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Abstract
Computing eigenvalue decomposition (EVD) of a
given linear operator, or finding its leading eigen-
values and eigenfunctions, is a fundamental task
in many machine learning and scientific comput-
ing problems. For high-dimensional eigenvalue
problems, training neural networks to parameter-
ize the eigenfunctions is considered as a promis-
ing alternative to the classical numerical linear
algebra techniques. This paper proposes a new
optimization framework based on the low-rank
approximation characterization of a truncated sin-
gular value decomposition, accompanied by new
techniques called nesting for learning the top-L
singular values and singular functions in the cor-
rect order. The proposed method promotes the
desired orthogonality in the learned functions im-
plicitly and efficiently via an unconstrained op-
timization formulation, which is easy to solve
with off-the-shelf gradient-based optimization al-
gorithms. We demonstrate the effectiveness of the
proposed optimization framework for use cases in
computational physics and machine learning.

1. Introduction
Spectral decomposition techniques, including singular
value decomposition (SVD) and eigenvalue decomposi-
tion (EVD), are crucial tools in machine learning and data
science for handling large datasets and reducing their di-
mensionality while preserving prominent structures; see,
e.g., (Markovsky, 2012; Blum et al., 2020). They break
down a matrix (or a linear operator) into its constituent
parts, enabling a better understanding of the underlying
geometry and relationships within the data. These form
the foundation of various low-dimensional embedding al-
gorithms (Schölkopf et al., 1998; Tenenbaum et al., 2000;
Roweis & Saul, 2000; Shi & Malik, 2000; Ng et al., 2001;
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Belkin & Niyogi, 2003; Bengio et al., 2003; Cox & Cox,
2008) and correlation analysis algorithms (Michaeli et al.,
2016; Wang et al., 2019) and are widely used in image and
signal processing (Andrews & Patterson, 1976; Turk & Pent-
land, 1991; Wiskott & Sejnowski, 2002; Sprekeler, 2011;
Scetbon et al., 2021), natural language processing (Landauer
et al., 1998; Goldberg & Levy, 2014), among other fields.
Beyond machine learning applications, solving eigenvalue
problems is a crucial step in solving partial differential equa-
tions (PDEs), such as Schrödinger’s equations in quantum
chemistry (Hermann et al., 2020; Pfau et al., 2020).

The standard approach to these problems in practice is to
perform the matrix spectral decomposition using the stan-
dard techniques from numerical linear algebra (Golub &
Van Loan, 2013). In machine learning, the size of the matrix
is typically given by the size of the data sample or the di-
mensionality of data. In physical simulation, the underlying
matrix scales with the resolution of discretization of a given
domain. For finding a few top (or bottom) eigenmodes, in
general, iterative subspace methods such as Krylov subspace
methods (Saad, 1981) and LOBPCG (Knyazev, 2001) can
efficiently find top eigenmodes via repeating matrix-vector
products (Golub & Van Loan, 2013). Note that the full
eigendecomposition of a N ×N matrix can be performed
in O(N3) time complexity if the matrix can be stored in
memory. For large-scale, high-dimensional data, however,
the memory, computational, and statistical complexity of
matrix decomposition algorithms poses a significant chal-
lenge in practice. As the data size (or the resolution of the
grid in physical simulation) or the dimensionality of the
underlying problem increases, the matrix-based approach
becomes easily infeasible as even storing the eigenvectors
in memory is too costly.

A promising alternative is to approximate the singular- or
eigen-functions using parametric function approximators,
assuming that there exists an abstract operator that induces
a target matrix to decompose. In other words, we aim to
approximate an eigenvector ϕ̂ℓ ∈ RN by a single parametric
function ϕ̂ℓ : X → R. In Fig. 1, we illustrate the proposed
framework NeuralSVD, which is a special instance of the
parametric approach, as a schematic diagram.

Compared to the “nonparametric” approach, the para-
metric approach has several advantages. First, unlike
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Figure 1: Schematic illustration of NeuralSVD.

the nonparametric approach which relies on the Nyström
method (Williams & Seeger, 2000; Bengio et al., 2004) to
extrapolate eigenvectors to unseen points, the parametric
eigenfunctions can naturally extrapolate without the storage
and computational complexity of Nyström; refer to Sec. A.1
for a detailed discussion. Second, given the exceptional
ability of neural networks (NNs) to generalize with com-
plex data, such as convolutional neural networks for images,
transformers for natural language, and recently developed
NN ansatzes for quantum chemistry (Hermann et al., 2020;
Pfau et al., 2020), one can anticipate better extrapolation
performance than in the nonparametric, matrix approach.
If the choice of parametric functions is appropriate to ex-
ploit the complex structure of the underlying distribution,
we can also expect the parametric approach to scale better
in terms of training complexity for large-scale problems
than the nonparametric counterpart. Third, in the context of
solving PDEs, the parametric approach stands out, notably
because it necessitates only a sampler from a specified do-
main without the need for discretization. This is particularly
advantageous as it helps mitigate the potential introduction
of undesirable approximation errors.

In this paper, we propose a new optimization framework
that can train neural networks to approximate the top-L
orthogonal singular- (or eigen-) functions of an operator.
The proposed method is based on an unconstrained opti-
mization problem from Schmidt’s low-rank approximation
theorem (1907) that naturally admits an unbiased gradient
estimator. To learn the ordered top-L orthogonal singular
basis as the optimal solution simultaneously, we introduce
new techniques called nesting to break the symmetry so that
we can learn the singular functions in the order of singular
values; see the high-level illustrations in Fig. 2.

While several frameworks have been proposed in the ma-
chine learning community to systematically recover ordered
eigenfunctions using neural networks (Pfau et al., 2019;
Deng et al., 2022b), these approaches encounter practical
optimization challenges, particularly in enforcing the or-
thonormality of the learned eigenfunctions. Compared to
the prior works, our framework can (1) learn the top-L or-
thogonal singular bases more efficiently for larger L due
to the more stable optimization procedure, and (2) perform

SVD of a non-self-adjoint operator by design, handling
EVD of a self-adjoint operator as a special case. We demon-
strate the power of our framework in solving PDEs and
representation learning for cross-domain retrieval.

2. Problem Setting and Preliminaries
2.1. Operator SVD

While SVD is typically assumed to be done via EVD, our
low-rank approximation framework can directly perform
SVD, handling EVD as a special case. We consider two
separable Hilbert spaces F and G and a linear operator
T : F → G. We will use the bra-ket notation, which de-
notes |f⟩ for a function f(·) throughout, as it allows us to
describe the proposed method in a succinct way. For most
applications, the Hilbert spaces F and G are L 2 spaces of
square-integrable functions, and a reader thus can read the
inner product between two real-valued functions ⟨f |f ′⟩ as
an integral

∫
X f(x)f

′(x)µ(dx) for some underlying mea-
sure µ over a domainX . In learning problems, T is typically
an integral kernel operator induced by a kernel function, ac-
companied by data distributions as the underlying measures.
In solving PDEs, T is given as a differential operator that
governs a physical system of interest, where the underlying
measure is the Lebesgue measure over a domain.

For a compact operator T , it is well known that there exist
orthonormal bases (ϕi)i≥1 and (ψi)i≥1 with a sequence of
non-increasing, non-negative real numbers (σi)i≥1 such that
(T ϕi)(y) = σiψi(y), (T ∗ψi)(x) = σiϕi(x), i = 1, 2, . . ..1

The function pairs (ϕi, ψi) are called (left- and right-, resp.)
singular functions corresponding to the singular value σi.
Hence, the compact operator T can be written as

T =

∞∑
i=1

σi |ψi⟩⟨ϕi |, (1)

for σ1 ≥ σ2 ≥ . . . ≥ 0, which we call the SVD of T . Here,
|ψ⟩⟨ϕ| : F → G is the operator defined as (|ψ⟩⟨ϕ|)|f⟩ :=
(⟨ϕ|f⟩)|ψ⟩, which can be understood as the outer product.
We refer an interested reader to (Weidmann, 2012, Theorem
7.6) for a rigorous treatment of SVD of compact operators.

2.2. EVD as a Special Case of SVD

In several applications, the operator is self-adjoint (i.e.,
T ∗ = T with F = G), and sometimes even positive definite
(PD). By the spectral theorem (Weidmann, 2012, Theorem
7.1), a compact self-adjoint operator has the EVD of the
form T =

∑∞
i=1 λi|ϕi⟩⟨ϕi|. In this case, the singular values

1Compact operators can be informally understood as a benign
class of possibly infinite-dimensional operators that behave sim-
ilarly to finite-dimensional matrices, so that we can consider the
notion of SVD as in matrices. A formal definition is not crucial in
understanding the manuscript and is thus deferred to Sec. C.1.

2



Operator SVD with Neural Networks via Nested Low-Rank Approximation

of the operator are the absolute values of its eigenvalues,
and for each i, the i-th left- and right- singular functions are
either identical (if λi ≥ 0) or only different by the sign (if
λi < 0). Hence, in particular, we can find its EVD by SVD
in the case of a positive-definite (PD) operator. We remark
in passing that our framework is also applicable for a certain
class of non-compact operators; see Sec. 4.1 and Sec. C.6.

2.3. SpIN and NeuralEF

As alluded to earlier, Spectral Inference Networks
(SpIN) (Pfau et al., 2019) and Neural Eigenfunctions (Neu-
ralEF) (Deng et al., 2022b) are the most closely related prior
works to ours, in the sense that these methods aim to learn
the top-L orthonormal eigenbasis of a self-adjoint operator
by training parametric functions. Though there exist other
approaches in computational physics that aim to find beyond
the top mode or ground state, most, if not all, approaches
are based on rather ad-hoc regularization terms and do not
have guarantee to recover the top-L ordered eigenfunctions.
Hence, we briefly overview SpIN and NeuralEF in the main
text, and discuss the two methods in greater details as well
as the other line of works in Sec. B.

SpIN and NeuralEF are only applicable for self-adjoint op-
erators, and thus we temporarily assume a self-adjoint op-
erator T : F → F in the rest of this section. SpIN and
NeuralEF are both grounded in the principle of maximizing
the Rayleigh quotient with orthonormality constraints. How-
ever, their optimization frameworks encounter nontrivial
complexity issues, as summarized in Table 2. The primary
challenge lies in efficiently handling these orthonormality
constraints. To achieve fast convergence with off-the-shelf
gradient-based optimization algorithms, it is also crucial to
estimate gradients in an unbiased manner.

SpIN starts from the following variational characterization
of the top-L orthonormal eigenbasis:

maximize
ϕ̃ℓ∈F, ℓ∈[L]

⟨ϕ̃ℓ |T ϕ̃ℓ⟩

subject to ⟨ϕ̃i |ϕ̃i′⟩ = δii′ ∀1 ≤ i, i′ ≤ L.
(2)

Since this formulation only captures the subspace without
order, SpIN employs a special gradient masking scheme to
learn the eigenfunctions in the correct order. The resulting
algorithm involves Cholesky decomposition of L× L ma-
trix per iteration, which takes O(L3) complexity in general.
Further, to come up with unbiased gradient estimates, SpIN
introduces a hyperparameter-sensitive bi-level optimization
and necessitates the need to store the Jacobian of the para-
metric model. As a result, the unfavorable scalability with
L, along with memory complexity and implementation chal-
lenges, reduces the practical utility of SpIN.

To circumvent the issues with SpIN, NeuralEF adopted and
extended an optimization framework of EigenGame (Gemp

et al., 2021), which is a game-theoretic formulation for
streaming PCA. The underlying optimization problem can
be understood as a variant of the sequential version of
the subspace characterization (2); see Sec. B.2.2 and (15)
therein. The resulting optimization, however, still suf-
fers from its biased gradient estimation, and requires the
parametric functions to be normalized, i.e., ∥ϕ̂ℓ∥2 =

⟨ϕ̂ℓ|ϕ̂ℓ⟩1/2 = 1 for every ℓ. While the biased gradient
could be alleviated via its simple variant as we explain in
Sec. B.2.2, our experiments show that the function normal-
ization step may slow down the convergence in practice.

We note that both SpIN and NeuralEF require each para-
metric eigenfunction to be parameterized separately, i.e.,
without shared parameters among them, to ensure that their
optimization schemes work. In practice, while using dis-
joint models is a straightforward choice, it may consume
excessive memory if the number of modes L to be re-
trieved is large or if the model becomes more complex.
To address both scenarios, in the next section, we pro-
vide two techniques: one suitable for disjoint parameter-
ization (Sec. 3.2.1) and the other for joint parameterization
(Sec. 3.2.2).

3. SVD via Nested Low-Rank Approximation
In what follows, we propose a new optimization-based algo-
rithm for SVD with neural networks, based on Schmidt’s ap-
proximation theorem combined with new techniques called
nesting for learning the singular functions in order. The re-
sulting framework is significantly conceptually simpler and
easier to implement than prior methods, without introduc-
ing sophisticated optimization techniques. Further, unlike
SpIN and NeuralEF, we can directly perform the SVD of a
non-self-adjoint operator. Hereafter, we assume that T has
{(σℓ, |ϕℓ⟩, |ψℓ⟩)}∞ℓ=1 as its orthonormal singular triplets.

3.1. Learning Subspaces via Low-Rank Approximation

Let L be the number of modes we wish to retrieve. We will
use a shorthand notation f1:ℓ(x) := [f1(x), . . . , fℓ(x)]

⊺.
Below, we will employ distinct variables |f⟩ and |g⟩ as
counterparts to |ϕ⟩ and |ψ⟩, respectively, which represent
normalized singular functions. The intentional use of sepa-
rate variables |f⟩ and |g⟩ underscores their role in represent-
ing scaled singular functions rather than normalized ones
within our framework. The importance of this distinction
will become apparent in the following subsection.

For the top-L SVD of a given operator T , we consider the
low-rank approximation (LoRA) objective defined as

LLoRA(f1:L,g1:L) := LLoRA(f1:L,g1:L; T ) (3)

:= −2
L∑
ℓ=1

⟨gℓ |T fℓ⟩+
L∑
ℓ=1

L∑
ℓ′=1

⟨fℓ |fℓ′⟩⟨gℓ |gℓ′⟩.
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This objective can be derived as the approximation error of
T via a low-rank expansion

∑L
ℓ=1 |fℓ⟩⟨gℓ| measured in the

squared Hilbert–Schmidt norm, for a compact operator T .
We defer its derivation to Sec. C.1. By Schmidt’s LoRA the-
orem (Schmidt, 1907), which is the operator counterpart of
Eckart & Young (1936) for matrices, (f⋆,g⋆) corresponds to
the rank-L approximation of T . The proof of the following
theorem can be found in Sec. C.2.

