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ABSTRACT

Conventional saliency maps highlight input features to which neural network
predictions are highly sensitive. We take a different approach to saliency, in
which we identify and analyze the network parameters, rather than inputs, which
are responsible for erroneous decisions. We first verify that identified salient
parameters are indeed responsible for misclassification by showing that turning
these parameters off improves predictions on the associated samples, more than
pruning the same number of random or least salient parameters. We further
validate the link between salient parameters and network misclassification errors
by observing that fine-tuning a small number of the most salient parameters on a
single sample results in error correction on other samples which were misclassified
for similar reasons – nearest neighbors in the saliency space. After validating our
parameter-space saliency maps, we demonstrate that samples which cause similar
parameters to malfunction are semantically similar. Further, we introduce an
input-space saliency counterpart which reveals how image features cause specific
network components to malfunction.

1 INTRODUCTION

With the widespread deployment of deep neural networks in high-stakes applications such as medical
imaging (Kang et al., 2017), credit score assessment (West, 2000), and facial recognition (Deng
et al., 2019), practitioners need to understand why their models make the decisions they do. In fact,
“right to explanation” legislation in the European Union and the United States dictates that relevant
public and private organizations must be able to justify the decisions their algorithms make (United
States Congress Senate Committee on Banking and Housing and Urban Affairs, 1976; European
Commission, 2018). Diagnosing the causes of system failures is particularly crucial for understanding
the flaws and limitations of models we intend to employ.

Conventional saliency methods focus on highlighting sensitive pixels (Simonyan et al., 2014) or
image regions that maximize specific activations (Erhan et al., 2009). However, such maps may not
be useful in diagnosing undesirable model behaviors as they do not necessarily identify areas that
specifically cause bad performance since the most sensitive pixels may not be the ones responsible
for triggering misclassification.

We develop an alternative approach to saliency which highlights network parameters that influence
decisions rather than input features. These parameter saliency maps yield a number of useful analyses:

• Nearest neighbors in parameter saliency space share common semantic information. That
is, samples which are misclassified for similar reasons and cause similar parameters to
malfunction are semantically similar.

• By first identifying the network parameters responsible for an erroneous classification, we
can then visualize the image regions that interact with those parameters and trigger the
identified misbehavior.

• We verify that identified salient parameters are indeed responsible for misclassification by
showing that turning these parameters off improves predictions on the associated samples,
more than pruning the same number of random or least salient parameters.

• We further validate the link between salient parameters and network misclassification errors
by observing that fine-tuning a small number of the most salient parameters on a single
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sample results in error correction on other samples which were misclassified for similar
reasons.

After carefully delineating our methodology and experimentally validating the meaningfulness of
our parameter saliency maps, we showcase the practical utility of this paradigm as an explainability
tool with a case study in which we are able to uncover a neural network’s reliance on a spurious
correlation which causes interpretable failures.

1.1 RELATED WORK

Neural network interpretability and parameter importance. A major line of work in neural
network interpretability focuses on convolutional neural networks. Works visualizing, interpreting,
and analysing feature maps (Zeiler & Fergus, 2014; Yosinski et al., 2015; Olah et al., 2017; Mahendran
& Vedaldi, 2015) provide insight into the role of individual convolutional filters. These methods,
together with other approaches for filter explainability (Bau et al., 2017; Zhou et al., 2018; 2019) find
that individual convolutional filters often are responsible for specific tasks such as edge, shape, and
texture detection.

The idea of measuring neural network parameter importance has been studied in multiple contexts.
Notions of neuron and parameter importance have been used for AI explainability (Srinivas &
Fleuret, 2019; Selvaraju et al., 2017; Morcos et al., 2018; Shrikumar et al., 2017; Shrikumar et al.),
manipulating model behavior (Bau et al., 2018), and parameter pruning (Abbasi-Asl & Yu, 2017; Liu
& Wu, 2019).

Input space saliency maps. A considerable amount of literature focuses on identifying input
features that are important for neural network decisions. These methods include using deconvolution
approaches (Zeiler & Fergus, 2014) and data gradient information (Simonyan et al., 2014). Several
works build on these ideas and propose improvements such as Integrated Gradients (Sundararajan
et al., 2017), SmoothGrad (Smilkov et al., 2017), and Guided Backpropagation (Springenberg et al.,
2015) which result in sharper and more localized saliency maps. Other approaches focus on the use
of class activation maps (Zhou et al., 2016) with improvements incorporating gradient information
(Selvaraju et al., 2017) and more novel approaches to weighting the activation maps (Wang et al.,
2020). In addition, various saliency methods are based on manipulating the input image (Fong &
Vedaldi, 2017; Zeiler & Fergus, 2014). Another line of work is aimed at evaluating the effectiveness
of saliency maps (Adebayo et al., 2018; Alqaraawi et al., 2020).

Although extensive work studies how different regions of images affect a network’s predictions,
limited work (Srinivas & Fleuret, 2019) aims to distinguish important network parameters. Our work
combines the ideas of saliency maps and parameter importance and evaluates saliency directly on
model parameters by aggregating their absolute gradients on a filter level. We leverage the resulting
parameter saliency profiles as an explainability tool and develop an input-space saliency counterpart
which highlights image features that cause specific filters to malfunction to study the interaction
between the image features and the erroneous filters.

2 METHOD

It is known that different network filters are responsible for identifying different image properties
and objects (Zeiler & Fergus, 2014; Yosinski et al., 2015; Olah et al., 2017; Mahendran & Vedaldi,
2015). This motivates the idea that mistakes made on wrongly classified images can be understood
by investigating the network parameters, rather than only the pixels, that played a role in making a
decision. We develop parameter-space saliency methods geared towards identifying and analyzing
neural network parameters that are responsible for making erroneous decisions. Central to our method
is the use of gradient information of the loss function as a measure of parameter sensitivity and
optimality of the network at a given point in image space.

