
Thought Manipulation: External Thought Can Be Efficient for Large
Reasoning Models

Anonymous ACL submission

Abstract001

Recent advancements in large reasoning mod-002
els (LRMs) have demonstrated the effective-003
ness of scaling test-time computation to en-004
hance reasoning capabilities in multiple tasks.005
However, LRMs typically suffer from “over-006
thinking” problems, where models generate007
significantly redundant reasoning steps while008
bringing limited performance gains. Existing009
work relies on fine-tuning to mitigate over-010
thinking, which requires additional data, un-011
conventional training setups, risky safety mis-012
alignment, and poor generalization.013

Through empirical analysis, we reveal an im-014
portant characteristic of LRM behaviors that015
placing external CoTs generated by smaller016
models between the thinking token (<think>017
and </think>) can effectively manipulate018
the model to generate fewer thoughts. Build-019
ing on these insights, we propose a simple020
yet efficient pipeline, ThoughtMani, to en-021
able LRMs to bypass unnecessary interme-022
diate steps and reduce computational costs023
significantly. We conduct extensive experi-024
ments to validate the utility and efficiency of025
ThoughtMani. For instance, when applied026
to QwQ-32B on the LiveBench/Code dataset,027
ThoughtMani keeps the original performance028
and reduces output token counts by approx-029
imately 30%, with little overhead from the030
CoT generator. Furthermore, we find that031
ThoughtMani enhances safety alignment by032
an average of 10%. Since model vendors typi-033
cally serve models of different sizes simulta-034
neously, ThoughtMani provides an effective035
way to construct more efficient and accessible036
LRMs for real-world applications.037

