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Phytopathogenic fungi pose a serious threat to
global food security. Next-generation sequencing
technologies, such as transcriptomics, are increas-
ingly used to profile infection, assess environmen-
tal adaptation and gauge host-responses. The ac-
cumulation of these large-scale data has created
the opportunity to employ new computational meth-
ods to gain greater biological insights. Machine
learning approaches, that learn to identify patterns
in complex data sets, have recently been applied
to the field of plant-pathogen interactions. Here,
we apply a machine learning approach to transcrip-
tomics data for the fungal pathogen Zymoseptoria
tritici, to predict the onset of infection as measured
by timing of the appearance of necrosis. We present
a method for identifying the most important genes
that predict infection timings, accurately classify
isolates as early and late infectors and predict the
timing of infection of ‘novel’ isolates using only a
subset of the data. These methods and the genes
identified further demonstrate the use of these tools
in the field of plant-pathogen interactions and have
implications for the identification of biomarkers for
disease monitoring and forecasting.

Fungi that infect plants pose a serious threat to
global food security. Methods to study these
pathogens generate vast amounts of data that cre-
ate new opportunities for computational tools to
analyse them. Machine learning methods can learn
patterns in complex data such as when genes are
turned on or off in fungal plant pathogens. In this
study we use machine learning approaches to pre-
dict the onset of infection in several isolates of an
important fungal pathogen. We show that these
methods can identify a small group of genes that
are predictive of the infection onset. We can even
use these methods on ‘novel’ isolates to infer the
likely timing of disease development. Our work has
implications for plant disease diagnosis, monitor-
ing and forecasting.
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Introduction

Phytopathogenic fungi threaten global food security,
destroying up to 30% of crop products through dis-
ease and spoilage [1, 2]. To cause disease and com-
plete their life cycle, plant pathogens have to over-
come the physical and chemical barriers of plant immu-
nity, including pathogen-associated-molecular-pattern
(PAMP)-triggered-immunity (PTI) [3]. They achieve this
by secreting effector proteins, which disrupt host sig-
nalling for threat perception and defence mechanisms
[3-5]. In turn, plants have evolved resistance (R) pro-
teins which detect specific pathogen effectors or moni-
tor the effector-targeted proteins and initialise effector-
triggered immunity (ETI) [6]. These gene-for-gene (R
gene to effector gene) interactions can determine the
success or failure of infection [7]. ETI induces a suite
of responses including a hypersensitive response (HR),
localised cell death, activating multiple protein kinase
cascades, as well as initiating an oxidative burst and
promoting expression of many defence related genes
[3, 8].

The Dothidiomycete fungus Zymoseptoria tritici is the
causal agent of Septoria tritici blotch (STB), a severe
disease of wheat [9]. STB results in significant eco-
nomic losses through reduced yields of 5-10% per an-
num in the EU [10] and the cost of disease management
through application of fungicides, which accounts for ap-
proximately 70% of the European agricultural fungicide
market [11, 12]. Z. tritici is capable of rapid evolution
due to a high rate of gene flow and recombination in
large populations [13—16]. This fact, coupled with man-
agement practices has driven selection in Z. tritici for
resistance to all major fungicides [17-23]. The situa-
tion is compounded by Z. tritici’s highly plastic genome,
which enables the fungus to overcome major wheat re-
sistance genes [24]. Z tritici has 21 chromosomes with
eight chromosomes being dispensable and absent in
some isolates of the species [25]. Indeed, 40% of the
Z. tritici pan-genome, the entire set of genes within the
species, is composed of orphan genes [26, 27], giving
Z. tritici the largest known accessory genome among
fungi [28]. Deletion of the dispensable chromosomes
has confirmed that some are necessary for host speci-
ficity [29]. Transcriptomic studies show flexibility of in-
fection programs with heterogeneity in gene expres-
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sion throughout development between isolates [30, 31].
This extends to variability in development and aggres-
siveness when assessing specific isolate pathogen-host
combinations [32].

Z. tritici is a member of the Mycosphaerellaceae fam-
ily, which are often deemed hemibiotrophic due to hav-
ing a long asymptomatic, biotrophic phase in the dis-
ease cycle [33]. This is followed by a rapid switch to
a necrotrophic phase and the development of disease
symptoms, including irregular chlorotic lesions and then
necrotic blotches forming on the leaf [34—-36]. Necrotro-
phy is associated with the hallmarks of PTI and ETI in
the host, including programmed cell death (PCD) and
accumulation of HoO5 [37, 38]. This results in the col-
lapse of mesophyll tissue and an abundance of nutri-
ents flooding the apoplastic spaces, facilitating rapid
fungal growth and finally sporulation [39—42]. With
limited evidence of biotrophy during the asymptomatic
phase, Z. tritici is more accurately described as a latent
necrotroph [43]. The asexual reproductive cycle is char-
acterised by distinct developmental stages throughout
both the asymptomatic and necrotrophic phases, last-
ing 2-3 weeks [30, 44, 45]. A spore will alight upon
a wheat leaf, develop invasive hyphae, gain ingress
through natural openings (stomata) as opposed to form-
ing specialised structures such as an appressorium,
and growth is exclusively in the intercellular spaces be-
tween the mesophyll cells of the leaf. These stages
comprise the asymptomatic phase of infection and typ-
ically last 914 days [35, 44, 46-50]. The necrotrophic
phase is represented by increased fungal biomass, hy-
phae reaching new stomata and forming new fruiting
bodies called pycnidia in the sub-stomatal cavity. Ma-
ture pycnidia are packed with macropycnidiospores,
which are released through the stomatal aperture under
conditions of high humidity and spread by rain splash to
repeat the infection cycle [11, 50, 51]. Development is
asynchronous between individual spores infecting a sin-
gle leaf [45] and spores can grow epiphytically in excess
of 10 days [52].

Although the stages of development are known, a com-
plete picture for the molecular mechanisms controlling
development remain to be established. Efforts to elu-
cidate this subject have focused on characterising vir-
ulence factors, focusing on small secreted effectors
[42, 44, 53-68], transcription factors and kinases [69—
74]. A broader approach involves transcriptome profil-
ing through the infection cycle, assessing systems-level
adaptation to environmental changes and differences in
host responses from cultivars with ranging susceptibili-
ties [30, 31, 44, 75-81]. Transcriptome studies generate
vast amounts of data and we require intelligent methods
to mine and understand them. Recently, machine learn-
ing approaches have been applied to a range of areas
in plant-pathogen interactions including disease moni-
toring, genomic selection for resistance and the identifi-
cation of potential effectors (reviewed in [82]). Although
studies have looked at using a variety of transcriptomic
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data to identify stress conditions [83] and genes asso-
ciated with complex agronomic traits in host plants [84],
to the best of our knowledge no work has focused on
using pathogen transcriptomic data to predict the out-
come of infection and identify the key drivers, or genes
that predict these outcomes.

In this work, we apply a combined Machine Learning
(ML) approach with a parametric statistical model to
available Z. tritici transcriptomic data captured during in-
fection to: (i) identify a small subset of genes which may
be associated with infection progression; (ii) uncover re-
lationships between expression changes of these genes
over time and the timings of necrosis appearance as
a marker of infection outcome; (iii) predict how quickly
a ‘novel’ pathogenic isolate reaches this infection mile-
stone based on the expression of the subset of genes.
Our approach relies on little to no expert information
about novel isolates and is generally applicable across
different experimental designs (e.g. in the timings of ob-
servations) and species. The method we propose is
composed of three stages: in the first stage we use
a ML approach to identify the genes which best char-
acterise the infection phases; in the second stage, we
quantify how the expression of these genes changes
over time; and in the third stage, we develop a statis-
tical model to give a “high resolution” estimate of the
timing of the infection “peak”. The key insight in stage
one is to formulate the problem as a feature selection
problem in a binary classification task, where the two
classes/conditions to discriminate are the non-infectious
state and the infectious state. The key insight in stage
two is the definition of a robust notion of distance from
the non-infectious state, to this end we employ the Ma-
halanobis distance between gene expressions (so to
take into account the natural variability of each gene)
but limiting the information to the (few) discriminative
genes identified in stage one (so to achieve the largest
possible signal to noise ratio). Finally, the key insight in
stage three is to use the metric developed in stage two
to quantitatively define specific phases in the shape of
the temporal evolution of the infection, namely: an on-
set phase, a peak phase and a decay phase to a stable
condition.

