rates. Given three attempts for each task, Claude-3.5-Sonnet
with self-debug demonstrates the best performance (34.3% SR) when using expert-provided knowl-
edge. This result underline that LLM-based agents are not yet capable of fully addressing realistic
and challenging data-driven discovery tasks, such as those in ScienceAgentBench.

4.1 MAIN RESULTS

Direct Prompting vs. Self-Debug: Execution feedback is necessary for LLMs to generate use-
ful programs. As shown in Table 3, directly prompting LLMs cannot unleash their full potential in
programming for data-driven discovery tasks. Without executing its code, even the best performing
LLM, Claude-3.5-Sonnet, can only solve 16.7% of the tasks independently and 20.6% with addi-
tional knowledge. For most failed tasks, we share similar findings with Liang et al. (2024) that
LLM-generated programs have correct high-level structures but implementation-level errors, such
as missing steps or wrong API usage. Compared to direct prompting, self-debug can nearly double
Claude-3.5-Sonnet’s success rate (16.7 → 32.4; 1.94×) without extra knowledge. With expert-
provided knowledge, Claude-3.5-Sonnet using self-debug also shows decent improvement over di-
rect prompting. It achieves 13.7 absolute gains on SR (20.6 → 34.3; 1.67×) and 45.1 absolute gains
on VER (41.2 → 86.3; 2.09×). These results highlight the effectiveness of the simple self-debug
framework and the importance of enabling LLMs to execute and revise their code for complex tasks.

OpenHands vs. Self-Debug: Agent designs should consider costs and capabilities of LLMs. For
four of the five LLMs evaluated, self-debug demonstrates better performance than OpenHands, with

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Task performance analysis of Claude-3.5-Sonnet with self-debug and expert-provided
knowledge. Left: Distribution of lines in gold programs for succeeded and failed tasks. The red
vertical line marks the average length (58.6 lines) of all gold programs in the benchmark. Right:
Task error rates for each sub-task category in each discipline.

GPT-4o as the only exception (Table 3). By examining the trajectories, we find that GPT-4o is better
at leveraging tools in OpenHands than other LLMs. For instance, it is the only LLM that search for
more details about the provided knowledge with the web browser. In contrast, other LLMs are still
struggling with specialized bash commands in OpenHands to edit programs correctly (Example in
Appendix E.1). We hypothesize that GPT-4o may have been trained to better follow instructions for
language agents and to better use complex tools like a web browser.

When it comes to self-debug, which has a more straightforward design, GPT-4o loses its advantage
and underperforms Mistral-Large-2 and Claude-3.5-Sonnet, both of which are trained for better code
generation according to their reports (MistralAI, 2024; Anthropic, 2024). Most surprisingly, without
the help of expert-provided knowledge, Claude-3.5-Sonnet using self-debug can successfully solve
10.8% more tasks (21.6 → 32.4 SR) than using OpenHands while costing 17 times less API fees
($0.958 → $0.057), which is a critical factor to consider for practical applications. Overall, our
results resonate with recent findings on agent design (Kapoor et al., 2024; Xia et al., 2024): (1)
LLM-based agents do not always benefit from a large action space with complex tools; and (2) both
cost and performance should be considered when designing or selecting agent frameworks. We also
provide a detailed error analysis in Appendix D.2 and identify future research directions.

With vs. Without Expert-Provided Knowledge: Expert-provided knowledge does not always
lead to metric improvement. On one hand, we observe that expert-provided knowledge leads to
consistent improvements on SR and CBS for most agents (Table 3). These agents can effectively
leverage helpful information in the knowledge, such as API names and some concrete steps in the
task, to generate a high-quality program draft that closely resembles the annotated gold program and
then use execution feedback to address implementation errors.

On the other hand, we notice that there are performance decreases on VER for most agents. These
decreases can be attributed to two reasons. (1) Expert-provided knowledge specifies some specific
tools that are less familiar to the agents. Originally, they would only use basic tools like rdkit
and sklearn in their generated programs, which are free of execution errors. With provided knowl-
edge, the agents would use those specified tools to generate programs, which often contain incorrect
API usage and hallucinated API calls. (2) The agents do not know how to solve some tasks without
expert-provided knowledge and would generate some executable but less meaningful programs, e.g.,
to produce an empty figure. While additional knowledge helps them to produce more concrete mod-
eling or analysis, such programs are error-prone and hard to fix with execution feedback (Appendix
E.2). For these reasons, despite decreases in VER, we argue that expert-provided knowledge helps
agents to generate more useful programs from a scientist user’s perspective, as reflected by SR and
CBS, and future AI agents should improve their abilities to better leverage such information.

Language agents cannot solve complex data-driven discovery tasks yet. Our further analysis
on the best performing agent, Claude-3.5-Sonnet with self-debug and expert-provided knowledge,
show that it is not yet capable of addressing complex tasks in data-driven discovery. To estimate
the complexity of tasks, we visualize the number of lines in their corresponding gold programs
using box plot (Figure 3; Left). More than 75% of succeeded tasks lean to the simpler side because

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Rubric-based human ratings for 102 programs generated by Claude-3.5-Sonnet with self-
debug and expert-provided knowledge. We show the overall distributions and those for the five
stages in our rubrics (Section 2.3). The blue boxes are distributions for failed tasks, and the orange
ones are for succeeded tasks. The open dots represent outliers in the distributions.

their gold programs have less than 58.6 lines, which is the mean length of all gold programs in the
benchmark. In other words, language agents still fail on many tasks with complex gold programs.

To understand the task failures, we break them down by different disciplines and sub-task categories
(Figure 3; Right). For Bioinformatics and Computational Chemistry, the agent mostly fails on tasks
involving data processing and model development. This is because data in these two disciplines are
highly heterogeneous, including cell images, molecules, and genes, which can be hard to process.
Without correctly processed data, the agent would also not be able to develop and train a functioning
model, not to mention choosing appropriate configurations for various models such as Convolutional
or Graph Neural Networks used in the tasks. For Geographical Information Science and Psychology
& Cognitive Neuroscience, their tasks usually require discipline-specific tools, such as Geopandas
and Biopsykit, to analyze the datasets. However, existing LLMs fall short of using these tools
and can generate incorrect or hallucinated API usage in the programs. Given these shortcomings,
we argue that current language agents cannot yet automate data-driven discovery tasks or the full
research pipeline, in contrast to claims made in recent work such as Lu et al. (2024).

4.2 HUMAN EVALUATION

Evaluation Setup. To further investigate the performance of Claude-3.5-Sonnet with self-debug
(the best-performing agent), we conduct a rubric-based human evaluation of all the 102 programs
generated using expert-provided knowledge. With the task-specific rubrics validated by experts
(examples in Appendix G) and gold programs as references, each generated program is rated by two
different evaluators who participated in data collection. To reduce possible noises in ratings, the
evaluators only mark whether a rubric item is met by the LLM-generated program. For each stage,
we add up points for satisfied rubric items and normalize them by total available points to the range
of 0–100. Similarly, we calculate the overall score considering all items. The final score of each
program is the average of two evaluators’ ratings.

Additionally, one purpose of this human evaluation is to assign partial credits to the generated pro-
gram even if it is not correct (Section 2.3). Therefore, we do not provide the evaluators with program
execution results and hide task success outcomes. Although this setup encourages evaluators to ex-
amine LLM-generated programs carefully, it also introduces some noise. For example, there are
tasks where both a feed-forward neural network and a random forest model can achieve satisfying
performance on the test set. While the gold program implements the neural network, the agent
chooses to use random forest. Since each rubric is derived from a gold program and reflect its
implementation, there are chances that the evaluator overlooks such equivalence. Also, for output
formatting, we observe some subjective variance when judging the formats of figures, such as colors,
scales, and text labels, according to the rubrics and gold programs. As a result, successful programs
would not always receive a perfect human rating.

Results and Analysis. As shown in Figure 4, data loading and processing, the first two stages in
data-driven discovery tasks, can distinguish successful programs from failed ones. Except for a few

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

outliers, almost all successful programs receive a perfect human rating for data loading. In contrast,
25% of the failed programs have their rating below 50 in the first stage. For data processing, the
rating distribution of successful programs skews toward the full score, while that of failed programs
skews toward a score between 20 and 50. These human evaluation results correspond to an intuitive
explanation: If the dataset were not loaded or processed correctly, it would be impossible to solve a
task successfully, regardless of the code implementation for consequent stages.

In the third stage, modeling or visualization, human ratings for successful and failed programs are
also different: The median score of successful programs is already at the 75th percentile of failed
program ratings. This indicates that human evaluators agree with the SR metric and prefer programs
passing all success criteria for the task, even though they may have some minor issues. For output
formatting and saving, we find no difference between the two groups of programs, indicating that
LLMs like Claude-3.5-Sonnet can follow such instructions reasonably well.

Overall, human ratings for succeeded and failed programs form two overlapped but distinguishable
distributions, which meets our motivation to complement outcome-based metrics with fine-grained
evaluation. These ratings agree with our main result and suggest that some LLM-generated programs
are close to success but hindered by some bottlenecks, such as data loading and processing. Future
research may, for example, improve language agents’ capability to better process scientific data.

5 RELATED WORK

AI for Science. Since deep learning unlocks the power of data, AI algorithms and models have been
increasingly used to accelerate scientific discovery (Wang et al., 2023). One of the most prominent
examples is AlphaFold (Jumper et al., 2021), which can predict protein structures with high accuracy
and save biologists months to years of effort. More recently, a tremendous number of language
models has been developed for different disciplines, including math (Yue et al., 2024), chemistry
(Yu et al., 2024), biology (Labrak et al., 2024), geography (Li et al., 2023), and so on. 5 To automate
data-driven discovery end-to-end, it is necessary for language agents to write code to access these AI
models and other computational tools (Cao, 2017). Our work aims to develop language agents with
this essential ability, which can help scientists save hours of programming effort, and rigorously
evaluate such agents to grasp a more solid understanding of their strengths and limitations.

Agents for Task Automation. Developing agents for task automation is a long-established chal-
lenge in AI research (Russell & Norvig, 2010). Built upon LLMs, a new generation of agents has
shown new promise to automatically perform many tasks in web navigation (Deng et al., 2023; He
et al., 2024; Koh et al., 2024; Zheng et al., 2024; Zhou et al., 2024), software development (Jimenez
et al., 2024; Wang et al., 2024c; Yang et al., 2024a), or scientific discovery (Boiko et al., 2023;
Zheng et al., 2023; Lu et al., 2024). Instead of purely relying on end-to-end evaluations of these
agents, e.g., using an LLM-based reviewer to assess generated papers (Lu et al., 2024), we advocate
careful evaluations of their performance on individual tasks. ScienceAgentBench serves as a high-
quality benchmark focusing on essential tasks that involve code generation in real-world data-driven
discovery workflows for objective assessment and continued development of future language agents.

6 CONCLUSION

We introduce ScienceAgentBench, a new benchmark to evaluate language agents for data-driven
scientific discovery. We compile 102 diverse, real-world tasks from 44 peer-reviewed publica-
tions across four scientific disciplines and engage nine subject matter experts to ensure data quality.
Through comprehensive experiments on five LLMs and three frameworks, we show that the best-
performing agent, Claude-3.5-Sonnet with self-debug, can only solve 34.3% of the tasks when using
expert-provided knowledge. Our results and analysis suggest that current language agents cannot
yet automate tasks for data-driven discovery or a whole research pipeline. We further discuss the
future directions, limitations, and ethical considerations of ScienceAgentBench in Appendix A. By
introducing ScienceAgentBench, we advocate the use of language agents to assist human scientists
with tedious tasks in their workflows and call for more rigorous assessments of such agents.

5We refer to Zhang et al. (2024) for a comprehensive survey on scientific language models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mathijs Andeweg and Tom Kuijpers. Model how land subsidence affects flood-
ing, April 2024. URL https://learn.arcgis.com/en/projects/
model-how-land-subsidence-affects-flooding/.

Anthropic. Claude 3.5 sonnet. Jun 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science, 323(5919):1297–1298,
2009. doi: 10.1126/science.1170411. URL https://www.science.org/doi/abs/10.
1126/science.1170411.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. SUPER: Evaluating agents on setting up and executing tasks from
research repositories. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 12622–
12645, Miami, Florida, USA, November 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.emnlp-main.702.

Daniil A. Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical re-
search with large language models. Nature, 624:570–578, 2023. doi: https://doi.org/10.1038/
s41586-023-06792-0.

Cédric Bouysset and Sébastien Fiorucci. ProLIF: a library to encode molecular interactions as
fingerprints. Journal of Cheminformatics, 13(1):72, 2021. doi: 10.1186/s13321-021-00548-6.

Daniel Brand, Nicolas Riesterer, Hannah Dames, and Marco Ragni. Analyzing the differences in
human reasoning viajoint nonnegative matrix factorization. Proceedings of the Annual Meeting of
the Cognitive Science Society, 42, 2020. URL https://escholarship.org/uc/item/
0br9k22g.

Danila Bredikhin, Ilia Kats, and Oliver Stegle. Muon: multimodal omics analysis framework.
Genome Biology, 23(1), 2022. doi: 10.1186/s13059-021-02577-8.

O. J. M. Béquignon, B. J. Bongers, W. Jespers, A. P. IJzerman, B. van der Water, and G. J. P. van
Westen. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes.
Journal of Cheminformatics, 15(3), 2023. doi: 10.1186/s13321-022-00672-x.

Longbing Cao. Data science: A comprehensive overview. ACM Comput. Surv., 50(3), jun 2017.
ISSN 0360-0300. doi: 10.1145/3076253. URL https://doi.org/10.1145/3076253.

Anne E. Carpenter, Thouis R. Jones, Michael R. Lamprecht, Colin Clarke, In Han Kang, Ola Friman,
David A. Guertin, Joo Han Chang, Robert A. Lindquist, Jason Moffat, Polina Golland, and
David M. Sabatini. Cellprofiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biology, 7(R100), 2006. doi: 10.1186/gb-2006-7-10-r100.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=KuPixIqPiq.

11

https://learn.arcgis.com/en/projects/model-how-land-subsidence-affects-flooding/
https://learn.arcgis.com/en/projects/model-how-land-subsidence-affects-flooding/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.science.org/doi/abs/10.1126/science.1170411
https://www.science.org/doi/abs/10.1126/science.1170411
https://aclanthology.org/2024.emnlp-main.702
https://escholarship.org/uc/item/0br9k22g
https://escholarship.org/uc/item/0br9k22g
https://doi.org/10.1145/3076253
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=KuPixIqPiq


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziru Chen, Michael White, Ray Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree search
useful for LLM planning? it depends on the discriminator. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 13659–13678, Bangkok, Thailand, August
2024b. Association for Computational Linguistics. URL https://aclanthology.org/
2024.acl-long.738.

Simone Ciuti, Tyler B. Muhlym, Dale G. Paton, Allan D. McDevitt, Marco Musiani, and Mark S.
Boyce. Human selection of elk behavioural traits in a landscape of fear. Proceedings of the Royal
Society B, 279:4407–4416, 2012. doi: 10.1098/rspb.2012.1483.

Andrew Dawson. eofs: A library for eof analysis of meteorological, oceanographic, and climate
data. Journal of Open Research Software, 4(1), 2016. doi: https://doi.org/10.5334/jors.122.

Pierre-Paul De Breuck, Matthew L Evans, and Gian-Marco Rignanese. Robust model benchmarking
and bias-imbalance in data-driven materials science: a case study on modnet. Journal of Physics:
Condensed Matter, 33(40):404002, jul 2021a. doi: 10.1088/1361-648X/ac1280. URL https:
//dx.doi.org/10.1088/1361-648X/ac1280.

Pierre-Paul De Breuck, Geoffroy Hautier, and Gian-Marco Rignanese. Materials property prediction
for limited datasets enabled by feature selection and joint learning with modnet. npj Computa-
tional Materials, 7(1), 2021b. doi: 10.1038/s41524-021-00552-2.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=kiYqbO3wqw.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,

12

https://aclanthology.org/2024.acl-long.738
https://aclanthology.org/2024.acl-long.738
https://dx.doi.org/10.1088/1361-648X/ac1280
https://dx.doi.org/10.1088/1361-648X/ac1280
https://openreview.net/forum?id=kiYqbO3wqw
https://openreview.net/forum?id=kiYqbO3wqw


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

13

https://arxiv.org/abs/2407.21783


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

ESRI. Predict deforestation in the amazon rain forest, January
2024a. URL https://learn.arcgis.com/en/projects/
predict-deforestation-in-the-amazon-rain-forest/.

ESRI. Assess access to public transit, February 2024b. URL https://learn.arcgis.com/
en/projects/assess-access-to-public-transit/.