1 Introduction038

Recent advancements in large reasoning models039

(LRMs) have demonstrated the great potential of040

incorporating long-thinking processes in enhanc-041

ing reasoning capabilities for complex tasks (Plaat042

et al., 2024; Xu et al., 2025). By leveraging043

reinforcement learning (RL), LRMs are trained 044

to generate step-by-step chain-of-thought (CoT) 045

reasoning, breaking down problems into smaller 046

components and performing multiple checks be- 047

fore arriving at a final response (OpenAI, 2025a; 048

Team et al., 2025a; Shao et al., 2024). Models 049

like DeepSeek-R1 (DeepSeek-AI et al., 2025) and 050

QwQ (Team, 2025) exemplify the effectiveness 051

of this method, showcasing substantial improve- 052

ments in reasoning accuracy. 053

Despite the improved performance, scaling up 054

CoT often requires exponentially larger computa- 055

tional resources (Sui et al., 2025). Models like 056

QwQ typically consume 5 to 10 times more tokens 057

to reach conclusions compared to standard ap- 058

proaches. Previous studies introduce “overthink- 059

ing” to describe the phenomenon that unneces- 060

sary steps may lead to inefficiencies, particularly 061

in simple questions (Chen et al., 2024). This inef- 062

ficiency not only undermines the utility of LRMs 063

in time-sensitive scenarios but also leads to addi- 064

tional computational resource consumption, fur- 065

ther degrading overall system performance. 066

Existing work has explored fine-tuning-based 067

techniques to mitigate inefficiencies related to 068

overthinking (Chen et al., 2024; Sui et al., 2025). 069

They rely on constructing datasets that consist of 070

different reasoning compression patterns, either 071

skipping less critical tokens (Xia et al., 2025) or 072

introducing task arithmetic (Ma et al., 2025) to 073

manipulate the parameter. However, these fine- 074

tuning-based methods require additional data col- 075

lection, leading to increased costs. Addition- 076

ally, fine-tuning may introduce safety misalign- 077

ment (Liu et al., 2024b; Yi et al., 2024; Gong et al.) 078

To solve the problem, we delve into the inher- 079

ent characteristics of when an LRM enters and ex- 080

its its “thinking” state. Specifically, we examine 081

how LRMs behave when presented with human- 082

provided thoughts framed within explicit think- 083

ing tokens (<think> and </think>) during the 084

1

prompt phase. Through empirical analysis, we un-085

cover the following distinct patterns in the behav-086

ior of LRMs trained via different methods. For087

RL-based LRMs, these models continue generat-088

ing thoughts until they “perceive” that sufficient089

reasoning has been conducted, irrespective of en-090

countering the closing </think> token. For091

Distillation-based LRMs, they terminate the rea-092

soning process immediately upon encountering a093

</think> token, regardless of the quantity or094

quality of thoughts generated.095

Given these insights, we propose096

ThoughtMani, a training-free method to re-097

duce the computational cost generated due098

to the “overthinking” problem. By providing099

a reasoning process generated by a smaller100

non-reasoning model (CoT generator), e.g.,101

Qwen-2.5-7b-instruct (Yang et al., 2024), and102

inserting it between thinking tokens, the rea-103

soning model, e.g., QwQ, can directly extract104

sufficient information from the provided thoughts,105

thus bypassing unnecessary intermediate steps.106

Since the CoT generators normally cost much107

less computational resources than the reasoning108

models, ThoughtMani can significantly reduce109

the inference cost.110

We comprehensively evaluate ten different111

compression techniques (replicated three times112

each) across three LRMs on four diverse datasets.113

Additionally, we perform ablation studies to ana-114

lyze the key factors in the proposed method, en-115

suring a thorough validation of its effectiveness116

and robustness. For instance, when using Qwen-117

2.5-7B-Instruct as the CoT generator for QwQ-118

32B on the GSM-8k dataset, ThoughtMani re-119

duces the output token count by approximately120

40% (from 1,791 to 1,075 tokens), with an aver-121

age additional cost of only 52 tokens from the CoT122

generator. Additionally, we investigate the safety123

performance of ThoughtMani and find that it pro-124

vides an average safety gain of approximately 10%125

in most cases, whereas other fine-tuning-based126

methods exhibit a safety drop of 7%. These re-127

sults demonstrate that our method not only signif-128

icantly reduces computational overhead but also129

maintains the reasoning accuracy and enhances the130

safety alignment of LRMs.131

Our contribution can be summarized as follows:132

• We reveal a unique pattern of LRMs when ex-133

ternal thoughts are given, which sheds light on134

LRMs’ characteristics. Specifically, we uncover135

how RL-based and distillation-based LRMs dif- 136

fer in their handling of provided CoT, offering 137

insights into their reasoning mechanisms and 138

decision-making processes. 139

• We propose a training-free inference pipeline, 140

ThoughtMani, to reduce redundant reasoning 141

tokens. By leveraging smaller CoT genera- 142

tors and strategically inserting thoughts within 143

the reasoning process, our approach achieves 144

significant computational savings without com- 145

promising performance or requiring additional 146

training resources. 147

• Extensive experiments on three models and 148

four datasets validate the superiority of 149