Theorem 3.1. Assume that T : F → G is compact. Let
((f⋆ℓ , g

⋆
ℓ ))

L
ℓ=1 ∈ (F × G)L be a global minimizer of

LLoRA(f1:L,g1:L). If σL > σL+1, then

L∑
ℓ=1

|g⋆ℓ ⟩⟨f⋆ℓ | =
L∑
ℓ=1

σℓ |ψℓ⟩⟨ϕℓ |.

In cases of degeneracy, i.e., when multiple singular func-
tions share the same singular value, a minimizer will still
recover a subspace spanned by the singular functions asso-
ciated with that particular singular value. Throughout, we
will assume such strict spectral gap assumptions for the sake
of simple exposition.

3.2. Nesting for Learning Ordered Singular Functions

While the LoRA characterization of the spectral subspaces
is favorable in practice due to its unconstrained nature, a
global minimizer only characterizes the top-L singular sub-
spaces; note that (Qf⋆,Qg⋆) for any orthogonal matrix
Q ∈ RL×L is also a global minimizer. We thus require
an additional technique to find the singular functions and
singular values in order by breaking the symmetry in the
objective LLoRA(f1:L,g1:L).

The idea for learning the ordered solution is as follows.
Suppose that we can find a common global minimizer
(f⋆1:L,g

⋆
1:L) of the objectives LLoRA(f1:ℓ,g1:ℓ) for 1 ≤

ℓ ≤ L. Then, from the optimality in Theorem 3.1,∑ℓ
i=1 |g⋆i ⟩⟨f⋆i | must be the rank-ℓ approximation of T for

each ℓ ∈ [L], which is
∑ℓ
i=1 σi|ψi⟩⟨ϕi|. By telescoping, we

then have |g⋆ℓ ⟩⟨f⋆ℓ | = σℓ|ψℓ⟩⟨ϕℓ| for each ℓ ∈ [L], which is
the desired solution. Since the optimization is performed
with a certain nested structure, we call this idea nesting.

We remark that, unlike most existing methods that aim to
directly learn ortho-normal eigenfunctions, the global opti-
mum with (nested) LoRA characterizes the correct singular
functions scaled by the singular value σℓ, as alluded to ear-
lier. Using this property, one can estimate σℓ by computing
the product of norms ∥f⋆ℓ ∥ ·∥g⋆ℓ ∥; see Sec. D.5 for the detail.

Below, we introduce two different versions that implement
this idea: sequential nesting, which is ideal when each
eigenfunction is parameterized by disjoint neural networks,
and joint nesting, which can be used even when they may
share parameters.

3.2.1. SEQUENTIAL NESTING

Sequential nesting is based on the following observation:
if (f1:ℓ−1,g1:ℓ−1) already captures the top-(ℓ− 1) singular
subspaces as a minimizer of LLoRA(f1:ℓ−1,g1:ℓ−1), mini-
mizing LLoRA(f1:ℓ,g1:ℓ) for (fℓ, gℓ) finds the ℓ-th singular
functions. Its proof can be found in Sec. C.3. Formally:
Theorem 3.2. Assume that T : F → G is compact. Pick
any ℓ ≥ 1. Let (f⋆ℓ ,g

⋆
ℓ ) ∈ F × G be a global minimizer of

LLoRA(f1:ℓ,g1:ℓ), where
∑ℓ−1
i=1 |gi⟩⟨fi| =

∑ℓ−1
i=1 σi|ψi⟩⟨ϕi|.

If σℓ > σℓ+1, then |g⋆ℓ ⟩⟨f⋆ℓ | = σℓ|ψℓ⟩⟨ϕℓ|.

We can implement this idea by simultaneously updating
the iterate (f

(t)
ℓ , g

(t)
ℓ ) at time step t ≥ 1 for each ℓ ∈ [L],

to minimize LLoRA(f
(t)
1:ℓ ,g

(t)
1:ℓ), treating (f

(t)
1:ℓ−1,g

(t)
1:ℓ−1) as a

good proxy to the global optimum. That is, for each ℓ ∈ [L],

(f
(t+1)
ℓ , g

(t+1)
ℓ ) (4)

← GradOpt((f
(t)
ℓ , g

(t)
ℓ ), ∂(fℓ,gℓ)LLoRA(f

(t)
1:ℓ ,g

(t)
1:ℓ)).

Here, GradOpt(θ,g) denotes a gradient-based optimization
algorithm that returns the next iterate based on the current
iterate θ and the gradient g.

Suppose that each model pair (fℓ, gℓ) is parameterized via
L separate models with (disjoint) parameters θ = (θℓ)

L
ℓ=1.

In this case, the ℓ-th eigenfunction can be updated inde-
pendently from the ℓ′-th eigenfunctions for ℓ′ > ℓ via the
sequential nesting (4). Hence, while all (f1:L,g1:L) are
optimized simultaneously, the optimization is inductive in
the sense that the modes can be learned in the order of the
singular values. As a shorthand notation, let

Lℓ := LLoRA(f1:ℓ,g1:ℓ).

The gradient in (4) can be directly implemented by updating
each θℓ with the gradient

∂θℓLℓ = ⟨∂θℓfℓ | ∂fℓLℓ⟩+ ⟨∂θℓgℓ | ∂gℓLℓ⟩,

where | ∂fℓLℓ⟩ = 2
{
−|T ∗gℓ⟩+

ℓ∑
i=1

|fi⟩⟨gi |gℓ⟩
}
, (5)

and | ∂gℓLℓ⟩ can be similarly computed by a symmetric
expression. Note that | ∂θℓfℓ⟩ should be understood as a
vector-valued function of dimension |θℓ|, i.e., the number
of parameters in θℓ. This gradient can be computed in a
vectorized manner over ℓ ∈ [L].

3.2.2. JOINT NESTING

As alluded to earlier, in the case of a shared parameteriza-
tion, the sequential nesting (4) may exhibit behavior that
differs from its inductive nature with the shared parame-
terization.2 For example, for a shared model, imperfect

2We can still apply sequential nesting even when the functions
are parameterized by a shared model; see Sec. D.6 for a discussion.
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functions (fℓ, gℓ) for some ℓ ∈ [L] may affect the already
perfectly matched singular functions, say, (f1, g1), unlike
the disjoint parameterization case.

Interestingly, there is an alternative way to implement the
idea of nesting that works for a shared parameterization with
a guarantee. The key observation is that the ordered singular
values and functions {(σℓ, ϕℓ, ψℓ)}Lℓ=1 can be characterized
as the global minimizer of a single objective function, by
taking a weighted sum of {Lℓ = LLoRA(f1:ℓ,g1:ℓ)}Lℓ=1 with
positive weights. That is, define, for any positive weights
w = (w1, . . . , wL) ∈ RL>0,

Ljnt(f1:L,g1:L;w) :=

L∑
ℓ=1

wℓLLoRA(f1:ℓ,g1:ℓ). (6)

Theorem 3.3. Assume that T : F → G is compact. Let
((f⋆ℓ , g

⋆
ℓ ))

L
ℓ=1 ∈ (F × G)L be a global minimizer of

Ljnt(f1:L,g1:L;w). For any positive weights w ∈ RL>0, if
the top-(L+ 1) singular values are all distinct, |g⋆ℓ ⟩⟨f⋆ℓ | =
σℓ|ψℓ⟩⟨ϕℓ| for each ℓ ∈ [L].3

See Sec. C.4 for its proof. The proof readily follows from
observing that the joint objective Ljnt(f1:ℓ,g1:ℓ) is mini-
mized if and only if LLoRA(f1:ℓ,g1:ℓ) is minimized for each
ℓ ∈ [L], i.e., (f1:ℓ,g1:ℓ) characterizes the top-ℓ singular
subspaces for each ℓ ∈ [L]. Any positive weights guaran-
tee consistency, but we empirically found that the uniform
weights w = ( 1

L , . . . ,
1
L ) work well in practice.

Since the joint nesting is based on a single objective func-
tion (6), the optimization is as simple as

(f
(t+1)
1:L ,g

(t+1)
1:L ) (7)

← GradOpt((f
(t)
1:L,g

(t)
1:L), ∂(f1:L,g1:L)Ljnt(f

(t)
1:L,g

(t)
1:L;w)).

Even though the joint nesting can be implemented directly
using an autograd package with (6), overall training can be
nearly twice as fast via manual gradient computation. By
the chain rule, the gradient can be computed as

∂θLjnt =

L∑
ℓ=1

{⟨∂θfℓ | ∂fℓLjnt⟩+ ⟨∂θgℓ | ∂gℓLjnt⟩}, where

|∂fℓLjnt⟩ = 2
{
−mℓ |T ∗gℓ⟩+

L∑
i=1

Miℓ |fi⟩⟨gi |gℓ⟩
}

(8)

and | ∂gℓLjnt⟩ is similarly computed. Here, we define the
vector mask as mℓ :=

∑L
i=ℓ wi and the matrix mask as

mℓℓ′ = mmax{ℓ,ℓ′}; see Sec. C.5 for a formal derivation.
Lastly, setting mℓ ← 1 and miℓ ← 1{i ≤ ℓ} in (8) recovers
the sequential nesting gradient (5). Therefore, both versions
of nesting can be implemented in a unified way via (8).

3Again, the strict spectral gap is assumed for simplicity; when
there exist a degeneracy, the optimally learned functions should
recover the orthonormal eigenbasis of the corresponding subspace.

Remark 3.4 (Comparison to sequential nesting). In general,
joint nesting may be less effective than sequential nesting
with disjoint parameterization, as learning the top modes is
affected by badly initialized latter modes, potentially slow-
ing down the convergence. This is empirically demonstrated
in Sec. 4.1. For the case of joint parameterization, however,
we also empirically observe that joint nesting can outper-
form sequential nesting, as expected; see Sec. 4.2. Hence,
we suggest users choose the version of nesting depending
on the form of parameterization. We provide an additional
remark in Sec. 5.

3.3. NeuralSVD: Nested LoRA with Neural Networks

When combined with NN eigenfunctions, we call the over-
all approach NeuralSVDseq and NeuralSVDjnt based on the
version of nesting, or NeuralSVD for simplicity. While the
parametric approach can work with any parametric func-
tions, we adopt the term neural given that NNs represent a
predominant class of powerful parametric functions.

In practice, we will need to use minibatch samples for opti-
mization. We explain how to implement the gradient updates
of NestedLoRA based on the expression (8) in a greater
detail in Sec. D with PyTorch code snippets. We have open-
sourced a PyTorch implementation of our method, along
with our implementations of SpIN and NeuralEF with a
unified I/O interface for a fair comparison.4

We emphasize that, to apply NeuralSVD (and other existing
methods), we only need to know how to evaluate a quadratic
form ⟨f |T g⟩ and inner products such as ⟨f |f ′⟩. Since we
consider L 2 spaces for most applications, and the quadratic
forms and inner products can be estimated via importance
sampling or given data in an unbiased manner; see a detailed
discussion on importance sampling to Sec. D.3. After all,
the gradients described above can be estimated without bias,
and we can thus use any off-the-shelf stochastic optimization
method with minibatch to solve the optimization problem.
Given a minibatch of size B, we can compute the minibatch
objective and gradient only with matrix-vector products, and
the complexity is O(B2L+BL2).

4. Example Applications and Experiments
In this section, we illustrate two example use cases and
present experimental results: differential operators in com-
putational physics, and canonical dependence kernels in
machine learning, which will be defined in Sec. 4.2. We ex-
perimentally demonstrate the correctness of NeuralSVD and
its ability to learn ordered eigen- or singular-functions and
show the superior performance of our method compared
to the existing methods. We focus on rather small-scale
problems that suffice with simple multi-layer perceptrons

4https://github.com/jongharyu/neural-svd
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Sequentially NestedLoRA

LLoRA(f1, g1)

LLoRA(f1:L,g1:L)

LLoRA(f1:2,g1:2)

···

···

···

|f1⟩

|f2⟩

|fL⟩

|g1⟩

|g2⟩

|gL⟩

(a) Sequential nesting.

Jointly NestedLoRA

LLoRA(f1, g1)

LLoRA(f1:L,g1:L)

LLoRA(f1:2,g1:2)

···

···

···

|f1⟩

|f2⟩

|fL⟩

|g1⟩

|g2⟩

|gL⟩

Ljnt(f1:L,g1:L)

(b) Joint nesting.

Figure 2: Schematic illustrations of the nesting techniques; recall
Fig. 1. The operator and data (and weights for the joint nesting)
are omitted for simplicity. In both cases, gradients are computed
and backpropagated from the blue boxes. Gradients cannot be
backpropagated through the dashed lines in (a); see Sec. 3.2.

(MLPs) for extensive numerical evaluation of our method
against the existing parametric methods. All the training
details can be found in Sec. E.

4.1. Analytical Operators

In many application scenarios, an operator T is given in an
analytical form. In machine learning, there exists a variety
of kernel-based methods, which assumes a certain kernel
function k(x, y) defined in a closed form. In this case, the
underlying operator is the so-called integral kernel operator
K , which is defined as (K f)(y) := Ep(x)[k(x, y)f(x)]. In
computational physics, a certain class of important PDEs
can be reduced to eigenvalue problems, where we can di-
rectly apply our framework to solve them. In this case, the
operator involves a differential operator, such as Laplacian
∇2, as will become clear below. We will provide a numeri-
cal demonstration of NeuralSVD for the latter scenario.

A representative example of such PDE is a time-independent
Schrödinger equation (TISE) (Griffiths & Schroeter, 2018)

H |ψ⟩ = E |ψ⟩.

Here, H is the Hamiltonian that characterizes a given phys-
ical system, |ψ⟩ denotes an eigenfunction, and E ∈ R the
corresponding eigen-energy. Recall that to perform EVD in
our SVD framework, we only need to identify g to f . Since
bottom modes are typically of physical interest, we can aim
to find the eigenfunctions of the negative Hamiltonian −H .

We consider two simple yet representative examples of
TISEs that have closed-form solutions for extensive quanti-
tative evaluations. The first example is a 2D hydrogen atom,
the corresponding operator of which is compact. With the
second example of a 2D harmonic oscillator, in which the
operator of interest is not compact, we demonstrate that
our framework is still applicable. In both cases, we used
simple MLPs with multi-scale random Fourier features as
the parametric eigenfunctions (Wu et al., 2023).

Experiment 1: 2D Hydrogen Atom. We first consider a
hydrogen atom confined over a 2D plane. By solving the as-
sociated TISE, we aim to learn a few bottom eigenstates and
their respective eigenenergies. The detailed problem setting,
including the underlying PDE, can be found in Sec. E. Ignor-
ing irrelevant constants, the true eigenvalues (after negating
the sign) are known as λn,l = (2n + 1)−2 for n ≥ 0 and
−n ≤ l ≤ n. That is, for each n, there exist 2n + 1
degenerate states. In our experiment, we aimed to learn
L = 16 eigenstates that cover the first four degenerate eigen-
subspaces. We trained SpIN, NeuralEF, NeuralSVDseq, and
NeuralSVDjnt with the same architecture and training proce-
dure with different batch sizes 128 and 512.5 Here, we found
that the original version of NeuralEF performed much worse
than NeuralSVD, and we thus implemented and reported
the result of a variant of NeuralEF with unbiased gradient
estimates, whose definition can be found in Sec. B.2.2.