The empirical results show that our approach can iden-
tify a characteristic subset of genes that significantly
change expression between the onset of infection and
appearance of necrosis. Furthermore, summarising the
change in expression of these genes is sufficient to dif-
ferentiate between isolates showing an early or late ap-
pearance of symptoms. Finally, we show that our meth-
ods are potentially capable of predicting infection tim-
ings of ‘novel’ isolates, even on a subset of the avail-
able transcriptomics data. Overall, our results suggest
potential utility of the proposed approach for the identifi-
cation of a small subset of genes predictive of an infec-
tion outcome that can be investigated as potential can-
didates for disrupting the disease process as well as for
forecasting the emergence of new plant disease.
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Results

Data acquisition and experimental design

We used gene expression data from two studies; (i)
Haueisen et al. characterised gene expression for 3
isolates of Z. tritici (Zt05, Zt09 and Zt10) at 4 stages
of infection (A, B, C and D) determined by confocal mi-
croscopy [30]. Zt05 is a field isolate from Denmark,
Zt09 is a derivative of the reference isolate 1PO323
and Zt10 is another field isolate from Iran. Previous
work has identified >500,000 and >600,000 single nu-
cleotide polymorphisms (SNPs) with reference isolate
IPO323 indicating there is significant genetic distance
between these 3 isolates [85]. (ii) Palma-Guerrero et al.
recorded gene expression data for 4 isolates of Z. tritici
(3D7, 3D1, 1A5 and 1E4) at 7, 12, 14 and 28 days post
infection (dpi) [31]. These isolates were all collected
from two wheat fields in Switzerland, but show consider-
able genetic diversity with approximately 310,000 SNPs
between each pair [75, 79]. Selection of isolates from di-
verse geographical regions that show significant genetic
diversity allows our approach to be generalised across
Z. tritici isolates. Normalising and filtering the data (see
Materials and Methods) left 9,371 and 6,641 genes in
the Haueisen et al. and Palma-Guerrero et al. data re-
spectively, with 6,486 genes present in both data sets.
Only genes detected to be expressed in all isolates were
used in this study, this is important as identifying com-
monly expressed genes that are predictive of infection
allows us to demonstrate the utility of these methods
across isolates.

Both sources of data for this study report a variety
of infection outcomes including the timing of disease
symptom development and the percentage leaf area
covered by necrosis and pycnidia. For this study we
used the most comparable measure common to both
experiments, which was the timing of the appearance
of necrosis measured in days post infection (dpi), which
we used to classify infection by these isolates as early
or late onset. This follows the findings that isolate Zt10
develops necrosis significantly later than isolates Zt05
and Zt09 [30], and that symptoms of infection, includ-
ing necrosis, were also found to occur later and be less
severe for isolate 3D1 compared to 3D7, 1A5 and 1E4
[31].

Machine learning to identify genes predictive of in-
fection timings

We first used a random forest classifier to identify those
genes that change their expression significantly be-
tween two distinct time points in the infection period
that therefore, may represent important genes in dis-
ease progression. For the first time point, we selected
the initial time point of infection. For the second, we se-
lected the time point closest to necrosis development,
the infection outcome of interest. The time points clos-
est to necrosis development were infection stage C and
14 dpi for the Haueisen et al. [30] and Palma-Guerrero
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Figure 1. The log-Mahalanobis distance of gene expression, relative to the
initial time point, for each time point, replicate and isolate. This analysis uses
only the K = 10 most important genes identified by the random forest classifier
that identifies those genes that change their expression significantly between
the initial time point and the time point closest to necrosis development.

et al. [31] data, respectively. These two time points are
the two “classes” the random forest seeks to distinguish
between based on the gene expression values, which
are the “features”. This setup allows us to quantitatively
assess how predictive each gene is in determining at
what stage of infection the observation is made. The
random forest classifier had an out-of-bag prediction er-
ror of 3.5%, which is the fraction of miss-classified sam-
ples. The 20 most important genes for determining the
stage of infection are reported in Table 1, as quantified
by their impurity score from the random forest classifier.

Comparing machine-learning to differential expres-
sion analysis

Traditionally, to identify genes that change in their ex-
pression significantly over time, we would use standard
differential expression analysis rather than the machine
learning approach described above. The rational for us-
ing a ML feature selection approach is that, due to the
complexity of the interactions in biological systems, we
should strive for methods that can process correlation
and non linear interaction effects rather than limiting the
selection process to univariate approaches based on t-
tests — or other statistical tests — that model one sin-
gle gene at a time [86, 87]. To compare our results
to those of the more traditional analysis, we identified
significantly differentially expressed genes using edgeR
[88]. This analysis revealed 2,757 significantly differen-
tially expressed genes (corrected p < 0.05), of which,
all 20 genes identified in Table 1 are present (12 up-
regulated, 8 down-regulated; full list available in Table
S1). However, our most important genes are not the
most significant according to p — value ranking, nor do
they show the largest changes in expression ranked by
fold change. In our approach these genes have been
selected on the basis of their joint capacity to inform the
classifier to distinguish the two conditions, irrespective
of the magnitude of their expression levels.

It is not uncommon for conventional differential expres-
sion analysis to reveal very large lists of genes and,
without significant further analysis, including arbitrary
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Rank GenelD Reference ID Gene Name Importance
1 Zt09_chr_1_00237  Mycgr3G78133 - 0.056
2 Zt09_chr_3 00489  Mycgr3G91684 - 0.047
3 Zt09_chr_9 00376 - - 0.038
4 Zt09_chr_12_00206 Mycgr3G111474 - 0.034
5 Zt09_chr_8 00269  Mycgr3G105409 - 0.033
6 Zt09_chr_1_00619  Mycgr3G65617 - 0.032
7 Zt09_chr_3 00461 Mycgr3G103692 - 0.032
8 Zt09_chr_5 00416  Mycgr3G109517 - 0.031
9 Zt09_chr_11_00021 Mycgr3G49733 - 0.03
10 Zt09_chr_1_00078  Mycgr3G106752 - 0.03
11 Zt09_chr_2 00249  Mycgr3G103091 - 0.03
12 Zt09_chr_1_00142  Mycgr3G106779 MgEXG1 0.029
13 Zt09_chr_3 00393  Mycgr3G99503 - 0.029
14 Zt09_chr_3 00873  Mycgr3G70294 - 0.029
15 Zt09_chr_8 00279  Mycgr3G110409 - 0.029
16 Zt09 _chr_12_00203 Mycgr3G50464 MgAtr2 0.028
17 Zt09_chr_10_00159 Mycgr3G105887 - 0.027
18 Zt09_chr_7_00076  Mycgr3G73671 - 0.027
19 Zt09_chr_6_00030  Mycgr3G109703 - 0.026
20 Zt09_chr_4 00505  Mycgr3G39898 - 0.026

cutoffs, it would be difficult to narrow these lists down
to a manageable number of genes for further analysis
and potential experimental investigation. We believe
that machine learning based methods for gene selec-
tion offer an attractive alternative to traditional differ-
ential expression as they 1) allow to rank genes using
a multivariate importance measure (e.g. the reduction
of the classifier discriminative power) and they often 2)
yield sorted lists of genes’ importance scores with a pro-
nounced “knee”, which allows the identification of a nat-
ural cutoff.