ESRI. Build a model to connect mountain lion habitat, Au-
gust 2024c. URL https://learn.arcgis.com/en/projects/
build-a-model-to-connect-mountain-lion-habitat/.

ESRI. Assess burn scars with satellite imagery, June 2024d. URL https://learn.arcgis.
com/en/projects/assess-burn-scars-with-satellite-imagery/.

Sunny Fleming. Model animal home range, March 2024. URL https://learn.arcgis.
com/en/projects/model-animal-home-range/.

Adam Gayoso, Romain Lopez, Galen Xing, Pierre Boyeau, Valeh Valiollah Pour Amiri, Justin
Hong, Katherine Wu, Michael Jayasuriya, Edouard Mehlman, Maxime Langevin, Yining Liu,
Jules Samaran, Gabriel Misrachi, Achille Nazaret, Oscar Clivio, Chenling Xu, Tal Ashuach, Mar-
iano Gabitto, Mohammad Lotfollahi, Valentine Svensson, Eduardo da Veiga Beltrame, Vitalii
Kleshchevnikov, Carlos Talavera-López, Lior Pachter, Fabian J. Theis, Aaron Streets, Michael I.
Jordan, Jeffrey Regier, and Nir Yosef. A python library for probabilistic analysis of single-cell
omics data. Nature Biotechnology, 40:163–166, 2022. doi: 10.1038/s41587-021-01206-w.

David E. Graff, Eugene I. Shakhnovich, and Connor W. Coley. Accelerating high-throughput virtual
screening through molecular pool-based active learning. Chemical Science, 12(22):7866–7881,
2021. doi: 10.1039/D0SC06805E.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiaqian Yu, Yikun Zhang, Tianmai M. Zhang, Lanyi Zhu, Mike A. Merrill,
Jeffrey Heer, and Tim Althoff. Blade: Benchmarking language model agents for data-driven
science, 2024. URL https://arxiv.org/abs/2408.09667.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal mod-
els. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6864–6890, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.371.

Tony Hey, Stewart Tansley, Kristin Tolle, and Jim Gray. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, October 2009. ISBN 978-0-9825442-
0-4. URL https://www.microsoft.com/en-us/research/publication/
fourth-paradigm-data-intensive-scientific-discovery/.

Tom Hourigan. NOAA Deep Sea Corals Research and Technology Program, 1 2023. URL https:
//www.gbif.org/dataset/df8e3fb8-3da7-4104-a866-748f6da20a3c.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024a. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Kexin Huang, Tianfan Fu, Lucas M Glass, Marinka Zitnik, Cao Xiao, and Jimeng Sun. Deeppur-
pose: A deep learning library for drug-target interaction prediction. Bioinformatics, 2020.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentbench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=1Fs1LvjYQW.

14

https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/
https://learn.arcgis.com/en/projects/predict-deforestation-in-the-amazon-rain-forest/
https://learn.arcgis.com/en/projects/assess-access-to-public-transit/
https://learn.arcgis.com/en/projects/assess-access-to-public-transit/
https://learn.arcgis.com/en/projects/build-a-model-to-connect-mountain-lion-habitat/
https://learn.arcgis.com/en/projects/build-a-model-to-connect-mountain-lion-habitat/
https://learn.arcgis.com/en/projects/assess-burn-scars-with-satellite-imagery/
https://learn.arcgis.com/en/projects/assess-burn-scars-with-satellite-imagery/
https://learn.arcgis.com/en/projects/model-animal-home-range/
https://learn.arcgis.com/en/projects/model-animal-home-range/
https://arxiv.org/abs/2408.09667
https://aclanthology.org/2024.acl-long.371
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/
https://www.gbif.org/dataset/df8e3fb8-3da7-4104-a866-748f6da20a3c
https://www.gbif.org/dataset/df8e3fb8-3da7-4104-a866-748f6da20a3c
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=1Fs1LvjYQW


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Ryan Jacobs, Tam Mayeshiba, Ben Afflerbach, Luke Miles, Max Williams, Matthew Turner,
Raphael Finkel, and Dane Morgan. The materials simulation toolkit for machine learning (mast-
ml): An automated open source toolkit to accelerate data-driven materials research. Com-
putational Materials Science, 176:109544, 2020. ISSN 0927-0256. doi: https://doi.org/10.
1016/j.commatsci.2020.109544. URL https://www.sciencedirect.com/science/
article/pii/S0927025620300355.

Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van Durme, and Daniel
Khashabi. Self-[in]correct: Llms struggle with discriminating self-generated responses, 2024.
URL https://arxiv.org/abs/2404.04298.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596:583–589, 2021. doi: https://doi.org/10.1038/s41586-021-03819-2.

Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, and Arvind Narayanan. Ai
agents that matter, 2024. URL https://arxiv.org/abs/2407.01502.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Lim, Po-Yu Huang, Graham Neu-
big, Shuyan Zhou, Russ Salakhutdinov, and Daniel Fried. VisualWebArena: Evaluating multi-
modal agents on realistic visual web tasks. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 881–905, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. URL https://aclanthology.org/2024.acl-long.50.

Eric Krause. Analyze urban heat using kriging, July 2024. URL https://learn.arcgis.
com/en/projects/analyze-urban-heat-using-kriging/.

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
Richard Dufour. BioMistral: A collection of open-source pretrained large language mod-
els for medical domains. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Find-
ings of the Association for Computational Linguistics ACL 2024, pp. 5848–5864, Bangkok,
Thailand and virtual meeting, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.findings-acl.348.

Zekun Li, Wenxuan Zhou, Yao-Yi Chiang, and Muhao Chen. GeoLM: Empowering language mod-
els for geospatially grounded language understanding. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 5227–5240, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.317. URL https://aclanthology.org/2023.
emnlp-main.317.

Jenny T. Liang, Carmen Badea, Christian Bird, Robert DeLine, Denae Ford, Nicole Forsgren, and
Thomas Zimmermann. Can gpt-4 replicate empirical software engineering research? Proc. ACM
Softw. Eng., 1(FSE), jul 2024. doi: 10.1145/3660767. URL https://doi.org/10.1145/
3660767.

Guanyu Lin, Tao Feng, Pengrui Han, Ge Liu, and Jiaxuan You. Paper copilot: A self-evolving and
efficient llm system for personalized academic assistance, 2024. URL https://arxiv.org/
abs/2409.04593.

15

https://www.sciencedirect.com/science/article/pii/S0927025620300355
https://www.sciencedirect.com/science/article/pii/S0927025620300355
https://arxiv.org/abs/2404.04298
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2407.01502
https://aclanthology.org/2024.acl-long.50
https://learn.arcgis.com/en/projects/analyze-urban-heat-using-kriging/
https://learn.arcgis.com/en/projects/analyze-urban-heat-using-kriging/
https://aclanthology.org/2024.findings-acl.348
https://aclanthology.org/2023.emnlp-main.317
https://aclanthology.org/2023.emnlp-main.317
https://doi.org/10.1145/3660767
https://doi.org/10.1145/3660767
https://arxiv.org/abs/2409.04593
https://arxiv.org/abs/2409.04593


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Anika Liu, Moritz Walter, Peter Wright, Aleksandra Bartosik, Daniela Dolciami, Abdurrahman
Elbasir, Hongbin Yang, and Andreas Bender. Prediction and mechanistic analysis of drug-
induced liver injury (dili) based on chemical structure. Biology Direct, 16(6), 2021. doi:
10.1186/s13062-020-00285-0.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/
abs/2408.06292.

Zitong Lu and Julie Golomb. Generate your neural signals from mine: individual-to-individual eeg
converters. Proceedings of the Annual Meeting of the Cognitive Science Society, 45, 2023. URL
https://escholarship.org/uc/item/5xn0885t.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish Sabhar-
wal, and Peter Clark. Position: Data-driven discovery with large generative models. In Forty-first
International Conference on Machine Learning, 2024a. URL https://openreview.net/
forum?id=5SpjhZNXtt.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models, 2024b. URL
https://arxiv.org/abs/2407.01725.

Dominique Makowski, Tam Pham, Zen J. Lau, Jan C. Brammer, François Lespinasse, Hung Pham,
Christopher Schölzel, and S. H. Annabel Chen. NeuroKit2: A Python toolbox for neurophysi-
ological signal processing. Behavior Research Methods, 53(4):1689–1696, February 2021. doi:
10.3758/s13428-020-01516-y.

Mariia Matveieva and Pavel Polishchuk. Benchmarks for interpretation of qsar models. Journal of
Cheminformatics, 41(13), 2021. doi: 10.1186/s13321-021-00519-x.

F. Maussion, A. Butenko, N. Champollion, M. Dusch, J. Eis, K. Fourteau, P. Gregor, A. H. Jarosch,
J. Landmann, F. Oesterle, B. Recinos, T. Rothenpieler, A. Vlug, C. T. Wild, and B. Marzeion.
The open global glacier model (oggm) v1.1. Geoscientific Model Development, 12(3):909–
931, 2019. doi: 10.5194/gmd-12-909-2019. URL https://gmd.copernicus.org/
articles/12/909/2019/.

MistralAI. Large enough. Jul 2024. URL https://mistral.ai/news/
mistral-large-2407.

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder.
Python materials genomics (pymatgen): A robust, open-source python library for materials anal-
ysis. Computational Materials Science, 68:314–319, 2013. ISSN 0927-0256. doi: https:
//doi.org/10.1016/j.commatsci.2012.10.028. URL https://www.sciencedirect.com/
science/article/pii/S0927025612006295.

OpenAI. Hello gpt-4o. May 2024. URL https://openai.com/index/hello-gpt-4o.

Bharath Ramsundar, Bowen Liu, Zhenqin Wu, Andreas Verras, Matthew Tudor, Robert P. Sheri-
dan, and Vijay Pande. Is multitask deep learning practical for pharma? Journal of Chemi-
cal Information and Modeling, 57(8):2068–2076, 2017. doi: 10.1021/acs.jcim.7b00146. URL
https://doi.org/10.1021/acs.jcim.7b00146. PMID: 28692267.

Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Karl Leswing, and Zhenqin Wu.
Deep Learning for the Life Sciences. O’Reilly Media, 2019. https://www.amazon.com/
Deep-Learning-Life-Sciences-Microscopy/dp/1492039837.

Sebastian Raschka, Anne M. Scott, Mar Huertas, Weiming Li, and Leslie A. Kuhn. Automated
Inference of Chemical Discriminants of Biological Activity, pp. 307–338. Springer New York,
New York, NY, 2018. ISBN 978-1-4939-7756-7. doi: 10.1007/978-1-4939-7756-7 16. URL
https://doi.org/10.1007/978-1-4939-7756-7_16.

16

https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://escholarship.org/uc/item/5xn0885t
https://openreview.net/forum?id=5SpjhZNXtt
https://openreview.net/forum?id=5SpjhZNXtt
https://arxiv.org/abs/2407.01725
https://gmd.copernicus.org/articles/12/909/2019/
https://gmd.copernicus.org/articles/12/909/2019/
https://mistral.ai/news/mistral-large-2407
https://mistral.ai/news/mistral-large-2407
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://openai.com/index/hello-gpt-4o
https://doi.org/10.1021/acs.jcim.7b00146
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://doi.org/10.1007/978-1-4939-7756-7_16


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Robert Richer, Arne Küderle, Martin Ullrich, Nicolas Rohleder, and Bjoern M. Eskofier. Biopsykit:
A python package for the analysis of biopsychological data. Journal of Open Source Software, 6
(66):3702, 2021. doi: 10.21105/joss.03702. URL https://doi.org/10.21105/joss.
03702.

Nicolas Riesterer, Daniel Brand, Hannah Dames, and Marco Ragni. Modeling human syllogistic
reasoning:the role of “no valid conclusion”. Proceedings of the Annual Meeting of the Cognitive
Science Society, 41, 2019. URL https://escholarship.org/uc/item/5xm1m8h8.

AShlee Robinson. Chart coral and sponge distribution factors with python,
October 2023. URL https://learn.arcgis.com/en/projects/
chart-coral-and-sponge-distribution-factors-with-python/.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3
edition, 2010.

Jason Schatz and Christopher J Kucharik. Urban climate effects on extreme temperatures in madi-
son, wisconsin, usa. Environmental Research Letters, 10(9):094024, 2015.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Yacmpz84TH.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dong-
sheng Li, and Yueting Zhuang. Taskbench: Benchmarking large language models for task
automation. In ICLR 2024 Workshop on Large Language Model (LLM) Agents, 2024. URL
https://openreview.net/forum?id=ZUbraGNpAq.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers, 2024. URL https://arxiv.org/abs/
2409.04109.

Gregor Sturm, Tamas Szabo, Georgios Fotakis, Marlene Haider, Dietmar Rieder, Zlatko Trajanoski,
and Francesca Finotello. Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-
sequencing data. Bioinformatics, 36(18):4817–4818, 07 2020. ISSN 1367-4803. doi: 10.
1093/bioinformatics/btaa611. URL https://doi.org/10.1093/bioinformatics/
btaa611.

Kyle Swanson, Parker Walther, Jeremy Leitz, Souhrid Mukherjee, Joseph C Wu, Rabindra V Shiv-
naraine, and James Zou. ADMET-AI: a machine learning ADMET platform for evaluation of
large-scale chemical libraries. Bioinformatics, 40(7):btae416, 06 2024. ISSN 1367-4811. doi: 10.
1093/bioinformatics/btae416. URL https://doi.org/10.1093/bioinformatics/
btae416.

Xiangru Tang, Qiao Jin, Kunlun Zhu, Tongxin Yuan, Yichi Zhang, Wangchunshu Zhou, Meng
Qu, Yilun Zhao, Jian Tang, Zhuosheng Zhang, Arman Cohan, Zhiyong Lu, and Mark Ger-
stein. Prioritizing safeguarding over autonomy: Risks of llm agents for science, 2024a. URL
https://arxiv.org/abs/2402.04247.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen, Yan Wang,
Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu Zhou, Yilun Zhao,
Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code, 2024b. URL https://arxiv.org/abs/
2311.09835.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark B Gerstein. BioCoder:
a benchmark for bioinformatics code generation with large language models. Bioinformatics, 40
(Supplement 1):i266–i276, 2024c. ISSN 1367-4811. doi: 10.1093/bioinformatics/btae230. URL
https://doi.org/10.1093/bioinformatics/btae230.

17

https://doi.org/10.21105/joss.03702
https://doi.org/10.21105/joss.03702
https://escholarship.org/uc/item/5xm1m8h8
https://learn.arcgis.com/en/projects/chart-coral-and-sponge-distribution-factors-with-python/
https://learn.arcgis.com/en/projects/chart-coral-and-sponge-distribution-factors-with-python/
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=ZUbraGNpAq
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://doi.org/10.1093/bioinformatics/btaa611
https://doi.org/10.1093/bioinformatics/btaa611
https://doi.org/10.1093/bioinformatics/btae416
https://doi.org/10.1093/bioinformatics/btae416
https://arxiv.org/abs/2402.04247
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://doi.org/10.1093/bioinformatics/btae230


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
and Hao Peng. Scicode: A research coding benchmark curated by scientists, 2024. URL https:
//arxiv.org/abs/2407.13168.

Isaac Virshup, Danila Bredikhin, Lukas Heumos, Giovanni Palla, Gregor Sturm, Adam Gayoso,
Ilia Kats, Mikaela Koutrouli, Philipp Angerer, Volker Bergen, Pierre Boyeau, Maren Büttner,
Gokcen Eraslan, David Fischer, Max Frank, Justin Hong, Michal Klein, Marius Lange, Romain
Lopez, Mohammad Lotfollahi, Malte D. Luecken, Fidel Ramirez, Jeffrey Regier, Sergei Rybakov,
Anna C. Schaar, Valeh Valiollah Pour Amiri, Philipp Weiler, Galen Xing, Bonnie Berger, Dana
Pe’er, Aviv Regev, Sarah A. Teichmann, Francesca Finotello, F. Alexander Wolf, Nir Yosef, Oliver
Stegle, Fabian J. Theis, and Scverse Community. The scverse project provides a computational
ecosystem for single-cell omics data analysis. Nature Biotechnology, 41(5), 2023. doi: 10.1038/
s41587-023-01733-8.