Fig. 3 shows the learned eigenfunctions from SpIN (128),
NeuralEF (512), and NeuralSVDseq (512), where the num-
bers in the parentheses indicate used batch sizes. For com-
parison, we present the true eigenfunctions with a choice of
canonical directions to plot the degenerate subspaces (last
row). Note that SpIN and NeuralEF do not match the ground
truths even after the rotation in several modes. Further, the
learned functions (before rotation) are not orthogonal as vi-
sualized in the rightmost column. In contrast, NeuralSVDseq
can reliably match the correct eigenfunctions, with almost
perfect orthogonality. Fig. 4 report several quantitative mea-
sures to evaluate the fidelity of learned eigenfunctions; see
Sec. E.1.3 for the definitions of the measures. The results
show that both NeuralSVDjnt and NeuralSVDseq outperform
SpIN and NeuralEF by an order of magnitude.

Note that though NeuralSVDjnt can recover the eigenfunc-
tions reasonably well, it performs worse than NeuralSVDseq
as expected; see Remark 3.4. We also remark that the com-
putational and memory complexity of NeuralEF and Neu-
ralSVD are almost the same, while SpIN takes much longer
time and consumes more memory due to the Cholesky de-
composition and the need for storing the Jacobian; we refer
an interested reader to Sec. B.2.1 for the detail of SpIN.

In the Appendix, we demonstrate the advantages of Neu-
ralSVD compared to standard numerical linear algebra tech-
niques; see Sec. A.3 for its comparison to a matrix-free
method, and Sec. A.2 for the effectiveness of nesting.

Experiment 2: 2D Harmonic Oscillator. We now consider
finding the eigenstates of a 2D harmonic oscillator, whose
eigenstate is characterized by a pair of nonegative integers
(n, l) for n ≥ 0 and 0 ≤ l ≤ n with (negative) eigenenergy

5As an exception, a smaller network and batch size 128 was
used for SpIN due to its large memory requirement O(L ×
(model size)) for maintaining copies of Jacobian for each mode.
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VD
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Figure 3: Visualization of the first 16 eigenfunctions of the 2D hydrogen atom. The first three rows present the learned eigenfunctions by
SpIN (128), NeuralEF (512), and NeuralSVDseq (512), respectively. Due to the memory complexity of SpIN, we ran SpIN with only
9 eigenstates. The learned functions are aligned by an orthogonal transformation via the orthogonal Procrustes method within each
degenerate subspace to compare with the ground truth (GT) in the fourth row. The rightmost column visualizes the learned orthogonality.

λn,l = −2(n+1) and multiplicity of n+1. In contrast to the
2D hydrogen case, it is clear that the negative Hamiltonian
is neither PD nor compact. To retrieve eigenfunctions even
in this case, we can consider a shifted operator T + cI,
where I is an identity operator and c ≥ 0 is a constant, so
that the spectrum becomes λn,l = c− 2(n+ 1). Note that
shifting only affects the quadratic form ⟨f |T + cI|f⟩ =
⟨f |T f⟩+ c∥f∥2.

As an example, we chose c = 16, so that λn,l > 0 for 0 ≤
n ≤ 6. We claim that NeuralSVD recovers the eigenfunc-
tions with positive eigenvalues, the first 28(= 1 + . . .+ 7)
states for this case, and the nonpositive part will converge
to the constant zero function; see Theorem C.5 in Sec. C.6.
We note that the LoRA objective (3) is still well-defined
even when T is not compact. While other methods are also
applicable and can recover the positive part in principle, the
learned functions will be arbitrary for the nonpositive part,
unlike NeuralSVD learning zero functions. This implies that
one can correctly infer the nonpositive part by computing
the norms of the NeuralSVD eigenfunctions.

We report the quantitative measures in Fig. 4(b), where
only the positive part, i.e., the first 28 eigenstates, was
taken into account for the evaluation. Note that SeqNested-
LoRA significantly outperforms NeuralEF in this example
as well. Moreover, as explained above, the norms of the
learned eigenfunctions with NeuralSVD well approximate
the ground truth eigenvalues for the positive part, and almost
zero for the non-positive part (data not shown); see Sec. D.5
for the spectrum estimation with NeuralSVD based on func-
tion norms. In contrast, one cannot distinguish whether
learned eigenfunctions are meaningful or not only based on
the learned eigenvalues from NeuralEF.

4.2. Data-Dependent Operators

Beyond analytical operators, we can also consider a special
type of data-dependent kernels. Given a joint distribution
p(x, y), we define

k(x, y) :=
p(x, y)

p(x)p(y)

which we call the canonical dependence kernel (CDK). Al-
though the CDK cannot be explicitly evaluated, it natu-
rally defines the similarity between x and y based on their
joint distribution, and thus can better capture the statisti-
cal relationship than a fixed, analytical kernel. Note that
its induced integral kernel operator is the conditional ex-
pectation operator, i.e., (K g)(x) = E[g(Y )|X = x] and
(K ∗f)(y) = E[f(X)|Y = y], where K ∗ denotes the ad-
joint of K .

CDK appears and plays a central role in several statistics
and machine learning applications, and various connec-
tions of CDK to the existing literature such as Hirschfeld–
Gebelein–Rényi (HGR) maximal correlation (Hirschfeld,
1935; Gebelein, 1941; Rényi, 1959) are discussed in Sec. B.

One special property of CDK is that we can compute the
objective function using paired samples, even though we
do not know the kernel value p(x, y)/(p(x)p(y)) in general.
That is, the “operator term” ⟨gℓ|K fℓ⟩ can be computed as

⟨gℓ |K fℓ⟩ = Ep(x,y)[fℓ(x)gℓ(y)], (9)

where we change the measure p(x)p(y) with p(x, y) by the
definition of k(x, y). Since the first singular functions are al-
ways constant functions, we can simply replace f(x)⊺g(y)
with 1 + f(x)⊺g(y) to exclude the trivial mode, so that
we can recover the second singular functions and on. We
note in passing that it is equivalent to decomposing ker-
nel p(x,y)

p(x)p(y) − 1, which is the convention used in a line of
literature; see, e.g., (Huang et al., 2024; Xu & Zheng, 2024).
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Figure 4: Summary of quantitative evaluations for solving TISEs: (a) 2D hydrogen atom; (b) 2D harmonic oscillator. Non-hatched,
light-colored bars represent a batch size of 128, and hatched bars indicate 512. The definitions of reported measures are given in Sec. E.1.3.

Table 1: Evaluation of the ZS-SBIR task with the Sketchy Extended dataset (Sangkloy et al., 2016; Liu et al., 2017). We note that the two
baselines require (∗) a generative model, while NeuralSVD can learn representations directly without such.

Method Ext. knowledge Gen. model Structured P@100 mAP Split

LCALE (Lin et al., 2020) Word embeddings ∗ ✗ 0.583 0.476 1
IIAE (Hwang et al., 2020) ∗ ✗ 0.659 0.573 1

NeuralSVDjnt ✓
0.670±0.010 0.581±0.008 1
0.724±0.008 0.641±0.008 2

Application: Cross-Domain Retrieval. One natural appli-
cation of the CDK is in the cross-domain retrieval problem.
Specifically, here we consider the zero-shot sketch-based
image retrieval (ZS-SBIR) task proposed by Yelamarthi
et al. (2018). The goal is to construct a good model that
retrieves relevant photos yi’s from a given query sketch x,
only using a training set with no overlapping classes in the
test set (hence called zero-shot).

To obtain coembeddings of sketches and photos from the
CDK framework, we define a natural joint distribution
p(x, y) for sketch x and photo y, by picking a random pair
of (x, y) from the same class. Formally, the joint distri-
bution is defined as p(x, y) = Ep(c)[p(x|c)p(y|c)], where
p(c) denotes the class distribution, and p(x|c) and p(y|c)
the class-conditional sketch and photo distributions, respec-
tively. We emphasize that the resulting joint distribution is
asymmetric, since x and y are two different modalities, and
thus the existing frameworks, such as SpIN or NeuralEF
cannot be directly applied. We also note that the matrix
approach, which computes the empirical CDK matrix and
then performs SVD, is infeasible, as density ratio estima-
tion for constructing the kernel matrix is nontrivial in the
high-dimensional space. In sharp contrast, we can learn to
decompose the CDK k(x, y) = p(x,y)

p(x)p(y) ≈ 1 + f(x)⊺g(y)
directly with NeuralSVD.

After learning the functions f and g, for a given query x, we
can retrieve based on the highest inner-product f(x)⊺g(y)
from y ∈ {y1, . . . , yN}. This approach has a natural proba-

bilistic interpretation: “retrieve y, if y is more likely to ap-
pear together than independently, i.e., p(x, y)≫ p(x)p(y)”.
In addition to the interpretable retrieval scheme, the retrieval
system can benefit from the learned spectral structure. That
is, when successfully learned, the NeuralSVD representa-
tions are ideally stacks of ordered top-L singular functions
of the CDK. The representations can thus be called struc-
tured in the sense that the coordinates of representations
are ordered by the associated singular values, and also each
coordinate encodes exclusive information since different co-
ordinates are constructed so as to be effectively orthogonal.
We can thus potentially reduce the dimensionality of the
embedding, by keeping only informative coordinates.

Experiment. We aimed to learnL = 512 singular functions,
parameterizing them by a single network. We followed
the standard training setup in the literature (Hwang et al.,
2020). We report the Precision@100 (P@100) and mean
average precision (mAP) scores on the two test splits in the
literature; we defer the definition of these metrics to Sec. E.2.
We empirically found that NeuralSVDseq performed much
worse than NeuralSVDjnt as discussed in Remark 3.4, only
achieving Precision@100 around 0.2. Hence, we only report
the result from NeuralSVDjnt. Since SpIN and NeuralEF
are not directly applicable to asymmetric kernels, we do not
include them in the comparison.

Table 1 summarizes the evaluation. It shows that the CDK-
based retrieval learned by NeuralSVD, albeit simple, can
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Figure 5: P@100 performance of NeuralSVD on ZS-SBIR task,
with varying dimensions. NeuralSVD can achieve full performance
only with one-quarter (27 = 128) of the full dimensions, sweeping
from the most significant modes.

outperform the state-of-the-art representation learning meth-
ods based on generative models, including a method that
incorporates additional knowledge.

As alluded to above, moreover, we can demonstrate that Neu-
ralSVD learns structured representations, while the base-
lines only learn “unstructured” ones. To illustrate, we verify
that most information relevant for retrieval is concentrated
around the top modes. To illustrate this, we repeated the fol-
lowing evaluation with 10 random initializations and report
the summary in Fig. 5. First, from the NeuralSVD repre-
sentations of 29 = 512 dimensions, we used the d most
significant modes (d-MSMs) for d ∈ {1, 2, 22, . . . , 29}, and
evaluated the retrieval performance based on the similarity
measure f[d](x)

⊺g[d](y). The performance rapidly grows
as the dimensionality d gets large, and the best is almost
achieved at about 27 = 128, which is only a quarter of
the full dimension; see the red lines (NeuralSVD) and the
vertical black lines. Also, we can empirically validate that
the learned representations are almost perfectly orthogonal.

As a further investigation, we consider two additional base-
lines. First, from the NeuralSVD representations, we eval-
uated the retrieval performance with the d least signifi-
cant modes (d-LSMs) for d ∈ {1, 2, 22, . . . , 29}; see pink,
dashed lines labeled with “NeuralSVD (d-LSM)”. The re-
trieval performance is very poor even when using the bottom
128 dimensions, which indicates that the LSMs do not en-
code much information. Second, we trained an unstructured
embedding by training the same network with the LoRA
objective without nesting, so that the network only learns
the top-512 subspace of CDK; see gray, dotted lines labeled
with “Unstructured”. As expected, its retrieval performance
lies in the middle of NeuralSVD (MSM) and NeuralSVD
(LSM). Hence, we can conclude that the learned represen-
tations with NeuralSVD are well-structured and effectively
encode the information in a compact manner.
Remark 4.1 (Impact of imperfect orthogonality). Since
our NeuralSVD framework only implicitly promotes the
orthogonality without hard constraints, the learned singular-
functions may only exhibit orthogonality to each other in an
approximate manner, and such deviations from orthogonal-

ity may impact the performance in a downstream task. In
the PDE example, if the goal is to find accurate eigenvalues
(i.e., eigenenergies of the system), then slightly imperfect
orthogonality across non-degenerate modes may result in
slightly less accurate eigenvalue estimates. In the repre-
sentation learning example, if the retrieval performance is
the only criterion for the quality of representations, slightly
imperfect orthogonality would result in “slightly less struc-
tured” representations in that different coordinates might
share some redundant information, which will impact the
“compressibility” of the representations. All in all, imper-
fect orthogonality could affect different tasks differently,
but we provide an empirical showcase that almost perfect
orthogonality can be guaranteed in the present examples.

5. Concluding Remarks
In this paper, we proposed NeuralSVD, a new optimiza-
tion framework for learning parametric singular- or eigen-
functions of a linear operator via NestedLoRA. Given the
efficient unconstrained optimization framework, practition-
ers can focus on selecting the most suitable parametric func-
tions (or good architectures) and optimization algorithms to
meet the practical requirements of their specific problems.
We could potentially extend the applicability of the existing
classical algorithms based on SVD/EVD in various fields,
e.g., quantum chemistry (Hermann et al., 2020; Pfau et al.,
2020) or spectral embedding methods (Shi & Malik, 2000;
Belkin & Niyogi, 2003) for large-scale, high-dimensional
data, combined with the use of powerful neural networks.

Limitations and Future Directions. We conclude with
two important limitations and future directions to further
advance the applicability of the parametric approach.

• First, the parametric approach is less explored than the
nonparametric approach. The challenge is to under-
stand when a large network can approximate a given
operator and to determine an optimization algorithm
that converges to the desired global optimizer, such as
NestedLoRA. Addressing this gap and providing per-
formance guarantees is a valuable research direction.

• Second, users of the parametric approach must choose
an appropriate function and optimization hyperparam-
eters. Our investigation has shown the effectiveness of
simple MLP architectures and specific hyperparame-
ters in our examples. However, for larger applications,
scalability challenges may require more sophisticated
architectures and fine-tuning. We advocate for future
research to design effective network architectures tai-
lored to specific operators and tasks.
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A. On Standard Linear Algebra Techniques
A.1. Empirical SVD and Nyström Method

A standard variational characterization of SVD is based on the following sequence of optimization problems:

maximize
ϕ̃ℓ∈F,ψ̃ℓ∈G

⟨ψ̃ℓ |T ϕ̃ℓ⟩,

subject to ⟨ϕ̃i |ϕ̃ℓ⟩ = ⟨ψ̃i |ψ̃ℓ⟩ = δiℓ ∀i ∈ [ℓ] := {1, . . . , ℓ}.
(10)

If T is compact and the previous (ℓ− 1) pairs of functions {(ϕ̃i, ψ̃i)}i∈[ℓ−1] are the top-(ℓ− 1) singular functions, then the
maximum value of the ℓ-th problem, is attained by the ℓ-th singular functions (ϕℓ, ψℓ) (Bolla, 2013, Proposition A.2.8).