ThoughtMani in terms of utility, efficiency, 150

and safety. Our results demonstrate consistent 151

improvements across diverse datasets and tasks, 152

highlighting its practical applicability and 153

robustness in real-world scenarios. 154

2 Related Work 155

2.1 Large Reasoning Model 156

By scaling up training data size and model 157

size, large language models (LLMs) have de- 158

veloped powerful language understanding and 159

generation capabilities (Zhao et al., 2023), 160

such as GPT-4o (Hurst et al., 2024) and 161

DeepSeekv3 (DeepSeek-AI et al., 2024), enabling 162

rapid and coherent responses to user inputs. How- 163

ever, these models perform poorly when facing 164

complex reasoning and logical analysis tasks (Xu 165

et al., 2025; Zhao et al., 2023), falling far short 166

of human cognitive levels. To address this issue, 167

recent studies focus on improving the capability 168

of language models by utilizing more inference- 169

time computation instead of simply scaling model 170

parameters (Snell et al., 2024). This line of 171

research has already outcome many powerful 172

LRMs such as DeepSeek-R1 (DeepSeek-AI et al., 173

2025), OpenAI-o1/o3 (OpenAI, 2025a,b), and 174

QwQ (Team, 2025), which shift from fast, intu- 175

itive processing to structured, step-by-step reason- 176

ing. Deeper reasoning capabilities enable these 177

LRMs to make remarkable improvements when 178

tackling challenging tasks like advanced mathe- 179

matics and logical reasoning (Team et al., 2025b). 180

2.2 Chain-of-Thought Compression 181

Despite the improved capabilities, introducing in- 182

termediate CoTs brings additional token overhead. 183

2

To enable efficient inference without performance184

degradation, one line of research is to shorten185

the length of CoT while maintaining its effec-186

tiveness. For traditional LLMs, lots of efforts187

have been put into reducing redundant steps (Ding188

et al., 2024; Liu et al., 2024a; Ma et al., 2025) or189

skipping less-important tokens (Han et al., 2024;190

Xia et al., 2025) Another line is to represent the191

CoT using latent space compression (Deng et al.,192

2024; Cheng and Van Durme, 2024), which uti-193

lize embeddings instead of tokens to serve as the194

CoT. With the development of LRMs, the exten-195

sive inherent thinking process not only improves196

the reasoing capability, but also bring computa-197

tion inefficiency (Chen et al., 2024). Existing198

work mainly relies on fine-tuning to control model199

behaviors (Xia et al., 2025; Ma et al., 2025).200

However, these fine-tuning require additional data201

and is prohibitively expensive for larger models202

like (DeepSeek-AI et al., 2025) and introduce un-203

expected safety misalignment (Liu et al., 2024b;204

Yi et al., 2024).205

3 Thought Manipulation206

In this section, we investigate when an LRM enters207

and exits its “thinking” state. A key observation is208

that all thoughts generated by LRMs are consis-209

tently framed within designated thinking tokens,210

specifically <think> and </think>. This con-211

sistent pattern intuitively suggests that inserting a212

pre-generated CoT between explicit thinking to-213

kens may allow the model to effectively utilize214

this external reasoning, thereby reducing the ne-215

cessity to internally generate intermediate reason-216

ing steps. To validate this hypothesis, we first ran-217

domly collect 100 samples each from the GSM-218

8k and MATH-500 datasets, which are widely219

used datasets for benchmarking the model’s rea-220

soning ability. We then select several Qwen series221

models (Yang et al., 2024), including Qwen-Max,222

Qwen-Plus, Qwen-2.5-7B-Instruct, and Qwen-223

2.5-3B-Instruct, to generate high-level ideas for224

solving the problems. The generation process is225

guided by the provided prompt in Appendix A,226

which focuses solely on high-level reasoning steps227

without delving into detailed calculations or pro-228

ducing final answers. By employing CoTs across229

models of different scales, we obtain CoTs with230

different levels of quality.231

Next, we insert generated thoughts, which are232

enclosed within <think> and </think> to-233

Table 1: Number of occurrences of </think> in the
response using different models to generate CoT, which
indicates the frequency of rethinking. The dataset is
sampled from the original one.

Dataset Model CoT Template – standard
3b 7b plus max

GSM-8k
Distill-qwen-14b 0 0 0 0
Distill-qwen-32b 0 0 0 0

QwQ-32B 89 59 38 44

MATH-500
Distill-qwen-14b 3 3 0 0
Distill-qwen-32b 0 0 0 0

QwQ-32B 171 112 94 89

kens, at the end of a standardized inference tem- 234

plate, together with the user’s prompts. The 235

code example is shown in Appendix A. The 236

template is then used to invoke LRMs such 237

as QwQ and Deepseek-Distillation-Qwen-2.5- 238

32b(14b)-instruct. This placement allows us to ob- 239

serve how effectively the LRMs leverage the pro- 240

vided CoTs to streamline their reasoning process 241

and reduce unnecessary intermediate steps. 242

By analyzing the outputs of these models, we 243

try to figure out whether the externally provided 244

CoTs in the prompt can help LRMs reduce redun- 245

dant reasoning. Specifically, we count the num- 246

ber of occurrences of the </think> in the gen- 247

erated response to provide insights into how often 248

the model starts to rethink. An example of rethink- 249

ing is provided in Appendix A. 250

Inference Template

<|im_start|> User: [Question]
<|im_end|>
<|im_start|> Assistant: <|im_end|>
<think> [Generated Thought] </think>