Haueisen et al. have also published lists of differen-
tially expressed genes that represent a core transcrip-
tional program during wheat infection [30]. These genes
are differentially expressed between infection stages
across all 3 isolates present in the study. In total
the authors identify 676 genes that show differential
expression between the 4 identified stages of infec-
tion. As mentioned above, this represents a relatively
large number of genes to process. In this study, 8 of
the 20 most important genes are also differentially ex-
pressed between stages of infection in Haueisen et al..
All of these 8 genes (Zt09_chr_1_00237, Zt09_chr_3_-
00489, Zt09_chr_9_00376, Zt09_chr_3_00461, Zt09_-
chr_2_00249, Zt09_chr_12_00203, Zt09_chr_6_00030
and Zt09_chr_4_00505) show differential expression at
stage C (note only consecutive stages were tested i.e.
B vs C and C vs D), and in all cases except Zt09 -
chr_4_00505, these genes are up-regulated at stage C.
This is an expected result as stage C relates to necro-
sis development, which is our infection outcome of in-
terest. This is the same time point that we have used
to identify the most important genes presented in Table
1. Although there is considerable overlap between the
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most important genes identified in this study and those
genes showing differential expression in the core tran-
scriptional response identified by Haueisen et al. [30],
there are 12 genes that do not overlap. This may be
because our study uses a wider range of isolates with
more diversity, potentially allowing us to capture a more
general set of genes that define infection progression.

Summarising change of expression differentiates
isolates showing early- and late-onset necrosis

We next aimed to quantitatively summarise the gene ex-
pression changes over time for the K most important
genes identified by the random forest classifier (where
the value of K must be chosen). To do this we used the
Mahalanobis distance from the point of infection to each
subsequent time point. Figure 1 shows the logarithm
of Mahalanobis distances of the K = 10 most impor-
tant genes at varying times. We see that these genes
change significantly over the first two weeks (relative to
the initial state) before plateauing or indeed decreas-
ing. The consistency of this structure across isolates
suggests that the Mahalanobis distance is a compelling
measure to summarise gene expression changes dur-
ing infection.

However, as seen in Figure 1, it is not immediately obvi-
ous which isolates progress more slowly or quickly, due
to large gaps in the time series of observations, and be-
cause of misalignment between the timings of observa-
tions. Adopting the average timing of the ‘peak’ distance
for each isolate as a proxy for the speed of infection,
we can’t be certain if a peak coincides exactly with the
timing of observations or instead lies within any of the
gaps. We therefore adopt a Bayesian statistical model
which makes simple assumptions about the functional
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Figure 2. Posterior median expected log-Mahalanobis distance with 95% uncertainty intervals, for each isolate. Dashed lines emphasise the two late onset isolates
Zt10 (purple) and 3D1 (pink), whose peaks appear delayed compared to the early onset isolates.

form of the distance trajectory, to reduce the problem to
a few parameters for each strain. Specifically, the model
assumes the log-distances for each isolate can be de-
scribed by a piece-wise linear trend plus an error term
that captures variability between replicates. One of the
parameters for each strain is the timing of the peak dis-
tance, which can be directly estimated along with mea-
sures of uncertainty.

Before proceeding, we must choose a value of K which
determines how many important genes we use to com-
pute the Mahalanobis distances. Here, the value of K
can be thought of as a parameter, one which will in-
evitably affect the predictive performance of the statis-
tical model: if K is too low, then we may be excluding
genes which are informative for differentiating between
early and late onset isolates; if K is too high, then we
risk diluting the signal from the most informative genes.
In this case, we believe the data available to us are in-
sufficient to make a serious attempt to choose the opti-
mal value of K without risking over fitting. We therefore
discuss results in the context of different values of K: 5,
10, 15, and 20.

Figure 2 shows the posterior median expected log-
distances and Figure S1 shows the posterior distribu-
tions of the timing of the peak distances, for each iso-
late and for different values of K. Across these val-
ues of K, there are some consistent patterns. First,
the isolate with the longest time until necrosis develop-
ment, Zt10, consistently has the latest peak distance.
The other late onset isolate, 3D1, is also among the
isolates with the latest peak distance. On the oppo-
site end of the spectrum, the isolates with the earliest
necrosis development, Zt05 and Z109, are consistently
among the isolates with the earliest peak distances. Al-
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though these distributions show some uncertainty, the
consistent differences in early- and late-onset infection
isolates suggest that our results are somewhat robust
to the value of K. However, for these and later results it
should be considered that, if the timings of the peak dis-
tances of the 7 isolates were ordered completely at ran-
dom, there would be a just-below 5% probability that the
two “late-onset” isolates would have the two latest peak
distances (by chance). There is therefore a small but
non-trivial chance that our results are random fortune.
We fully acknowledge that to properly assess the signif-
icance of these results we would need a larger number
of time points and isolates. Other substantive limitations
of our analysis are discussed in the Methods.

Distinguishing early- and late-onset of infection for
‘novel’ isolates

Next, we used leave-one-out experiments to investigate
the generality of our approach when applied to novel
isolates. First, we investigated the stability of the impor-
tant gene ranks across 7 runs of the procedure, where
each one of the isolates was left out of gene selection
in turn. Table 2 shows the 20 most important genes
in order of median rank across the 7 experiments, as
well as the lowest, mean and highest rank each gene
achieved. Notably, one gene, Zt09 chr_1_00237 (My-
cgr3G78133), was the most important in all 7 experi-
ments. Many of these genes are also present in Ta-
ble 1, with three exceptions; Zt09_chr_5 00763 (My-
cgr3G72602), Zt09_chr_2_01239 (Mycgr3G69186) and
Zt09_chr_13_00010. Fitting the parametric model once
when each isolate is treated as novel, results in 7 dis-
tinct model fits. To summarise across these different
fits, Figure 3 shows the expected log-Mahalanobis dis-

bioRxiv | 5


https://doi.org/10.1101/2023.09.26.559518
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.26.559518; this version posted September 28, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 2. The 20 most important genes according to median rank across the 7 leave-one-out experiments, as well as their lowest, mean (rounded) and highest ranks.

Median Gene ID Reference ID Gene Lowest Mean Highest
Rank Name Rank Rank Rank
1 Zt09 _chr_1_00237 Mycgr3G78133 - 1 1 1

2 Zt09 chr_3 00489 Mycgr3Go1684 - 2 2 3
5 Zt09 chr_9 00376 - - 3 8 18
8 Zt09 chr_5 00416 Mycgr3G109517 - 4 10 23
9 Zt09 _chr_8 00269 Mycgr3G105409 - 2 16 52
9 Zt09 _chr_2 00249 Mycgr3G103091 - 3 14 40
10 Zt09 _chr_11_00021 Mycgr3G49733 - 4 9 15
10 Zt09 _chr_12_00206 Mycgr3G111474 - 4 13 32
13 Zt09 chr_3 00873 Mycgr3G70294 - 7 18 43
14 Zt09 chr_1_00078 Mycgr3G106752 - 7 19 40
15 Zt09 chr_1_00619 Mycgr3G65617 - 6 14 24
16 Zt09 chr_3 00461 Mycgr3G103692 - 2 14 22
16 Zt09 chr_1 00142 Mycgr3G106779 MgEXG1 4 17 37
18 Zt09_chr_12_00203 Mycgr3G50464 MgAtr2 7 22 46
25 Zt09 chr_3 00393 Mycgr3G99503 - 8 25 39
26 Zt09_chr_13_00010 - - 2 32 49
27 Zt09 _chr_2 01239 Mycgr3G69186 - 5 27 54
28 Zt09 chr_6_00030 Mycgr3G109703 - 4 30 50
30 Zt09 chr_5 00763 Mycgr3G72602 - 1 36 55
30 Zt09 chr_7 00076 Mycgr3G73671 - 2 31 75

tance over time for each isolate, where the fit for each
isolate is from the run where that isolate was treated as
novel (using the K = 10 most important genes in each
case). Here, we are looking to see if the patterns seen
with respect to the timing of the peak distance hold, as
shown in Figure 2. Indeed, we find that the peak dis-
tance for the two late onset isolates (Zt10 and 3D1) ap-
pear later in time than the early onset isolates, indicat-
ing that we can potentially distinguish between early-
and late-onset of necrosis when we treat each isolate
as unseen in turn.