While the notion of SVD and its variational characterization are mathematically well defined, we cannot solve the infinite-
dimensional problem (10) directly in general, except a very few cases with known closed-form solutions. Hence, in practice,
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a common approach is to perform the SVD of an empirical kernel matrix induced by finite points (samples, in learning
scenarios). That is, given x1, . . . , xM ∼ p(x) and y1, . . . , yN ∼ p(y), we define the empirical kernel matrix K̂ ∈ RM×N

as (K̂)ij := k(xi, yj). Suppose we perform the (matrix) SVD of K̂/
√
MN and obtain the top-L left- and right-singular

vectors Û = [û1, . . . , ûL] ∈ RM×L and V̂ = [v̂1, . . . , v̂L] ∈ RN×L (normalized as Û⊺Û = M I and V̂⊺V̂ = N I, where I
denotes the identity matrix) with the top-L singular values σ̂1 ≥ . . . ≥ σ̂L ≥ 0. Then, for each ℓ, ûℓ and v̂ℓ approximate the
evaluation of ϕℓ and ψℓ at training data, i.e.,

ûℓ ≈ [ϕℓ(x1), . . . , ϕℓ(xM )]⊺, v̂ℓ ≈ [ψℓ(y1), . . . , ψℓ(yN )]⊺, and σ̂ℓ ≈ σℓ.

Hence, for ℓ ≥ 1 with σ̂ℓ > 0, the ℓ-th left-singular function at x can be estimated as

ϕ̂ℓ(x) :=
σ̂−1
ℓ

N

N∑
j=1

k(x, yj)(v̂ℓ)j , (11)

which is a finite-sample approximation of the relation ϕℓ(x) = σ−1
ℓ (Kψℓ)(x). This is often referred to as the Nyström

method; see, e.g., (Williams & Seeger, 2000; Bengio et al., 2004).

Performing SVD of the kernel matrix K can be viewed as solving (10) with finite samples in the nonparametric limit. The
sample SVD approach is limited, however, due to its memory and computational complexity. The time complexity of full
SVD is O(min{MN2,M2N}) not scalable, but there exist iterative subspace methods that can perform top-L SVD in an
efficient way. Note, however, that the data matrix should be stored in memory to run standard SVD algorithms, which may
not be feasible for large-scale data. Moreover, while the query complexity O(N) or O(M) of the Nyström method could be
reduced by choosing a subset of training data, the challenge posed by the curse of dimensionality can potentially undermine
the reliability of the Monte Carlo approximation (11) as an estimator.

A.2. On the Effectiveness of Nesting vs. the Rayleigh–Ritz Method

One may question the advantages of learning the ordered eigenfunctions via nesting compared to first learning the subspace
and then determining the order within the subspace using the Rayleigh–Ritz method in numerical linear algebra, which
is a numerical algorithm to approximate eigenvalues (Trefethen & Bau, 2022). The idea of Rayleigh–Ritz is to use an
orthonormal basis of some smaller-dimensional subspace and solve the surrogate eigenvalue problem of smaller dimension
projected on the subspace. The quality of the Rayleigh–Ritz approximation depends on the user-defined orthonormal basis
{|ϕj⟩}dj=1. That is, as the basis better captures the desired eigenmodes of the target operator, the approximation becomes
more accurate. Otherwise, for example, if an eigenmode is orthogonal to the subspace of the eigenbasis, it cannot be found
by this procedure. For completeness, we describe the procedure at the end of this section.

Given this standard tool, one may ask whether it is necessary to learn the ordered singular functions as done by NeuralSVD,
SpIN, and NeuralEF. Instead, since by minimizing LoRA objective we can approximately learn the top-L eigensubspace
(Theorem 3.1), one can consider applying Rayleigh–Ritz with the learned functions trained by LoRA. Though the idea
is valid and the full EVD of L× L matrix in Rayleigh–Ritz would be virtually at no additional cost, we remark that the
two-stage procedure has several drawbacks compared to the direct approach with NeuralSVD. First, note that the learned
functions with the LoRA objective are necessarily orthogonal and Gram–Schmidt process should be applied for obtaining
the orthonormal basis before Rayleigh–Ritz. Note, however, that Gram–Schmidt becomes nontrivial in function spaces,
as we need to compute the inner products and norms of functions at each step. Moreover, computing the inner products
⟨ϕi|T ϕj⟩ to compute the reduced operator as described below may introduce an additional estimation error.

More crucially, we empirically verified that NeuralSVDseq or NeuralSVDjnt can attain lower subspace distance than that
learned by LoRA (without nesting), while being able to correctly ordered orthogonal eigenbasis simultaneously. Since
the quality of Rayleigh–Ritz is limited by the quality of the given subspace, if the learned subspace has lower quality, the
outcome must be worse. For example, in the 2D hydrogen atom experiment, we observed that the subspace distance over
the 16 eigenmodes was 3.56× 10−4±6.60 × 10−5 with LoRA, while 2.12× 10−4±2.09 × 10−5 and 2.06× 10−4±1.91 × 10−5

were attained by NeuralSVDjnt and NeuralSVDseq, respectively; see Fig. 4(a). Since nesting does not increase complexity
compared to the non-nested case via its efficient gradient implementation with masking, we argue that NeuralSVD can be
more efficient than the two-stage approach.
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Rayleigh–Ritz for Operator EVD. For the ease of exposition, here we describe the procedure for an operator eigenvalue
problem. Given a self-adjoint operator T , suppose that we wish to solve an eigenvalue problem

T |ψ⟩ = λ|ψ⟩.
Since the problem may be hard to solve directly, the Rayleigh–Ritz method assumes that a set of orthonormal functions
{|ϕ1⟩, . . . , |ϕd⟩} for some d ≥ 1, preferably d≪ N , and define B ∈ Rd×d such that Bij := ⟨ϕi|T ϕj⟩. Then, we solve the
eigenvalue problem

By = µy.

Given an eigenpair (µi,yi), we compute the Ritz function |ψ̃i⟩ :=
∑d
j=1 yj |ϕj⟩, and set the Ritz value λ̃i := µi. The

output of the Rayleigh–Ritz method are the Ritz pairs {(λ̃i, ψ̃i)}di=1.

A.3. Comparison to a Nonparametric Approach

A reader familiar with numerical linear algebra literature may wonder how the parametric approach is compared to the
standard techniques. To this end, as a quick comparison, we performed the following baseline experiment, with one of the
standard matrix-free techniques called “Locally Optimal Block Preconditioned Conjugate Gradient” (LOBPCG) for finding
top-L eigenvalues of large matrices (Knyazev, 2001; 2017). To learn the first L = 16 eigenstates of the 2D hydrogen atom,
we consider a truncated domain [−50, 50] and discretize each axis by N grid points. We then perform the top-L EVD of the
discretized Hamiltonian matrix of size N ×N using LOBPCG (using the PyTorch functionality torch.lobpcg). The result
is summarized in Fig. 6. In the first panel, we present the relative errors in the estimated eigenvalues in parallel to Fig. 4(a).
In the second panel, the blue line summarizes the average absolute relative error for each N . The accuracy improves as
N becomes larger as expected in general, but we observe that the quality of estimates of latter eigenvalues become worse
with N = 1600 than with N = 800. Compared to the best result obtained by NeuralSVDseq(512) (indicated by the red
dashed horizontal line), this naive approach may take substantially more time to achieve comparable accuracy as it may not
scale well as N increases as shown in the third panel. This briefly showcases a possible advantage of NeuralSVD (or the
parametric approach at large) over the matrix-based approach.
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Figure 6: Performance of LOBPCG 2D hydrogen experiment.

We remark, however, some caveats in this comparison. First, the LOBPCG implementation we used here might not be fully
optimized and there could exist a version that exhibits better scalability. The runtime could be also drastically reduced by
using GPU or parallel machines as such numerical linear algebra algorithms are known to be very well optimized for such
resources, while the current experiment was run on a CPU machine. Second, the discretization is rather naive and a more
sophisticated discretization with some choice of orthonormal basis could lead to a better solution. Third, the relatively large
error in the first eigenvalue estimate is seemingly due to the non-differentiable cusp of the first eigenfunction, and thus the
discretization approach could behave better for other examples.

B. Related Work
B.1. General Literature Review

B.1.1. LOW-RANK APPROXIMATION

The theory of low-rank approximation was initially developed to solve partial differential equations (PDEs), including
Schmidt (1907)’s work; see, e.g., (Stewart, 2011). A special case for finite-dimensional matrices was independently
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discovered later by Eckart & Young (1936) and Mirsky (1960), which are perhaps better known in the literature. We refer
an interested reader to (Stewart, 1993) for detailed historical remarks. For matrices, Mirsky (1960) extended the low-rank
approximation theory to any unitarily invariant norms. While it would be interesting to extend the proposed framework in
the current paper for other norms, they do not seem to easily admit an optimizable objective function.

B.1.2. CANONICAL DEPENDENCE KERNELS

Interestingly, there exists a rich literature on decomposing canonical dependence kernels (CDK); see Sec. 4.2. The CDK
has a close relationship to the Hirschfeld–Gebelein–Rényi (HGR) maximal correlation (Hirschfeld, 1935; Gebelein, 1941;
Rényi, 1959). Note that the first singular functions are trivially constant functions, and the corresponding singular value σ1
is always 1. When L = 2, the second singular value is known as the HGR maximal correlation. In general, the optimization
problem can be understood as the high-dimensional extension of the maximal correlation; for given L ≥ 2, the optimal
functions ϕ⋆ and ψ⋆ are the optimal L-dimensional projections of x ∼ p(x) and y ∼ p(y) that are maximally correlated.
The CDK plays an important role in learning applications and has been frequently redeveloped, bearing different names, e.g.,
correspondence analysis (Greenacre, 1984) and principal inertia components (Hsu et al., 2019; 2022) for finite alphabets,
the contrastive kernel (HaoChen et al., 2021; Deng et al., 2022b) and the pointwise dependence (Tsai et al., 2020) in the
self-supervised representation learning setup.

The nonnested objective LLoRA(f ,g) for CDK was proposed and studied in Wang et al. (2019) and related works, e.g., (Xu
et al., 2022). The H-score was first introduced by Wang et al. (2019) who coined the term H-score (or Soft-HGR), for
learning HGR maximal correlation functions with neural networks. It also appeared as a local approximation to log-loss
of classification deep neural networks (Xu et al., 2022). We mention in passing that the nonnested objective has been
recently proposed independently under the name of the spectral contrastive loss (HaoChen et al., 2021), specifically when
the CDK is induced by the random augmentation from the standard self-supervised representation learning setup. A recent
work (Hu & Principe, 2022) proposes to learn features of two modalities based on the EVD of the so-called cross density
ratio, which can be equivalently understood as the CDK of a symmetrized joint distribution. This paper, however, also
only aims to characterize the top-L subspace without the structure. Their optimization problem is based on minimizing
the log-determinant of a normalized autocorrelation function; compared to our LoRA objective, the resulting optimization
inherently suffers from biased gradients, which may lead to issues in practice.

B.1.3. NESTING

The idea of joint nesting was first introduced by Xu & Zheng (2024) as a general construction to decompose multivariate
dependence, which is equivalent to CDK in our terminology, for learning structured features; see the paper for more detailed
discussion. The joint nesting proposed in this paper can be understood as an extension of the idea to general operators
beyond CDK. While the idea of sequential nesting with LoRA is new, we observe that it conceptually resembles the idea
of a class of streaming PCA algorithms such as (Sanger, 1989; Gemp et al., 2021), in which the (ℓ+ 1)-th eigenvector is
updated under the assumption that the estimates for the first ℓ eigenvectors are accurate.

We note that a recent work (Kusupati et al., 2022) proposed learning a structured representation using a concept similar
to the joint nesting technique introduced in our current paper. The method is referred to as Matryoshka Representation
Learning (MRL). The key difference in MRL is that it assumes a labeled image dataset and uses the multi-class softmax
cross-entropy loss function as its constituent loss function for “nesting”. Compared with MRL, the features learned by
our CDK-based representation learning framework are interpretable as singular functions of the dependence kernel. This
fundamental relation provides the learned features with theoretical guarantees, such as the uncorrelatedness of features. It is
also worth noting that our features defined by the global minimizer of NestedLoRAjnt is invariant to the choice of weights,
while a different choice of such weights in MRL would characterize different features. Our framework is also not restricted
to the supervised case, as demonstrated in the cross-domain retrieval example (Sec. 4.2).

B.1.4. OTHER CORRELATION ANALYSIS METHODS

There exists another line of related literature in correlation analysis. Deep canonical correlation analysis (DCCA) (Andrew
et al., 2013) can be understood as solving a restricted HGR maximal correlation problem, searching over a class of neural
networks instead of all measurable functions. The DCCA objective function, however, requires a nontrivial optimization
technique and cannot be easily extended to find higher modes. The correspondence-analysis neural network (CA-NN) (Hsu
et al., 2019) also aims to decompose the CDK based on a different optimization framework, but they involve the L-th
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Ky-Fan norm and the inversion of L× L matrix, which complicate the optimization procedure. Instead of deploying neural
networks, Michaeli et al. (2016) proposed to decompose an empirical CDK matrix constructed by the Gaussian kernel
density estimators and coined the method as nonparametric canonical correspondence analysis (NCCA).

B.1.5. NEURAL-NETWORK-BASED METHODS FOR EIGENVALUE PROBLEMS

As alluded to earlier, there exists a rather separate line of work on solving eigenvalue problems using neural networks for
solving linear PDEs that are in the form of an eigenvalue problem (EVP) in the physics or scientific computing community.
Given the vastness of the literature and the rapid evolution of the field, providing a comprehensive overview is challenging.
Nonetheless, we will emphasize key concepts and ideas.