2.1 PARAMETER SALIENCY PROFILE

Let x be a sample in the validation set D with label y, and suppose a trained classifier has parameters
θ that minimize a loss function L. We define the parameter-wise saliency profile of x as a vector
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Figure 1: Filter-wise parameter saliency profile. ResNet-50 filter-wise saliency profile (without
standardization) averaged over samples in ImageNet validation set. The filter saliency values in each
layer are sorted in descending order, and each layer’s saliency values are concatenated. The layers
are displayed left-to-right from shallow to deep and have equal width on x-axis.

s(x, y) with entries s(x, y)i := |∇θiLθ(x, y)|, the magnitudes of the gradient of the loss with respect
to each model parameter. Because the gradients on training data for a model trained to convergence
are near zero, it is important to specify that D be a validation, or holdout, set. Intuitively, a larger
gradient norm at the point (x, y) indicates a greater inefficiency in the network’s classification of
sample x, and thus each entry of s(x, y) measures the suboptimality of individual parameters.

Aggregation of parameter saliency. Convolutional filters are known to specialize in tasks such as
edge, shape, and texture detection (Yosinski et al., 2015; Bau et al., 2017; Olah et al., 2017). We
therefore choose to aggregate saliency on the filter-wise basis by averaging the gradient magnitudes
of parameters corresponding to each convolutional filter. This allows us to isolate filters to which the
loss is most sensitive (i.e. those which, when corrected, lead to the greatest reduction in loss).

Formally, for each convolutional filter Fk in the network, consider its respective index set αk, which
gives the indices of parameters corresponding to the filter Fk. The filter-wise saliency profile of x is
defined to be a vector s(x, y) with entries

s(x, y)k :=
1

|αk|
∑
i∈αk

s(x, y)i, (1)

the parameter-wise saliency profile aggregated by averaging on the filter level.

Standardizing parameter saliency. Figure 1 exhibits the ResNet-50 (He et al., 2016) filter-wise
saliency profile averaged over the ImageNet (Deng et al., 2009) validation set, where filters within
each layer are sorted from highest to lowest saliency. One clear observation is the difference in the
scale of gradient magnitudes – shallower filters are more salient than deeper filters. This phenomenon
might occur for a number of reasons. First, early filters encode low-level features, such as edges and
textures, which are active across a wide spectrum of images. Second, typical networks have fewer
filters in shallow layers than in deep layers, making each individual filter more influential at shallower
layers. Third, the effects of early filters cascade and accumulate as they pass through a network.

To isolate filters that uniquely cause erroneous behavior on particular samples, we find filters that are
abnormally salient for a sample, x, but not for others. That is, we further standardize the saliency
profile of x with respect to all filter-wise saliency profiles of D.

Formally, let µ be the average filter-wise saliency profile across all x ∈ D, and let σ be an equal-
length vector with the corresponding standard deviation for each entry. We use these statistics to
produce the standardized filter-wise saliency profile as follows:

ŝ(x, y) :=
|s(x, y)− µ|

σ
. (2)

The resulting tensor ŝ(x, y) is of length equal to the number of convolutional filters in the network,
and we henceforth call it the saliency profile for sample x. By standardizing saliency profiles, we
create a saliency map that activates when the importance of a filter is unusually strong relative to other
samples in the dataset. This prevents the saliency map from highlighting filters that are uniformly
important for all images, and instead focuses saliency on filters that are uniquely important and serve
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Figure 2: Standardized filter-wise saliency profiles, correctly vs incorrectly classified samples.
Top: Standardized saliency profiles averaged over correctly classified samples in the ImageNet
validation set. Bottom: Standardized saliency profiles averaged over incorrectly classified samples
in the ImageNet validation set. On both panels, the filter saliency values in each layer are sorted
in descending order, and each layer’s saliency values are concatenated. The layers are displayed
left-to-right from shallow to deep and have equal width on x-axis. Both profiles are generated on
ResNet-50.

an image-dependent role. In the rest of the paper, unless explicitly noted otherwise, we use ŝ(x, y)
and refer to it as parameter saliency.

Incorrectly classified samples are more salient. Empirically, we observe the saliency profiles of
incorrectly classified samples exhibit, on average, greater values than those of correctly classified
examples. This bolsters the intuition that salient filters are precisely those malfunctioning — if
the classification is correct, there should be few malfunctioning filters or none at all. Moreover,
we see deeper parts of the network appear to be most salient for the incorrectly classified samples
while earlier layers are often the most salient for correctly classified samples. An example of
these behaviors for ResNet-50 is shown in Figure 2 which presents standardized filter-wise saliency
profiles averaged over the correctly and incorrectly classified examples from the ImageNet validation
set. Additionally, we note the improved relative scale of the standardized saliency profile across
different layers compared to the absolute gradient magnitudes in Figure 1. Saliency profiles for
other architectures could be found in Appendix A. Henceforth, we will focus specifically on saliency
profiles of misclassified samples in order to explore how neural networks make mistakes.

2.2 INPUT-SPACE SALIENCY FOR VISUALIZING HOW FILTERS MALFUNCTION

The parameter saliency profile allows us to identify filters that are most responsible for mistakes and
erroneous network behavior. In this section, we develop an input-space counterpart to our parameter
saliency method to understand which features of the image affect the saliency of particular filters.
Geiping et al. (2020) show that the gradient information of a network is invertible, providing a
link between input space and parameter saliency space. This work, along with existing input-space
saliency map tools (Simonyan et al., 2014; Springenberg et al., 2015; Smilkov et al., 2017; Zhou
et al., 2016; Selvaraju et al., 2017), inspires our method.

Given a parameter saliency profile ŝ = ŝ(x, y) for an image x with label y, our goal is to highlight
the input features that drive large filter saliency values. That is, we would like to identify image pixels
altering which can make filters more salient. To this end, we first select some set F of the most salient
filters that we would like to explore. Then, we create a boosted saliency profile s′F by increasing the
entries of ŝ corresponding to the chosen filters F (e.g., multiplying by a large constant). Now, we can
find pixels that are important for making the chosen filters F more salient and, equivalently, making
the filter saliency profile ŝ(x, y) close to the boosted saliency profile s′F by taking the following
gradients:

MF = |∇xDC(ŝ(x, y), s
′
F )|, (3)

where DC(·, ·) is cosine distance.
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Figure 3: Effect of turning salient filters off. (a) Change in incorrect class confidence score. (b)
Change in true class confidence score. (c) Percentage of samples that were corrected as the result
of pruning filters. These trends are averaged across all images misclassified by ResNet-50 in the
ImageNet validation set. The error bars represent 95% bootstrap confidence intervals.