Predicting the timing of infection milestones for
‘novel’ isolates with limited biological measure-
ments

Finally, we also investigated whether our approach
could be used to predict the timing of the peak Maha-
lanobis distance of a novel isolate, and by extension,
the timing of infection milestones without observing the
whole time series for that isolate. To do this we adjusted
our leave-one-out experiment so that the distances at
the third and fourth time points for the novel isolate
were treated as missing values. This means that the
estimation of the timing of the peak distance (from the
Bayesian statistical model) is only based on the first two
time points for the novel isolate. This would demon-
strate the potential of our methods for predicting the vir-
ulence of new pathogenic isolates with few biological
measurements.

First, we assessed how well our model performs when
extrapolating beyond the available time points by com-
paring the distance values we treated as missing to their
associated predicted values. Figure 4 shows posterior
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median predictions and 95% prediction intervals for the
third and fourth time points. From this plot we can see
that predictions are more accurate for the 3rd time point
— which is arguably more important than the 4th, as it
is closest to the peak we are trying to predict. Indeed,
the majority of variability in the true novel log distances
is explained by the predictions (R? = 0.71) for the 3rd
time point. We can also see that the 95% prediction
intervals cover the observed values almost every time.
There is some evidence that the model may systemat-
ically under-predict the distance at the 3rd time point,
which should be taken into account when designing fu-
ture versions of this approach.

Figure 5 shows the posterior median expected log-
Mahalanobis distance where the fit for each isolate is
taken from the model where that isolate was treated as
novel (and therefore the 3rd and 4th time points were
treated as missing values). Here the peak distance for
the late onset isolates is noticeably later than for the
early onset isolates, implying that when using this ap-
proach there is potential to predict the onset of infec-
tion for a new isolate when using only existing isolates
for feature selection and when only observing the first
portion of the time series for the new isolate. These re-
sults demonstrate the potential utility of our approach
for predicting infection outcomes, in this case the onset
of necrosis, for new isolates using only limited biologi-
cal measurements. In turn, these results therefore have
implications for the use of these methods for developing
new diagnostics and forecasting the emergence of new
disease.
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Figure 3. Posterior median expected log-Mahalanobis distance with 95% un-
certainty intervals, where the fit for each isolate is from the selection and model
run where that isolate was treated as novel with all four time points and using
the K = 10 most important genes. Different colours represent the isolates and
the dashed lines emphasise the two late onset isolates Zt10 (purple) and 3D1
(pink). Noticeably the peaks in posterior median expected log-Mahalanobis dis-
tance are delayed in the late onset isolates.

Bioinformatic analysis of selected most important
genes

Tables 1 and 2 report the most important genes pre-
dictive of infection timing. Using the Gene Ontol-
ogy (GO) [89] it is possible to identify three com-
mon functions for these genes (i) transporters, (ii)
transcriptional regulators and (iii) enzymes, particu-
larly oxidoreductases. Zt09_chr_12_00203 (MgAtr2)
is an experimentally validated ATP binding cassette
(ABC) transporter [90], Zt09_chr_1_00142 (MgEXG1)
is a putative exo-beta-1,3-glucanase and Zt09_chr_-
6_00030 (Mycgr3G109703) is described as a pu-
tative major facilitator superfamily transporter [25].
Other potential transporters can be identified using
GO annotation; Zt09_chr_6_00030 (Mycgr3G109703),
Zt09_chr_4 0050 (Mycgr3G39898) and Zt09_chr_12_-
00206 (Mycgr3G111474) are all annotated with the
transmembrane transport GO term (GO:0055085).
Zt09 _chr_1_00142 (MgEXG1), Zt09 _chr_10_00159
(Mycgr3G105887) and (Mycgr3G106752) are asso-
ciated with transcriptional regulation, and Zt09_-
chr_7_00076 (Mycgr3G73671) is annotated with the
DNA-binding transcription factor activity (GO:0000981)
GO term. Many genes have enzymatic func-
tions, particularly oxidoreductase activity. Zt09_-
chr_12_00206 (Mycgr3G111474) is described as be-
ing involved with the sphingolipid metabolic process
(GO:0006665) and as having oxidoreductase activity
(GO:0016491).  Zt09_chr_3_00393 (Mycgr3G99503)
is annotated as having oxidoreductase activity, act-
ing on NAD(P)H (GO:0016491). Zt09_chr_8 00269
(Mycgr3G105409) is annotated with response to ox-
idative stress (GO:0006979) and oxidoreductase activ-
ity (GO:0016491). Zt09_chr_3_00873 (Mycgr3G70294)
is inferred to be involved in the oxidative-reduction
process (GO:0055114) and as having choline de-
hydrogenase activity (GO:0008812). Zt09 chr_5 -
00763 is annotated as being involved with lipid
biosynthesis (G0O:0008610) and oxidation-reduction
processes (GO:0055114), as well as having oxi-
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doreductase activity (GO:0016491). Finally, no an-
notation information is available for the remaining
genes Zt09 chr_1_00237 (Mycgr3G78133), Zt09 -
chr_2_00249 (Mycgr3G103091), Zt09_chr_3_00489
(Mycgr3G91684), Zt09_chr_8 0027 (Mycgr3G110409),
Zt09 chr_2 01239, Zt09 chr 9 00376 and Zt09 chr -
13_00010 with the latter 2 genes not appearing in the
reference genome [25], indicating they could be specific
to the isolates analysed in this study.

In order to expand on the qualitative functional descrip-
tions of the most important genes, we next performed
enrichment analysis for these genes in Z. tritici and
of orthologs in other well annotated fungal species.
In Z. tritici, we found enrichment for GO terms and
pathways relating to lipid and sphingolipid biosynthe-
sis processes, sphingolipid desaturase activity and
oxidoreductase activity.  However, although these
enrichments were significant (p-value < 0.05), none
were significant after false discovery rate correction
(Table S2). The first set of orthologs analysed were in
another Dothideomycete, Cladosporium fulvum. We
used the MycoCosm database [91] to identify orthologs
and to find GO, InterPro and EuKaryotic Orthologous
Groups (KOG) annotations. Although the MycoCosm
database doesn'’t allow the identification of enrichment
of annotations, we find that the annotations match
closely what was observed in Z tritici. GO terms
relating to oxidoreductase activity (GO:0016651), ATP
binding/ATPase activity (GO:0005524, GO:0016887)
and transporter activity (GO:0005215, GO:0042626)
are all associated with C. fulvum orthologs. These
patterns are repeated for InterPro and KOG anno-
tations where oxidoreductase subunits (IPR011538,
IPR011537, IPR001949) and ABC transporter-like
domains (IPR003439, IPR013525, IPR010929) are well
represented. KOG annotations show similar patterns
with transcription factors (KOG2294), oxidoreductase
subunits (KOG2658) and ABC transporters, related
to drug resistance (KOG0065), all present (Table S3).
Next, we chose another wheat pathogen, Fusarium
graminacearum, and identified orthologs and enriched
GO terms and pathways using FungiDB [92]. As before,
we find annotations for a variety of GO terms related
to transport (GO:0015168, GO:0015105, GO:0042626,
G0:0015399, GO:0022804, GO:0015103), oxi-
doreductase activity (GO:0016655, GO:0016491,
G0:0055114, GO:0072593) and sphingolipid biosyn-
thesis (GO:0042284, GO:0030148) are enriched
but not significant after false discovery rate correction.
However, we find several Cellular Component GO terms
are significantly enriched (corrected p < 0.05) relating
to the cell membrane (GO:0005743, GO:0019866,
G0:0005886, G0:0031966, G0:0005740,
G0:0016020, GO:0031975, GO:0031967), supporting
the suggestion that these genes may be functionally
related to transport across the cell membrane (Table
S4). Finally, we analysed orthologs and their functions
in the well-studied, model filamentous fungi, Aspergillus
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Figure 4. Posterior median predictions of the log-Mahalanobis distance at the 3rd and 4th time points of the novel isolates (which were treated as missing values),
with 95% uncertainty intervals, using the K = 10 most important genes. Different colours represent the isolates.