Computational Physics Literature. The idea of using neural networks for solving PDEs which can be reduced to eigenvalue
problems dates back to (Lagaris et al., 1997), where an explicit Gram–Schmidt process was proposed to attain multiple
eigenstates. Unlike the methods in the machine learning literature, many recent works rely on minimizing the sum of
residual losses, mostly in the form of ∥(T − λℓI )ϕℓ∥ where λℓ needs be also optimized or estimated from |ϕℓ⟩, with
regularization terms that penalize the normalization of and the orthogonality between the parametric functions; see (Bar
& Sochen, 2019; Ben-Shaul et al., 2023; Li et al., 2021a; Zhang et al., 2022; Liu et al., 2023; Wang & Xie, 2023; Guo &
Ming, 2023; Mattheakis et al., 2022; Liu et al., 2023; Jin et al., 2020; 2022; Holliday et al., 2023). We note that NeuralSVD
is distinct from these regularization-based approaches: while regularization-based approaches are often susceptible to the
choice of regularization parameters, NeuralSVD, which utilizes nesting techniques, characterizes the ordered eigenbasis as
its global optimizer without tuning any hyperparameter in the objective functions.

Other approaches include: Han et al. (2020) proposes a stochastic differential equation framework that can learn the first
mode of an eigenvalue problem; Yang et al. (2023) propose a way to use neural networks for power and inverse power
methods; Li & Ying (2021) proposed a semigroup method for high dimensional elliptic PDEs and eigenvalue problems
using neural networks. More broadly, there exist other deep-learning-based solvers for general PDEs beyond EVP PDEs
such as deep Ritz method (E & Yu, 2018), deep Galerkin method (Sirignano & Spiliopoulos, 2018), and Fourier neural
operator (Li et al., 2021b).

Quantum Chemistry Literature. Quantum chemistry has witnessed rapid recent advancements in this particular direction.
While the main problem in quantum chemistry is to solve the TISE of a given electronic system, the problem size grows
rapidly: the domain has 3N dimension with N electrons, and thus the complexity of solving TISE exponentially blows
up even with N of a moderate size. Therefore, the development in this domain has been focused on developing a new
neural network architecture (called neural network ansatzes) that better embed physical inductive bias for more expressivity.
Representative works include (Carleo & Troyer, 2017), SchNet (Schütt et al., 2017), Fermionic neural networks (Choo
et al., 2020), FermiNet (Pfau et al., 2020), PauliNet (Hermann et al., 2020), and DeepErwin (Gerard et al., 2022); see a
comprehensive, recent review paper (Hermann et al., 2022) for the overview of the field.

In most, if not all, of the works, the quantum Monte Carlo (QMC), also known as variational Monte Carlo (VMC) (Cuzzocrea
et al., 2020), has been used as the de facto. QMC is essentially a special way to minimize the Rayleigh quotient to obtain the
ground state energy. Until recently, most of the works focused on the ground state (i.e., the first bottom mode); a few recent
exceptions are (Entwistle et al., 2023; Pfau et al., 2023), which proposed variations of QMC for excited states. We believe
that applying the proposed NestedLoRA framework to quantum chemistry problem can be an exciting research direction.

B.1.6. SPECTRAL POLLUTION

We remark in passing that in the numerical linear algebra literature, there exists a phenomenon called spectral pollution,
which refers to spurious eigenvalues introduced by discretizing an infinite-dimensional operator with respect to a fixed
orthonormal basis (Davies & Plum, 2004), and it is an active research area to address the issue; see, e.g., (Colbrook et al.,
2021) for a recent attempt. In principle, as our framework directly optimizes parametric eigenfunctions to fit the underlying
eigenfunctions, we would not encounter such an issue due to discretization, provided that the parametric functions are
sufficiently expressive. In experiments, we also did not observe any spurious eigenvalues with any of the methods for
parametric eigenfunctions for the hydrogen atom.
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Table 2: Comparison with SpIN (Pfau et al., 2019) and NeuralEF (Deng et al., 2022b).

SpIN NeuralEF NeuralSVD

Goal EVD EVD SVD/EVD

(a) To handle orthonormality constraints Cholesky decomposition function normalization -
(b) To remove bias in gradient estimation bi-level optimization;

need to store Jacobian
large batch size -

B.2. In-Depth Review of SpIN and NeuralEF

B.2.1. SPIN

Suppose that we wish to learn the top-L eigenpairs of a linear operator T . For trial eigenfunctions ϕ̂1, . . . , ϕ̂L, define two
L× L matrices Σ and Π, which we call the gram matrix and the quadratic form matrix, respectively, as follows:

Σℓℓ′ := ⟨ϕ̂ℓ |ϕ̂ℓ′⟩ and Πℓℓ′ := ⟨ϕ̂ℓ |T ϕ̂ℓ′⟩.

Based on the trace maximization framework, we can solve the following optimization problem:

maximize
ϕ̂1,...,ϕ̂L∈F

tr(Σ−1Π).

Let Σ = LL⊺ be the Cholesky decomposition of Σ, where L is a lower-triangular matrix. Define Λ := L−1ΠL−⊺ ∈ RL×L.
By the property of trace, we can write

tr(Σ−1Π) = tr((LL⊺)−1Π) = tr(L−1ΠL−⊺) = tr(Λ) =

L∑
ℓ=1

Λℓℓ.

Optimization with Masked Gradient. The key idea behind the SpIN optimization framework is in the following lemma.

Lemma B.1. For each ℓ = 1, . . . , L, Λℓℓ is only a function of ϕ̂1, . . . , ϕ̂ℓ.

Proof. It immediately follows from the upper triangular property of L−1.

Assuming that ϕ̂1, . . . , ϕ̂ℓ−1 learn the top-(ℓ− 1) eigen-subspace, SpIN updates ϕ̂ℓ to only maximize Λℓℓ, i.e., based on
the gradient ∂ϕ̂ℓ

Λℓℓ for each ℓ. Once optimized, the learned functions can be orthogonalized by L−1ϕ̂. Let LΣ denote the
Cholesky factor for a matrix Σ and define

AΣ,Π := L−⊺
Σ triu(L−1

Σ ΠL−⊺
Σ diag(LΣ)

−1).

Then, the masked gradient can be collectively written as

−∂̃θ tr(Λ) = −Ep(x)
[
(T ϕ̂)(X)⊺L−1

Σ diag(LΣ)
−1 ∂ϕ̂(X)

∂θ

]
+ Ep(x)

[
ϕ̂(X)⊺AΣ,Π

∂ϕ̂(X)

∂θ

]
. (12)

See eq. (25) of (Pfau et al., 2019) for the original expression with derivation. A naive estimator of this gradient with
minibatch samples would be to plug in the empirical (unbiased) estimates of Σ and Π, which are

Σ̂ := Êp(x)[ϕ̂(X)ϕ̂(X)⊺] and Π̂ := Êp(x)[ϕ̂(X)(T ϕ̂)(X)⊺].

Note, however, the resulting gradient estimate is biased, since LΣ, L−1
Σ , and Σ−1 are not linear in Σ.

Bi-level Stochastic Optimization for Unbiased Gradient Estimates. To detour the issue with the biased gradient
estimate, Pfau et al. (2019) proposed to plug-in exponentially weighted moving average (EWMA) of two statistics into the
expression, which can be understood as an instance of a bi-level stochastic optimization procedure with unbiased gradient
estimates. To motivate the approach, we rewrite the second term of (12) as

Ep(x)
[
ϕ̂(X)⊺AΣ,Π

∂ϕ̂(X)

∂θ

]
= tr

(
AΣ,ΠEp(x)

[∂ϕ̂(X)

∂θ
ϕ̂(X)⊺

])
.
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Based on the expression, we maintain the EWMAs of Σ and Ep(x)
[
∂ϕ̂(X)
∂θ ϕ̂(X)⊺

]
, which are denoted as Σ̄ and J̄, and

updated via minibatch samples as follows:

Σ̄← βΣ̄ + (1− β)Σ̂, (13)

J̄← βJ̄+ (1− β)Êp(x)
[∂ϕ̂(X)

∂θ
ϕ̂(X)⊺

]
. (14)

Here β ∈ [0, 1] is the decay parameter for EWMA. Now, given these statistics, we update the parameter θ by the following
gradient estimate with minibatch samples:

−̂̃∂θ tr(Λ) = −Êp(x)[(T ϕ̂)(X)⊺L−1
Σ̄

diag(LΣ̄)
−1 ∂ϕ̂(X)

∂θ

]
+ tr(AΣ̄,Π̂J̄).

Note that the randomness in the second term is in Π̂ and the second term is linear in Π̂. After all, the estimate is unbiased
given Σ̄ and J̄.

Discussion. SpIN is a pioneering work, being the first parametric framework to perform the top-L EVD of a self-adjoint
operator with parametric eigenfunctions. However, the derivation of the masked gradient is rather involved, and the resulting
algorithm’s complexity is not favorably scaling in L. In terms of the computational complexity, the Cholesky decomposition
step that takes O(L3) for each iteration is not scalable in L. Also, due to the bi-level stochastic optimization for unbiased
gradient estimates, SpIN needs to maintain a separate copy of the Jacobian (14), which may consume significant memory
with large networks. The decay parameter in the bi-level stochastic optimization is another sensitive hyperparameter to be
tuned in the framework. Finally, we remark that the idea of masked gradient is similar to the sequential nesting, and thus
when it is applied to a shared parameterization, it cannot guarantee a desired optimization behavior.

SpIN-X. There exists a follow-up work of SpIN that proposed an alternative optimization method with several practical
optimization techniques (Wu et al., 2023). As the paper does not coin a term for the proposed method, we call it SpIN-X
here. The proposed method is based on the following modified objective function

L =
1

L

{
−w0

L∑
ℓ=1

aℓΛℓℓ +

L∑
ℓ=1

wℓ∥(T − ΛℓℓI )ϕ̂ℓ∥2
}
.

Here, the weights w0, . . . , wL are defined as wℓ := (K0 + . . . + KL)/Kℓ, where Kℓ := sg(∥ ∂θLℓ∥2), and Λℓℓ are
eigenvalues still obtained from the Cholesky decomposition steps. Though the experimental results in (Jin et al., 2022) show
improved results over SpIN, some optimization techniques such as balanced gradients are nontrivial to apply, and thus we
do not include a comparison with this approach.

B.2.2. NEURALEF

In essence, NeuralEF (Deng et al., 2022a) starts from the following characterization of eigenfunctions, which can be
understood as a sequential version of (2).
Proposition B.2. Let T : F → F be a linear, self-adjoint operator, where F is a Hilbert space. Given functions
ϕ̃1, . . . , ϕ̃ℓ−1 ∈ F , consider the optimization problem

(Pℓ)
maximize

ϕ̃ℓ∈F
⟨ϕ̃ℓ |T ϕ̃ℓ⟩

subject to ⟨ϕ̃ℓ |ϕ̃i⟩ = δℓi ∀1 ≤ i ≤ ℓ.

If ϕ̃1, . . . , ϕ̃ℓ−1 are the top ℓ− 1 eigenfunctions of the operator T , then the solution ϕ̃ℓ of the optimization problem (Pℓ) is
the ℓ-th eigenfunction.

To avoid the explicit orthogonality constraint, NeuralEF proposes to solve the following optimization problem, generalizing
the formulation of EigenGame (Gemp et al., 2021) for operators:

(P ′
ℓ)

minimize
ϕ̃ℓ∈F

Lℓ(ϕ1:ℓ) := −⟨ϕ̃ℓ |T ϕ̃ℓ⟩+
ℓ−1∑
i=1

⟨ϕ̃ℓ|T ϕ̃i⟩
⟨ϕ̃i|T ϕ̃i⟩

subject to ⟨ϕ̃ℓ |ϕ̃ℓ⟩ = 1.

(15)
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Replacing the constraints ⟨ϕ̃ℓ|ϕ̃i⟩ = 0 as ⟨ϕ̃i|T ϕ̃i⟩2 = 0 for each 1 ≤ i ≤ ℓ− 1, we can view (P ′
ℓ) as a relaxed optimization

problem of (Pℓ). Here, ⟨ϕ̃i|T ϕ̃i⟩−1 plays the role of a Lagrangian multiplier for the i-th constraint. With this specific choice
of weights, this partially unconstrained optimization problem has the same guarantee (Proposition B.2) for (Pℓ) as follows:

Theorem B.3. If ϕ̃1, . . . , ϕ̃ℓ−1 are the top ℓ− 1 eigenfunctions ϕ1, . . . , ϕℓ−1 of T , then the solution ϕ̃ℓ of the optimization
problem (P ′

ℓ) is the ℓ-the eigenfunction.

Informal proof. For the sake of simplicity, we assume that there are only m finite eigenvalues λ1, . . . , λm and ℓ+ 1 ≤ m.
Let ϕ1, ϕ2, . . . be the eigenfunctions of K which form an othornormal basis of L2

p(x)(X ). We first write a function ϕ̃ℓ as a
linear combination of the eigenfunctions

ϕ̃ℓ(x) =

∞∑
i=1

⟨ϕ̃ℓ |ϕi⟩.

Then, we can readily observe that

⟨ϕ̃ℓ |T ϕ̃ℓ⟩ =
m∑
i=1

λi⟨ϕ̃ℓ |ϕi⟩2,

⟨ϕ̃ℓ |T ϕi⟩ = λi⟨ϕ̃ℓ |ϕi⟩,
⟨ϕi |T ϕi⟩ = λi.

Therefore, the objective becomes

−⟨ϕ̃ℓ |T ϕ̃ℓ⟩+
ℓ−1∑
i=1

⟨ϕ̃ℓ|T ϕi⟩2
⟨ϕi|T ϕi⟩

= −
m∑
i=1

λi⟨ϕ̃ℓ, ϕi⟩2 +
ℓ−1∑
i=1

λi⟨ϕ̃ℓ, ϕi⟩2

= −
m∑
i=ℓ

λi⟨ϕ̃ℓ, ϕi⟩2,

which implies that the objective is uniquely minimized when ⟨ϕ̃ℓ, ϕi⟩ = δiℓ for i ≥ ℓ, i.e., when ϕ̃ℓ is the ℓ-th eigenfunction
ϕℓ.

Hence, solving the sequence of optimization problems (P ′
ℓ) leads to finding the eigenfunctions in order. To emulate to solve

the sequential optimization, Deng et al. (2022a) proposed to solve

minimize
ϕ̃1,...,ϕ̃L∈F

L∑
ℓ=1

{
−⟨ϕ̃ℓ |T ϕ̃ℓ⟩+

ℓ−1∑
i=1

⟨ϕ̃ℓ|T sg(ϕ̃i)⟩2
⟨sg(ϕ̃i)|T sg(ϕ̃i)⟩

}
subject to ⟨ϕ̃ℓ |ϕ̃ℓ⟩ = 1 for 1 ≤ ℓ ≤ L.

Here, sg denotes the stop-gradient operation, and thus this is not a properly defined optimization problem, rather defining
an optimization procedure. It is worth emphasizing that the minimization procedure no longer guarantees a structured
solution if the stop gradient operations are removed. To satisfy the normalization constraints, NeuralEF uses the L2-batch
normalization during training.