The resulting input saliency map MF contains input features (pixels) that affect the saliency of the
chosen filters F the most.

3 EXPERIMENTS

In this section, we aim to validate the meaningfulness of our parameter saliency method. First, we
show on the dataset level that turning salient parameters off improves predictions on the associated
samples thus verifying that the salient parameters are indeed responsible for misclassification. We
then find that samples which cause similar filters to malfunction are semantically similar. We also
show on the dataset level that fine-tuning a small number of the most salient parameters on a single
sample results in error correction on other samples which were misclassified for similar reasons. We
then use our input-space saliency technique in conjunction with its parameter-space counterpart as an
explainability tool to explore how neural networks make mistakes and how salient filters interact with
visual input features.

We evaluate our saliency method in the context of image classification on CIFAR-10 (Krizhevsky,
2009) and ImageNet (Deng et al., 2009). Images we use for visualization, unless otherwise specified,
are sampled from ImageNet validation set. Throughout the experiments, we use a pre-trained ResNet-
18 classifier (He et al., 2016) on CIFAR-10 and a pre-trained ResNet-50 on ImageNet. Both models
are trained in a standard fashion on the corresponding dataset12.

3.1 PRUNING SALIENT FILTERS

We begin validating the meaningfulness of our parameter-space saliency maps by turning off the
malfunctioning filters which cause misclassification of the associated image. We prune away the
most salient convolutional filters (i.e., filters identified by our method as malfunctioning). In order to
remove the influence of a particular salient filter, we zero out the filter weights and also the biases of
the associated batch normalization layers. This procedure guarantees that the corresponding input
feature map to the next convolutional layer is always zero.

Remarkably, we find that this simple procedure improves the network’s behavior on the associated
samples. In particular, we gradually increase the number of pruned most salient filters and track three
metrics: the change in the incorrect class confidence, the change in the true class confidence, and the
percentage of the samples that flip their label to the correct class. In every case, we compare pruning
the most salient filters against pruning the same number of random filters and the least salient filters.
These experiments are performed on the dataset level: we average the trends across all misclassified
images in the ImageNet validation set.

As shown in Figure 3, pruning the most salient filters is significantly more effective for decreasing
the incorrect class confidence than random or least salient filters. Specifically, gradually pruning the

1https://github.com/kuangliu/pytorch-cifar (under MIT license)
2https://github.com/pytorch/vision (under BSD 3-Clause License)
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top 100 salient filters achieves up to 30% drop in the incorrect class confidence score while pruning
random filters yields only about 7% decrease. We also note that pruning the least salient filters does
not produce any effect on the incorrect class confidence.

We repeat the same experiment with the true class confidence and observe that the highest true
confidence gain occurs when we prune around 20 most salient filters. Pruning enough salient filters
eventually leads to a gradual decrease in the true class confidence. We note that this behavior is
expected since we are destroying, not correcting, the inference power of all of the most sensitive
filters for an image, some of which may be essential for inference. Finally, pruning random filters
provides a much slower increase in the true confidence class while the least salient filters again do
not produce a significant effect.

In addition, we count the number of images that were corrected as a result of pruning and find that
pruning around 30 most salient filters results in the best correct classification rate of 12%. Similar to
the true class confidence, the trend decreases beyond this point. Pruning the random filters increases
the percentage of corrected samples at a much slower rate and does not perform better than the most
salient filters when pruning up to 100 filters. Notably, pruning the least salient filters manages to
correct a nontrivial number of samples but still much smaller than pruning random filters.

Given the trends in panels (b) and (c) of Figure 3, and given that pruning is a coarse tool for fixing
misbehavior, we explore the natural idea of correcting the most salient filters instead of removing
them altogether in our fine-tuning experiments in Section 3.3.

3.2 NEAREST NEIGHBORS IN PARAMETER SALIENCY SPACE

We validate the semantic meaning of our saliency profiles by clustering images based on the cosine
similarity of their profiles. In this section, we present visual depictions of a nearest neighbor search
among all images in the ImageNet validation set. We also conduct this analysis on CIFAR-10 images,
and this can be found in Appendix A.

(a) Great pyrenees ↔ Kuvasz (b) Basset hound ↔ Beagle

Figure 4: Examples of nearest neighbors in parameter saliency space (from ImageNet).

We find that the nearest neighbors of misclassified images in saliency space are mostly other mis-
classified images from the same pair of predicted and true classes but possibly in reverse order. For
example, in Figure 4, the reference image in (a) is a great Pyrenees misclassified as kuvasz, and the
4 images with the most similar profiles exhibit either the same misclassification or the reverse (i.e.,
kuvasz misclassified as great Pyrenees). Intuitively, the common salient parameters across these
neighbors are those which are important for discriminating between the two classes in question but
are not well-tuned for this purpose.

Note that we find the concept of “being similar” in parameter saliency space to be different from the
one in image space. The nearest neighbors we find are often not similar in a pixel-wise sense, but
rather they are similar in their reason for causing misclassification. For example, images in Figure 4
(b) are beagles mistaken by a network for basset hounds and vice versa. We find that these pictures
are either taken from a high angle or do not include the dog’s legs, making the leg length, a major
distinction between the two breeds, indistinguishable from the picture. We include more example
images along with their nearest neighbors in Appendix A.

In addition, we compute nearest neighbors when only considering filters in a specific range of layers
in order to visualize the types of misbehavior triggered by network components (filters) at various
network depths. We search for similar images using parameter saliency in the shallow and deep
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Figure 5: Neighbors in parameter saliency space found using only early or only deep layers.
The reference image is in the first column. Images in the top row resemble the reference image in the
saliency on early layers of VGG-19, and images in the bottom row are found using deeper layers.

layers of a VGG-19 network (Simonyan & Zisserman, 2015), which we divide into the shallow and
deep parts that respectively occur up to and after layer relu4 1. The top row of figure Figure 5
shows neighbors found using shallow parameters, which share basic image attributes such as color
histogram, while images in the bottom row share more abstract similarities.