fumigatus (Table S5). To support previous findings, GO
terms relating to oxidoreductase activity (GO:0016491)
and cell wall organisation (GO:0070871, GO:1904541,
G0:0044277, GO:0071853) are significantly enriched
(corrected p < 0.05). Functional pathway analysis of
the most important Z. tritici genes and their orthologs
supports the observation that these genes are likely
to be involved in enzymatic reactions, particularly
oxidation-reduction reactions, and transport, potentially
across the cell membrane.

Discussion

Machine learning methods have recently been applied
to the study of plant-pathogen interactions in the areas
of disease monitoring, genomic selection for resistance
and prediction of potential effectors (reviewed in [82]).
In this study we apply a multi-stage machine learning
approach with a parametric statistical model to pub-
licly available transcriptomic data for several isolates of
the wheat pathogen Z. tritici. Our methods are capa-
ble of identifying a subset of genes that significantly
change their expression between the onset of infec-
tion and an infection outcome measured as the first ap-
pearance of necrosis. These genes include those with
disease-related functions and as yet uncharacterised or
isolate-specific genes that might represent novel genes
with roles in disease. We next find that the changes in
expression of these genes, summarised by the Maha-
lanobis distance, differentiates between fungal isolates
that show an early or late appearance of necrosis. Fi-
nally, we demonstrate potential ability to discriminate
between “early” and “late” necrosis onset of novel iso-
lates.

It has been proposed that machine learning methods
will be central to analysing high-resolution omics data,
such as those from multiple members of a species to
understand plant-pathogen interactions [93]. However,
current applications of machine learning methods to
transcriptomics data of plant-pathogen interactions fo-
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cus largely on predicting stress conditions [83], genes
associated with specific traits [84] or predicting gene
regulatory networks (GRN) in the host [94]. For fun-
gal pathogens, transcriptomic datasets have been used
to infer a GRN for Fusarium graminearum, with the
aim of identifying major regulators of disease pathways
that provide candidates for experimental validation [95].
Our work represents, to the best of our knowledge, the
first approach that aims to use high-resolution transcrip-
tomics data from multiple members of a species to pre-
dict infection outcomes and, in doing so, identify those
genes most predictive of that infection outcome, in this
case the onset of necrosis.

Identifying the most important genes that predict the on-
set of necrosis may yield useful insights into the disease
process and provide novel candidates for forecasting
the virulence of new isolates. In general, those genes
found to be important in predicting disease fall into three
categories; (i) transporters, (ii) transcriptional regulators
and (ii) enzymes, particularly oxidoreductases (Tables 1
& 2). These functions are supported by pathway anal-
ysis of the Z. tritici genes (Table S2) and orthologs in
other relevant fungal species (Tables S3-S5). Zt09_-
chr_12_00203 (MgAtr2) is a known ABC transporter
that provides protection against toxic compounds in-
cluding fungicides and plant metabolites [90, 96], but is
not essential for virulence [97]. Zt09_chr_6_00030 (My-
cgr3G109703) is a putative major facilitator superfamily
transporter and other members of this family, such as
MgMfs1, have been shown to confer protection against
natural toxic compounds and fungicides in Z. tritici [98].
In addition to transporters, many of the important genes
are annotated as having oxidoreductase activity and
are potentially involved in the response to oxidative
stress. Responding to reactive oxygen species, which
plays a role in host defense, is important to both fun-
gal pathogens of plants [99] and humans [100]. For
example, Zt09_chr_12_00206 (Mycgr3G111474) is an-
notated as being involved in the sphingolipid metabolic
process (GO:0006665), where it has been speculated
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Figure 5. Posterior median expected log-Mahalanobis distance with 95% un-
certainty intervals, where the fit for each isolate is from the selection and model
run where that isolate was treated as novel using only the first two time points
and the K = 10 most important genes. Different colours represent the isolates
and the dashed lines emphasise the two late onset isolates Zt10 (purple) and
3D1 (pink). Noticeably the peaks in posterior median expected log-Mahalanobis
distance are delayed in the late onset isolates.

that microbes containing sphingomyelin would be more
resistant to damage by oxidative stress [101], with impli-
cations for fungal pathogenesis [102, 103]. Many of the
genes identified as being most important for the transi-
tion to necrosis are uncharacterised and, as such, rep-
resent new predictions of genes with roles in disease
and potential biomarkers for disease forecasting and
surveillance. Previous work applying machine learn-
ing techniques to infectious disease have identified the
most important mutations that predict the human trans-
mission of avian influenza viruses with implications for
disease monitoring [104]. To differentiate between iso-
lates showing early and late onset of necrosis devel-
opment we summarised the changes in expression of
the most important genes using the Mahalanobis dis-
tance. A Bayesian parametric model applied to the dis-
tances then correctly distinguishes early and late onset
for varying numbers of most important genes (K) (Fig-
ure 2). Furthermore, we have shown that this measure
has potential promise in predicting infection timings of
‘novel’ isolates using leave-one-out experiments (Figure
3) and with only limited timepoints from the transcrip-
tomics series (Figures 4 & 5). We demonstrate the util-
ity of our approaches to predicting the onset of necro-
sis development in new isolates of Z.tritici using only
the most important genes identified in this study and
limited data on infection collected for the new isolate.
The results indicate that the methods presented here
could be used to predict the impact of a new pathogenic
isolate. Previous work in related fields has focused
on assessing pre-planting factors, such as latitude and
longitude, to predict the susceptibility of wheat to out-
breaks of Parastagonospora nodorum [105]. Studies
have also used machine learning on images, fluores-
cence and thermography to classify leaves as infected
or uninfected [106] and predict disease development
stages [107]. All these studies use machine learning
methods for the prediction of disease, however our ap-
proach is the first to use pathogen transcriptomics as
the predictor variables rather than imaging. This study
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adds further evidence for the potential applicability of
machine learning approaches for the prediction of dis-
ease outbreaks that may inform disease management
decisions.

Although we have potentially succeeded in deploying
machine learning approaches to predict the onset of
necrosis in an important fungal pathogen, our approach
is somewhat limited by data availability and inconsis-
tency. The publicly available RNA-Seq data used in
this study has been collected based on different crite-
ria, with one study collecting data at pre-defined time-
points [31] and another at different disease develop-
ment stages [30]. Consistent transcriptomic data col-
lection, as well as more fine-grained expression data,
would further increase the predictive accuracy of the
proposed approach. Likewise, the infection outcomes
available for this study also limited our predictions to the
onset of necrosis. This highlights the need for quanti-
tative information on disease progression, which is be-
coming increasingly more feasible with the development
of low-cost phenotyping imaging setups and software
for automated image analysis [108], though additional
work is still required before these approaches can be
used to quantitatively measure fungal infection.