Boshi Wang, Hao Fang, Jason Eisner, Benjamin Van Durme, and Yu Su. LLMs in the imagi-
narium: Tool learning through simulated trial and error. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 10583–10604, Bangkok, Thailand, August
2024a. Association for Computational Linguistics. URL https://aclanthology.org/
2024.acl-long.570.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chan-
dak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, Anima Anandkumar, Karianne Bergen,
Carla P. Gomes, Shirley Ho, Pushmeet Kohli, Joan Lasenby, Jure Leskovec, Tie-Yan Liu,
Arjun Manrai, Debora Marks, Bharath Ramsundar, Le Song, Jimeng Sun, Jian Tang, Petar
Veličković, Max Welling, Linfeng Zhang, Connor W. Coley, Yoshua Bengio, and Marinka Zit-
nik. Scientific discovery in the age of artificial intelligence. Nature, 620:47–60, 2023. doi:
https://doi.org/10.1038/s41586-023-06221-2.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better LLM agents. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=jJ9BoXAfFa.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Opendevin: An open platform for ai software
developers as generalist agents, 2024c. URL https://arxiv.org/abs/2407.16741.

Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils E.R. Zimmermann, Saurabh Bajaj,
Qi Wang, Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, Kyle Chard, Mark
Asta, Kristin A. Persson, G. Jeffrey Snyder, Ian Foster, and Anubhav Jain. Matminer: An
open source toolkit for materials data mining. Computational Materials Science, 152:60–69,
2018. ISSN 0927-0256. doi: https://doi.org/10.1016/j.commatsci.2018.05.018. URL https:
//www.sciencedirect.com/science/article/pii/S0927025618303252.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. Scanpy: large-scale single-cell gene
expression data analysis. Genome Biology, 19(15), 2018. doi: 10.1186/s13059-017-1382-0.

Felix Wong, Erica J. Zheng, Jacqueline A. Valeri, Nina M. Donghia, Melis N. Anahtar, Satotaka
Omori, Alicia Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, Abigail L. Manson, Jens

18

https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2407.13168
https://aclanthology.org/2024.acl-long.570
https://aclanthology.org/2024.acl-long.570
https://openreview.net/forum?id=jJ9BoXAfFa
https://arxiv.org/abs/2407.16741
https://www.sciencedirect.com/science/article/pii/S0927025618303252
https://www.sciencedirect.com/science/article/pii/S0927025618303252
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Friedrichs, Ralf Helbig, Behnoush Hajian, Dawid K. Fiejtek, Florence F. Wagner, Holly H. Sout-
ter, Ashlee M. Earl, Jonathan M. Stokes, Lars D. Renner, and James J. Collins. Discovery of a
structural class of antibiotics with explainable deep learning. Nature, 626:177–185, 2024. doi:
10.1038/s41586-023-06887-8.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots, 2024. URL https://arxiv.org/abs/
2405.07990.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chem. Sci., 9:513–530, 2018. doi: 10.1039/C7SC02664A. URL http://dx.doi.org/
10.1039/C7SC02664A.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent computer interfaces enable software engineering language
models, 2024a.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. Matplotagent:
Method and evaluation for llm-based agentic scientific data visualization, 2024b. URL https:
//arxiv.org/abs/2402.11453.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. LlaSMol: Advancing large
language models for chemistry with a large-scale, comprehensive, high-quality instruction tuning
dataset. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=lY6XTF9tPv.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=yLClGs770I.

Paul Zandbergen. Run geoprocessing tools with python, March 2024. URL https://learn.
arcgis.com/en/projects/run-geoprocessing-tools-with-python/.

Amanda J Zellmer and Barbara S Goto. Urban wildlife corridors: Building bridges for wildlife and
people. Frontiers in Sustainable Cities, 4:954089, 2022.

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng Wang, Shuiwang Ji, Wei Wang, and Jiawei Han. A com-
prehensive survey of scientific large language models and their applications in scientific discovery,
2024. URL https://arxiv.org/abs/2406.10833.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. GPT-4V(ision) is a generalist web
agent, if grounded. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 61349–61385. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/zheng24e.html.

Zhiling Zheng, Oufan Zhang, Ha L. Nguyen, Nakul Rampal, Ali H. Alawadhi, Zichao Rong,
Teresa Head-Gordon, Christian Borgs, Jennifer T. Chayes, and Omar M. Yaghi. Chatgpt re-
search group for optimizing the crystallinity of mofs and cofs. ACS Central Science, 9(11):
2161–2170, 2023. doi: 10.1021/acscentsci.3c01087. URL https://doi.org/10.1021/
acscentsci.3c01087.

19

https://arxiv.org/abs/2405.07990
https://arxiv.org/abs/2405.07990
http://dx.doi.org/10.1039/C7SC02664A
http://dx.doi.org/10.1039/C7SC02664A
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2402.11453
https://arxiv.org/abs/2402.11453
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=lY6XTF9tPv
https://openreview.net/forum?id=lY6XTF9tPv
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://learn.arcgis.com/en/projects/run-geoprocessing-tools-with-python/
https://learn.arcgis.com/en/projects/run-geoprocessing-tools-with-python/
https://arxiv.org/abs/2406.10833
https://proceedings.mlr.press/v235/zheng24e.html
https://proceedings.mlr.press/v235/zheng24e.html
https://doi.org/10.1021/acscentsci.3c01087
https://doi.org/10.1021/acscentsci.3c01087


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. CodeBERTScore: Evaluating code
generation with pretrained models of code. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 13921–13937, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.859. URL https://aclanthology.org/2023.
emnlp-main.859.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A real-
istic web environment for building autonomous agents. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
oKn9c6ytLx.

Abubakr Ziedan, Cassidy Crossland, Candace Brakewood, Philip Pugliese, and Harrison Ooi. Inves-
tigating the preferences of local residents toward a proposed bus network redesign in chattanooga,
tennessee. Transportation Research Record, 2675(10):825–840, 2021.

20

https://aclanthology.org/2023.emnlp-main.859
https://aclanthology.org/2023.emnlp-main.859
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

APPENDICES

We provide more details omitted in the main text as follows:

• Appendix A: Future Directions, Limitations, and Ethical Considerations

• Appendix B: Example Task Instructions
– Table B.1: Example Instructions for Bioinformatics and Computational Chemistry

Tasks
– Table B.2: Example Instructions for Geographical Information Science and Psychol-

ogy & Cognitive Neuroscience Tasks

• Appendix C: More Details about Benchmark Construction
– Appendix C.1: Details about Annotated Programs
– Appendix C.2: Details about Success Criteria

• Appendix D: More Details about Main Results
– Appendix D.1: Mean and Standard Deviations of Agent Performance
– Appendix D.2: Error Analysis of OpenHands CodeAct and Self-Debug

• Appendix E: Case Studies
– Appendix E.1: Action Space of OpenHands
– Appendix E.2: Case 2: Influence of Expert-Provided Knowledge

• Appendix F: Expert Validation Details
– Appendix F.1: Questionnaire for Domain Experts
– Appendix F.2: Program Example for Domain Experts
– Appendix F.3: Knowledge Example for Domain Experts

• Appendix G: Rubric Examples
– Appendix G.1: An example rubric of a Computational Chemistry task generated by

GPT-4o without expert revision
– Appendix G.2: An example rubric revised by an expert by adding the available points

to two items
– Appendix G.3: An example rubric of a Geographical Information Science task gener-

ated by GPT-4o without expert revision
– Appendix G.4: An example rubric of a Geographical Information Science task revised

by an expert by reducing the available points for several items

• Appendix H: Prompt Templates
– Table H.1: Prompt Template for Direct Prompting
– Table H.2: Prompt Template for Self-Debug
– Table H.3: Prompt Template for OpenDevin

• Appendix I: Publications, Repositories, and Licenses
– Table I.1: List of Bioinformatics and Computational Chemistry Publications
– Table I.2: List of Geographical Information Science and Psychology & Cognitive

Neuroscience Publications
– Table I.3: List of Repositories and Licenses
– Table I.4: Copyright Information for rasterio/rasterio
– Table I.5: Copyright Information for ackingmaterials/matminer.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A FUTURE DIRECTIONS, LIMITATIONS, AND ETHICAL CONSIDERATIONS

Capabilities and Evaluation of Language Agents for Science. In this work, we have developed
a benchmark focusing on tasks in data-driven discovery and formulate them as code generation
problems due to two reasons. (1) Data-driven discovery is an increasingly important workflow
for science (Hey et al., 2009). While plenty of computational tools (Cao, 2017) and AI models
(Wang et al., 2023) have been developed, the sheer amount and heterogeneity of data are already
overwhelming for scientists (Bell et al., 2009), not to mention the programming efforts to access
these tools and models for processing, analyzing, and visualizing scientific data. A language agent
that can automate such tedious tasks in data-driven discovery would help to save hours of effort for
scientists. (2) We aim to rigorously assess the capabilities of existing language agents as science co-
pilots that can write code to process, analyze, and visualize data. Hence, we formulate each task as
a code generation problem, whose output shall be easily verifiable using well-established automatic
metrics and directly usable by a scientist without additional efforts to modify or implement.

As a result, we only focus on the code generation capability of language agents. We encourage future
studies to carefully examine the agents’ other capabilities that can help with scientific discovery,
such as summarizing literature (Lin et al., 2024), suggesting ideas (Si et al., 2024), or planning
experiments (Boiko et al., 2023). Specifically, we advocate rigorous, comprehensive assessments
of one such capability at a time, as we need to deeply understand the strengths and limitations of
current language agents for each aspect of scientific discovery. In addition, while we only use well-
established evaluation methods in our benchmark, such as CodeBERTScore (Zhou et al., 2023) and
GPT-4o judge for figures (Wu et al., 2024; Yang et al., 2024b), we acknowledge that they are not
perfect yet. Future research may leverage the diverse set of tasks in our benchmark to develop better
automatic evaluation metrics or human evaluation protocols for data-driven discovery tasks and code
generation problems.

Diversity of Tasks, disciplines, and Programs. Although we strive to include a diverse set of
tasks and programs from different scientific disciplines in ScienceAgentBench, we devise several
compromises to make data collection more practical. First, when collecting publications, we have
indeed found more with programs written in R, Stata, or Matlab. However, because our annotators
are not familiar with these programming languages, we focus on collecting Python programs, which
all annotators can adapt confidently. Second, for evaluation efficiency, we only collect programs
that can accomplish the task within 10 minutes. As a result, the final benchmark includes relatively
fewer tasks that process large-scale data and develop complex methods. Finally, we choose the
four representative disciplines considering their abundance of open-source data and the availability
of experts we can easily contact. With these limitations in mind, we have designed a principled,
extensible data collection process and expert validation protocol. Future work is encouraged to
expand ScienceAgentBench with programs in other languages and tasks in other disciplines. We
also plan to continually expand our benchmark into more disciplines and facilitate future research in
two ways: (1) ScienceAgentBench will serve as a necessary testbed for developing future language
agents with stronger capabilities to process scientific data or to utilize expert-provided knowledge.
(2) ScienceAgentBench will help future research to design new automatic graded metrics, such as
an LLM judge based on task-specific rubrics, to assess language agents for data-driven discovery.

Ethical and Safety Considerations. Our benchmark is constructed by adapting open-source code
and data, to which we respect their creators’ ownership and intellectual property. In Appendix I,
we have made our best effort to cite the original papers, list the repositories, and provide their
licenses. Still, we acknowledge that two repositories are copyrighted and believe their terms for use
are compatible with our research purpose (Table I.4, I.5). We welcome requests from the original
authors to modify or remove relevant tasks if needed.

Meanwhile, agents developed with ScienceAgentBench should consider potential safety issues in
deployment, especially when performing Bioinformatics and Computational Chemistry tasks. This
work contributes an evaluation benchmark to assess existing language agents rigorously, which has
limited or no risk in inadvertently synthesizing toxic or dangerous chemicals. Yet, we are aware
that the safety of language agents for science is an important research topic (Tang et al., 2024a)
and have discussed with our subject matter experts about the risk of synthesizing toxic or dangerous
chemicals: (1) Our Bioinformatics and Computational Chemistry tasks focus on property prediction,
feature analyses, and molecule visualization, which does not involve synthesis or generation of

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

biological or chemical substances. (2) Unlike Coscientist (Boiko et al., 2023), agents evaluated in
our submission are not connected to any laboratory hardwares. Thus, it is impossible for these agents
to produce any dangerous chemicals or substances on their own. Even if they were to be instructed
to write code for chemical synthesis in real-world applications, human intervention is still required
to grant the access to laboratories, reagents, and equipment. (3) The target outputs for every task in
ScienceAgentBench are unified as self-contained Python programs. Therefore, the evaluated agents
only generate code for processing, analyzing and visualizing scientific data that is already publicly
available. They are not instructed to generate chemical reactions or synthesis pathways. We also
recommend the developers of these agents to consider such potential risks seriously and provide
effective intervention and feedback mechanisms for users.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B EXAMPLE TASK INSTRUCTIONS

Table B.1: Example instructions of Bioinfomatics and Compuational Chemistry tasks (Section 2.2).

Domain Task Instruction

Bioinformatics

Train a cell counting model on the BBBC002 datasets containing
Drosophila KC167 cells. Save the test set predictions as a single

column “count” to “pred results/cell-count pred.csv”.

Train a drug-target interaction model using the DAVIS dataset to
determine the binding affinity between several drugs and targets.

Then use the trained model to predict the binding affinities between
antiviral drugs and COVID-19 target. Rank the antiviral drugs based

on their predicted affinities and save the ordered list of drugs to
“pred results/davis dti repurposing.txt”, with one SMILES per line.

Plot the Tanimoto similarities of the fingerprint between the frames.
Specifically, the interaction fingerprints between a selected ligand

and protein for the first 10 trajectory frames. Save the png file
into pred results/ligand similarity pred.png.

Train a VAE model on the given data and perform a 1-vs-all
differential expression test for each cell type. Extract top markers

for each cell type using the results. Visualize them as a dotplot with
the cell types organized using a dendrogram. Save the figure to

pred results/hca cell type de.png.

Computational Chemistry

Train a multitask model on the Clintox dataset to predict a drug’s
toxicity and FDA approval status. Save the test set predictions,

including the SMILES representation of drugs and the probability
of positive labels, to “pred results/clintox test pred.csv”.

Generate features for the given diffusion data based on material
composition and use the SHAP feature selection approach to select

20 features. Save the selected features as a CSV file
“mat diffusion features.csv” to the folder “pred results/”.

Filter the compounds in “hits.csv” and save the SMILES represen-
tations of the left ones. Compounds to be kept should have no PAINS
or Brenk filter substructures and have a maximum tanimoto similarity

of less than 0.5 to any of the active compounds in “train.csv”. Save
the SMILES of left compounds to “pred results/compound filter results

.txt”, with each one in a line.

Train a graph convolutional network on the given dataset to predict
the aquatic toxicity of compounds. Use the resulting model to compute

and visualize the atomic contributions to molecular activity of the
given test example compound. Save the figure as

“pred results/aquatic toxicity qsar vis.png”.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table B.2: Example instructions of Geographical Information Science and Psychology & Cognitive
Neuroscience tasks (Section 2.2).

Domain Task Instruction

Geo Information Science

Analyze and visualize Elk movements in the given dataset. Esti-
mate home ranges and assess habitat preferences using spatial
analysis techniques. Identify the spatial clusters of Elk move-
ments. Document the findings with maps and visualizations.

Save the figure as “pred results/Elk Analysis.png”.

Analyze the impact of land subsidence on flooding based on
future elevation data of the study area. Identify flood-prone

areas and estimate potential building damage to support urban
planning and mitigation strategies. Save the results to

“pred results/flooding analysis.png”.

Calculate the deforestation area percentage in the Brazilian
state of Rondônia within the buffer zone of 5.5km around

road layers. Save the percentage result in a CSV file named
“pred results/deforestation rate.csv” with a column title

percentage deforestation.

Load North America climate data in NetCDF file and extract
temperature data along the time series, then perform a

quadratic polynomial fit analysis on the temperature data,
and output the fitting results by year in
‘pred results/polynomial fit pred.csv’.

Psy & Cognitive Neuroscience

Process and visualize the given ECG data by perform R
peak detection and outlier correction. Plot an overview of

the data and save the final figure as
“pred results/ecg processing vis1 pred result.png”.

Analyze the inertial measurement unit (IMU) data collected
during sleep and compute sleep endpoints. Load the given data

and compute the following sleep endpoints: time of falling asleep,
time of awakening, and total duration spent sleeping. The three

values should be saved in a JSON file “pred results/imu
pred.json”, and the keys for them are ”sleep onset”,

”wake onset”, and ”total sleep duration”, respectively.

Analyze cognitive theories using pattern similarity. Process CSV
files containing model predictions for various syllogistic

reasoning tasks. Calculate similarity scores between these models
and pre-computed high-conscientiousness and high-openness patterns.

The results will contain similarity scores for each cognitive model
with respect to the personality trait patterns. Save the results to

“pred results/CogSci pattern high sim data pred.csv”.