3.3 CORRECTING MISTAKES BY FINE-TUNING SALIENT FILTERS

To validate whether salient filters are more responsible for the erroneous behavior of neural networks,
we show that updating salient filters alone is sufficient for correcting the mistakes made by a neural
network. In this experiment, for a pre-trained image classification network, we fine-tune it for one
step on a single image for which the network makes the wrong prediction. We restrict the number
of tunable filters to be no more than 1.0% of the total number of filters in a network, and we update
the chosen filters by taking one step of gradient descent with a fixed step size. To validate the
effectiveness of optimizing salient filters, we compare it with two other choices of tunable filters:
the least salient filters and random filters. For a more general evaluation, we use images from the
ImageNet validation set that are misclassified by a ResNet-50, making up to over 10,000 samples.
We evaluate the effect of fine-tuning on each of these images independently.
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Figure 6: Effect of updating a small number of filters. (a) Percentage of samples that are corrected
after fine-tuning. (b) Average percentage of nearest neighbors that are also corrected after fine-tuning.
(c) Average change in the confidence score of the true class among nearest neighbors. The horizontal
line in each plot is the effect of updating the entire network.

In Figure 6, we compare the average performance of our three choices of tunable filters under three
evaluation metrics. For a given sample image and a set of tunable filters, an update step is considered
to be effective if the updated network corrects its mistake on the sample image. In addition, it is
more useful if the updated network also corrects its mistake on other images that resemble the sample
image but are not seen during fine-tuning.

First, by inspecting the percentage of samples that are corrected after fine-tuning (Figure 6 (a)), we
find that updating 150 salient filters (∼0.6% of total filters) can achieve the same result as updating
the entire network. The second and third metrics evaluate the effect on the nearest neighbors of the
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(e) Mask boat and seal
43.93% great white shark
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(f) Extended mask
58.73% great white shark
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Figure 7: Interaction between input features and salient filters. (a) Reference image of “great
white shark” misclassified by ResNet-50 as “killer whale” with confidence scores. (b) Input-space
saliency visualization. Pixels that cause the top 10 salient filters to have high saliency. (c) Change in
saliency values of the erroneous filters across masking experiments. The vertical bars represent the
standard deviation of the change across 10 most salient filters. (d)-(f) Masking experiments.

training sample (Figure 6 (b),(c)). We find nearest neighbors for each training sample through the
process introduced in Section 3.2, where we limit the search scope exclusively to other misclassified
images. Note that for a given training sample, its nearest neighbors are not involved in our one-step
single sample fine-tuning process. By tracking model predictions and true class confidence scores
among the 10 nearest neighbors of each sample, we find that fine-tuning salient filters is significantly
more effective than other choices. Results in Figure 6, (b) and (c), also imply that the nearest
neighbors found using our method are the images that are wrong for similar reasons and that they can
be corrected altogether by only updating the salient filters on a single image. We note that we do not
propose a new pruning or fine-tuning method. Rather, we use these experiments to verify that the
salient filters are indeed responsible for misclassification.

3.4 INPUT FEATURES THAT CAUSE FILTERS TO MALFUNCTION: A CASE STUDY

We consider a case study of an image misclassified by ResNet-50 as “killer whale” (Figure 7(a)). The
correct label of the image is “great white shark”. Our goal is to study the interaction between the
most salient filters and input features. We first identify filters most responsible for misclassification
by computing the filter saliency profile and visualize parts of the image that drive the high saliency
values for those filters using the input-space saliency counterpart (Section 2.2).

Panel (b) of Figure 7 presents our image-space visualization, which depicts the causes of misbehavior
for the ten most salient filters – the pixels that trigger misbehavior in these filters are highlighted. For
example, we see that the seal and boat are both triggers. One natural hypothesis is that the seal looks
like a killer whale to the network and is the source of the classification error. We test this hypothesis
by masking out the seal (Figure 7 (d)) . However, although the probability of “killer whale” goes
down and the probability of the correct class increases, the network still misclassifies the image as
“killer whale”.

Now, if we mask out exactly the most salient areas of the image according to our visualization
(see Figure 7 (b), (e)), the network manages to flip the label of the image and classify it correctly.
If we extend our mask to the less pronounced, but still salient, areas of the image as in Figure 7
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(a) dalmation
soccer ball (b) pizza

bell pepper (c) leopard
jaguar (d) junco

house finch (e) passenger car
locomotive

Figure 8: Different types of network mistakes. All of the presented images are misclassified by
ResNet-50. The correct class label is specified in the top row and the incorrect class label – in the
bottom row of the subcaption on each panel. (a)-(b) The target object is confused with another object
in the image. (c) A regular mistake. The salient pixels are focused on the target object features which
confuse the network. (d) Background features confuse the network. (e) An example of a noisy label
where the network is “more correct” than the target label. These are examples where masking top 5%
of the salient pixels corrects the misclassification.

(f), we observe that the correct class confidence increases even more while the probability of the
incorrect “killer whale” label further decreases. Additionally, we find that masking out the non-salient
parts of the image results in even worse misclassification confidence than that of the original image
(see Appendix A). In order to further investigate the effect of the salient region, we pasted it from
this image onto other great white shark images (see Appendix A) and observed that this drives the
probability of “killer whale” up for 39 out of 40 examples of great white sharks from the ImageNet
validation set with an average increase of 3.75%.

Our experiments suggest that secondary objects in the image are associated with the misclassification.
However, we see that the erroneous behavior of the model does not just stem from classifying a
non-target object in the image. It is possible that the model correlates the combination of sea creatures
(e.g. a seal) and man-made structures (e.g. a boat) with the “killer whale” label. We note that images
of killer whales in ImageNet often have man-made structures which look similar to the boat (see
Appendix A for examples of other “killer whale” images).

Finally, at each step of our masking experiments, we recompute the saliency values of the originally
chosen 10 filters (i.e. the filters that caused erroneous behavior on the reference image). From Figure
7 (c), we observe that as we mask out the input features according to our input-saliency, the saliency
values of those filters decrease gradually and reach an 80% drop, confirming that highlighted regions
indeed drive the high saliency of the chosen filters.