∂ϕℓ
Lℓ(ϕ1:ℓ) = 4

{
−|T ϕℓ⟩+

ℓ−1∑
i=1

⟨ϕi|T ϕℓ⟩
⟨ϕi|T ϕi⟩

|T ϕi⟩
}
. (16)

Discussion. NeuralEF improves SpIN in general, providing a simpler optimization procedure, i.e., without the
costly Cholesky decomposition steps and the Jacobian updates. The game-theoretic formulation that stemmed from
EigenGame (Gemp et al., 2021) is similar to the idea of sequential nesting, and it might be problematic when applied to a
shared parameterization as the sequential nesting is. The crucial difference of NeuralEF is that the ℓ-th objective of NeuralEF
has a guarantee only if the previous (ℓ−1) eigenfunctions are well learned, whereas the LoRA objective can characterize the
eigensubspace and thus we can apply the joint nesting for a shared parameterization. Moreover, NestedLoRA can naturally
handle SVD.
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An Unbiased-Gradient Variation. We note that in the streaming PCA literature, the authors of EigenGame (Gemp et al.,
2021) proposed an unbiased variant of the original EigenGame in their subsequent work (Gemp et al., 2022). Following the
same idea, one can easily think of an unbiased variant of NeuralEF, which corresponds to the following gradient:

∂ϕℓ
Lℓ(ϕ1:ℓ) = 4

{
−|T ϕℓ⟩+

ℓ−1∑
i=1

⟨ϕi |ϕℓ⟩|T ϕi⟩
}
,

∂ϕℓ
Lℓ(ϕ1:ℓ) = 4

{
−|T ϕℓ⟩+

ℓ−1∑
i=1

⟨ϕi |T ϕℓ⟩|ϕi⟩
}
.

In our experiment, we used this variant instead of the original (16), as we found that the original NeuralEF performs much
worse than its variant. In the current manuscript, we show that NeuralSVD can even outperform the improved version of
NeuralEF.

C. Technical Details and Deferred Proofs
C.1. Derivation of the Low-Rank Approximation Objective

Recall that we define the LoRA objective as

LLoRA(f1:L,g1:L) := −2
L∑
ℓ=1

⟨gℓ |T fℓ⟩+
L∑
ℓ=1

L∑
ℓ′=1

⟨fℓ |fℓ′⟩⟨gℓ |gℓ′⟩.

When T is a compact operator, the LoRA objective can be derived as the approximation error of T via a low-rank expansion∑L
ℓ=1 |fℓ⟩⟨gℓ| measured in the squared Hilbert–Schmidt norm. For a linear operator T : F → G for Hilbert spaces F and G,

the Hilbert–Schmidt norm ∥T ∥HS of an operator T is defined as

∥T ∥2HS :=
∑
i∈I
∥T ϕi∥2

for an orthonormal basis {ϕi : i ∈ I} of the Hilbert space F . Note that the Hilbert–Schmidt norm is well-defined in that it is
independent of the choice of the orthonormal basis. When F and G are finite-dimensional, i.e., when T is a matrix, it boils
down to the Frobenius norm. When ∥T ∥HS <∞, T is said to be compact.
Lemma C.1. If T is compact, then

LLoRA(f1:L,g1:L) =
∥∥∥T −

L∑
ℓ=1

|gℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T ∥2HS. (17)

Proof. Pick an orthonormal basis {ϕi : i ∈ I} of T . Note that
∑
i∈I |ϕi⟩⟨ϕi| = I , where I denotes the identity operator.

Hence, we have∥∥∥T −
L∑
ℓ=1

|gℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T ∥2HS =

∑
i∈I

∥∥∥T |ϕi⟩ −
L∑
ℓ=1

|gℓ⟩⟨fℓ |ϕi⟩
∥∥∥2 −∑

i∈I
∥T |ϕi⟩∥2

=
∑
i∈I

(
−2

L∑
ℓ=1

⟨fℓ |ϕi⟩⟨gℓ |T |ϕi⟩+
L∑
ℓ=1

L∑
ℓ′=1

⟨fℓ |ϕi⟩⟨fℓ′ |ϕi⟩⟨gℓ |gℓ′⟩
)

= −2
L∑
ℓ=1

〈
gℓ

∣∣∣T (∑
i∈I
|ϕi⟩⟨ϕi |

)∣∣∣fℓ〉+

L∑
ℓ=1

L∑
ℓ′=1

〈
fℓ

∣∣∣(∑
i∈I
|ϕi⟩⟨ϕi |

)∣∣∣fℓ′〉⟨gℓ |gℓ′⟩
= −2

L∑
ℓ=1

⟨gℓ |T fℓ⟩+
L∑
ℓ=1

L∑
ℓ′=1

⟨fℓ |fℓ′⟩⟨gℓ |gℓ′⟩

= LLoRA(f1:L,g1:L).

Though this relationship (17) holds only for a compact operator, we remark that the LoRA objective (3) is well-defined for
any operator T .
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C.2. Proof of Theorem 3.1

From Lemma C.1, Theorem 3.1 follows as a corollary of Schmidt’s LoRA theorem, stated below.
Theorem C.2 (Schmidt (1907)). Suppose that T : F → G is a compact operator with {(σℓ, fℓ, gℓ)}∞ℓ=1 as its singular
triplets. Define

(f⋆,g⋆) := argmin
fℓ∈F,gℓ∈G, ℓ∈[L]

∥∥∥T −
L∑
ℓ=1

|gℓ⟩⟨fℓ |
∥∥∥2
HS
.

If σL > σL+1, we have
L∑
ℓ=1

|g⋆ℓ ⟩⟨f⋆ℓ | =
L∑
ℓ=1

σℓ |ψℓ⟩⟨ϕℓ |.

C.3. Proof of Theorem 3.2 (Sequential Nesting)

Recall that we assume
ℓ−1∑
i=1

|gi⟩⟨fi | =
ℓ−1∑
i=1

σi |ψi⟩⟨ϕi |.

By Lemma C.1, the LoRA objective can be written as

LLoRA(f1:ℓ,g1:ℓ) =
∥∥∥T −

ℓ∑
i=1

|gi⟩⟨fi |
∥∥∥2
HS
− ∥T ∥2HS

=
∥∥∥∑
i≥1

σi |ψi⟩⟨ϕi | −
ℓ−1∑
i=1

σi |ψi⟩⟨ϕi | − |gℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T ∥2HS

=
∥∥∥∑
i≥ℓ

σi |ψi⟩⟨ϕi | − |gℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T ∥2HS.

Hence, minimizing LLoRA(f1:ℓ,g1:ℓ) with respect to (fℓ, gℓ) is equivalent to minimizing the LoRA objective
LLoRA(fℓ, gℓ; T≥ℓ) defined with respect to the truncated operator T≥ℓ :=

∑
i≥ℓ σi|ψi⟩⟨ϕi|. Since σℓ > σℓ+1, by Schmidt’s

theorem (Theorem C.2), the global optimizer must satisfy |gℓ⟩⟨fℓ| = σℓ|ψℓ⟩⟨ϕℓ|.

C.4. Proof of Theorem 3.3 (Joint Nesting)

We first prove the following lemma; Theorem 3.3 readily follows as a corollary.
Lemma C.3. Suppose that all the nonzero singular values of the target kernel are distinct. If σℓ > σℓ+1, the objective
function L̃(f ,g) := LLoRA(f1:ℓ,g1:ℓ) + wLLoRA(f[L],g[L]) with w > 0 is minimized if and only if

ℓ∑
i=1

|g∗i ⟩⟨f∗i | =
ℓ∑
i=1

σi |ψi⟩⟨ϕi | and
L∑

i=ℓ+1

|g∗i ⟩⟨f∗i | =
L∑

i=ℓ+1

σi |ψi⟩⟨ϕi |.

Proof. First, note that by the Schmidt theorem (Theorem C.2),

LLoRA(f1:ℓ,g1:ℓ) ≥ LLoRA(f
∗
1:ℓ,g

∗
1:ℓ) =

ℓ∑
i=1

σ2
ℓ ,

where the equality holds if and only if
ℓ∑
i=1

|g∗i ⟩⟨f∗i | =
ℓ∑
i=1

σi |ψi⟩⟨ϕi |.

Using this property, we immediately have a lower bound

LLoRA(f1:ℓ,g1:ℓ) + wLLoRA(f1:L,g1:L) ≥
ℓ∑
i=1

σ2
i + w

L∑
j=1

σ2
j ,
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where the equality holds if and only if

ℓ∑
i=1

|g∗i ⟩⟨f∗i | =
ℓ∑
i=1

σi |ψi⟩⟨ϕi | and
L∑
i=1

|g∗i ⟩⟨f∗i | =
L∑
i=1

σi |ψi⟩⟨ϕi |,

which is equivalent to

ℓ∑
i=1

|g∗i ⟩⟨f∗i | =
ℓ∑
i=1

σi |ψi⟩⟨ϕi | and
L∑

i=ℓ+1

|g∗i ⟩⟨f∗i | =
L∑

i=ℓ+1

σi |ψi⟩⟨ϕi |.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. By inductively applying Lemma C.3 to the grouping Ljnt(f ,g) =
∑ℓ
i=1 wiLLoRA(f[i],g[i]) +∑L

i=ℓ+1 wiLLoRA(f[i],g[i]) for ℓ = 1, . . . , L− 1, a minimizer must satisfy

ℓ∑
i=1

|g∗i ⟩⟨f∗i | =
ℓ∑
i=1

σi |ψi⟩⟨ϕi |,

for each ℓ = 1, . . . , L. This implies that the equivalence |g∗i ⟩⟨f∗i | = σi|ψi⟩⟨ϕi| should hold term by term.

C.5. One-Shot Computation of Jointly Nested Objective

The gradient of the joint nesting objective (8) can be computed based on the following observation:

Proposition C.4 (One-shot computation). Given a positive weight vector w, define m ∈ RL and M ∈ RL×L as mi :=∑L
ℓ=i wℓ and Mij := mmax{i,j}. Then, the nested objective is written as

Ljnt(f ,g;w) := −2
L∑
ℓ=1

mℓ⟨gℓ |T fℓ⟩+
L∑
ℓ=1

L∑
ℓ′=1

Mℓℓ′⟨fℓ |fℓ′⟩⟨gℓ |gℓ′⟩.

Proof. Recall that

Ljnt(f ,g;w) =

L∑
ℓ=1

wℓLLoRA(f1:ℓ,g1:ℓ)

=

L∑
ℓ=1

wℓ

{
−2

ℓ∑
i=1

⟨gi |T fi⟩+
ℓ∑
i=1

ℓ∑
j=1

⟨fi |fj⟩⟨gi |gj⟩
}

For the first term, we can write

L∑
ℓ=1

wℓ

ℓ∑
i=1

⟨gi |T fi⟩ =
L∑
ℓ=1

wℓ

ℓ∑
i=1

fi(x)gi(y) =

L∑
ℓ=1

mℓ⟨gℓ |T fℓ⟩,

where mℓ :=
∑L
i=ℓ wi. For the second term, we can write

L∑
ℓ=1

wℓ
∑

1≤i,j≤ℓ

⟨fi |fj⟩⟨gi |gj⟩ =
∑

1≤i,j≤L

Mij⟨fi |fj⟩⟨gi |gj⟩,

where Mij := mmax{i,j} =
∑L
ℓ=max{i,j} wℓ. This concludes the proof.
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C.6. EVD with Non-Compact Operators

For a self-adjoint operator T , we can apply our framework by considering the induced LoRA objective

LLoRA(f1:L) := −2
L∑
ℓ=1

⟨fℓ |T fℓ⟩+
L∑
ℓ=1

L∑
ℓ′=1

⟨fℓ |fℓ′⟩2.

Though the original LoRA theorem of Schmidt (Theorem C.2) holds for a compact operator, it can be extended to a certain
class of non-compact operators, which have discrete eigenvalues.

Theorem C.5. For a self-adjoint operator T , define

f⋆ := argmin
fℓ∈F, ℓ∈[L]

LLoRA(f).

Suppose that the operator T has r positive eigenvalues λ1 ≥ . . . ≥ λr > 0 ≥ λr+1 ≥ . . . with corresponding orthonormal
eigenfunctions {ϕℓ}ℓ≥1, for some r ∈ N ∪ {∞}. If r < ∞, the span of |f⋆⟩ is equal to the span of the top-min{L, r}
eigenfunctions of the operator T , or more precisely

L∑
ℓ=1

|f⋆ℓ ⟩⟨f⋆ℓ | =
min{L,r}∑
ℓ=1

λℓ |ϕℓ⟩⟨ϕℓ |.

If r =∞, i.e., when there are countably infinitely many positive eigenvalues, the same holds if λL > λL+1.

As a consequence of this theorem, when we optimize the |f1:L⟩ with nesting for L > r, one can easily show that the optimal
|f⋆r+1⟩, . . . , |f⋆L⟩ are zero functions; we omit the proof.

Proof. We first consider when r is finite. Define the positive part of the operator as

T+ :=

r∑
ℓ=1

λℓ |ϕℓ⟩⟨ϕℓ |,

which is compact by definition. Then, T+ − T is PSD with eigenvalues 0 ≤ −λr+1 ≤ −λr+2 ≤ . . . and eigenfunctions
{ϕℓ}ℓ≥r+1. Then, we can rewrite and lower bound the LoRA objective as

LLoRA(f1:L) =
∥∥∥T+ −

L∑
ℓ=1

|fℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T+∥2HS + 2

L∑
ℓ=1

⟨fℓ |(T+ − T )fℓ⟩

(a)

≥
∥∥∥T+ −

L∑
ℓ=1

|fℓ⟩⟨fℓ |
∥∥∥2
HS
− ∥T+∥2HS,

where the inequality (a) follows since T+ − T is PSD. We note that the lower bound is minimized if and only if the
span of |f⋆⟩ is equal to the span of the top-min{L, r} eigenfunctions of the operator T+ by applying Schmidt’s theorem
(Theorem C.2). We further note that (a) holds with equality, as |f⋆1 ⟩, . . . , |f⋆L⟩ belong to the null space of T+ − T . Hence,
this concludes that the LoRA objective is minimized if and only if the span of |f⋆⟩ is equal to the span of the top-min{L, r}
eigenfunctions of the operator T .

When r =∞, given that λL > λL+1, the rank-L approximation of T

TL :=

L∑
ℓ=1

λℓ |ϕℓ⟩⟨ϕℓ |

is well-defined. The same proof for r <∞ is valid if we replace T+ with TL.
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D. Implementation Details with Code Snippets
In this section, we explain how to implement the proposed NestedLoRA updates, providing readily deployable code snippets
written in PyTorch. These code snippets are simplified from the actual implementation which can be found online6 for the
ease of exposition.

D.1. Helper Functions: Computing Nesting Masks and Metric Loss

As noted in Sec. 3.2.2, both versions of NestedLoRA can be implemented in a unified way via the nesting masks (mℓ)ℓ∈[L]

and (Miℓ)i∈[L],ℓ∈[L]. Recall that for joint nesting, given positive weights (w1, . . . , wL), we define mℓ :=
∑L
i=ℓ wi and

Miℓ := mmax{i,ℓ}.