Train a linear model to learn the mapping of neural represen-
tations in EEG signals from one subject (Sub 01) to another

(Sub 03) based on the preprocessed EEG data from Sub 01 and
Sub 03. Then use the test set of Subject 1 (Sub 01) to gene-

rate EEG signal of Subject 3 (Sub 03). Save the generated EEG
signal of Subject 3 to “pred results/linear sub01tosub03 pred.npy”.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C MORE DETAILS ABOUT BENCHMARK CONSTRUCTION

C.1 DETAILS ABOUT ANNOTATED PROGRAMS

The annotated program for each task is first extracted as is, instead of written by humans or gen-
erated by any models, from the open-source repositories of peer-reviewed publications to ensure
their scientific authenticity. Then, our annotators make necessary modifications to remove redun-
dant lines and load the datasets in our benchmark. Finally, the annotated programs are validated by
subject matter experts, as well as other annotators.

C.2 DETAILS ABOUT SUCCESS CRITERIA

The success criteria in our benchmark are tailored to each task and established by measuring whether
an LLM-generated program accurately reproduces the result of the annotated program. Since the
annotated programs are adapted from open-source repositories of peer-reviewed publications and
validated by subject matter experts, their execution results faithfully represent part of the research
outcomes in those publications. An agent that is capable of implementing a program correctly to
reproduce the result would also produce a correct program for similar tasks in real-world scenarios.

For example, we have executed our annotated program to train a multitask model on the Clintox
dataset for five independent runs and consistently observe that the model achieves at least 0.77
ROC-AUC score on the test set. Thus, we use 0.77 as the performance threshold in this success
criterion and require the agent to train a model with the same level of performance to be considered
successfully completing the task. Evaluation criteria for other tasks are also established following
the same principle of reproducing some data-driven discovery results.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D MORE DETAILS ABOUT MAIN RESULTS

D.1 MEAN AND STANDARD DEVIATIONS OF AGENT PERFORMANCE

In the main text, we present our results by selecting the best of three independent runs for each task
in all experiments (Section 3). For comprehensiveness, we show the mean performances of each
agent and standard deviations below, which demonstrate the same findings as in our main results in
Section 4.1.

Table D.1: Mean performances of each agent and standard deviations on ScienceAgentBench with-
out domain knowledge.

Models SR CBS VER Cost ↓
Direct Prompting

Llama-3.1-Instruct-70B 3.6 (2.0) 81.0 (0.4) 22.2 (0.9) 0.001 (0.000)
Llama-3.1-Instruct-405B 3.6 (0.5) 79.3 (0.1) 32.0 (0.5) 0.011 (0.000)
Mistral-Large-2 (2407) 10.1 (1.2) 82.5 (0.2) 36.6 (0.9) 0.010 (0.000)

GPT-4o 7.5 (0.5) 81.7 (0.1) 42.2 (1.6) 0.011 (0.000)
Claude-3.5-Sonnet 11.8 (2.1) 82.5 (0.4) 36.0 (1.2) 0.017 (0.000)

OpenHands

Llama-3.1-Instruct-70B 3.3 (0.5) 59.9 (1.6) 17.0 (1.2) 0.234 (0.026)
Llama-3.1-Instruct-405B 2.6 (0.9) 59.0 (4.9) 34.3 (9.2) 0.576 (0.108)
Mistral-Large-2 (2407) 7.5 (0.9) 70.4 (1.1) 42.8 (1.7) 0.735 (0.025)

GPT-4o 13.1 (2.6) 80.6 (1.2) 62.8 (2.9) 1.093 (0.071)
Claude-3.5-Sonnet 14.1 (1.2) 81.2 (0.8) 63.4 (6.5) 1.122 (0.056)

Self-Debug

Llama-3.1-Instruct-70B 7.2 (1.2) 81.2 (0.3) 67.3 (2.4) 0.009 (0.000)
Llama-3.1-Instruct-405B 8.8 (1.4) 80.8 (0.5) 67.0 (2.8) 0.054 (0.005)
Mistral-Large-2 (2407) 16.0 (1.7) 83.2 (0.4) 70.3 (2.6) 0.043 (0.001)

GPT-4o 14.7 (3.2) 82.6 (0.6) 71.2 (1.2) 0.057 (0.006)
Claude-3.5-Sonnet 22.9 (2.0) 84.2 (0.3) 84.0 (1.2) 0.066 (0.005)

Table D.2: Mean performances of each agent and standard deviations on ScienceAgentBench with
domain knowledge.

Models SR CBS VER Cost ↓
Direct Prompting

Llama-3.1-Instruct-70B 2.6 (0.5) 81.7 (0.1) 19.3 (1.7) 0.001 (0.000)
Llama-3.1-Instruct-405B 2.9 (0.0) 81.3 (0.0) 24.5 (0.0) 0.011 (0.000)
Mistral-Large-2 (2407) 11.4 (1.2) 83.8 (0.2) 28.8 (2.3) 0.010 (0.000)

GPT-4o 8.2 (1.8) 83.2 (0.4) 35.6 (1.8) 0.012 (0.000)
Claude-3.5-Sonnet 16.7 (2.4) 84.5 (0.4) 33.0 (1.2) 0.017 (0.000)

OpenHands

Llama-3.1-Instruct-70B 1.6 (0.9) 60.5 (0.9) 16.7 (0.8) 0.296 (0.003)
Llama-3.1-Instruct-405B 4.3 (2.0) 62.9 (6.3) 35.6 (1.7) 0.653 (0.072)
Mistral-Large-2 (2407) 9.2 (0.9) 74.1 (2.9) 35.3 (0.8) 0.757 (0.049)

GPT-4o 16.7 (2.8) 83.7 (0.7) 60.8 (2.4) 1.402 (0.055)
Claude-3.5-Sonnet 15.7 (2.1) 82.8 (0.3) 68.0 (3.3) 1.095 (0.087)

Self-Debug

Llama-3.1-Instruct-70B 9.8 (2.1) 82.0 (0.4) 60.8 (2.1) 0.011 (0.000)
Llama-3.1-Instruct-405B 8.2 (0.9) 82.2 (0.1) 61.1 (3.8) 0.072 (0.002)
Mistral-Large-2 (2407) 18.3 (0.5) 84.9 (0.1) 62.8 (0.0) 0.051 (0.001)

GPT-4o 15.0 (2.0) 83.8 (0.4) 61.4 (1.7) 0.063 (0.001)
Claude-3.5-Sonnet 27.8 (2.0) 85.5 (0.5) 81.1 (0.9) 0.072 (0.005)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.2 ERROR ANALYSIS OF OPENHANDS CODEACT AND SELF-DEBUG

Using Claude-3.5-Sonnet as the base LLM, we sample 50 error trajectories for OpenHands CodeAct
and self-debug respectively. From the 100 error trajectories, we find that both agents need better
reasoning and self-verification capabilities to make sure their executable programs are also seman-
tically correct (29/50 errors for OpenHands CodeAct and 30/50 errors for self-debug). For instance,
when having trouble loading the actual scientific data, the agent may write code to simulate some
fake data to make the program executable but produce incorrect results. Similarly, when the agent
cannot implement something correctly, e.g., a graph convolutional neural network, it may just turn
to implementing a simpler feed-forward network, which underfits the complex data and cannot re-
produce the desired performance. These executable but functionally incorrect programs need to be
better captured and fixed by improving the agents’ reasoning and self-verification in future research.

The other major issue for both agents is their ability to install and configure the environments
with domain-specific tools correctly. Our analysis reveals that both the LLM-generated installation
commands in OpenHands CodeAct (10/50 are configuration errors) and human-developed packages
used in self-debug (9/50 are configuration errors) are not sufficient to set up some domain-specific
tools correctly. This finding echoes with concurrent work (Bogin et al., 2024) that environmental
setup for scientific tasks remains challenging for language agents. When the environment is not
set up correctly, both agents try to get around domain-specific tools in their programs, such as
developing a random forest model with scikit-learn instead of deep learning models in deepchem.

Finally, we find that in 23 of the 50 error trajectories, Claude-3.5-Sonnet was struggling with the
specialized commands in OpenHands to edit programs correctly (Section 4.1), especially for longer
programs. It would fall into loops of repeatedly generating such commands as shown in the case
study in Appendix D.1. Such behaviors waste quite a few turns on fixing the use of these commands
and largely increase the API cost. Future agent research should reconsider the use of such commands
and compare closely with some pipeline-based approaches (Xia et al., 2024).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E CASE STUDIES

E.1 CASE 1: ACTION SPACE OF OPENHANDS

In Section 4, our results show that, for four of the five LLMs evaluated, self-debug demonstrates
better performance than OpenHands, with GPT-4o as the only exception. For GPT-4o, which may
have been trained to better follow instructions for language agents, we indeed observe that it can
better leverage tools in OpenHands, such as the web browser commands (lines 33, 60, and 87 in
Listing E.1). In sharp contrast, as shown in Listing E.2, Claude-3.5-Sonnet is still struggling with
the specialized bash command in OpenHands to update the program file without duplication (line
11 in Listing E.2), and after five steps of trials, it ends up simply using the Python function open()
instead to edit the file (line 146 in Listing E.2). Thus, LLM-based agents do not always benefit from
a large action space with complex tool usage, such as the design of OpenHands.

Listing E.1: An example of GPT-4o using the web browser in OpenHands. Browsing actions in lines
31–34, 58–61, 85–88.

1 {
2 ......(first seven turns omitted),
3 [
4 {
5 "id": 17,
6 "timestamp": "2024-09-19T14:13:52.407648",
7 "source": "agent",
8 "message": "I’m asking BrowsingAgent for help with this task.",
9 "action": "delegate",

10 "args": {
11 "agent": "BrowsingAgent",
12 "inputs": {
13 "task": "It seems that the ‘rsp_rrv‘ function does not accept a ‘peaks‘

argument. Let’s check the NeuroKit2 documentation to find the correct usage of
the ‘rsp_rrv‘ function.\n\n### Step 8: Check NeuroKit2 Documentation\nWe will
browse the NeuroKit2 documentation to find the correct usage of the ‘rsp_rrv‘
function.. I should start with: Search for \"NeuroKit2 rsp_rrv function
documentation\""

14 },
15 "thought": ""
16 }
17 },
18 {
19 "message": "No observation",
20 "observation": "null",
21 "content": "",
22 "extras": {}
23 }
24 ],
25 [
26 {
27 "id": 20,
28 "timestamp": "2024-09-19T14:13:53.634697",
29 "source": "agent",
30 "message": "Executing browser actions: goto(’https://neurokit2.readthedocs.io

/’)",
31 "action": "browse_interactive",
32 "args": {
33 "browser_actions": "goto(’https://neurokit2.readthedocs.io/’)",
34 "thought": "In order to accomplish my goal, I need to search for the

NeuroKit2 ‘rsp_rrv‘ function documentation. I will start by navigating to the
NeuroKit2 documentation website.",

35 "browsergym_send_msg_to_user": ""
36 }
37 },
38 {
39 "id": 21,
40 "timestamp": "2024-09-19T14:13:56.398162",
41 "source": "agent",
42 "message": "Visited https://neurokit2.readthedocs.io/en/legacy_docs/",
43 "cause": 20,
44 "observation": "browse",
45 "content": "<::before> NeuroKit \n\nlegacy_docs \n\n * Documentation \n\n\n\

n__ NeuroKit \n\n<::before><::after>\n * Docs \u00bb \n * Documentation \n *
[ <::before> Edit on GitHub ](https://github.com/neuropsychology/NeuroKit/blob/
legacy_docs/docs/index.rst)\n\n\n\n* * *\n\n# Documentation <::after>\u00b6 \n
\n<::before>Warning \n\nThe **NEW DOCUMENTATION** website is at [ https://
neuropsychology.github.io/NeuroKit ](https://neuropsychology.github.io/NeuroKit
/)\n\n* * *\n\n\u00a9 Copyright 2020, Dominique Makowski Revision ‘ bd105f7f ‘

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

. \n\n<::before><::after> <::before> Read the Docs v: legacy_docs <::before>\n
\nVersions \n [ legacy_docs ](https://neurokit2.readthedocs.io/en/
legacy_docs/)\n\nDownloads \n [ PDF ](//neurokit2.readthedocs.io/_/downloads
/en/legacy_docs/pdf/)\n [ HTML ](//neurokit2.readthedocs.io/_/downloads/en/
legacy_docs/htmlzip/)\n [ Epub ](//neurokit2.readthedocs.io/_/downloads/en/
legacy_docs/epub/)\n\nOn Read the Docs \n [ Project Home ](//readthedocs.org
/projects/neurokit2/)\n [ Builds ](//readthedocs.org/projects/neurokit2/
builds/)\n [ Downloads ](//readthedocs.org/projects/neurokit2/downloads/)\n\
nOn GitHub \n [ View ](https://github.com/neuropsychology/NeuroKit/blob/
legacy_docs/docs/index.rst)\n [ Edit ](https://github.com/neuropsychology/
NeuroKit/edit/legacy_docs/docs/index.rst)\n\nSearch \n \n\n* * *\n\nHosted by
[ Read the Docs ](https://readthedocs.org) \u00b7 [ Privacy Policy ](https://

docs.readthedocs.io/page/privacy-policy.html)\n",
46 "extras": {
47 "url": "https://neurokit2.readthedocs.io/en/legacy_docs/",
48 ...... (webpage information omitted),
49 }
50 }
51 ],
52 [
53 {
54 "id": 22,
55 "timestamp": "2024-09-19T14:13:58.344923",
56 "source": "agent",
57 "message": "Executing browser actions: click(’43’)\nfill(’43’, ’rsp_rrv’)\

npress(’43’, ’Enter’)",
58 "action": "browse_interactive",
59 "args": {
60 "browser_actions": "click(’43’)\nfill(’43’, ’rsp_rrv’)\npress(’43’, ’Enter’)

",
61 "thought": "To find the correct usage of the ‘rsp_rrv‘ function, I should

search for it in the NeuroKit2 documentation. The current page has a search box
that I can use for this purpose.\n\nAction:\n1. Click on the search textbox.\n2.
Fill the search textbox with the query \"rsp_rrv\".\n3. Press Enter to initiate
the search.",

62 "browsergym_send_msg_to_user": ""
63 }
64 },
65 {
66 "id": 23,
67 "timestamp": "2024-09-19T14:14:02.341831",
68 "source": "agent",
69 "message": "Visited https://neurokit2.readthedocs.io/en/legacy_docs/search.html

?q=rsp_rrv&check_keywords=yes&area=default",
70 "cause": 22,
71 "observation": "browse",
72 "content": "[ <::before> NeuroKit ](index.html)\n\nlegacy_docs \n\n__ [

NeuroKit ](index.html)\n\n<::before><::after>\n * [ Docs ](index.html) \u00bb \
n * Search \n * [ <::before> Edit on GitHub ](https://github.com/
neuropsychology/NeuroKit/blob/legacy_docs/docs/search.rst)\n\n\n\n* * *\n\
nPlease activate JavaScript to enable the search functionality. \n\n##
Searching .. \n\n\n\n\n* * *\n\n\u00a9 Copyright 2020, Dominique Makowski
Revision ‘ bd105f7f ‘ . \n\n<::before><::after> <::before> Read the Docs v:
legacy_docs <::before>\n\nVersions \n [ legacy_docs ](https://neurokit2.
readthedocs.io/en/legacy_docs/search.html)\n\nDownloads \n [ PDF ](//
neurokit2.readthedocs.io/_/downloads/en/legacy_docs/pdf/)\n [ HTML ](//
neurokit2.readthedocs.io/_/downloads/en/legacy_docs/htmlzip/)\n [ Epub ](//
neurokit2.readthedocs.io/_/downloads/en/legacy_docs/epub/)\n\nOn Read the Docs \
n [ Project Home ](//readthedocs.org/projects/neurokit2/)\n [ Builds
](//readthedocs.org/projects/neurokit2/builds/)\n [ Downloads ](//
readthedocs.org/projects/neurokit2/downloads/)\n\nOn GitHub \n [ View ](
https://github.com/neuropsychology/NeuroKit/blob/legacy_docs/docs/search.rst)\n

[ Edit ](https://github.com/neuropsychology/NeuroKit/edit/legacy_docs/docs/
search.rst)\n\nSearch \n \n\n* * *\n\nHosted by [ Read the Docs ](https://
readthedocs.org) \u00b7 [ Privacy Policy ](https://docs.readthedocs.io/page/
privacy-policy.html)\n",

73 "extras": {
74 "url": "https://neurokit2.readthedocs.io/en/legacy_docs/search.html?q=rsp_rrv