More visualizations of input space saliency showcasing different illustrative examples of neural
network mistakes can be found in Figure 8. For a thorough discussion of mistake categories we
identify using our saliency method, we refer to Appendix A.

4 DISCUSSION

Numerous applications demand that practitioners be able to understand the decisions their models
make, especially when those decisions are incorrect. Existing methods for explainability focus
on locating the input regions to which the network’s output is sensitive or on associating network
components with specific roles. In contrast, we develop a framework for finding the exact filters
which are responsible for faulty predictions and studying the interactions between these filters and
images. This direction yields both an interpretable and intuitive understanding of model behaviors.
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5 ETHICS STATEMENT

Although our formulation of parameter saliency is not restricted to image datasets and CNNs, we only
conduct experiments in these settings. In contrast, real-world data and models come in many forms.
Explainability methods which shed light in some settings may fail to do so in others. Moreover, we
emphasize that some erroneous model behaviors are simply difficult to understand through existing
methods, and the capabilities of parameter saliency are limited. In many applications, it is imperative
that practitioners understand why their models behave as they do and that they are able to diagnose
problems when they arise. We hope that our work helps to enable solutions to real-world problems.
However, we caution against a false sense of security. Our visual interpretations of model behavior
should be viewed as approximations since neural networks are incredibly complex.

6 REPRODUCIBILITY STATEMENT

We include our implementation of our parameter saliency method as well as the input-space saliency
counterpart as a supplementary material. All the datasets used in the experiments are publicly
available. The implementation details are available in Appendix B.
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Figure 9: Filter-wise saliency profiles for other architectures. (a) VGG-19 saliency profile (with-
out standardization). (b) Inception v3 saliency profile (without standardization). (c) DenseNet
saliency profiles (without standardization). In each panel the filter-wise saliency profile is averaged
over the ImageNet validation set. In every panel, the filter saliency values in each layer are sorted
in descending order, and each layer’s saliency values are concatenated. The layers are displayed
left-to-right from shallow to deep and have equal width on x-axis.

A ADDITIONAL EXPERIMENTS

A.1 PARAMETER SALIENCY PROFILES FOR OTHER NETWORK ARCHITECTURES

In this section, we present average saliency profiles for several popular network architectures other
than ResNet-50 (He et al., 2016). Analogously to Figure 1, Figure 9 presents average gradient
magnitudes for VGG-19 (Simonyan & Zisserman, 2015), Inception v3 (Szegedy et al., 2016), and
DenseNet (Huang et al., 2017). Similarly to Figure 2, we also present in Figure 10 standardized
filter-wise saliency profiles for those architectures averaged across correctly and incorrectly classified
ImageNet (Deng et al., 2009) samples.

A.2 MORE EXAMPLES OF NEAREST NEIGHBORS

We present more examples of nearest neighbors in our parameter saliency space. Figure 12 are nearest
neighbors in CIFAR-10 (Krizhevsky, 2009) dataset, where reference images are chosen from samples
misclassified by our classifier. Figure 13 are examples from ImageNet, where images are captioned
with the true label of the reference images.

In addition, in comparison with the nearest neighbor in our parameter saliency space, we also conduct
the nearest neighbor search in the feature representation space. We take the feature representation
from the conv5 3 layer of a ResNet-50, and run the nearest neighbor search using the same reference
images and candidate pool as in Figure 4. Results are shown in Figure 11. We find that nearest
neighbors in the feature space bear more resemblance in image structures, but it fails to identify
samples that share the same mistakes. In fact, most of the nearest neighbors in Figure 11 are correctly
classified samples.
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Figure 10: Standardized saliency profiles averaged over correctly vs incorrectly classified sam-
ples. (a) VGG-19 saliency profiles. (b) Inception v3 saliency profiles. (c) DenseNet saliency profiles.
In each panel, the top row presents the standardized saliency profiles averaged over correctly classified
samples and the bottom row shows standardized saliency profiles averaged over incorrectly classified
samples. On every panel, the filter saliency values in each layer are sorted in descending order, and
each layer’s saliency values are concatenated. The layers are displayed left-to-right from shallow to
deep and have equal width on x-axis.

(a) (b)

Figure 11: Examples of nearest neighbors in the feature representation space (from ImageNet).
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Furthermore, we present preliminary results on applying our method to language models. We use
a BERT (Devlin et al., 2018) model, pre-trained on the task of predicting the word at a masked
position. We consider an independent dataset for evaluation in our experiments, which consists of
short sentences with masked words, provided by LAMA (F. Petroni & Riedel, 2019; Petroni et al.,
2020), an open-source language model analysis framework. Similar to the filter-wise aggregation
in convolutional networks, we adopt column-wise aggregation for obtaining our saliency profiles in
the transformer-based architecture. We conduct the nearest neighbor search by comparing sentences
from the dataset in saliency space and analyzing the top-5 nearest neighbors.

We present four examples below, where the numbering indicates n-th nearest neighbor sentence, and
the italic word is the ground truth. Each example is accompanied with a description of similarities
between the neighbors:

Reference: “Cany Ash and Robert Sakula are both Architects.” incorrectly predicted as: actors

1. “David Castlles-Quintana and Vicente Royuela are economists.” incorrectly predicted as:
actors

2. “Raghuram Rajan is an economist.” incorrectly predicted as: actor
3. “Richard G. Wilkinson and Kate Pickett are British.” incorrectly predicted as: actors
4. “Nathan Alterman was a poet.” correctly predicted: poet
5. “Zbigniew Badowski is an architect.” incorrectly predicted as: author

Note that all 5 neighboring sentences here share the common structure of being declarations of
profession for specifically named people. Interestingly, the first three closest sentences to the
reference incorrectly predict the profession to be an actor as well. Moreover, the ground truth of the
reference and its closest neighbor is economist/s.