1 def get_joint_nesting_masks(weights: np.ndarray, set_first_mode_const: bool = False):
2 vector_mask = list(np.cumsum(list(weights)[::-1])[::-1])
3 if set_first_mode_const:
4 vector_mask = [vector_mask[0]] + vector_mask
5 vector_mask = torch.tensor(np.array(vector_mask)).float()
6 matrix_mask = torch.minimum(vector_mask.unsqueeze(1), vector_mask.unsqueeze(1).T).float()
7 return vector_mask, matrix_mask

Here, when the argument set_first_mode_const is set to be True, it outputs masks for CDK, for which we explicitly add
the constant first mode; see Sec. D.4.

The sequential nesting (4) can be implemented by defining mℓ := 1 and Miℓ := 1{i ≤ ℓ}.
1 def get_sequential_nesting_masks(L, set_first_mode_const: bool = False):
2 if set_first_mode_const:
3 L += 1
4 vector_mask = torch.ones(L)
5 matrix_mask = torch.triu(torch.ones(L, L))
6 return vector_mask, matrix_mask

In the LoRA objective (3), the second term (with nesting), which we call the metric loss,

L∑
ℓ=1

L∑
ℓ′=1

Mℓℓ′⟨fℓ |fℓ′⟩⟨gℓ |gℓ′⟩ =
L∑
ℓ=1

L∑
ℓ′=1

(M⊙ Λf ⊙ Λg)ℓℓ′ (18)

is independent of the operator, where we define (Λf )ℓℓ′ := ⟨fℓ|fℓ′⟩ for ℓ, ℓ′ ∈ [L] and ⊙ denotes the elementwise matrix
product. Given samples x1, . . . , xB , we can estimate each entry of the matrix Λf ∈ RL×L by

(Λ̂f )ℓℓ′ :=
1

B

B∑
b=1

fℓ(x)fℓ′(x),

which can be computed with PyTorch as:

1 def compute_lambda(f):
2 return torch.einsum('bl,bm->lm', f, f) / f.shape[0] # (L, L)

Then, the metric loss can be computed as follows:

1 def compute_loss_metric(f, g, matrix_mask):
2 lam_f = compute_lambda(f)
3 lam_g = compute_lambda(g)
4 # compute loss_metric = E_{p(x)p(y)}[(f^T(x) g(y))^2]
5 # f: (B1, L)
6 # g: (B2, L)
7 # lam_f, lam_g: (L, L)
8 return (matrix_mask * lam_f * lam_g).sum(), lam_f, lam_g # O(L ** 2)

Note that this metric loss needs not be computed when computing gradients.

6https://github.com/jongharyu/neural-svd
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D.2. NestedLoRA Gradient Computation for Analytical Operators

In this section, we explain how to implement the NestedLoRA gradient updates for analytical operators. For the sake of
simplicity, we explain for the implementation for EVD; the implementation for SVD can be found in our official PyTorch
implementation.

For EVD of a self-adjoint operator T , identifying g with f , we need to compute the gradient

(∂fℓL)(xb) = 2
{
−mℓ(T fℓ)(xb) +

L∑
i=1

Miℓfi(xb)⟨fi |fℓ⟩
}

(19)

for each ℓ ∈ [L]; see (8) for the general expression. We can compute the gradient in an unbiased manner by plugging
in the unbiased estimate of Λf based on {x′1, . . . , x′B′}. We remark that the minibatch samples for estimating Λf needs
to be independent to {x1, . . . , xB} so that the overall gradient estimate for ⟨∂θfℓ| ∂fℓL⟩ becomes unbiased. This can be
efficiently implemented in a vectorized manner by writing a custom backward function with the automatic differentiation
package of PyTorch as follows. In what follows, we assume that {f(xb)}Bb=1 and {(T f)(xb)}Bb=1 are already computed for
a given f and provided as f and Tf, resepectively. Further, f1 and f2 must be independent to each other.
1 class NestedLoRALossFunctionEVD(torch.autograd.Function):
2 @staticmethod
3 @torch.cuda.amp.custom_fwd
4 def forward(
5 ctx: torch.autograd.function.FunctionCtx,
6 f,
7 Tf,
8 f1,
9 f2,

10 vector_mask,
11 matrix_mask,
12 ):
13 """
14 the reduction assumed here is `mean` (i.e., we take average over batch)
15 f: (B, L) or (B, L, O)
16 Tf: (B, L) or (B, L, O)
17 f1: (B1, L) or (B1, L, O)
18 f2: (B2, L) or (B2, L, O)
19 warning: f1 and f2 must be independent
20 """
21 ctx.vector_mask = vector_mask = vector_mask.to(f.device)
22 ctx.matrix_mask = matrix_mask = matrix_mask.to(f.device)
23 loss_metric, lam_f1, lam_f2 = compute_loss_metric(f1, f2, matrix_mask)
24 ctx.save_for_backward(f, Tf, f1, f2, lam_f1, lam_f2)
25 # compute loss_operator = -2 * E_{p(x)}[\sum_{l=1}^L f_l^T(x) (Tf_l)(x)]
26 loss_operator = - 2 * torch.einsum('l,bl,bl->b', vector_mask, f, Tf).mean() # O(B1 * L * O)
27 loss = loss_operator + loss_metric
28 return loss
29

30 @staticmethod
31 @torch.cuda.amp.custom_bwd
32 def backward(
33 ctx: torch.autograd.function.FunctionCtx,
34 grad_output: torch.Tensor
35 ) -> Tuple[torch.Tensor, ...]:
36 """
37 Args:
38 ctx: The context object to retrieve saved tensors
39 grad_output: The gradient of the loss with respect to the output
40 """
41 f, Tf, f1, f2, lam_f1, lam_f2 = ctx.saved_tensors
42 operator_f = - (4 / f.shape[0]) * torch.einsum('l,bl->bl', ctx.vector_mask, Tf)
43 metric_f1 = (2 / f1.shape[0]) * torch.einsum('lm,lm,bl->bm', ctx.matrix_mask, lam_f2, f1)
44 metric_f2 = (2 / f2.shape[0]) * torch.einsum('lm,lm,bl->bm', ctx.matrix_mask, lam_f1, f2)
45 return grad_output * operator_f, None, grad_output * metric_f1, grad_output * metric_f2, \
46 None, None, None
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In practice, when given a minibatch {x1, . . . , xB}, we can use the entire batch to compute f and Tf, and split f into two
equal parts and plug in them to f1 and f2 to ensure the independence. In what follows, the operator is given as an abstract
function operator, whose interface is explained in the next section (Sec. D.3).
1 def compute_loss_operator(
2 model,
3 operator,
4 x,
5 importance=None,
6 ):
7 Tf, f = operator(model, x, importance=importance)
8 f1, f2 = torch.chunk(f, 2)
9 loss = NestedLoRALossFunctionEVD.apply(

10 f, Tf, f1, f2,
11 vector_mask,
12 matrix_mask,
13 )
14 return loss, dict(f=f, Tf=Tf, eigvals=None)

After this function returns loss, calling loss.backward() will backpropagate the gradients based on the custom backward
function, and populate the gradient for each model parameter.

D.3. Importance Sampling

Unlike machine learning applications where the sampling distribution is given by data, the underlying measure µ(x) is the
Lebesgue measure over a given domain when solving PDEs. Note that, when the domain is not bounded, we cannot sample
from the measure, and thus it is necessary to introduce a sampling distribution to apply our framework. Given a distribution
ptr(x) that is supported over the support of µ(x), the inner product between |f⟩ and |T f⟩ can be written as

⟨f |T f⟩ =
∫
f(x)T f(x)µ(x) dx

=

∫
f(x)

√
µ(x)

ptr(x)
T f(x)

√
µ(x)

ptr(x)
ptr(x) dx

=

∫
f(x)√
wtr(x)

T f(x)√
wtr(x)

ptr(x) dx.

Here, we define the (training) importance function wtr(x) :=
ptr(x)
µ(x) . For the case of the Lebesgue measure, one can simply

regard µ(x) as 1. It is sometimes crucial to choose a good training sampling distribution, especially for high-dimensional
problems.

Suppose now that we directly parameterize f(x)√
wtr(x)

by a neural network f̃(x). Then, the inner product can be computed as

⟨f |T f⟩ =
∫
f̃(x)

T f(x)√
wtr(x)

ptr(x) dx.

Here, T f(x) can be computed by applying the operator T to the function x 7→
√
wtr(x)f̃(x).

During the test phase, we may use another test distribution pte(x) to evaluate the inner product. Given another valid sampling
distribution pte(x),

⟨f |T f⟩ =
∫
f̃(x)

T f(x)√
wtr(x)

ptr(x)

pte(x)
pte(x) dx =

∫
f̃(x)

T f(x)√
wtr(x)

wtr(x)

wte(x)
pte(x) dx,

where we define the (test) importance function wte(x) :=
pte(x)
µ(x) . Again, for high-dimensional problems, it is crucial to

choose a good sampling distribution for reliable evaluation.

In our implementation, the operator is defined with the following interface: given a neural network model f̃(x) and a training
importance function pte(x), operator(model, x, importance) outputs T f(x)√

wtr(x)
and f̃(x), so that they can be taken to the

inner product directly under ptr(x). Given this, the original function value f(x) can be recovered as f(x) =
√
wtr(x)f̃(x).
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For example, we implement the negative Hamiltonian as follows:

1 class NegativeHamiltonian:
2 def __init__(self,
3 local_potential_ftn,
4 scale_kinetic=1.,
5 laplacian_eps=1e-5,
6 n_particles=1):
7 self.laplacian_eps = laplacian_eps
8 self.laplacian = VectorizedLaplacian(eps=laplacian_eps)
9 self.local_potential_ftn = local_potential_ftn

10 self.scale_kinetic = scale_kinetic
11 self.n_particles = n_particles
12

13 def __call__(self, f, xs, importance=None, threshold=1e5):
14 # threshold is to detect an anomaly in the hamiltonian
15 lap, grad, fs = self.laplacian(f, xs, importance)
16 kinetic = - self.scale_kinetic * lap
17 potential = self.local_potential_ftn(xs.reshape((xs.shape[0], self.n_particles, -1))).view(-1, 1) *

fs
18 hamiltonian = kinetic + potential
19 return - hamiltonian, fs

Here, VectorizedLaplacian refers to a function for vectorized Laplacian computation, whose implementation can be
found in our code.

D.4. NestedLoRA Gradient Computation for CDK

Recall that the CDK is defined as k(x, y) = k(x, y)− 1 with k(x, y) := p(x,y)
p(x)p(y) . We note that it is known that k(x, y) has

the constant functions as the singular functions with singular value 1, i.e., (1, x 7→ 1, y 7→ 1) is the first singular triplet of
k(x, y); see, e.g., (Huang et al., 2024). Hence, the term “−1” in the definition of CDK is to remove the first trivial mode of
k(x, y).

In our implementation, we handle the decomposition of CDK by considering k(x, y) with explicitly augmenting the constant
functions as the fictitious first singular functions, so that we effectively learn from the second singular functions of k(x, y)
and on. For k(x, y) = p(x,y)

p(x)p(y) , the “operator term” ⟨gℓ|K fℓ⟩ can be computed as, again by change of measure,

⟨gℓ |K fℓ⟩ = Ep(x,y)[fℓ(X)gℓ(Y )].

Hence, compared to (19), the gradient becomes, for each ℓ = 1, . . . , L,

(∂fℓL)(xb) = 2
{
−mℓgℓ(xb) +

L∑
i=0

Miℓfi(xb)⟨gi |gℓ⟩
}

(20)

where we set f0(x) ≡ 1 and g0(y) ≡ 1; (∂gℓL)(xb) is similarly computed. The following snippet implements this gradient
using a custom gradient as before. Note that the constant 1’s are explicitly appended as the first mode in line 16-18.

1 class NestedLoRALossFunctionForCDK(torch.autograd.Function):
2 @staticmethod
3 @torch.cuda.amp.custom_fwd
4 def forward(
5 ctx: torch.autograd.function.FunctionCtx,
6 f,
7 g,
8 vector_mask,
9 matrix_mask,

10 ):
11 """
12 the reduction assumed here is `mean` (i.e., we take average over batch)
13 f: (B, L)
14 g: (B, L)
15 """
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16 pad = nn.ConstantPad1d((1, 0), 1)
17 f = pad(f)
18 g = pad(g)
19 ctx.vector_mask = vector_mask = vector_mask.to(f.device)
20 ctx.matrix_mask = matrix_mask = matrix_mask.to(f.device)
21 loss_metric, lam_f, lam_g = compute_loss_metric(f, g, matrix_mask)
22 ctx.save_for_backward(f, g, lam_f, lam_g)
23 # compute loss_operator = -2 * E_{p(x,y)}[f^T(x) g(y)]
24 loss_operator = - 2 * torch.einsum('l,bl,bl->b', vector_mask, f, g).mean() # O(B1 * L)
25 loss = loss_operator + loss_metric
26 gram_matrix = f @ g.T # (B, B); each entry is (f^T(x_i) g(y_j))
27 rs_joint = gram_matrix.diag()
28 rs_indep = off_diagonal(gram_matrix)
29 return loss, loss_operator, loss_metric, rs_joint, rs_indep
30

31 @staticmethod
32 @torch.cuda.amp.custom_bwd
33 def backward(
34 ctx: torch.autograd.function.FunctionCtx,
35 grad_output: torch.Tensor,
36 *args
37 ) -> Tuple[torch.Tensor, ...]:
38 """
39 Args:
40 ctx: The context object to retrieve saved tensors
41 grad_output: The gradient of the loss with respect to the output
42 """
43 f, g, lam_f, lam_g = ctx.saved_tensors
44 # for grad(f)
45 operator_f = - (2 / f.shape[0]) * torch.einsum('l,bl->bl', ctx.vector_mask, g)
46 metric_f = (2 / f.shape[0]) * torch.einsum('il,il,bi->bl', ctx.matrix_mask, lam_g, f)
47 grad_f = operator_f + metric_f
48 # for grad(g)
49 operator_g = - (2 / g.shape[0]) * torch.einsum('l,bl->bl', ctx.vector_mask, f)
50 metric_g = (2 / g.shape[0]) * torch.einsum('il,il,bi->bl', ctx.matrix_mask, lam_f, g)
51 grad_g = operator_g + metric_g
52 grad_f = grad_f[:, 1:]
53 grad_g = grad_g[:, 1:]
54 return grad_output * grad_f, grad_output * grad_g, None, None, None, None

In practice, given minibatch samples {(xb, yb)}Bb=1 drawn from a joint distribution p(x, y), we can compute
{(f(xb),g(yb))}Bb=1 and plug in to the function above as follows.