&check_keywords=yes&area=default",
75 ...... (webpage information omitted),
76 }
77 }
78 ],
79 [
80 {
81 "id": 24,
82 "timestamp": "2024-09-19T14:14:03.570167",
83 "source": "agent",
84 "message": "Executing browser actions: scroll(0, 300)",
85 "action": "browse_interactive",
86 "args": {

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

87 "browser_actions": "scroll(0, 300)",
88 "thought": "To find the correct usage of the ‘rsp_rrv‘ function, I need to

review the search results. Since the search results are likely listed in the
main section, I will scroll down to view them.",

89 "browsergym_send_msg_to_user": ""
90 }
91 },
92 {
93 "id": 25,
94 "timestamp": "2024-09-19T14:14:05.356163",
95 "source": "agent",
96 "message": "Visited https://neurokit2.readthedocs.io/en/legacy_docs/search.html

?q=rsp_rrv&check_keywords=yes&area=default",
97 "cause": 24,
98 "observation": "browse",
99 "content": "[ <::before> NeuroKit ](index.html)\n\nlegacy_docs \n\n__ [

NeuroKit ](index.html)\n\n<::before><::after>\n * [ Docs ](index.html) \u00bb \
n * Search \n * [ <::before> Edit on GitHub ](https://github.com/
neuropsychology/NeuroKit/blob/legacy_docs/docs/search.rst)\n\n\n\n* * *\n\
nPlease activate JavaScript to enable the search functionality. \n\n##
Searching \n\n\n\n\n* * *\n\n\u00a9 Copyright 2020, Dominique Makowski Revision
‘ bd105f7f ‘ . \n\n<::before><::after> <::before> Read the Docs v: legacy_docs
<::before>\n\nVersions \n [ legacy_docs ](https://neurokit2.readthedocs.io

/en/legacy_docs/search.html)\n\nDownloads \n [ PDF ](//neurokit2.readthedocs
.io/_/downloads/en/legacy_docs/pdf/)\n [ HTML ](//neurokit2.readthedocs.io/_
/downloads/en/legacy_docs/htmlzip/)\n [ Epub ](//neurokit2.readthedocs.io/_/
downloads/en/legacy_docs/epub/)\n\nOn Read the Docs \n [ Project Home ](//
readthedocs.org/projects/neurokit2/)\n [ Builds ](//readthedocs.org/projects
/neurokit2/builds/)\n [ Downloads ](//readthedocs.org/projects/neurokit2/
downloads/)\n\nOn GitHub \n [ View ](https://github.com/neuropsychology/
NeuroKit/blob/legacy_docs/docs/search.rst)\n [ Edit ](https://github.com/
neuropsychology/NeuroKit/edit/legacy_docs/docs/search.rst)\n\nSearch \n \n\n*
* *\n\nHosted by [ Read the Docs ](https://readthedocs.org) \u00b7 [ Privacy
Policy ](https://docs.readthedocs.io/page/privacy-policy.html)\n",

100 "extras": {
101 "url": "https://neurokit2.readthedocs.io/en/legacy_docs/search.html?q=rsp_rrv

&check_keywords=yes&area=default",
102 ...... (webpage information omitted),
103 }
104 }
105 ],
106 ......(19 more turns omitted),
107 }

Listing E.2: An example of Claude-3.5-Sonnet that struggles with specialized bash commands in
OpenHands to edit programs correctly. See line 11 for a failed edit example.

1 {
2 ......(first seven turns omitted),
3 [
4 {
5 "id": 15,
6 "timestamp": "2024-09-16T21:45:01.776300",
7 "source": "agent",
8 "message": "......",
9 "action": "run_ipython",

10 "args": {
11 "code": "code = ’’’\nimport pandas as pd\nimport numpy as np\nfrom sklearn.

model_selection import train_test_split\nfrom sklearn.preprocessing import
StandardScaler, OneHotEncoder\nfrom sklearn.linear_model import
LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.
compose import ColumnTransformer\nfrom sklearn.pipeline import Pipeline\nfrom
mlxtend.feature_selection import SequentialFeatureSelector as SFS\nimport
matplotlib.pyplot as plt\n\n# Load the data\ndata = pd.read_csv(’/workspace/
benchmark/datasets/dkpes/dkpes_train.csv’)\n\n# Prepare features and target\nX =
data.drop([’index’, ’Signal-inhibition’], axis=1)\ny = data[’Signal-inhibition

’]\n\n# Identify numeric and categorical columns\nnumeric_features = X.
select_dtypes(include=[’int64’, ’float64’]).columns\ncategorical_features = X.
select_dtypes(include=[’object’]).columns\n\n# Binarize the target variable\
nthreshold = y.median()\ny_binary = (y > threshold).astype(int)\n\n# Split the
data\nX_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size
=0.2, random_state=42)\n\n# Create preprocessing steps\npreprocessor =
ColumnTransformer(\n transformers=[\n (’num’, StandardScaler(),
numeric_features),\n (’cat’, OneHotEncoder(drop=’first’, sparse=False),
categorical_features)\n ])\n\n# Create a pipeline with preprocessing and
logistic regression\nlr_pipeline = Pipeline([\n (’preprocessor’, preprocessor
),\n (’classifier’, LogisticRegression(random_state=42))\n])\n\n# Perform
backward feature selection\nsfs = SFS(lr_pipeline,\n k_features=(1, len
(X.columns)),\n forward=False,\n floating=False,\n
scoring=’accuracy’,\n cv=5,\n n_jobs=-1)\n\nsfs = sfs.fit(

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

X_train, y_train)\n\n# Get the results\nresults = pd.DataFrame.from_dict(sfs.
get_metric_dict()).T\nresults.sort_index(inplace=True)\n\n# Plot the results\
nplt.figure(figsize=(10, 6))\nplt.plot(results.index, results[’avg_score’],
marker=’o’)\nplt.title(’Backward Feature Selection: Accuracy vs Number of
Features’)\nplt.xlabel(’Number of Features’)\nplt.ylabel(’Cross-validation
Accuracy’)\nplt.grid(True)\nplt.tight_layout()\n\n# Save the plot\nplt.savefig
(’/workspace/pred_results/dkpes_feature_selection_analysis_pred.png’)\n\n# Print
the best feature subset\nbest_subset = list(sfs.k_feature_names_)\nprint(f\"

Best feature subset: {best_subset}\")\nprint(f\"Number of selected features: {
len(best_subset)}\")\nprint(f\"Best cross-validation accuracy: {sfs.k_score_:.4f
}\")\n\n# Evaluate on the test set using the best feature subset\nbest_pipeline
= sfs.estimator\nbest_pipeline.fit(X_train, y_train)\ny_pred = best_pipeline.
predict(X_test)\n\ntest_accuracy = accuracy_score(y_test, y_pred)\nprint(f\"Test
accuracy with selected features: {test_accuracy:.4f}\")\n’’’\n\
nedit_file_by_replace(’/workspace/pred_programs/pred_dkpes_visualization_3.py’,
\n to_replace=’import pandas as pd\\nimport numpy as np\\
nfrom sklearn.model_selection import train_test_split\\nfrom sklearn.
preprocessing import StandardScaler, OneHotEncoder\\nfrom sklearn.linear_model
import LogisticRegression\\nfrom sklearn.metrics import accuracy_score\\nfrom
sklearn.compose import ColumnTransformer\\nfrom sklearn.pipeline import Pipeline
\\nfrom mlxtend.feature_selection import SequentialFeatureSelector as SFS\\
nimport matplotlib.pyplot as plt’, \n new_content=code)",

12 "thought": "Thank you for updating the file. I see that there are some
duplicate sections in the code. Let me clean it up and remove the unnecessary
parts:",

13 "is_confirmed": "confirmed",
14 "kernel_init_code": "from agentskills import *"
15 }
16 },
17 {
18 "id": 16,
19 "timestamp": "2024-09-16T21:45:01.983049",
20 "source": "agent",
21 "message": "Code executed in IPython cell.",
22 "cause": 15,
23 "observation": "run_ipython",
24 "content": "......",
25 "extras": {
26 "code": "......"
27 }
28 }
29 ],
30 [
31 {
32 "id": 17,
33 "timestamp": "2024-09-16T21:45:20.373176",
34 "source": "agent",
35 "message": "......",
36 "action": "run_ipython",
37 "args": {
38 "code": "......",
39 "thought": "I apologize for the confusion. It seems that the file still

contains duplicate content. Let me clean it up one more time to remove all
duplicates and ensure the code is correct:",

40 "is_confirmed": "confirmed",
41 "kernel_init_code": "from agentskills import *"
42 }
43 },
44 {
45 "id": 18,
46 "timestamp": "2024-09-16T21:45:20.397554",
47 "source": "agent",
48 "message": "Code executed in IPython cell.",
49 "cause": 17,
50 "observation": "run_ipython",
51 "content": " Cell In[1], line 88\n new_content=\n ˆ\

nSyntaxError: incomplete input\n[Jupyter current working directory: /workspace/
benchmark/datasets]\n[Jupyter Python interpreter: /openhands/poetry/openhands-ai
-5O4_aCHf-py3.11/bin/python]",

52 "extras": {
53 "code": "......"
54 }
55 }
56 ],
57 [
58 {
59 "id": 19,
60 "timestamp": "2024-09-16T21:45:35.261112",
61 "source": "agent",
62 "message": "......",
63 "action": "run_ipython",

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

64 "args": {
65 "code": "......",
66 "thought": "I apologize for the syntax error. Let me correct it and update

the file properly:",
67 "is_confirmed": "confirmed",
68 "kernel_init_code": "from agentskills import *"
69 }
70 },
71 {
72 "id": 20,
73 "timestamp": "2024-09-16T21:45:35.480240",
74 "source": "agent",
75 "message": "Code executed in IPython cell.",
76 "cause": 19,
77 "observation": "run_ipython",
78 "content": "......",
79 "extras": {
80 "code": "......"
81 }
82 }
83 ],
84 [
85 {
86 "id": 21,
87 "timestamp": "2024-09-16T21:45:52.166468",
88 "source": "agent",
89 "message": "......",
90 "action": "run_ipython",
91 "args": {
92 "code": "......",
93 "thought": "I apologize for the confusion. It seems that the file still

contains duplicate content. Let me clean it up one final time to remove all
duplicates and ensure the code is correct:",

94 "is_confirmed": "confirmed",
95 "kernel_init_code": "from agentskills import *"
96 }
97 },
98 {
99 "id": 22,

100 "timestamp": "2024-09-16T21:45:52.190187",
101 "source": "agent",
102 "message": "Code executed in IPython cell.",
103 "cause": 21,
104 "observation": "run_ipython",
105 "content": " Cell In[1], line 88\n new_content=\n ˆ\

nSyntaxError: incomplete input\n[Jupyter current working directory: /workspace/
benchmark/datasets]\n[Jupyter Python interpreter: /openhands/poetry/openhands-ai
-5O4_aCHf-py3.11/bin/python]",

106 "extras": {
107 "code": "......"
108 }
109 }
110 ],
111 [
112 {
113 "id": 23,
114 "timestamp": "2024-09-16T21:46:10.802743",
115 "source": "agent",
116 "message": "......",
117 "action": "run_ipython",
118 "args": {
119 "code": "......",
120 "thought": "I apologize for the repeated mistake. Let me correct it and

update the file properly:",
121 "is_confirmed": "confirmed",
122 "kernel_init_code": "from agentskills import *"
123 }
124 },
125 {
126 "id": 24,
127 "timestamp": "2024-09-16T21:46:11.030574",
128 "source": "agent",
129 "message": "Code executed in IPython cell.",
130 "cause": 23,
131 "observation": "run_ipython",
132 "content": "......",
133 "extras": {
134 "code": "......"
135 }
136 }
137 ],

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

138 [
139 {
140 "id": 25,
141 "timestamp": "2024-09-16T21:46:26.874027",
142 "source": "agent",
143 "message": "......",
144 "action": "run_ipython",
145 "args": {
146 "code": "with open(’/workspace/pred_programs/pred_dkpes_visualization_3.py’,

’w’) as f:\n f.write(’’’\nimport pandas as pd\nimport numpy as np\nfrom
sklearn.model_selection import train_test_split\nfrom sklearn.preprocessing
import StandardScaler, OneHotEncoder\nfrom sklearn.linear_model import
LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.
compose import ColumnTransformer\nfrom sklearn.pipeline import Pipeline\nfrom
mlxtend.feature_selection import SequentialFeatureSelector as SFS\nimport
matplotlib.pyplot as plt\n\n# Load the data\ndata = pd.read_csv(’/workspace/
benchmark/datasets/dkpes/dkpes_train.csv’)\n\n# Prepare features and target\nX =
data.drop([’index’, ’Signal-inhibition’], axis=1)\ny = data[’Signal-inhibition

’]\n\n# Identify numeric and categorical columns\nnumeric_features = X.
select_dtypes(include=[’int64’, ’float64’]).columns\ncategorical_features = X.
select_dtypes(include=[’object’]).columns\n\n# Binarize the target variable\
nthreshold = y.median()\ny_binary = (y > threshold).astype(int)\n\n# Split the
data\nX_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_size
=0.2, random_state=42)\n\n# Create preprocessing steps\npreprocessor =
ColumnTransformer(\n transformers=[\n (’num’, StandardScaler(),
numeric_features),\n (’cat’, OneHotEncoder(drop=’first’, sparse=False),
categorical_features)\n ])\n\n# Create a pipeline with preprocessing and
logistic regression\nlr_pipeline = Pipeline([\n (’preprocessor’, preprocessor
),\n (’classifier’, LogisticRegression(random_state=42))\n])\n\n# Perform
backward feature selection\nsfs = SFS(lr_pipeline,\n k_features=(1, len
(X.columns)),\n forward=False,\n floating=False,\n
scoring=’accuracy’,\n cv=5,\n n_jobs=-1)\n\nsfs = sfs.fit(
X_train, y_train)\n\n# Get the results\nresults = pd.DataFrame.from_dict(sfs.
get_metric_dict()).T\nresults.sort_index(inplace=True)\n\n# Plot the results\
nplt.figure(figsize=(10, 6))\nplt.plot(results.index, results[’avg_score’],
marker=’o’)\nplt.title(’Backward Feature Selection: Accuracy vs Number of
Features’)\nplt.xlabel(’Number of Features’)\nplt.ylabel(’Cross-validation
Accuracy’)\nplt.grid(True)\nplt.tight_layout()\n\n# Save the plot\nplt.savefig
(’/workspace/pred_results/dkpes_feature_selection_analysis_pred.png’)\n\n# Print
the best feature subset\nbest_subset = list(sfs.k_feature_names_)\nprint(f\"

Best feature subset: {best_subset}\")\nprint(f\"Number of selected features: {
len(best_subset)}\")\nprint(f\"Best cross-validation accuracy: {sfs.k_score_:.4f
}\")\n\n# Evaluate on the test set using the best feature subset\nbest_pipeline
= sfs.estimator\nbest_pipeline.fit(X_train, y_train)\ny_pred = best_pipeline.
predict(X_test)\n\ntest_accuracy = accuracy_score(y_test, y_pred)\nprint(f\"Test
accuracy with selected features: {test_accuracy:.4f}\")\n’’’)\n\nprint(\"File
content updated successfully.\")",

147 "thought": "I apologize for the persistent issue. Let me fix this once and
for all by directly editing the file content:",

148 "is_confirmed": "confirmed",
149 "kernel_init_code": "from agentskills import *"
150 }
151 },
152 {
153 "id": 26,
154 "timestamp": "2024-09-16T21:46:26.901372",
155 "source": "agent",
156 "message": "Code executed in IPython cell.",
157 "cause": 25,
158 "observation": "run_ipython",
159 "content": "File content updated successfully.\n[Jupyter current working

directory: /workspace/benchmark/datasets]\n[Jupyter Python interpreter: /
openhands/poetry/openhands-ai-5O4_aCHf-py3.11/bin/python]",

160 "extras": {
161 "code": "......"
162 }
163 }
164 ],
165 ......(17 more turns omitted)
166 }

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E.2 CASE 2: INFLUENCE OF EXPERT-PROVIDED KNOWLEDGE

In Section 4, we also find that expert-provided knowledge does not always lead to metric improve-
ment because: (1) Expert-provided knowledge specifies some advanced tools that are less familiar
to the agents. (2) When the agents do not know how to solve some tasks without domain knowledge,
they tend to generate some executable but less meaningful programs.