Reference: “D’Olier Street is in Dublin.” incorrectly predicted as: Paris

1. “A group who call themselves Huguenots lives in Australia.” incorrectly predicted as: France
2. “Huguenots and Walloons settled in Canterbury.” incorrectly predicted as: France
3. “In the Treaty of Lisbon 2007 Ireland refused to consent to changes.” incorrectly predicted

as: it
4. “Samuel Marsden Collegiate School is located in Wellington.” incorrectly predicted as:

Melbourne
5. “Konstantin Mereschkowski has Russian nationality.” correctly predicted: Russian

Again, we see all five nearest neighbor sentences are semantically similar to the reference, this time
relating to national affiliations and geography. In the first two closest sentences, the model incorrectly
fills in a location with France, which is similar to the reference which incorrectly predicts Paris.

Reference: “The Super Bowl sponsor was the Gap clothing company.” incorrectly predicted as Nike

1. “During Super Bowl 50 the Nintendo gaming company debuted their ad for the first time.”
incorrectly predicted as: video

2. “Experimental measurements on a model steam engine was made by Watt.” incorrectly
predicted as: Siemens

3. “ABC’s programming strategy was criticized in May 1961 by Life magazine.” incorrectly
predicted as: Time

4. “In 2009, Doctor Who started to be shown on Canadian cable station Space.” incorrectly
predicted as: CBC

5. “To emphasize the 50th anniversary of the Super Bowl the gold color was used.” incorrectly
predicted as: blue

All but one of the nearest neighbors in this example relate to some kind of TV programming, and
two also mention the Super Bowl. Much like the reference sentence, which incorrectly predicts the
name of a corporation, the first four neighbors have a ground truth or incorrect prediction that is also
a corporation.
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Reference sample: “Tetzel’s collections of money to free souls from purgatory was objected by
Luther.” incorrectly predicted as: some

1. “Newcastle was granted a new charter in 1589 by Elizabeth.” incorrectly predicted as:
Parliament

2. “The suggestion that imperialism was the “highest” form of capitalism is from Lenin.”
incorrectly predicted as: Aristotle

3. “Fritschel said the man’s sleep was disturbed by dreams.” incorrectly predicted as: lightning

4. “The concept that falling objects fell at the same speed regardless of weight was introduced
by Galileo.” incorrectly predicted as: NASA

5. “One of the earliest examples of Civil Disobedience was brought forward by the Egyptians.”
incorrectly predicted as: government

This is an example where there is a weak relation between the incorrect classifications (three of
five involve some kind of government or government organization) of the nearest neighbors, but the
sentences are still highly semantically similar. All of the neighbors except the third are declarations
of historical actions performed by a specific person or group of people.

(a) bird ↔ cat (b) frog ↔ cat (c) airplane ↔ ship (d) horse ↔ deer

Figure 12: CIFAR-10 examples of nearest neighbors in parameter saliency space. On CIFAR-10
images that cause similar filters to malfunction are often misclassified in a similar way.

(a) coyote (b) goldfish (c) terrapin (d) great white shark

Figure 13: ImageNet examples of nearest neighbors in parameter saliency space. In every panel,
the reference image is in the left column and its nearest neighbors are in the right column. Panels are
captioned by the true label of their reference image.

A.3 CORRECTING MISTAKES ON OTHER DATASETS

We have shown in Section 3.3 that updating a few salient parameters of an ImageNet pre-trained
network is enough for effectively correcting mistakes on the ImageNet validation set. Moreover,
in this section, we show that this effect can be extended to other independent datasets. We use the
ImageNet-v2 test set, consisting of 10,000 images collected by Recht et al. (2019), independent from
the original ImageNet data.

In Figure 14, we observe the similar pattern as in Figure 6. With test samples independent of the
training data, salient parameters still demonstrate the most strength in correcting mistakes and their
nearest neighbors. The advantage is more prominent when inspecting model’s predictions of unseen
nearest neighbors.

A.4 FINE-TUNING SALIENT FILTERS OF A VGG-19

In this section, we conduct the fine-tuning experiment introduced in Section 3.3 on a VGG-19 network
trained on ImageNet, which has a total of 5504 filters. The learning rate for training our VGG network
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Figure 14: Effect of updating a small number of filters on the ImageNet-v2 test data. (a)
Percentage of samples that are corrected after fine-tuning. (b) Average percentage of nearest neighbors
that are also corrected after fine-tuning. (c) Average change in the confidence score of the true class
among nearest neighbors. The horizontal line in each plot is the effect of updating the entire network.

is 1/10 of that for the ResNet, so we decrease the fine-tuning step size by 10 in this experiment.
Figure 15 shows the effect of updating salient filters of a VGG-19. Note that we use the same range
for the number of tunable filters in this experiment; 300 filters correspond to 5.5% of total filters in a
VGG-19, while it is 1.2% for a ResNet-50.
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Figure 15: Effect of updating a small number of filters on VGG-19. (a) Percentage of samples
that are corrected after fine-tuning. (b) Average percentage of nearest neighbors that are also corrected
after fine-tuning. (c) Average change in the confidence score of the true class among nearest neighbors.
The horizontal line in each plot is the effect of updating the entire network.

A.5 RANDOM PERTURBATION OF SALIENT FILTERS

As an alternative to the pruning approach described in Section 3.1, random perturbations could be
used to show that the most salient filters are indeed responsible for misclassification. We perturbed the
filters using small Gaussian noise N (0, 0.001). Figure 16 presents the effect of randomly perturbing
salient filters, we observe similar trends to our pruning experiments in Section 3.1.

A.6 CONNECTION TO ADVERSARIAL ATTACKS IN PARAMETER SPACE

Adversarial attacks in parameter space have been used for optimizers which find flat loss minima
(Foret et al., 2020; Kwon et al., 2021; Du et al., 2021) and for improving model robustness through
parameter-corruption-resistant training (Sun et al., 2020).

One could instead apply adversarial attacks to construct parameter saliency profiles – choose a
constraint space and perturb parameters in order to minimize loss, subject to the constraint, using
the perturbation to parameters as a saliency profile (perhaps standardizing afterwards). We notice
several advantages and disadvantages of this alternative. On the one hand, the “adversarial” approach
requires a choice of constraint space and may require more compute (our method results in the exact
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Figure 16: Effect of randomly perturbing filters. (a) Change in incorrect class confidence score.
(b) Change in true class confidence score. (c) Percentage of samples that were corrected as the result
of pruning filters. These trends are averaged across all images misclassified by ResNet-50 in the
ImageNet validation set. The error bars represent 95% bootstrap confidence intervals.

same saliency profile as a single-step adversary). On the other hand, the choice of constraint space
and optimizer in the adversarial approach yields more flexibility.