The approach outlined in this study takes a notewor-
thy step towards demonstrating the promise of machine
learning to identify the most important genes predic-
tive of infection outcomes. In this application, many
of the most important genes are uncharacterised and
thus, this approach may be useful for the annotation of
genes with roles in disease and to identify biomarkers
that can be used to develop new diagnostics for dis-
ease monitoring and forecasting. Moreover, we have
demonstrated that we are capable of predicting a dis-
ease outcome for novel isolates using only the first two
gene expression timepoints, which has further implica-
tions for the speed and ease of data collection to de-
ploy these approaches for disease surveillance and pre-
diction. We can envisage a scenario where these ap-
proaches can be applied to a newly emerging isolate of
a known pathogenic species, where existing data could
be used to train our models and the collection of mini-
mal new data (we have demonstrated our approach on
transcriptomics data of only 2 infection timepoints) on
the emerging isolate can be used to predict its infec-
tivity. Of course, there are many potential avenues for
future work including the integration of different omics
data [82], reduction of the high-dimensionality of gene
expression data with network biology approaches [109]
and use of automated imaging data to capture infec-
tion phenotypes [108], that may reduce data collection
and broaden the phenotypes that can be predicted. To-
gether, these advancements are a significant step to-
wards wider utility and application of machine learning
methods to study plant-pathogen interactions with impli-
cations for developing new monitoring techniques, con-
trol strategies and treatments.
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Methods

Data gathering and pre-processing

We used gene expression data from two studies; (i)
Haueisen et al. characterised gene expression for 3
isolates of Z. tritici (Zt05, Zt09 and Zt10) at 4 stages
of infection (A, B, C and D) determined by confocal mi-
croscopy on wheat cultivar Obelisk, each with 2 repli-
cates [30]. Infection stages can be converted into
dpi for each isolate using the results of the confocal
microscopy experiments reported by Haueisen et al..
Note, Haueisen et al. reported ranges for the timing
of each infection stage, and we took the mid-point of
these ranges. These data were downloaded as raw
counts from the Gene Expression Omnibus [110] un-
der accession GSE106136. (ii) Palma-Guerrero et al.
recorded gene expression data for 4 isolates of Z. tritici
(3D7, 3D1, 1A5 and 1E4) infecting wheat cultivar Drifter
at 7, 12, 14 and 28 dpi with 3 replicates [31]. These
data were downloaded as raw counts provided in Sup-
plementary Table 2 of the original publication. Impor-
tantly, sequencing data from both datasets were aligned
to the Zt09 annotation [78] meaning all isolates were an-
notated with consistent gene identifiers.

To normalise raw count data to account for gene length
and library size (number of reads mapped to genes)
we used Reads Per Kilobase of transcript per Million
mapped reads (RPKM). Gene lengths for the Zt09 an-
notation were taken from Haueisen et al. [30] and library
size was defined as the total number of reads assigned
to genes in each sample. In each dataset, genes were
removed if there were no expression values for a gene in
all replicates in any single timepoint. For any timepoint
with only partial data, the missing data was filled using
the mean of the expression values of the other repli-
cates for that isolate and timepoint. Filtering left 9,371
and 6,641 genes in the Haueisen et al. and Palam-
Guerrero et al. data respectively. Normalised data were
reported as log(RPKM+ 1) and are available in Supple-
mental Tables S6 and S7 for the data from Haueisen et
al. and Palma-Guerrero et al. respectively.

Infection outcomes

Both Haueisen et al. and Palma-Guerrero et al. report a
variety of infection outcomes including the timing of dis-
ease symptom development such as necrosis and py-
cnidia and the percentage leaf area covered by necro-
sis (or necrosis level) and pycnidia. For this study we
used the most comparable measure common to both
experiments, which was the timing of the appearance
of necrosis measured in dpi. We used the timing of the
appearance of necrosis to broadly classify infection by
these isolates as early or late onset. This follows the
findings that isolate Zt10 develops necrosis significantly
later than isolates Zt05 and Zt09 [30]. Symptoms of in-
fection, including necrosis were also found to occur later
and be less severe for isolate 3D1 compared to 3D7,
1A5 and 1E4 [31]. Supplemental Table S8 shows the
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infection timing and classification for each isolate used
in this study.

Differential expression analysis

In order to be able to compare the results of our ma-
chine learning approach with the more traditionally used
differential expression analysis, we identified signifi-
cantly differentially expressed genes using edgeR [88].
Briefly, we merged the Haueisen et al. and Palma-
Guerrero et al. data sets on common gene IDs and used
edgeR’s default methods for filtering and normalisation
of count data. We defined groups to compare the first in-
fection timepoint (defined as infection stage A and 7 dpi
in the Haueisen et al. and Palam-Guerrero et al. data
respectively) to the timepoint of ‘peak’ Mahalanobis dis-
tance (defined as infection stage C and 14 dpi in the
Haueisen et al. and Palam-Guerrero et al. data respec-
tively - see below) in those isolates classified as early
infecting. The exact test was used to identify signifi-
cant differential expression with p —values corrected by
the method of Benjamini and Hochberg [111]. Note that
this set of differentially expressed genes is used only for
comparison purposes, but it is not otherwise used in the
proposed approach.

Gene selection

The first stage of our approach is to identify a small
subset of genes which change significantly over the in-
fection period and therefore may be candidate genes
important in the disease process. To do this we ap-
ply a machine learning (random forest [112]) classifier
to differentiate between observations of gene expres-
sion made close to the infection time and observations
made close to the time of necrosis development. Specif-
ically, the ‘output’ for time t, replicate » and isolate s,
denoted by y: . s, is defined as a binary quantity where
yt,r,s = 0 if ¢ is the initial time point of the experiment
and y; s = 1 if t is the time point closest to necro-
sis development. This time is taken to be stage C in
the Haueisen experiment and 14 days in the Palma-
Guerrero experiment. For each output ;s We also
have a corresponding vector of gene expressions x; ;s
which serves as the input to the classifier. The main
result of doing this is not the fitted classifier itself but
the ability to quantitatively assess how predictive each
gene is in determining at what stage of infection the ob-
servation is made. As such a ranking of genes by impor-
tance is obtained by computation of the impurity score
for each gene and sorting the scores into descending
order. The gene with the highest score is therefore the
most ‘important’, and so on. It then remains to choose
a value of K whereby we carry forward only the K most
important genes into the subsequent stages.

Random forest classifiers are inherently stochastic,
meaning the ordering of gene importance can vary
when the model is fit several times to the same data.
To improve the stability of the importance ranking, we
used an ‘extra trees’ version of the random forest clas-
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sifier (R package ranger [113]) and employed a large
number of trees (100k).

Mahalanobis distance

The second stage of our approach is to quantitatively
summarise the change in expression over time of a sub-
set of relevant genes. That is, we want to characterise,
with a single numerical value, the state of the biologi-
cal system with respect to the infection process, so that,
ideally, a state of infection is clearly distinguishable from
the non-infected state. To accomplish this, we adopt all
observations of these genes made at the first time point
in each experiment as a baseline. Using these observa-
tions, we compute a mean expression vector g and an
empirical covariance matrix 3. Then, for observations
made at time ¢, of isolate s and of replicate r, denoted
by z; s r, the distance d; ;. > 0 from the baseline distri-
bution (as summarised by p and X) is computed using
the Mahalanobis distance. For given, x, i and X, this
distance is defined by':

M@ipS) = (@—pyS@—pn). )

The notion of Mahalanobis distance allows us to take
into account the natural variability of each gene via their
estimated dispersion and to treat correlated genes in an
appropriate way. Rather than treating each gene inde-
pendently, the Mahalanobis distance allows us to distin-
guish when the changed expression level of a particu-
lar gene is contributing to characterise a diverse state
or when, given that other correlated genes behave in
a similar fashion, its contribution should be discounted.
By limiting the information to a small subset of discrimi-
native genes identified in stage one, we significantly im-
prove the signal to noise ratio and avoid the confound-
ing effects of genes that are not related to the infection
process (e.g. housekeeping genes).