As show in Listing E.3, without expert-provided knowledge, Claude-3.5-Sonnet using self-debug
would only use basic tools like pandas and sklearn to develop a random forest model, which is
not accurate enough to find the best drugs to repurpose. To help the agent, an expert provided
the following knowledge: “Typical encoders for a drug include ECFP fingerprint or message-
passing neural networks over the 2D molecular graph representation and for a target include 1D
convolutional neural networks over the amino acid sequence. ” With the help of expert-provided
knowledge, the same agent successfully generates a program to install the DeepPurpose package
and use it do develop an advanced neural network with MPNN drug encoding and CNN target
encoding (lines47–57 in Listing E.4). However, we noticed some signs of data contamination in
this generated program, such as the use of automatic data loader in DeepPurpose (lines 33-38 in
Listing E.4). This issue is effectively captured by our strategies to mitigate data contamination and
agent shortcut concerns (Section 2.2): The generated program (Listing E.4) is not executable as
the automatic data loader does not read the modified local dataset correctly. Despite this issue,
from a scientist user’s perspective, the program generated with expert-provided knowledge tries
to develop a more helpful model and resembles the ground-truth program (Listing E.5) more closely.

Listing E.3: Program generated by Claude-3.5-Sonnet using self-debug without expert-provided
knowledge.

1 import numpy as np
2 import pandas as pd
3 from sklearn.model_selection import train_test_split
4 from sklearn.ensemble import RandomForestRegressor
5 from sklearn.preprocessing import StandardScaler
6 import json
7 import os
8
9 # Load and preprocess data

10 def load_data(file_path):
11 with open(file_path, ’r’) as f:
12 return [line.strip() for line in f]
13
14 def load_affinity_data(file_path):
15 return pd.read_csv(file_path, header=None).values
16
17 def load_target_sequences(file_path):
18 with open(file_path, ’r’) as f:
19 return json.load(f)
20
21 def encode_sequence(seq, max_length=100):
22 amino_acids = ’ACDEFGHIKLMNPQRSTVWY’
23 encoding = np.zeros(max_length)
24 for i, aa in enumerate(seq[:max_length]):
25 if aa in amino_acids:
26 encoding[i] = amino_acids.index(aa) + 1
27 return encoding
28
29 # Load data
30 drugs_train = load_data(’benchmark/datasets/dti/DAVIS/drug_train.txt’)
31 affinity_train = load_affinity_data(’benchmark/datasets/dti/DAVIS/affinity_train.csv’

)
32 target_sequences = load_target_sequences(’benchmark/datasets/dti/DAVIS/target_seq.

json’)
33
34 # Encode drugs (simple fingerprint)
35 def encode_drug(smiles):
36 return [smiles.count(c) for c in ’CNOFPS’]
37
38 X_drugs = np.array([encode_drug(drug) for drug in drugs_train])
39 X_targets = np.array([encode_sequence(seq) for seq in target_sequences.values()])
40
41 # Prepare data for training
42 X = np.column_stack([np.repeat(X_drugs, X_targets.shape[0], axis=0),
43 np.tile(X_targets, (X_drugs.shape[0], 1))])
44 y = affinity_train.flatten()

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

45
46 # Scale features
47 scaler = StandardScaler()
48 X_scaled = scaler.fit_transform(X)
49
50 # Split data
51 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,

random_state=42)
52
53 # Train model
54 model = RandomForestRegressor(n_estimators=50, max_depth=10, n_jobs=-1, random_state

=42)
55 model.fit(X_train, y_train)
56
57 # Load COVID-19 target and antiviral drugs
58 covid_seq = load_data(’benchmark/datasets/dti/covid_seq.txt’)[1] # Second line

contains the sequence
59 antiviral_drugs = pd.read_csv(’benchmark/datasets/dti/antiviral_drugs.tab’, sep=’\t’)
60
61 # Predict binding affinities
62 covid_encoding = encode_sequence(covid_seq)
63 X_pred = np.column_stack([np.array([encode_drug(smiles) for smiles in antiviral_drugs

[’SMILES’]]),
64 np.tile(covid_encoding, (len(antiviral_drugs), 1))])
65 X_pred_scaled = scaler.transform(X_pred)
66
67 predictions = model.predict(X_pred_scaled)
68
69 # Rank drugs based on predicted affinities
70 ranked_drugs = antiviral_drugs.copy()
71 ranked_drugs[’Predicted_Affinity’] = predictions
72 ranked_drugs = ranked_drugs.sort_values(’Predicted_Affinity’)
73
74 # Save results
75 os.makedirs(’pred_results’, exist_ok=True)
76 with open(’pred_results/davis_dti_repurposing.txt’, ’w’) as f:
77 for smiles in ranked_drugs[’SMILES’]:
78 f.write(f"{smiles}\n")
79
80 print("Predictions saved to pred_results/davis_dti_repurposing.txt")

Listing E.4: Program generated by Claude-3.5-Sonnet using self-debug with expert-provided knowl-
edge.

1 import os
2 import sys
3 import subprocess
4
5 # Function to install required packages using pip
6 def install_pip(package):
7 subprocess.check_call([sys.executable, "-m", "pip", "install", package])
8
9 # Check and install required packages

10 required_packages = [’pandas’, ’rdkit’, ’DeepPurpose’, ’git+https://github.com/bp-
kelley/descriptastorus’, ’pandas-flavor’]

11 for package in required_packages:
12 try:
13 if package.startswith(’git+’):
14 install_pip(package)
15 else:
16 __import__(package.split(’==’)[0])
17 except ImportError:
18 print(f"{package} not found. Installing...")
19 if package == ’rdkit’:
20 install_pip(’rdkit-pypi’) # Use rdkit-pypi for pip installation
21 else:
22 install_pip(package)
23
24 # Now that we’ve ensured all packages are installed, import the required modules
25 import numpy as np
26 import pandas as pd
27 from DeepPurpose import DTI as models
28 from DeepPurpose import utils, dataset
29
30 # Create directories if they don’t exist
31 os.makedirs(’pred_results’, exist_ok=True)
32
33 # Load and preprocess DAVIS dataset
34 X_drug, X_target, y = dataset.load_process_DAVIS(
35 path=’benchmark/datasets/dti/DAVIS’,

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

36 binary=False,
37 convert_to_log=True
38 )
39
40 # Convert numpy arrays to pandas DataFrames
41 train = pd.DataFrame({
42 ’drug’: X_drug,
43 ’target’: X_target,
44 ’Label’: y # Changed ’Y’ to ’Label’
45 })
46
47 # Load drug-target interaction model
48 config = utils.generate_config(
49 drug_encoding=’MPNN’,
50 target_encoding=’CNN’,
51 cls_hidden_dims=[1024, 1024, 512],
52 train_epoch=5
53 )
54 model = models.model_initialize(**config)
55
56 # Train the model
57 model.train(train)
58
59 # Load antiviral drugs
60 antiviral_drugs = pd.read_csv(’benchmark/datasets/dti/antiviral_drugs.tab’, sep=’\t’)
61
62 # Load COVID-19 target sequence
63 with open(’benchmark/datasets/dti/covid_seq.txt’, ’r’) as f:
64 covid_seq = f.read().strip().split(’\n’)[0]
65
66 # Prepare data for prediction
67 X_drug_repurpose = antiviral_drugs[’SMILES’].tolist()
68 X_target_repurpose = [covid_seq] * len(X_drug_repurpose)
69
70 # Make predictions
71 y_pred = model.predict(X_drug_repurpose, X_target_repurpose)
72
73 # Create a dataframe with predictions
74 results = pd.DataFrame({
75 ’Drug’: antiviral_drugs[’Name’],
76 ’SMILES’: antiviral_drugs[’SMILES’],
77 ’Predicted_Affinity’: y_pred
78 })
79
80 # Sort by predicted affinity (lower values indicate stronger binding)
81 results_sorted = results.sort_values(’Predicted_Affinity’)
82
83 # Save results
84 results_sorted[’SMILES’].to_csv(’pred_results/davis_dti_repurposing.txt’, index=False

, header=False)
85
86 print("Prediction completed. Results saved to pred_results/davis_dti_repurposing.txt"

)

Listing E.5: Ground-truth program in the benchmark.
1 from DeepPurpose import utils, dataset
2 from DeepPurpose import DTI as models
3 from pathlib import Path
4 from shutil import copyfile
5
6 import os
7 import json
8 import numpy as np
9 import pandas as pd

10
11 drug_encoding, target_encoding = ’MPNN’, ’CNN’
12
13 def make_dataset(drug_fname, affinity_fname, target):
14 with open(drug_fname) as f:
15 drug = [l.rstrip() for l in f]
16
17 affinity = pd.read_csv(affinity_fname, header=None)
18
19 SMILES = []
20 Target_seq = []
21 y = []
22
23 for i in range(len(drug)):
24 for j in range(len(target)):

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

25 SMILES.append(drug[i])
26 Target_seq.append(target[j])
27 y.append(affinity.values[i, j])
28
29 y = utils.convert_y_unit(np.array(y), ’nM’, ’p’)
30
31 return utils.data_process(np.array(SMILES), np.array(Target_seq), np.array(y),
32 drug_encoding, target_encoding,
33 split_method=’no_split’)
34
35
36
37 def main():
38 with open(’benchmark/datasets/dti/DAVIS/target_seq.json’) as f:
39 target = json.load(f)
40 target = list(target.values())
41
42 train = make_dataset(’benchmark/datasets/dti/DAVIS/drug_train.txt’, ’benchmark/

datasets/dti/DAVIS/affinity_train.csv’, target)
43 val = make_dataset(’benchmark/datasets/dti/DAVIS/drug_val.txt’, ’benchmark/

datasets/dti/DAVIS/affinity_val.csv’, target)
44
45 config = utils.generate_config(drug_encoding = drug_encoding,
46 target_encoding = target_encoding,
47 cls_hidden_dims = [1024,1024,512],
48 train_epoch = 10,
49 LR = 5e-4,
50 batch_size = 128,
51 hidden_dim_drug = 128,
52 mpnn_hidden_size = 128,
53 mpnn_depth = 3,
54 cnn_target_filters = [32,64,96],
55 cnn_target_kernels = [4,8,12]
56 )
57
58 model = models.model_initialize(**config)
59
60 model.train(train, val, val)
61
62 t, t_name = [l.rstrip() for l in open(’benchmark/datasets/dti/covid_seq.txt’)]
63
64 df = pd.read_csv(’benchmark/datasets/dti/antiviral_drugs.tab’, sep = ’\t’)
65 r, r_name, r_pubchem_cid = df.SMILES.values, df[’Name’].values, df[’Pubchem CID’

].values
66
67 out_fpath = Path("./pred_results/result/")
68 if not out_fpath.exists():
69 os.mkdir(out_fpath)
70
71 y_pred = models.repurpose(X_repurpose = r, target = t, model = model, drug_names

= r_name, target_name = t_name,
72 result_folder = "./pred_results/result/", convert_y =

True)
73
74 with open("./pred_results/result/repurposing.txt") as f_in:
75 lines = [l for l in f_in]
76
77 with open("./pred_results/davis_dti_repurposing.txt", "w+") as f_out:
78 f_out.write("".join(lines[3:-1]))
79
80
81 if __name__ == "__main__":
82 main()

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

F EXPERT VALIDATION DETAILS

In this section, we provide details about the expert validation process in Section 2.2. We include the
questionnaire (Section F.1) for domain experts and two examples used in it (Section F.2 and F.3).

F.1 QUESTIONNAIRE FOR DOMAIN EXPERTS

Thanks for providing feedback on our AI4Science benchmark called ScienceAgentBench. We are
developing an AI agent to assist you! Given a task instruction and a dataset, the agent will help you
write a computer program to fulfill the task you have in mind. To develop and evaluate such an AI
agent, we have collected a benchmark by adapting some tasks from peer-reviewed publications with
open-source codes. Each data sample in our benchmark consists of the following main components:
Task Instruction: Describes (1) the goal of a task or a scientific hypothesis and (2) output require-
ments.
Dataset Information: Contains (1) the dataset directory structure and (2) helpful metadata or a few
examples from the dataset.
Annotated Program: The reference solution adapted from each publication’s open-source code.
Evaluation Script: The code to evaluate AI agents’ performance by comparing the execution results
of its generated programs with those of the annotated programs.
To ensure that each task is formulated and described correctly and professionally, we would like you
to give us a hand by reviewing our collected data samples. In addition, we are also seeking some
additional information from you as a domain expert, including writing down some task-related domain
knowledge and revising a rubric to score the generated programs.
Please follow the guidelines below to review each task. First, please enter the Task ID you are review-
ing: [task id]
Guidelines for Data Reviewing
First, a bit more background: once you give the AI agent a task instruction, it will try to automatically
complete everything without seeking additional help from you. This is similar to the scenario where
you give the task to a junior student in your lab/class who will complete it as an assignment.
For each task, please first spend a few minutes reading the given task information (instruction, dataset
information, and source GitHub repository) and our annotated program to have a rough understanding
of the task and relevant concepts. Then, please comment on the following two parts. Note that you may
iteratively revise your answer to each question to help us improve the task instructions and programs.
1. Program
Is the program a valid solution (not necessarily the best solution) to the given task instruction? Here is
an example: [google doc link] a

If there are only minor issues, please comment on how the program should be modified below.
However, if you believe there is a major issue (e.g., the program is doing sth irrelevant or more than
two lines of code need to be revised in order to make it correct), please let us know the task ID and do
NOT fill the rest of the form.
Is the program a valid solution to the given task instruction?
[] Yes
[] Need Modification (comment below)
[] No (report and continue to the next task)
How should the program be modified? Please mention the line numbers that need to be inspected.
[Long Text Answer]
2. Task Instruction
The task instructions were created by non-experts and thus might contain some misused terms, awk-
ward expressions, or inaccurate descriptions of the task that do not adhere to your domain’s scientific
language. Do you see such issues for this task instruction? If so, please revise or rewrite the task
instruction for any issues you can find.
Finally, if needed, please help make the task instruction more fluent and natural sounding.
Please enter your revised task instruction below. If there are no changes, please skip this question and
leave the answer text blank.
[Long Text Answer]

aThe example for program and instruction validation is provided in Section F.2.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

3. Domain Knowledge
Suppose the AI agent fails to fulfill the task based solely on the task instruction, perhaps due to lack of
some background knowledge, we want to provide some additional information to help it succeed. This
is similar to the situation where you give an exam problem to a student in your class and they might
not be able to do it just based on the problem description, but you can provide some hints to help them.
Please write down at most three important pieces of knowledge that are related to the task and the
program.
For example ([google doc link]): a

Concepts and details in the task description or program that may need further explanation or extra
attention, e.g., a term definition on wikipedia you would send to a new student (without much domain
expertise) working on this task, or a common practice for such tasks in your field.
Information about the python packages and/or functions used in the program. For example, you would
copy and paste a snippet of package description/function documentation to help the new student work-
ing on the task.
You may assume the AI agent has a general sense of your domain, like a new graduate student with
undergrad-level knowledge but not much about the specific task. Please help it by providing some
knowledge to write the program for this task. You can search online for more details about the dataset,
packages, and functions used in each task before writing.
Please try not to “leak” the annotated program directly. You may imagine that you don’t have the direct
answer but could provide some helpful information to your junior colleague so that they can derive the
program. For example:
Instead of copying/describing a few lines in the program, you may copy the documentations of pack-
ages/functions used in that program.
Instead of specifying the variables and parameters, you may suggest a range (e.g., 1e-3 to 1e-4 for
learning rate).
Instead of saying columns A,B,C are related to the target attribute Y, you may try to find a knowledge
snippet describing what is correlated to Y.
However, in some rare cases, there may be a need to provide a minimal “leak” of the annotated pro-
gram, e.g., the decision boundary of Y is 0.6 instead of 0.5. Still, it would be great if you could think
about its necessity before annotating such knowledge.
For each piece of domain knowledge related to this task, please write 1-5 sentences. If you believe the
task instruction is self-contained and needs no further explanations, please enter ”None”.
[Long Text Answer]
4. Scoring Rubric
Once the AI agent generates a program, we need an evaluation method to review the generated pro-
gram. To do it, we need a task-specific scoring rubric, which assigns partial credits for more com-
prehensive evaluation of the generated program. Right now we have already got an initial draft of the
rubric with five major components: (1) data loading, (2) data processing, (3) modeling, analysis or
visualization, (4) output formatting, (5) saving output.
Please review our initial draft of the rubric. Imagine that you will use this rubric to score the programs
produced by your junior students. Please modify the rubric items that you think are incorrect, should be
described with more/less details, or should be reweighed with higher/lower credits for each component.
Please also add any missing but necessary rubric item you would use to assess a program’s correctness,
or remove redundant rubric items.
Please enter your revised scoring rubric below. If there are no changes, please skip this question and
leave the answer text blank.
[Long Text Answer]

aThe example for domain knowledge annotation is provided in Section F.3.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

F.2 PROGRAM EXAMPLE FOR DOMAIN EXPERTS

Task Instruction: Train a graph convolutional network on the given dataset to predict the
aquatic toxicity of compounds. Use the resulting model to compute and visualize the atomic
contributions to molecular activity of the given test example compound. Save the figure as
”pred results/aquatic toxicity qsar vis.png”.