In this section, we compare our method with the adversarial-attack-based method. More specifically,
for a given sample (x, y), we perturb parameters either to maximize or minimize the loss subject to
an L2-norm constraint on the parameter change:

min
θ
/max

θ
Lθ(x, y) (4)

s.t. ‖θ − θ0‖ < ε

Then, given the adversarially perturbed parameters θ∗, we define the adversarial-attack-based param-
eter saliency profile of the sample (x, y) as the absolute difference from the initial parameters θ0:
s(x, y) = |θ∗ − θ0|.
We compare the resulting adversarial saliency profiles with our original method on a random sample
of 100 images from the ImageNet validation set. We observe that for a reasonably small constraint
(ε = 10−4), the resulting adversarial saliency profiles are similar to our original parameter saliency
profiles (as one would expect for smooth loss) with the average cosine similarity between the saliency
profiles generated by each method for the same images reaching 0.99 (the average is taken over the
random sample of 100 images). We also see that both methods agree on the top-k (we tried k=100)
most salient filters: on average, 95% of filters identified by our original method as top-k salient filters
were also identified as top-k salient filters by the adversarial parameter saliency. The differences
were gradually more distinct with larger constraints, however, we note that the smaller epsilons are of
greater interest since they reflect the intuition of perturbing only the most important parameters.

We also tried L1-regularized adversarial attacks. We can similarly enforce sparsity in our original
method by simply adding the L1 regularizer to our loss before computing the gradient:

s(x, y)i := |(1− α)∇θi(Lθ(x, y) + α‖θ − θ0‖1)| (5)

This modification can be seen as one step of the L1-regularized adversarial attack, and we experimen-
tally checked that it produces very similar results with the cosine similarity between the resulting
saliency profiles of 0.97 on average (for sufficiently large α = 0.99).

A.7 ADDITIONAL CASE STUDY FIGURES

Masking non-salient parts of the image. As noted in section 3.4 and presented in Figure 17,
masking the non-salient parts of the image results in even worse misclassification confidence with the
incorrect class confidence increasing compared to the reference image.

Pasting the salient region from the reference image onto other “great white shark” images. As
mentioned in section 3.4, in order to further investigate the effect of the salient region, we pasted it
(i.e., the seal and the boat) from the original image onto other images with “great white shark” ground
truth label that were correctly classified by ResNet-50 (see Figure 18 for examples). We observed
that this increased the probability of “killer whale” for 39 out of 40 examples of great white sharks
from the ImageNet validation set with an average increase of 3.75%.
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(a) Reference image
4.07% great white shark

78.36 % killer whale

(b) Input-space saliency for top 10
salient filters (pixels most responsi-
ble for misclassification)

(c) Masked human
3.84% great white shark

86.04% killer whale

(d) Masked non-salient water
5.15% great white shark

79.38% killer whale

Figure 17: Masking non-salient parts of the image. (a) Reference image of “great white shark”
misclassified by the model as “killer whale” and the corresponding confidence scores. (b) Pixels
that cause the top 10 most salient filters to have high saliency. (c) Masked (non-salient) human. (d)
Masked non-salient water region.

Examples of images with “killer whale” label. As we discussed in section 3.4, the model might
have learned to correlate a combination of sea creatures (e.g. a seal) and man-made structures (e.g.
a boat) with the “killer whale” label. Images of killer whales in ImageNet often have man-made
structures which look similar to the boat, we provide examples of that in Figure 19.

Figure 18: Sample “great white shark” images with boat and seal. The salient region from the
case study image pasted onto other “great white shark” images.

Figure 19: ImageNet examples of “killer whale”.
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Figure 20: Pixels responsible for mistakes focused on the target object. (a)-(b) Masking the
salient pixels corrects the misclassification where masking confusing features (e.g. dog ears or
spot patterns) helps distinguish animals. (c)-(d) Masking the salient pixels results in correct class
confidence decrease, when the salient pixels are densely focused on the target object. The correct
class label is specified in the top row and the predicted incorrect class label – in the bottom row of the
subcaption on each panel.

A.8 EXPLORING NEURAL NETWORK MISTAKES

In Section 3.4, we apply our parameter-space saliency method as an explainability tool using it
alongside our input-space technique to study how image features cause specific filters to malfunction.
In our case study, the salient pixels that confuse the network are focused less on the target object than
on other image features, and masking the salient regions which are not on the target object improves
the network behavior. Such examples expose the network’s reliance on spurious correlations and
constitute an interesting type of model mistake.

The masking approach can be adopted to explore network mistakes and find other interesting cases
(e.g., cases where the salient pixels are not concentrated on the target object). Investigating examples
where masking the most salient pixels improves performance may provide insights into the model’s
misbehavior as well as expose dataset noise and biases. We select misclassified samples where
masking the top 5% of salient pixels leads to an increase of at least 25% in confidence corresponding
to the correct class. We showcase representative examples of different types of mistakes that we
observe in those samples in Figure 8. Many of the neural network misclassifications stem from
classifying a non-target object in images with multiple objects (see Figure 8 (a), (b)). However,
other mistakes are triggered by background features (Figure 8 (d)), dataset biases (as our case study
experiments in Figure 7 suggest), and label noise (Figure 8 (e)).

Interestingly, in some of the selected cases the salient regions still focus on the target object features
(see Figure 8 (c)), and masking them improves the model’s behavior. Masking salient target object
features that confuse the network seems to be particularly beneficial for images of animals; for
example, masking dog ears helps the network identify the correct breed (see Figure 20(a)) or masking
spot patterns helps distinguish different types of rays (see Figure 20(b)).