1 def compute_loss(
2 f,
3 g,
4 ) -> torch.Tensor:
5 return NestedLoRALossFunctionForCDK.apply(
6 f,
7 g,
8 vector_mask,
9 matrix_mask,

10 )

Here, vector_mask and matrix_mask should be computed using the mask computing functions in Sec. D.1 with
set_first_mode_const=True.

D.5. Spectrum Estimation via Norm Estimation

As alluded to in the main text, we can estimate the singular values (σ1, . . . , σL) from the learned functions and training data,
i.e.,

σℓ =
√
Ep(x)[(f⋆ℓ (X))2]Ep(y)[(g⋆ℓ (Y ))2] for ℓ = 1, . . . , L.
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Here, by replacing the expectation with the empirical expectation and the optimal f⋆ℓ , g
⋆
ℓ with the learned ones f̂ℓ, ĝℓ, we

obtain the singular value estimator:

σ̂ℓ :=

√
Ep̂(x)[(f̂ℓ(X))2]Ep̂(y)[(ĝℓ(Y ))2] for ℓ = 1, . . . , L.

1 def singular_values(f_t, g_t): # f_t: (M, L); g_t: (N, L)
2 return ((f_t ** 2).mean(dim=0) * (g_t ** 2).mean(dim=0)).sqrt() # (L, )

For symmetric, PD kernels and operators, the eigenvalue estimator becomes:

λ̂ℓ := Ep̂(x)[(f̂ℓ(X))2] for ℓ = 1, . . . , L.

D.6. Sequential Nesting for Shared parameterization

As alluded to earlier in footnote 2, we can still apply sequential nesting even when the functions {(fℓ, gℓ)}Lℓ=1 are
parameterized by a shared model with a collective parameter θ. The idea is to consider a masked gradient ∂̃θ(LLoRA)ℓ,
which is a masked version of the original gradient ∂θ(LLoRA)ℓ computed with the assumption that | ∂fℓ′ (LLoRA)ℓ⟩ = 0 and
| ∂gℓ′ (LLoRA)ℓ⟩ = 0 for every 1 ≤ ℓ′ < ℓ, for each ℓ. The resulting masked gradient can be explicitly written as

∂̃θ(LLoRA)ℓ =

L∑
ℓ=1

{⟨∂θfℓ | ∂fℓ(LLoRA)ℓ⟩+ ⟨∂θgℓ | ∂gℓ(LLoRA)ℓ⟩}.

E. Experiment Details
In this section, we provide all the details for our experiments. All experiments were run on a single GPU (NVIDIA GeForce
RTX 3090). Codes and scripts to replicate the experiments have been open-sourced online.7

E.1. Solving Time-Independent Schrödinger Equations

E.1.1. 2D HYDROGEN ATOM

Analytical Solution. For the 2D-confined hydrogen-like atom, the Hamiltonian is given asH = T +V = − ℏ2

2m∇2− Ze2

∥x∥2
,

where Z is the charge of the nucleus. Yang et al. (1991) provides a closed-form expression of the eigenfunctions for this
special case. Here, we present the formula with slight modifications for visualization purposes.

By normalizing constants (i.e., Ze2 ← 1, 2mℏ2 ← 1), we can simplify it to the eigenvalue problem (∇2+ 1
∥x∥2

)ψ(x) = λψ(x)

for x ∈ R2. Each eigenstate is parameterized by a pair of integers (n, l) for n ≥ 0 and −n ≤ l ≤ n, where the (negative)
eigenenergy is λn,l := (2n+1)−2. Note that for each n ≥ 0, there exist 2n+1 degenerate states that have the same energy.
Further, the operator is PD and compact, since λn,l > 0 and the Hilbert–Schmidt norm of the negative Hamiltonian is finite,
i.e.,

∑
n≥0

∑n
l=−n λ

2
n,l =

∑
n≥0

1
(2n+1)3 <∞.

The eigenfunctions can be explicitly expressed in the spherical coordinate system

ψn,l(x) = ψn,l(r, θ) := ψn,l(r)ψl(θ), (21)

where the radial part is

ψn,l(r) =
βn

(2|l|)!
( (n+ |l|)!
(2n+ 1)(n− |l|)!

) 1
2

(βnr)
|l|e−

βnr
2 1F1(−n+ |l|, 2|l| + 1, βnr)

with βn = (n+ 1
2 )

−1, and the angular part is

ψl(θ) =


1√
π
cos(lθ) if l > 0

1√
2π

if l = 0
1√
π
sin(lθ) if l < 0.

Here, 1F1(a; b;x) denotes the confluent hypergeometric function.

7https://github.com/jongharyu/neural-svd
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Implementation Details. We adopted the training setup of (Pfau et al., 2019) with some variations.

• Differential operator. To reduce the overall complexity of the optimization, we approximated the Laplacian by the
standard finite difference approximation: for ϵ > 0 sufficiently small,

∇2f(x) ≈ 1

ϵ2

D∑
i=1

(f(x+ ϵei) + f(x− ϵei)− 2f(x)).

In this paper, we used ϵ = 0.01 throughout.

• Sampling distribution. We chose a sampling distribution ptr(x) as a Gaussian distribution N (0, 162I2); see Sec. D.3.

• Architecture. We used 16 disjoint three-layer MLPs with 128 hidden units to learn the first L = 16 eigenfunctions,
except L = 9 for SpIN that did not fit to a single GPU due to the large memory requirement; see Sec. B.2.1. For
the nonlinear activation function, we used the softplus activation f(x) = log(1 + ex) following the implementation
of (Pfau et al., 2019). We also found that multi-scale Fourier features (Wu et al., 2023) are effective, especially the
non-differentiable points at the origin for some eigenstates of the 2D hydrogen atom. The multi-scale Fourier feature is
defined as follows. Let D = 2 denote the input dimension. For K ∈ N and κ > 0, we initialize and fix a Gaussian
random matrix B ∈ RK×D, each of which entry is drawn from N (0, 2πκ). An input is projected by B to the K
dimensional space, and mapped into Fourier features (cos(Bx), sin(Bx)) ∈ R2K , following (Tancik et al., 2020). In
our experiments, we also appended the raw input x to the Fourier feature, so that the feature dimension becomes
2K +D. We used K = 1024 for NeuralEF and NeuralSVD, and K = 512 for SpIN. Lastly, κ = 0.1 was used.

• Optimization. We trained the networks for 5× 105 iterations with batch size 128 and 512. For all methods, we used
the RMSProp optimizer (Hinton et al., 2012) with learning rate 10−4 and the cosine learning rate schedule (Loshchilov
& Hutter, 2016).

• Evaluation. During the evaluation, we applied the exponential moving average (over the model parameters) with
a decay rate of 0.995 for smoother results. We also used a uniform distribution over [−100, 100]2 as a sampling
distribution, assuming that the eigenfunctions vanish outside the box, which is approximately true. Sec. D.3 for the
detailed procedure for the importance sampling during evaluation.

E.1.2. 2D HARMONIC OSCILLATOR

Analytical Solution. Define

ψn(x) =
1√
2n n!

(
b

π

)1/4

e−
bx2

2 Hn(
√
bx), n = 0, 1, 2, . . . .

Here, Hn(x) denotes the physicists’ Hermite polynomials

Hn(z) = (−1)n ez2 d
n

dzn
(e−z

2

),

and we simplify the constant b = mω
ℏ to 1. Then {ψn(x)}n≥0 characterizes the eigenbasis of 1D harmonic oscillator.

Each eigenstate of the 2D harmonic oscillator is characterized by a pair of nonnegative integers (nx, ny), and λnx,ny
=

2(nx + ny + 1), where a canonical representation of the eigenfunction is

ψnx,ny
(x, y) := ψnx

(x)ψny
(y).

Note that for each n ≥ 0, there exist n+ 1 eigenstates that share the same eigenvalue 2(n+ 1).

Implementation Details. We used an almost identical setup to the 2D hydrogen atom experiment except the followings.

• Operator shifting. We chose to decompose T + cI for c = 16, so that the first 28 eigenstates have positive eigenvalues.

• Sampling distribution. We chose a sampling distribution ptr(x) as a Gaussian distribution N (0, 42I2).
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Figure 7: Quantitative evaluations of the learned eigenfunctions. The shaded region indicates 20% and 80% quantiles with respect to 10
random seeds. In the first panel of (b), the left of the black vertical line indicates the positive eigenvalues.

• Architecture. We used the same disjoint parameterization as before, but with K = 256 and κ = 1.

• Optimization. We trained the networks for 105 iterations with batch size 128 and 512.

• Evaluation. We also used a uniform distribution over [−5, 5]2 as a sampling distribution.

Remark E.1 (On shifting). We note that the shifting technique can be applied to similar non-compact operators in general,
but the shifting parameter c needs to be tuned by trial and error as the underlying spectrum is unknown in practice. But how
should one choose the parameter? Since any c beyond a certain threshold makes the first L modes with strictly positive
eigenvalues for a fixed number of modes L, one may ask whether using larger c is always a safe choice. On one hand, if c is
too large, the shifted operator T + cI is dominated by the identity operator, which admits any set of orthonormal functions
as its orthonormal eigenbasis. On the other hand, c needs to be sufficiently large to ensure the L-th mode to be recovered.
Therefore, in practice, c needs to be tuned as a hyperparameter considering such a trade-off.

E.1.3. DEFINITIONS OF REPORTED MEASURES

We first provide the definitions of the reported measures in Fig. 4 and Fig. 7.

• Relative errors in eigenvalues: Given a learned eigenfunction ψ̃ℓ(x), we estimate the learned eigenvalue by the
Rayleigh quotient

λ̃ℓ :=
⟨ψ̃ℓ|T ψ̃ℓ⟩
⟨ψ̃ℓ|ψ̃ℓ⟩

,

where each inner product is computed by importance sampling with finite samples from a given sampling distribution;
see Sec. D.3. For each ℓ, we then report the absolute relative error

(λ̃ℓ − λℓ)
λℓ

× 100 (%),

for λℓ > 0.

• Angle distances: When there is degeneracy, i.e., several eigenstates share same eigenvalue, we need to align the
learned functions within each subspace before we evaluate the performance eigenstate-wise. For such an alignment, we
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use the orthogonal Procrustes (OP) procedure defined as follows. Suppose that A ∈ RN×K and B ∈ RN×K are given.
We wish to find the find the orthogonal transformation AΩ that best approximates the reference B. The OP procedure
defines the optimal Ω⋆ by the optimization problem

minimize
Ω∈RK×K

∥AΩ− B∥F

subject to Ω⊺Ω = I.

The solution is characterized by the SVD of A⊺B ∈ RK×K . If A⊺B = USV⊺ is the SVD, then Ω⋆ = UV⊺. In our case,
A is the vertical stack of the learned eigenfunctions and B is that of the ground truth eigenfunctions that correspond to a
degenerate eigensubspace. Here, K is the number of degeneracy and N is the number of points used for the alignment.

Given the aligned learned function ψ̄ℓ(x), we report the normalized angle distance

∠(|ψ̄ℓ⟩, |ψℓ⟩) :=
2

π
arccos |⟨ψℓ |ψ̄ℓ⟩| ∈ [0, 1].

Here, we assume that both |ψ̄ℓ⟩ and |ψℓ⟩ are normalized.

• Subspace distances: Another standard quantitative measure is the subspace distance defined as follows. Given
A ∈ RN×K and B ∈ RN×K , the normalized subspace distance between the column subspaces of the two matrices is
defined as

d(A,B) := 1− 1

K
tr(PQ),

where P = A(A⊺A)−1A⊺ ∈ RN×N and Q = B(B⊺B)−1B⊺ ∈ RN×N are the projection matrices onto the column
subspaces of A and B, respectively. We note that A and B correspond to the learned and ground truth eigenfunctions
that correspond to a given subspace as above.

The reported measures in Fig. 4 are averaged versions of the quantities defined above, except the orthogonality.

• Relative errors in eigenvalues: Report the average of the absolute relative errors over the eigenstates.

• Angle distance: Report the average of the angle distances over the eigenstates.

• Subspace distance: Report the average of the subspace distances over the degenerate subspaces.

• Orthogonality: To measure the orthogonality of the learned eigenfunctions, we report

1

N2

L∑
ℓ=1

L∑
ℓ′=1

(⟨ψ̃ℓ |ψ̃ℓ′⟩ − δℓℓ′)2.

E.2. Cross-Domain Retrieval with Canonical Dependence Kernel

We used the Sketchy Extended dataset (Sangkloy et al., 2016; Liu et al., 2017) to train and evaluate our framework. There
are total 75,479 sketches (x) and 73,002 photos (y) from 125 different classes.

We followed the standard training setup in the literature (Hwang et al., 2020).

• Sampling distribution. As described in the main text, we define a sampling distribution as follows. First, note that we
are given (empirical) class-conditional distributions {p(x|c)}Kc=1 and {p(y|c)}Kc=1 for each class c ∈ [K]. Given the
(empirical) class distribution p(c), we define the joint distribution

p(x, y) := Ep(c)[p(x|C)p(y |C)].

That is, in practice, to draw a sample from p(x, y), we can draw C ∼ p(c), and draw (X,Y ) ∼ p(x|C)p(y|C).
• Pretrained fetures. We used a pretrained VGG16 network (Simonyan & Zisserman, 2015) to extract features of the

sketches and images. The pretrained VGG network and train-test splits for evaluation are from the codebase8 of (Dutta
& Akata, 2019). Hence, each sketch and photo is represented by a 512-dim. feature from the VGG network.

8https://github.com/AnjanDutta/sem-pcyc
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• Architecture. Treating the 512-dim. pretrained features as input, we used a single one-layer MLP of 8192 hidden units
whose output dimension is 512. At the end of the network, we regularized the output so that the norm of the output has
ℓ2-norm less than equal to µ = 16, i.e., ∥f(x)∥2 ≤ µ for every x.

• Optimization. We trained the network for 10 epochs with batch size of 4096. We used the SGD optimizer with learning
rate 5× 10−3 and momentum 0.9, together with the cosine learning rate schedule (Loshchilov & Hutter, 2016).

Evaluation Metrics. Precision@k and mean average precision are widely used metrics for evaluating a retrieval system
such as search engines (Salton & McGill, 1986). When k items are retrieved for a query, Precision@k (P@k) is defined as
the number of relevant items (i.e., the number of photos of the same class as a query sketch in our scenario) divided by k.
Average precision (AP) is also defined for a certain query point. When there are n photos in the candidate pool, the AP is
defined as

∑n
k=1 P (k)× (R(k)−R(k − 1)), where P (k) denotes P@k and R(k) denotes Recall@k, which is defined as

the number of relevant items in the k retrievals divided by the total number of relevant items (i.e.,, number of “all” photos of
the same class as a query sketch). Then, finally, the mean average precision (mAP) is defined as the average of all average
precision over all possible queries.
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