Program:

1 import os
2 os.environ["TF_USE_LEGACY_KERAS"] = "1"
3
4 from rdkit import Chem
5 from rdkit.Chem.Draw import SimilarityMaps
6
7 import pandas as pd
8 import deepchem as dc
9

10 def vis_contribs(mol, df, smi_or_sdf = "sdf"):
11 wt = {}
12 if smi_or_sdf == "smi":
13 for n,atom in enumerate(
14 Chem.rdmolfiles.CanonicalRankAtoms(mol)
15 ):
16 wt[atom] = df.loc[mol.GetProp("_Name"),"Contrib"][n]
17 if smi_or_sdf == "sdf":
18 for n,atom in enumerate(range(mol.GetNumHeavyAtoms())):
19 wt[atom] = df.loc[Chem.MolToSmiles(mol),"Contrib"][n]
20 return SimilarityMaps.GetSimilarityMapFromWeights(mol,wt)
21
22 def main():
23 DATASET_FILE = os.path.join(
24 ’benchmark/datasets/aquatic_toxicity’,
25 ’Tetrahymena_pyriformis_OCHEM.sdf’
26 )
27
28 mols = [
29 m
30 for m in Chem.SDMolSupplier(DATASET_FILE)
31 if m is not None
32 ]
33 loader = dc.data.SDFLoader(
34 tasks=["IGC50"],
35 featurizer=dc.feat.ConvMolFeaturizer(),
36 sanitize=True
37 )
38 dataset = loader.create_dataset(DATASET_FILE, shard_size=5000)
39
40 m = dc.models.GraphConvModel(
41 1,
42 mode="regression",
43 batch_normalize=False
44 )
45 m.fit(dataset, nb_epoch=40)
46
47 TEST_DATASET_FILE = os.path.join(
48 ’benchmark/datasets/aquatic_toxicity’,
49 ’Tetrahymena_pyriformis_OCHEM_test_ex.sdf’
50 )
51 test_mol = [
52 m
53 for m in Chem.SDMolSupplier(TEST_DATASET_FILE)
54 if m is not None
55 ][0]
56 test_dataset = loader.create_dataset(
57 TEST_DATASET_FILE,
58 shard_size=5000
59 )
60
61 loader = dc.data.SDFLoader(
62 tasks=[],
63 featurizer=dc.feat.ConvMolFeaturizer(
64 per_atom_fragmentation=True
65 ),
66 sanitize=True
67 )
68 frag_dataset = loader.create_dataset(
69 TEST_DATASET_FILE,
70 shard_size=5000

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

71 )
72
73 tr = dc.trans.FlatteningTransformer(frag_dataset)
74 frag_dataset = tr.transform(frag_dataset)
75
76 pred = m.predict(test_dataset)
77 pred = pd.DataFrame(
78 pred,
79 index=test_dataset.ids,
80 columns=["Molecule"]
81 )
82
83 pred_frags = m.predict(frag_dataset)
84 pred_frags = pd.DataFrame(
85 pred_frags,
86 index=frag_dataset.ids,
87 columns=["Fragment"]
88 )
89
90 df = pd.merge(pred_frags, pred, right_index=True, left_index=True)
91 df[’Contrib’] = df["Molecule"] - df["Fragment"]
92
93 vis = vis_contribs(test_mol, df)
94 vis.savefig(
95 "pred_results/aquatic_toxicity_qsar_vis.png",
96 bbox_inches=’tight’
97 )
98
99 if __name__ == "__main__":

100 main()

Explanation:
In this example, there are three key points in the instruction: (1) GCN training (lines 28-45), (2)
calculating atomic contribution (lines 76-91), and (3) visualizing atomic contribution (lines 10-20). In
this case, you can select “Yes” for the first question and move on.
Suppose the given program is not training a GCN at line 33 but, say, a simple feed-forward neural
network, you may select “Need Modification” and comment “Line 33” in the follow-up question.
However, if more than three lines of code have errors, please select “No”.
More clarifications:
(1) The annotated program should be treated as a “reference solution” to the task. As you may have
already noticed, these tasks are open-ended and can have multiple valid solutions. So, although the
annotated program may import certain classes and packages, we don’t want to force the agent to
necessarily do the same in the “task instruction.” But, if you find the classes and packages helpful, feel
free to mention them as “domain knowledge.”
(2) The agents will be able to install packages for themselves via pip. For example, if it chooses to use
mastml, it should use “pip install mastml” to set itself up. During annotation, we tried to make sure
that all packages are distributed via pip so that the agent should be able to install, but there might be a
few mistakes. If the program uses something that is not available via pip but is critical to completing
the task, please let us know.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

F.3 KNOWLEDGE EXAMPLE PROVIDED TO DOMAIN EXPERTS DURING ANNOTATION

Task Instruction: Train a (1) graph convolutional network on the given dataset to predict the
aquatic toxicity of compounds. Use the resulting model to (2) compute and (3) visualize the
atomic contributions to molecular activity of the given test example compound. Save the figure
as “pred results/aquatic toxicity qsar vis.png”.

Program:

1 import os
2 os.environ["TF_USE_LEGACY_KERAS"] = "1"
3
4 from rdkit import Chem
5 from rdkit.Chem.Draw import SimilarityMaps
6
7 import pandas as pd
8 import deepchem as dc
9

10 ######
11 # (3) This part defines a function for visualizing atomic contributions. One relevant

piece of domain knowledge you might want to provide to the AI agent or your
junior student working on this task is about how to draw atomic contributions (
with rdkit), e.g., by mentioning the required functions.

12
13 def vis_contribs(mol, df, smi_or_sdf = "sdf"):
14 wt = {}
15 if smi_or_sdf == "smi":
16 for n,atom in enumerate(
17 Chem.rdmolfiles.CanonicalRankAtoms(mol)
18 ):
19 wt[atom] = df.loc[mol.GetProp("_Name"),"Contrib"][n]
20 if smi_or_sdf == "sdf":
21 for n,atom in enumerate(range(mol.GetNumHeavyAtoms())):
22 wt[atom] = df.loc[Chem.MolToSmiles(mol),"Contrib"][n]
23 return SimilarityMaps.GetSimilarityMapFromWeights(mol,wt)
24
25 ######
26
27 def main():
28 DATASET_FILE = os.path.join(
29 ’benchmark/datasets/aquatic_toxicity’,
30 ’Tetrahymena_pyriformis_OCHEM.sdf’
31 )
32
33 ######
34 # (1) This part loads the data and trains a GCN. One relevant piece of domain

knowledge you might want to provide to the AI agent or your junior student
working on this task is about what IGC50 means and why that column is the gold
label for aquatic toxicity.

35
36 mols = [
37 m
38 for m in Chem.SDMolSupplier(DATASET_FILE)
39 if m is not None
40 ]
41 loader = dc.data.SDFLoader(
42 tasks=["IGC50"],
43 featurizer=dc.feat.ConvMolFeaturizer(),
44 sanitize=True
45 )
46 dataset = loader.create_dataset(DATASET_FILE, shard_size=5000)
47
48 m = dc.models.GraphConvModel(
49 1,
50 mode="regression",
51 batch_normalize=False
52 )
53 m.fit(dataset, nb_epoch=40)
54
55 ######
56
57 TEST_DATASET_FILE = os.path.join(
58 ’benchmark/datasets/aquatic_toxicity’,
59 ’Tetrahymena_pyriformis_OCHEM_test_ex.sdf’
60 )
61 test_mol = [
62 m
63 for m in Chem.SDMolSupplier(TEST_DATASET_FILE)
64 if m is not None

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

65 ][0]
66 test_dataset = loader.create_dataset(
67 TEST_DATASET_FILE,
68 shard_size=5000
69 )
70
71 loader = dc.data.SDFLoader(
72 tasks=[],
73 featurizer=dc.feat.ConvMolFeaturizer(
74 per_atom_fragmentation=True
75 ),
76 sanitize=True
77 )
78 frag_dataset = loader.create_dataset(
79 TEST_DATASET_FILE,
80 shard_size=5000
81 )
82
83 tr = dc.trans.FlatteningTransformer(frag_dataset)
84 frag_dataset = tr.transform(frag_dataset)
85
86 ######
87 # (2) This part uses the trained GCN to predict the test example’s toxicity and

calculate the atomic contributions. One relevant piece of domain knowledge you
might want to provide to the AI agent or your junior student working on this
task is about how atomic contributions may be calculated, i.e. predicting the
toxicity of the complete compound and those of compound fragments (with one atom
removed), then making a subtraction to find the contribution of the removed

atom.
88
89 pred = m.predict(test_dataset)
90 pred = pd.DataFrame(
91 pred,
92 index=test_dataset.ids,
93 columns=["Molecule"]
94 )
95
96 pred_frags = m.predict(frag_dataset)
97 pred_frags = pd.DataFrame(
98 pred_frags,
99 index=frag_dataset.ids,

100 columns=["Fragment"]
101 )
102
103 df = pd.merge(pred_frags, pred, right_index=True, left_index=True)
104 df[’Contrib’] = df["Molecule"] - df["Fragment"]
105
106 ######
107
108 vis = vis_contribs(test_mol, df)
109 vis.savefig(
110 "pred_results/aquatic_toxicity_qsar_vis.png",
111 bbox_inches=’tight’
112 )
113
114 if __name__ == "__main__":
115 main()

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

G RUBRIC EXAMPLES

In this section, we show two rubrics generated by GPT-4o (Listing G.1, G.3) and their final versions
revised by domain experts (Listing G.2, G.4).

Listing G.1: An example rubric of a Computational Chemistry task generated by GPT-4o without
expert revision.

1 {
2 "data_loading": [
3 {
4 "name": "Initialize Data Loader for Training",
5 "description": "Successfully initializes the MyClintoxLoader object for

training data with correct parameters: featurizer=’ECFP’, tasks=[’FDA_APPROVED’,
’CT_TOX’], feature_field=’smiles’, and correct file path ’benchmark/datasets/
clintox/clintox_train.csv’.",

6 "points": 5
7 },
8 {
9 "name": "Load Training Dataset",

10 "description": "Successfully loads the training dataset using the train_loader
object and correctly assigns the dataset to train_dataset.",

11 "points": 5
12 },
13 {
14 "name": "Initialize Data Loader for Testing",
15 "description": "Successfully initializes the MyClintoxLoader object for test

data with correct parameters: featurizer=’ECFP’, tasks=[’FDA_APPROVED’, ’CT_TOX
’], feature_field=’smiles’, and correct file path ’benchmark/datasets/clintox/
clintox_test.csv’.",

16 "points": 5
17 },
18 {
19 "name": "Load Testing Dataset",
20 "description": "Successfully loads the test dataset using the test_loader

object and correctly assigns the dataset to test_dataset.",
21 "points": 5
22 }
23 ],
24 "data_processing": [
25 {
26 "name": "Transform Data",
27 "description": "Applies required transformations to the training dataset using

the specified transformers (e.g., ’balancing’).",
28 "points": 5
29 }
30 ],
31 "modeling_or_analysis_or_visualization": [
32 {
33 "name": "Initialize Model",
34 "description": "Successfully initializes the MultitaskClassifier with

parameters: number of tasks equal to length of CLINTOX_TASKS, n_features=1024,
layer_sizes=[1000], dropouts=[0.25], learning_rate=0.001, and batch_size=50.",

35 "points": 10
36 },
37 {
38 "name": "Fit Model",
39 "description": "Successfully fits the model using the train_dataset.",
40 "points": 10
41 },
42 {
43 "name": "Predict Using Model",
44 "description": "Successfully uses the trained model to predict scores on the

test_dataset, correctly applying any necessary test_transformers.",
45 "points": 10
46 }
47 ],
48 "output_formatting": [
49 {
50 "name": "Format Output DataFrame",
51 "description": "Creates a pandas DataFrame named test_scores_df containing ’

smiles’, ’FDA_APPROVED’, and ’CT_TOX’ columns with correctly assigned test
scores.",

52 "points": 5
53 }
54 ],
55 "output_saving": [
56 {
57 "name": "Save Predictions to CSV",

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

58 "description": "Correctly saves the test_scores_df to a CSV file at ’
pred_results/clintox_test_pred.csv’ without an index.",

59 "points": 5
60 }
61 ],
62 "total_points": 65
63 }

Listing G.2: An example rubric revised by an expert by adding the available points to two items.
1 {
2 "data_loading": [
3 {
4 "name": "Initialize Data Loader for Training",
5 "description": "Successfully initializes the MyClintoxLoader object for

training data with correct parameters: featurizer=’ECFP’, tasks=[’FDA_APPROVED’,
’CT_TOX’], feature_field=’smiles’, and correct file path ’benchmark/datasets/
clintox/clintox_train.csv’.",

6 "points": 10
7 },
8 {
9 "name": "Load Training Dataset",

10 "description": "Successfully loads the training dataset using the train_loader
object and correctly assigns the dataset to train_dataset.",

11 "points": 5
12 },
13 {
14 "name": "Initialize Data Loader for Testing",
15 "description": "Successfully initializes the MyClintoxLoader object for test

data with correct parameters: featurizer=’ECFP’, tasks=[’FDA_APPROVED’, ’CT_TOX
’], feature_field=’smiles’, and correct file path ’benchmark/datasets/clintox/
clintox_test.csv’.",

16 "points": 5
17 },
18 {
19 "name": "Load Testing Dataset",
20 "description": "Successfully loads the test dataset using the test_loader

object and correctly assigns the dataset to test_dataset.",
21 "points": 5
22 }
23 ],
24 "data_processing": [
25 {
26 "name": "Transform Data",
27 "description": "Applies required transformations to the training dataset using

the specified transformers (e.g., ’balancing’).",
28 "points": 5
29 }
30 ],
31 "modeling_or_analysis_or_visualization": [
32 {
33 "name": "Initialize Model",
34 "description": "Successfully initializes the MultitaskClassifier with

parameters: number of tasks equal to length of CLINTOX_TASKS, n_features=1024,
layer_sizes=[1000], dropouts=[0.25], learning_rate=0.001, and batch_size=50.",

35 "points": 15
36 },
37 {
38 "name": "Fit Model",
39 "description": "Successfully fits the model using the train_dataset.",
40 "points": 10
41 },
42 {
43 "name": "Predict Using Model",
44 "description": "Successfully uses the trained model to predict scores on the

test_dataset, correctly applying any necessary test_transformers.",
45 "points": 10
46 }
47 ],
48 "output_formatting": [
49 {
50 "name": "Format Output DataFrame",
51 "description": "Creates a pandas DataFrame named test_scores_df containing ’

smiles’, ’FDA_APPROVED’, and ’CT_TOX’ columns with correctly assigned test
scores.",

52 "points": 5
53 }
54 ],
55 "output_saving": [
56 {

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

57 "name": "Save Predictions to CSV",
58 "description": "Correctly saves the test_scores_df to a CSV file at ’

pred_results/clintox_test_pred.csv’ without an index.",
59 "points": 5
60 }
61 ],
62 "total_points": 75
63 }

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Listing G.3: An example rubric of a Geographical Information Science task generated by GPT-4o
without expert revision.