While masking the top 5 % of salient pixels results in correct classification for all samples in Figure 8
and in Figure 20(a), (b), this is, of course, not always the case. Sometimes, pixels which cause large
filter saliency values are focused densely on the target object, and masking them results in decreased
confidence corresponding to the correct class. Selecting such samples can be used to find situations
where the network is genuinely confused by the target object rather than background features (Figure
20 (c)) or samples with multiple objects present and with salient pixels more focused on the target
object (Figure 20 (d)).
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A.9 COMPARISON TO GRADCAM

Existing input saliency maps used with the predicted label can highlight features which are related to
misclassification. However, they are not specifically geared towards that goal. Our input saliency
technique highlights image features that cause specific filters to malfunction and those features,
while they might in some cases coincide with the features that explain a high class confidence score
corresponding to the predicted label, may not be the same.

In this section, we will compare our input-space saliency technique which highlights pixels that drive
high parameter saliency values of specific filters (i.e., pixels that confuse the network) to the visual
explanations produced by GradCAM with the predicted label 3 (Selvaraju et al., 2017) – one of the
most popular and high quality input-saliency methods.

Figures 21 and 22 present panels of images comparing our method to GradCAM explanations
computed with the predicted label. From the perspective of highlighting pixels responsible for neural
network mistakes and for driving high filter saliency values, we note the following:

• GradCAM highlights the object that corresponds to the incorrect label, and the entire target
object is highlighted in the images where only the target object is present (see Figure 21
(c)-(e), Figure 22 (a)-(c)). However, when our method focuses on the target object, it
highlights specific features of that object. Those are the features that confuse the network,
and masking them can correct the misclassification.

• In cases where the network classifies the non-target object in the image (see Figure 21
(a)-(b), Figure 22 (d)), both methods highlight the non-target objects. However, GradCAM
is more localized to the non-target object. This is expected since GradCAM produces visual
explanations for the predicted label (and has been shown to produce highly localized saliency
maps (Selvaraju et al., 2017)) while our method highlights all pixels that drive the filter
saliency, and these pixels may be located on the target object as well.

• In cases where the misclassification does not stem from confusion by the target object or
classifying the non-target object (see Figure 21 (d)-(e), Figure 22 (e)), our method highlights
background features and/or a combination of non-target object features, while GradCAM
still highlights the target object. For example, in Figure 22 (e), our method highlights the
boat and the sky much more than GradCAM, and our case study masking experiments in
section 3.4 show that those regions indeed confuse the network.

• In addition, we emphasize that our input saliency technique is specific to the chosen filter set
F and is introduced to study the interaction between the image features and the malfunction-
ing filters. In contrast, GradCAM is not able to relate image-space mistakes to an arbitrary
set of model parameters or filters chosen by the user.

To summarize, GradCAM (as well as many other input-space saliency methods) was designed to
be highly localized to the object correponding to the label of interest, while our method highlights
sparse fine-grained features of images which we believe is a desirable property for our specific
application. Therefore, we opt for using input-gradient information similar to the original Vanilla
Gradient (Simonyan et al., 2014) method. However, instead of class confidence scores, we use a
different loss – cosine distance to the boosted parameter-saliency profile (as described in Section 2.2)
which allows us to explore how image features cause specific filters to malfunction.

A.10 INPUT-SALIENCY SANITY CHECK

To assure that our input-space saliency technique is model dependent, we performed the model
randomization test from (Adebayo et al., 2018). We can see that the input saliency map is model
dependent. We note that the data randomization test is not applicable in our case because our input-
space saliency map is based on the parameter-saliency profile and parameter-saliency is designed to
investigate a pretrained model with particular weights.

3Implementation from https://github.com/kazuto1011/grad-cam-pytorch under MIT license
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Figure 21: Comparison to GradCAM. Top row: original image. Middle row: GradCAM input-
space saliency map for the predicted label. Bottom row: our input-space saliency technique which
highlights pixels that drive high parameter saliency values of specific filters (i.e., pixels that confuse
the network). The correct class label is specified in the top row and the predicted incorrect class label
– in the bottom row of the subcaption on each panel.

B IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETER SETTING FOR FINE-TUNING SALIENT FILTERS

When tuning a small number of random or least salient filters, we re-normalize the gradient magnitude
of these parameters to be the same as the salient filters for a fair comparison; otherwise the gradients
for these parameters are always smaller than the salient ones by the definition of our saliency profile,
and updating them would make less change to a model than updating the salient ones. In addition
to re-normalizing the gradients, we also multiply them with a step size, similar to the concept of
learning rate in stochastic gradient descent. For ResNet-50, we set the step size to be 0.001, which
equals to the learning rate of the last epoch when training the ResNet-50 on ImageNet from scratch.
For VGG-19, we also set the fine-tuning step size to be the learning rate from the last training epoch,
which is 0.0001. We also note that the batch normalization layers were set to the test mode for our
fine-tuning experiments.

B.2 INPUT SALIENCY VISUALIZATION

The number of top salient filters to boost was chosen to be 10 in all input-space saliency experiments.
The filters were boosted by multiplying by 100. For visualization, absolute input gradients were
thresholded at 90-th percentile and Gaussian Blur with (3, 3) kernel was applied.

B.3 HARDWARE

The experiments were run on Nvidia GeForce RTX 2080Ti GPUs with 11Gb GPU memory on a
machine with 4 cpu cores and 64Gb RAM. The input-space and parameter-saliency profiles take
seconds to compute for a single sample.
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Figure 22: Comparison to GradCAM. Top row: original image. Middle row: GradCAM input-
space saliency map for the predicted label. Bottom row: our input-space saliency technique which
highlights pixels that drive high parameter saliency values of specific filters (i.e., pixels that confuse
the network). The correct class label is specified in the top row and the predicted incorrect class label
– in the bottom row of the subcaption on each panel.

(a) Original (b) Stage 4 (c) Stages 3-4 (d) Stages 2-4 (e) Stages 1-4

Figure 23: Sanity checks. (a) No randomization of ResNet-50. (b) Only stage 4 of ResNet-50
is randomized. (c) Stages 3-4 of ResNet-50 are randomized. (d) Stages 2-4 of ResNet-50 are
randomized. (e) The entire ResNet-50 is randomized.
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