Parametric model

We next aimed to investigate whether the timing of the
‘peak’ Mahalanobis distance might give an insight into
the relative timings of certain infection milestones, such
as the development of necrosis. There is no guaran-
tee, however, that the timing of observations will directly
coincide with the peak distance. Moreover, given ob-
servations at a limited number of fixed time points, it is
not possible to pinpoint the timing of the peak precisely.
Therefore, we seek to estimate the timing of the peak for
each isolate, with associated uncertainty, in a way which
generalises across experiments that make observations
at different times post infection. To achieve this we
adopt a relatively simple parametric statistical model in
the Bayesian framework. This approach also offers the
potential to predict the timing of a novel isolate’s peak

INote that, for values of K which exceed the number of observa-
tions at the initial times (18 in this case), the empirical covariance ma-
trix 33 is numerically singular. To avoid this issue, we use the pseudo-
inverse in place of > ~1.
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(and therefore infer its infection characteristics) without
observing the whole time series. For a given isolate s
observed at time ¢, the model assumes independent,
identically distributed Normal (Gaussian) errors for the
logarithm of the Mahalanobis distance d; s:

log(ds) ~ Normal(myg,0?), ()
where my s is a piece-wise linear function of time for
each isolate and o captures variability associated with
observation error and differences between replicates.
The functions m; s are defined as linear in between
four ‘knots’ which are different for each isolate. Each
knot has a corresponding x-axis (time) value, and a y-
axis (log-Mahalanobis distance) value. Figure S2 is a
visual aid for understanding the structure of this func-
tion. For a particular isolate, the first knot in time is
fixed at 0 days post infection and shares a log-distance
value with the second knot. The second knots, seen
as the first break-points following flat periods in Figure
S2, therefore represent the time when the expression
of the most important genes begin to increase signifi-
cantly. We will therefore refer to the second knots as
the ‘point of increase’. The third knots then represent
the ’'peak distance’, and the final (fourth) knots, fixed
at 28 days, represent the distance at the ‘end point’ of
the experiment. For a particular isolate, we therefore
have two knots (‘point of increase’ and ‘peak distance’)
where the timings (x-axis coordinates) are largely free
parameters. In the Bayesian framework for statistical
inference, we must specify ‘prior’ distributions for all pa-
rameters, representing our uncertainty about those pa-
rameters in the absence of any data. To be as uninfor-
mative as possible, we define the timing of these knots
as parameters with uniform prior distributions spanning
0 to 28 days, with only the natural constraint that the
peak must occur after the point of increase. We then
have three knots (‘point of increase’, ‘peak distance’
and ‘end point’) where the log-distances (y-axis coor-
dinates) are largely free parameters, which we denote
by a = a1,,a2 5,3, in order of increasing time. Here
we specify that the log-distance (y-axis value) of these
knots for different isolates come from a common distri-
bution. This is achieved by treating the o s as random
effects:

ajs ~ Normal(s;,0.5%); 3)

tj ~ Uniform(0,10). (4)
For the point of increase, peak distance and the end
point knots, ¢1,t2,t3 define the expected log-distance,
respectively. In summary, the timing of the knots is
independent across isolates, but the distance is simi-
lar. Using this specification, it is possible to fit observa-
tions made at arbitrary time points and make predictions
of the distance for a particular isolate both in-between
and beyond the observed time points. In the Bayesian
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framework, the observations update the prior distribu-
tions, resulting in posterior distributions which quan-
tify our uncertainty in the model parameters. We em-
ploy the Markov chain Monte Carlo (MCMC) method (R
package nimble [114]) to obtain samples from the joint
posterior distribution of all parameters, subject to con-
vergence criteria being met. For any given parameter,
we can derive central point estimates (e.g. by comput-
ing the mean of the posterior samples) and measures
of uncertainty (e.g. 95% intervals can be obtained by
computing the 2.5% and 97.5% quantiles of the sam-
ples). Using the Monte Carlo simulation method, we
can then obtain samples from the posterior predictive
distributions for missing or new data points. These pre-
dictions jointly account for both random variability as
quantified by the model and uncertainty in the model
parameters.

Figure S2 shows the posterior median expected log-
Mahalanobis distance defined by the piecewise linear
functions for each isolate, with 95% uncertainty inter-
vals. Dashed lines are used to distinguish the two
‘late’ onset isolates, Zt10 and 3D1. Notably, although
the model is specified as piecewise linear given the
positions of the knots, treating these positions as ran-
dom variables smooths the functions considerably once
parametric uncertainty is taken into account. Looking
at the estimated functions, the peaks for the two late
onset isolates appear to occur later than all the ‘early’
onset isolates. This can be investigated more clearly
by analysing the posterior distributions for the timing of
the peak knots, shown in Figure S3. As the number of
replicates and time points for each isolate is quite small,
these distributions are quite uncertain. Moreover, they
appear quite misshapen compared to most analysed
posterior distributions, despite MCMC convergence and
the number of posterior samples being relatively high.
If more data were available, a potential and indeed
straight-forward extension to the model would be to di-
rectly relate the parameters controlling the timing of the
peaks with covariates such as the timing of necrosis,
the timing of pycnidia appearance, or the necrosis level.
For seen isolates the values of these covariates would
be known, but would be left as missing values for novel
isolates. Using the Bayesian approach, these infection
outcomes could then be predicted - assuming the re-
lationships between the timing of the peak and these
covariates turn out to be reasonably strong - to allow for
a richer assessment of a novel isolate’s infection capa-
bility.

Model validation

Up to this point we have explained our potential for
identifying a small subset of important genes and, to
uncover relationships between the expression of these
genes and infection timings. However, we have so far
treated all of the available data as known. To investigate
whether we can also predict how quickly a novel iso-
late will reach infection milestones, we have employed
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a leave-one-out approach where each of the 7 available
isolates is treated as novel in turn. For each isolate the
process is as follows:

Step 1: Perform gene selection with the random forest clas-

sifier using only the 6 seen isolates as data.

Step 2: Calculate Mahalanobis distances for all 7 isolates

but using only the 6 seen isolates as inputs for cal-
culating p and X.

Step 3: Fit the parametric model to all 7 isolates twice, first

with data for all isolates and all time points (a) and
second using only the first two time points for the
novel isolate (b).

Withholding the novel isolate from gene selection en-
sures that any conclusions drawn from the timing of the
peak distance relies only on the important genes from
the other 6 isolates. Meanwhile, by fitting the parametric
model a second time with only the first two time points
for each novel isolate, we can investigate the potential
of our approach for predicting the timing of the peak dis-
tance, and by extension how quickly the infection will
develop, without observing the whole time series. In
the latter case (b), we treat the distances for the novel
isolate at the third and fourth time points as missing val-
ues. For these values samples can then be obtained
from their respective posterior predictive distributions,
available from the fitted Bayesian model.