1 {
2 "data_loading": [
3 {
4 "name": "Load Bathymetry Data",
5 "description": "Correctly loads the bathymetry raster data from the path ’

benchmark/datasets/CoralSponge/CatalinaBathymetry.tif’.",
6 "points": 10
7 },
8 {
9 "name": "Load Coral and Sponge Data",

10 "description": "Correctly reads the coral and sponge data from the path ’
benchmark/datasets/CoralSponge/CoralandSpongeCatalina.geojson’.",

11 "points": 10
12 },
13 {
14 "name": "CRS Transformation",
15 "description": "Correctly transforms the CRS of the GeoDataFrame to EPSG

:4326.",
16 "points": 5
17 }
18 ],
19 "data_processing": [
20 {
21 "name": "Elevation Conversion",
22 "description": "Correctly converts elevation values by multiplying with -1.",
23 "points": 10
24 },
25 {
26 "name": "Calculate Gradient",
27 "description": "Accurately calculates the gradient (grad_x, grad_y) using numpy

’s gradient function.",
28 "points": 10
29 },
30 {
31 "name": "Calculate Slope",
32 "description": "Correctly calculates the slope in degrees from the gradients.",
33 "points": 10
34 },
35 {
36 "name": "Calculate Aspect",
37 "description": "Correctly calculates the aspect in degrees and adjusts any

negative values.",
38 "points": 10
39 },
40 {
41 "name": "Coordinate to Raster Index Conversion",
42 "description": "Correctly implements the function to convert coordinates to

raster grid indices.",
43 "points": 5
44 },
45 {
46 "name": "Extract Slope and Aspect",
47 "description": "Extracts slope and aspect values for each point in the

GeoDataFrame correctly.",
48 "points": 10
49 },
50 {
51 "name": "Add Slope and Aspect to GeoDataFrame",
52 "description": "Successfully adds the extracted slope and aspect values as new

columns to the GeoDataFrame.",
53 "points": 5
54 },
55 {
56 "name": "Group by VernacularNameCategory",
57 "description": "Correctly groups the GeoDataFrame by ’VernacularNameCategory’

and computes mean values for slope and aspect.",
58 "points": 5
59 }
60 ],
61 "modeling_or_analysis_or_visualization": [
62 {
63 "name": "Bar Plot for Mean Slope",
64 "description": "Correctly creates a bar plot showing the mean slope per species

.",
65 "points": 10
66 },
67 {
68 "name": "Bar Plot for Mean Aspect",

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

69 "description": "Correctly creates a bar plot showing the mean aspect per
species.",

70 "points": 10
71 }
72 ],
73 "output_formatting": [
74 {
75 "name": "Plot Descriptions",
76 "description": "Properly sets plot titles, axis labels, and ensures x-ticks are

rotated for readability.",
77 "points": 5
78 }
79 ],
80 "output_saving": [
81 {
82 "name": "Save Plots",
83 "description": "Saves the plots as ’mean_slope_per_species.png’, ’

mean_aspect_per_species.png’, and ’pred_results/CoralandSponge.png’.",
84 "points": 5
85 }
86 ],
87 "total_points": 120
88 }

Listing G.4: An example rubric of a Geographical Information Science task revised by an expert by
reducing the available points for several items.

1 {
2 "data_loading": [
3 {
4 "name": "Load Bathymetry Data",
5 "description": "Correctly loads the bathymetry raster data from the path ’

benchmark/datasets/CoralSponge/CatalinaBathymetry.tif’.",
6 "points": 5
7 },
8 {
9 "name": "Load Coral and Sponge Data",

10 "description": "Correctly reads the coral and sponge data from the path ’
benchmark/datasets/CoralSponge/CoralandSpongeCatalina.geojson’.",

11 "points": 5
12 },
13 {
14 "name": "CRS Transformation",
15 "description": "Correctly transforms the CRS of the GeoDataFrame to EPSG

:4326.",
16 "points": 5
17 }
18 ],
19 "data_processing": [
20 {
21 "name": "Elevation Conversion",
22 "description": "Correctly converts elevation values by multiplying with -1.",
23 "points": 5
24 },
25 {
26 "name": "Calculate Gradient",
27 "description": "Accurately calculates the gradient (grad_x, grad_y) using numpy

’s gradient function.",
28 "points": 5
29 },
30 {
31 "name": "Calculate Slope",
32 "description": "Correctly calculates the slope in degrees from the gradients.",
33 "points": 10
34 },
35 {
36 "name": "Calculate Aspect",
37 "description": "Correctly calculates the aspect in degrees and adjusts any

negative values.",
38 "points": 10
39 },
40 {
41 "name": "Coordinate to Raster Index Conversion",
42 "description": "Correctly implements the function to convert coordinates to

raster grid indices.",
43 "points": 5
44 },
45 {
46 "name": "Extract Slope and Aspect",

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

47 "description": "Extracts slope and aspect values for each point in the
GeoDataFrame correctly.",

48 "points": 10
49 },
50 {
51 "name": "Add Slope and Aspect to GeoDataFrame",
52 "description": "Successfully adds the extracted slope and aspect values as new

columns to the GeoDataFrame.",
53 "points": 5
54 },
55 {
56 "name": "Group by VernacularNameCategory",
57 "description": "Correctly groups the GeoDataFrame by ’VernacularNameCategory’

and computes mean values for slope and aspect.",
58 "points": 5
59 }
60 ],
61 "modeling_or_analysis_or_visualization": [
62 {
63 "name": "Bar Plot for Mean Slope",
64 "description": "Correctly creates a bar plot showing the mean slope per species

.",
65 "points": 10
66 },
67 {
68 "name": "Bar Plot for Mean Aspect",
69 "description": "Correctly creates a bar plot showing the mean aspect per

species.",
70 "points": 10
71 }
72 ],
73 "output_formatting": [
74 {
75 "name": "Plot Descriptions",
76 "description": "Properly sets plot titles, axis labels, and ensures x-ticks are

rotated for readability.",
77 "points": 5
78 }
79 ],
80 "output_saving": [
81 {
82 "name": "Save Plots",
83 "description": "Saves the plots as ’mean_slope_per_species.png’, ’

mean_aspect_per_species.png’, and ’pred_results/CoralandSponge.png’.",
84 "points": 5
85 }
86 ],
87 "total_points": 100
88 }

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

H PROMPT TEMPLATES

In this section, we document the templates used to prompt LLMs for different frameworks (Section
3): direct prompting (Table H.1), self-debug (Table H.2), and OpenDevin (Table H.3).

Table H.1: Prompt template for direct prompting (Section 3). domain knowledge is optional.

You are an expert Python programming assistant that helps scientist users to write high-quality code
to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested
task and save any outputs in the correct format.
Please wrap your program in a code block that specifies the script type, python. For example:
‘‘‘python
print(‘‘Hello World!’’)
‘‘‘

Please keep your response concise and do not use a code block if it’s not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires
the user to modify.
Please do not use any interactive Python commands in your program, such as ‘!pip install
numpy‘, which will cause execution errors.

Here’s the user request you need to work on:
{task instruction}
{domain knowledge}
You can access the dataset at ‘{dataset path}‘. Here is the directory structure of the dataset:
‘‘‘
{dataset folder tree}
‘‘‘
Here are some helpful previews for the dataset file(s):
{datase preview}

Table H.2: Prompt template for self-debug (Section 3). domain knowledge is optional.

You are an expert Python programming assistant that helps scientist users to write high-quality code
to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested
task and save any outputs in the correct format.
Please wrap your program in a code block that specifies the script type, python. For example:
‘‘‘python
print(‘‘Hello World!’’)
‘‘‘

The user may execute your code and report any exceptions and error messages.
Please address the reported issues and respond with a fixed, complete program.

Please keep your response concise and do not use a code block if it’s not intended to be executed.
Please do not suggest a few line changes, incomplete program outline, or partial code that requires
the user to modify.
Please do not use any interactive Python commands in your program, such as ‘!pip install numpy‘,
which will cause execution errors.

Here’s the user request you need to work on:
{task instruction}
{domain knowledge}
You can access the dataset at ‘{dataset path}‘. Here is the directory structure of the dataset:
‘‘‘
{dataset folder tree}
‘‘‘
Here are some helpful previews for the dataset file(s):
{datase preview}

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Table H.3: Prompt template for OpenDevin (Section 3). domain knowledge is optional.

You are an expert Python programming assistant that helps scientist users to write high-quality code
to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested
task and save any outputs to ‘/workspace/pred results/‘ in the correct format.

Here’s the user request you need to work on:
{task instruction}
{domain knowledge}
You can access the dataset at ‘{dataset path}‘. Here is the directory structure of the dataset:
‘‘‘
{dataset folder tree}
‘‘‘
Here are some helpful previews for the dataset file(s):
{datase preview}

Please save your program as ‘/workspace/pred programs/{pred program name}‘.
Then, please run the program to check and fix any errors.
Please do NOT run the program in the background.
If the program uses some packages that are incompatible, please figure out alternative implementa-
tions and do NOT restart the environment.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

I PUBLICATIONS, REPOSITORIES, AND LICENSES

In this section, we list all referred publications (Table I.1, I.2) and repositories (Table I.3) during
data collection (Section 2.2). We also include the repositories’ licenses in Table I.3, I.4, and I.5.

Table I.1: List of Bioinformatics and Computational Chemistry publications referred to during data
collection (Section 2.2).

Domain Title Citation

Bioinfomatics

Automated Inference of Chemical Discriminants Raschka et al. (2018)of Biological Activity

CellProfiler: image analysis software for Carpenter et al. (2006)identifying and quantifying cell phenotypes

DeepPurpose: A Deep Learning Library for Huang et al. (2020)Drug-Target Interaction Prediction

ADMET-AI: a machine learning ADMET platform Swanson et al. (2024)for evaluation of large-scale chemical libraries

Prediction and mechanistic analysis of drug-induced Liu et al. (2021)liver injury (DILI) based on chemical structure

SCANPY: large-scale single-cell gene expression Wolf et al. (2018)data analysis

A Python library for probabilistic analysis of Gayoso et al. (2022)single-cell omics data

MUON: multimodal omics analysis framework Bredikhin et al. (2022)

Scirpy: a Scanpy extension for analyzing single-cell Sturm et al. (2020)T-cell receptor-sequencing data

The scverse project provides a computational ecosystem Virshup et al. (2023)for single-cell omics data analysis

Computational Chemistry

MoleculeNet: a benchmark for molecular Wu et al. (2018)machine learning

Accelerating high-throughput virtual screening Graff et al. (2021)through molecular pool-based active learning

Is Multitask Deep Learning Practical for Pharma? Ramsundar et al. (2017)

Discovery of a structural class of antibiotics Wong et al. (2024)with explainable deep learning

Papyrus: a large-scale curated dataset Béquignon et al. (2023)aimed at bioactivity predictions

ProLIF: a library to encode molecular Bouysset & Fiorucci (2021)interactions as fingerprints

Python Materials Genomics (pymatgen): A robust, Ong et al. (2013)open-source python library for materials analysis

Benchmarks for interpretation of QSAR models Matveieva & Polishchuk (2021)

Matminer: An open source toolkit Ward et al. (2018)for materials data mining

The Materials Simulation Toolkit for Machine
Jacobs et al. (2020)learning (MAST-ML): An automated open source

toolkit to accelerate data-driven materials research

Robust model benchmarking and bias-imbalance in De Breuck et al. (2021a)data-driven materials science: a case study on MODNet

Materials property prediction for limited datasets enabled De Breuck et al. (2021b)by feature selection and joint learning with MODNet

Bioinfomatics & Deep Learning for the Life Sciences Ramsundar et al. (2019)Computational Chemistry

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Table I.2: List of Geographical Information Science and Psychology & Cognitive Neuroscience
publications referred to during data collection (Section 2.2).

Domain Title Citation

Geographical Information Science

eofs: A Library for EOF Analysis of Dawson (2016)Meteorological, Oceanographic, and Climate Data

The Open Global Glacier Model (OGGM) v1.1 Maussion et al. (2019)

Human selection of elk behavioural traits Ciuti et al. (2012)in a landscape of fear

Investigating the preferences of local residents toward Ziedan et al. (2021)a proposed bus network redesign in Chattanooga, Tennessee

Urban wildlife corridors: Building bridges Zellmer & Goto (2022)for wildlife and people

Urban climate effects on extreme temperatures Schatz & Kucharik (2015)in Madison, Wisconsin, USA

Model Animal Home Range Fleming (2024)

Run geoprocessing tools with Python Zandbergen (2024)

Model How land subsidence affects flooding Andeweg & Kuijpers (2024)

Predict deforestation in the Amazon rain forest ESRI (2024a)

NOAA Deep Sea Corals Research and Technology Program Hourigan (2023)

Chart coral and sponge distribution factors with Python Robinson (2023)

Assess access to public transit ESRI (2024b)

Build a model to connect mountain lion habitat ESRI (2024c)

Analyze urban heat using kriging Krause (2024)

Assess burn scars with satellite imagery ESRI (2024d)

Psychology & Cognitive Neuroscience

BioPsyKit: A Python package for Richer et al. (2021)the analysis of biopsychological data

NeuroKit2: A Python toolbox for Makowski et al. (2021)neurophysiological signal processing

Modeling Human Syllogistic Reasoning: Riesterer et al. (2019)The Role of “No Valid Conclusion”

Analyzing the Differences in Human Reasoning Brand et al. (2020)via Joint Nonnegative Matrix Factorization

Generate your neural signals from mine: Lu & Golomb (2023)individual-to-individual EEG converters

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Table I.3: List of 31 repositories adapted during data collection (Section 2.2) and their licenses.
†Adaption allowed for non-commercial use; we include their full licenses as Table I.4 and I.5.

GitHub Repositories License

deepchem/deepchem

MIT

coleygroup/molpal
swansonk14/admet ai
martin-sicho/papyrus-scaffold-visualizer
OlivierBeq/Papyrus-scripts
mad-lab-fau/BioPsyKit
materialsproject/pymatgen
neuropsychology/NeuroKit
nriesterer/syllogistic-nvc
brand-d/cogsci-jnmf
uw-cmg/MAST-ML
ZitongLu1996/EEG2EEG
ResidentMario/geoplot
ppdebreuck/modnet

geopandas/geopandas

BSD-3-Clause

kexinhuang12345/DeepPurpose
felixjwong/antibioticsai
SciTools/iris
OGGM/oggm
scverse/scanpy
scverse/scvi-tools
scverse/muon
scverse/scirpy
GeoStat-Framework/PyKrige

psa-lab/predicting-activity-by-machine-learning Apache-2.0chemosim-lab/ProLIF

anikaliu/CAMDA-DILI GPL-3.0ajdawson/eofs

Solve-Geosolutions/transform 2022 CC-BY-3.0-AU

rasterio/rasterio
Copyrighted†

hackingmaterials/matminer

55

https://github.com/deepchem/deepchem
https://github.com/coleygroup/molpal
https://github.com/swansonk14/admet_ai
https://github.com/martin-sicho/papyrus-scaffold-visualizer
https://github.com/OlivierBeq/Papyrus-scripts
https://github.com/mad-lab-fau/BioPsyKit
https://github.com/materialsproject/pymatgen
https://github.com/neuropsychology/NeuroKit
https://github.com/nriesterer/syllogistic-nvc
https://github.com/brand-d/cogsci-jnmf
https://github.com/uw-cmg/MAST-ML
https://github.com/ZitongLu1996/EEG2EEG
https://github.com/ResidentMario/geoplot
https://github.com/ppdebreuck/modnet
https://github.com/geopandas/geopandas
https://github.com/kexinhuang12345/DeepPurpose
https://github.com/felixjwong/antibioticsai
https://github.com/SciTools/iris
https://github.com/OGGM/oggm
https://github.com/scverse/scanpy
https://github.com/scverse/scvi-tools
https://github.com/scverse/muon
https://github.com/scverse/scirpy
https://github.com/GeoStat-Framework/PyKrige
https://github.com/psa-lab/predicting-activity-by-machine-learning
https://github.com/chemosim-lab/ProLIF
https://github.com/anikaliu/CAMDA-DILI
https://github.com/ajdawson/eofs
https://github.com/Solve-Geosolutions/transform_2022
https://github.com/rasterio/rasterio
https://github.com/hackingmaterials/matminer


2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Table I.4: License for rasterio/rasterio.

Copyright (c) 2013-2021, Mapbox All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Mapbox nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Table I.5: License for hackingmaterials/matminer.

matminer Copyright (c) 2015, The Regents of the University of
California, through Lawrence Berkeley National Laboratory (subject
to receipt of any required approvals from the U.S. Dept. of
Energy). All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
(1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
(2) Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
(3) Neither the name of the University of California, Lawrence
Berkeley National Laboratory, U.S. Dept. of Energy nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
You are under no obligation whatsoever to provide any bug
fixes, patches, or upgrades to the features, functionality or
performance of the source code ("Enhancements") to anyone;
however, if you choose to make your Enhancements available
either publicly, or directly to Lawrence Berkeley National
Laboratory or its contributors, without imposing a separate
written license agreement for such Enhancements, then you hereby
grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative
works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in
binary and source code form.

57


	Introduction
	ScienceAgentBench
	Problem Formulation
	Data Collection
	Evaluation
	Comparison with Existing Benchmarks

	Experimental Setup
	Results and Analysis
	Main Results
	Human Evaluation

	Related Work
	Conclusion
	Future Directions, Limitations, and Ethical Considerations
	Example Task Instructions
	More Details about Benchmark Construction
	Details about Annotated Programs
	Details about Success Criteria

	More Details about Main Results
	Mean and Standard Deviations of Agent Performance
	Error Analysis of OpenHands CodeAct and Self-Debug

	Case Studies
	Case 1: Action Space of OpenHands
	Case 2: Influence of Expert-Provided Knowledge

	Expert Validation Details
	Questionnaire for Domain Experts
	Program Example for Domain Experts
	Knowledge Example Provided to Domain Experts during Annotation

	Rubric Examples
	Prompt Templates
	Publications, Repositories, and Licenses