In assessing these predictions, we are primarily inter-
ested in: i) the average error of predictions (bias); ii) the
average absolute error of predictions (accuracy) and;
iii) the reliability of prediction intervals in capturing the
true novel values (coverage). For i), when predicting
the log() distances at the third time point, the average of
all observed values minus all predicted values (poste-
rior means) was 0.20, indicating slight under-prediction
overall. When predicting the fourth time point, the av-
erage error was -0.08, indicating little bias relative to
the scale of the input data. For ii), the average abso-
lute difference between the observed values and pre-
dicted values was 0.5 for the third time point and 0.54
for the fourth. This is only moderately larger than the
expected absolute error of 0.38 from the model with
K =10 and all isolates and time points observed (Fig-
ure S2), as quantified by the posterior mean of 0. When
comparing predictions for the third time point to the true
novel value, a substantial R? = 71% of the variability
in the true values is explained by the predictions. For
the fourth time point, R? is negative, indicating that the
model can not effectively predict the Mahalanobis dis-
tance of novel isolates at the end point of the experi-
ment, relative to other isolates. For iii), the 95% predic-
tion intervals contained the true novel values approxi-
mately 95% of the time for both time points. Taken to-
gether, these metrics suggest that predictive point esti-
mates for novel isolates and time points are reasonably
accurate (relative to the expected error in the model with
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all isolates and time points observed) and that 95% pre-
diction intervals are likely to contain the unknown true
log distances.

Bioinformatic analysis of selected genes

To further analyse the genes that change expression
significantly and can be used to distinguish between
early- and late-onset of infection, we performed pathway
analysis and examined orthologs from other species.
Pathway analysis was performed using FungiDB [92].
Briefly, we used FungiDB’s BLASTn search function-
ality to search the sequences of the most important
genes against the Z. tritici IPO323 sequence to con-
vert between IDs used in this study and those used by
FungiDB. Next, we used the FungiDB search strategies
to perform pathway analysis on these IDs to identify
enriched GO terms, KEGG annotations and MetaCyc
pathways. Annotations and pathways were deemed to
be significantly enriched with a Benjamini and Hochberg
[111] corrected p-value < 0.05.

In order to examine orthologs we chose 3 species, an-
other Dothideomycete species Cladosporium fulvum,
Fusarium graminacearum a wheat pathogen from the
family Nectriaceae and Aspergillus fumigatus a well-
studied model filamentous fungi. For C. fulvum, we
used the MycoCosm database [91] BLAST functional-
ity to identify C. fulvum orthologs to the selected Z. trit-
ici genes. We next assembled the GO, InterPro and
Eukaryotic Orthologous Groups (KOG) for the identified
orthologs. We used FungiDB [92] to identify orthologs
and conduct pathway enrichment analysis for £ gram-
inacearum and A. fumigatus. As before, we used the
FungiDB search strategies to perform pathway analy-
sis on F graminacearum and A. fumigatus orthologs
to identify enriched GO terms, KEGG annotations and
MetaCyc pathways. Annotations and pathways were
deemed to be significantly enriched with a Benjamini
and Hochberg [111] corrected p-value < 0.05.

Substantive limitations of the results for distin-
guishing early versus late infection onset isolates

As mentioned in the results section, we acknowledge
that the correct ordering of the peak distances, such
that the two “late-onset” isolates have later peaks than
the 5 “early-onset” isolates, could have arisen from ran-
dom ordering, with a probability just under 5%. Other
substantive limitations include:

» For the Haueisen et al. data, we derived dpi values
(days post infection) for the infection stages by tak-
ing the mid points of the ranges they reported. We
did not explore the sensitivity of our results to this
choice.

» We applied our methods to genetic expression data
subject to a log(RPKM + 1) transformation. We did
not explore the sensitivity of our results to alterna-
tive transformations.
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Data are available both in supplementary data and via a
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work (https://rmames.github.io/ml_zymoseptoria/ML_-
Zymo.nb.html). An R notebook of this project is avail-
able via GitHub pages (https://rmames.github.io/ml_zy-
moseptoria/ML_Zymo.nb.html).
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Supplementary Information

TABLE S1. Supplemental file 1 contains lists of differentially expressed genes identified between the first infection
timepoint and the timepoint of peak Mahalanobis distance. The columns include gene ID, log-fold change, log
counts per million (CPM), p — value and false discovery rate corrected p — value.

TABLE S2. Supplemental file 2 contains the MycoCosm analysis results for C. fulvum orthologs of the most-
important Z. tritici genes. The sheets include (i) BLAST results converting gene identifiers used in this study to C.
fulvum, (ii) GO annotations of these genes, (iii) InterPro annotations of these genes and (iv) KOG annotations of
these genes.

TABLE S3. Supplemental file 3 contains the FungiDB enrichment results for the analysis of F graminacearum
orthologs of the most-important Z. tritici genes. The sheets include (i) BLAST results converting gene identifiers
used in this study to F. graminacearum identifiers, (ii) the results of GO enrichment analysis for the MF ontology, (iii)
the results of GO enrichment analysis for the BP ontology, (iV) the results of GO enrichment analysis for the CC
ontology and (v) results of pathway enrichment analysis.

TABLE S4. Supplemental file 4 contains the FungiDB enrichment results for the analysis of A. fumigatus orthologs
of the most-important Z. tritici genes. The sheets include (i) BLAST results converting gene identifiers used in this
study to A. fumigatus identifiers, (ii) the results of GO enrichment analysis for the MF ontology, (iii) the results of
GO enrichment analysis for the BP ontology, (iV) the results of GO enrichment analysis for the CC ontology and (v)
results of pathway enrichment analysis.

TABLE S5. Supplemental file 5 is a large table that provides log(RPK M + 1) estimates of expression from the
Haueisen experiment. Each row represents a gene and columns are samples from the experiment. The column
header contains isolate information (Zt05, Zt09 or Zt10), timepoint information (Ta_A, Ta_B, Ta_C or Ta_D) and
replicate information (01 or 02).

TABLE S6. Supplemental file 6 is a large table that provides log(RPK M + 1) estimates of expression from the
Palma-Guerrero experiment. Each row represents a gene and columns are samples from the experiment. The
column header is in the format isolate-replicate-timepoint. Note, that replicate numbers vary as the experimental
design of the Palma-Guerrero study used more than 3 replicates for infection assays but only selected the 3
replicates that yielded the best quality RNA for sequencing.

TABLE S7. Supplemental file 7 provides information on the development of necrosis symptoms for each isolate
including the first appearance of necrosis (measured by days post infection) and the classification of each isolate as
early or late onset.

TABLE S8. Supplemental file 8 contains the FungiDB enrichment results for the analysis of the most-important
Z. tritici genes. The sheets include (i) BLAST results converting gene identifiers used in this study to IPO323
identifiers used by FungiDB, (ii) the results of GO enrichment analysis for the BP ontology, (iii) the results of GO
enrichment analysis for the MF ontology and (iv) results of pathway enrichment analysis.
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Figure S1. Posterior density of the timing of the third knot, which represents the peak distance relative to the infection start, for
each isolate. Results are shown for different values of K: 5, 10, 15 and 20. Dashed lines emphasise the two late onset isolates
Zt10 (purple) and 3D1 (pink). The peaks for both late onset peaks appear delayed with K = 10, 15 and 20 and for isolate Zt10
with K = 5.
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Figure S2. Posterior median expected log-Mahalanobis distance with 95% uncertainty intervals, from the model with data from all
isolates at all three stages and using the K = 10 most important genes. Different colours represent the isolates and the dashed
lines emphasise the two late onset isolates Zt10 (purple) and 3D1 (pink).
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Figure S3. Posterior density for each isolate of the timing of the third knot, which represents the peak distance relative to the
infection start, using only the K = 10 most important genes. Dashed lines emphasise the two late onset isolates Zt10 (purple)
and 3D1 (pink).

Thomas etal. | Fungal pathogen gene selection using machine learning Supplementary Information | 18


https://doi.org/10.1101/2023.09.26.559518
http://creativecommons.org/licenses/by/4.0/