251

The results are shown in Table 1, and we con- 252

duct additional experiments in Appendix A to 253

show that an insert like that is a more optimal ap- 254

proach to manipulate the thought than other tem- 255

plates. For RL-based LRMs, even when a CoT is 256

provided between the <think> and </think> 257

tokens, the model still generates its own thoughts 258

in many cases. We observe that providing higher- 259

quality (e.g., Qwen-max) CoTs can effectively re- 260

duce the presence of rethinking. 261

Additionally, given CoT generated by Qwen- 262

2.5-7b as an example, on the Math-500 dataset, the 263

average difficulty level (identified by the ‘level’ 264

3

data of the dataset) of the problem with/without265

rethinking is 3.58/2.96 out of 5. This suggests266

that while RL-based LRMs rely on their internal267

judgment of sufficient reasoning, they can be in-268

fluenced by the quality of external thoughts.269

In contrast, distillation-based LRMs show a dif-270

ferent behavior. These models hardly generate ad-271

ditional thoughts beyond the provided CoT and272

start the final response when encountering the273

</think> token. This indicates that distillation-274

based LRMs may not truly “understand” the con-275

cept of reasoning or thinking. Instead, their behav-276

ior is primarily driven by pattern-following skills277

learned during supervised fine-tuning. Based on278

these observations, the findings can be summa-279

rized as follows:280

• For RL-based LRMs, these models continue281

generating thoughts until they internally “per-282

ceive” that sufficient reasoning has been con-283

ducted, regardless of whether the closing284

</think> token is encountered. The quality285

of the provided CoT can influence the extent286

of additional reasoning. The LRMs rethink the287

harder problems more frequently.288

• For distillation-based LRMs, these models ter-289

minate their reasoning process immediately290

upon encountering the </think> token, irre-291

spective of the quantity or quality of thoughts292

provided. This behavior reflects a reliance on293

pattern-matching rather than an understanding294

of the reasoning process.295

Based on these observations, we further propose296

our method, ThoughtMani, to leverage this behav-297

iors and improve reasoning efficiency in LRMs.298

4 Pipeline of ThoughtMani299

In this section, we design an inference pipeline300

that innovatively involves a small model to gener-301

ate CoT and concatenates it at the end of the infer-302

ence template. The following prompt guides the303

CoT generation.304

CoT Generation - ThoughtMani

“If you are a teacher, you are listing the im-
portant key points for solving the problem and
no calculation details should be included. You
are not allowed to produce any final answer.
Add <STOP> when the key points are fin-
ished. You may provide **only very high-

305

Algorithm 1: ThoughtMani Pipeline
Input: A dataset D = {q1, q2, . . . , qn}

containing problems, a CoT
generator model G, a reasoning
model M

Output: Final responses {r1, r2, . . . , rn}
for each problem in D.

TMani ←
<|im_start|>User : [Question] <|im_end|>
<|im_start|>Assistant : <|im_end|>
<think> [CoT] </think> ;
TOri ←
<|im_start|>User : [Question] <|im_end|>
<|im_start|>Assistant : <|im_end|>
<think> ;

for each problem qi ∈ D do
Ci ← G(qi) // Generate CoTs
if Ci = <STOP> then

Ti ← TOri[Question← qi]
// Format TOri with qi

else
Ti ← TMani[Question← qi,CoT←

Ci] // Format TMani
with qi and Ci

ri ←M(Ti) // Obtain final
response from M

Append ri to the output set
{r1, r2, . . . , rn} ;

return {r1, r2, . . . , rn}

level ideas** for solving the problem, no cal-
culation details should be included. If you feel
that you cannot solve it, output <STOP> and
return.”

306

Compared to the previous CoT generation ap- 307

proach, the key difference is that we prompt the 308

model to produce a stopping identifier when en- 309

countering highly complex problems. This strat- 310

egy aims to fully leverage the reasoning capabil- 311

ities of LRMs for challenging scenarios while re- 312

maining efficient for simpler questions. 313

Specifically, if the generated CoT only contains 314

“STOP”, we drop it and use the original infer- 315

ence template, which aims to prevent the incorrect 316

CoTs from misleading the LRMs. The detailed 317

pipeline is shown in Algorithm 1. 318

4

5 Experiment319

5.1 Experimental Setup320

Datasets. To evaluate the effectiveness of the pro-321

posed CoT-reduced reasoning process, we select322

four different datasets, covering reasoning ability323

in both math and coding. For reasoning, we select324

three widely used math datasets, including AIME-325

2024 (Maxwell-Jia, 2024), GSM-8k (Cobbe et al.,326

2021) and MATH-500 (Lightman et al., 2023).327

For coding, we select the coding category from328

LiveBench (White et al., 2024). To evaluate the329

safety of the model response, we select the Wild-330

Jailbreak (Jiang et al., 2024) as the target dataset,331

which transforms harmful queries with randomly332

sampled in-the-wild jailbreak tactics including-333

GCG (Zou et al., 2023), AutoDAN (Liu et al.,334

2023), DeepInception (Li et al., 2023), etc. It con-335

tains over 2,000 adversarial jailbreak prompts.336

Metrics. We quantify the performance from three337

perspectives, i.e., utility, efficiency, and safety. For338

utility, we extract answers via string matching for339

the AIME, GSM-8k, and MATH-500 datasets. Re-340

garding the coding dataset, we follow the official341

guidance and report the pass@1 metric on pri-342

vate test cases. For efficiency, we compute the343

generated tokens from the reasoning model and344

the additional tokens produced by the CoT gen-345

erators. The total cost of generation is evaluated346

as the sum of these two components. Since the347

CoTs are generated by smaller models, the cost348

of producing these additional tokens is signifi-349

cantly lower compared to the computational ex-350

pense of the larger reasoning model. For safety,351

we utilize a widely used safety moderator, Llama-352

Guard-3-8B (Grattafiori et al., 2024), to evaluate353

the safety of model output. If the response is un-354

safe, the moderator will output “unsafe”, followed355

by the reason; otherwise, the moderator will out-356

put “safe.”357

Models. Regarding CoT generators, we con-358

sider Qwen-series (Yang et al., 2024), including359

Qwen-Max, Qwen-Plus, Qwen-2.5-7B-Instruct,360

and Qwen-2.5-3B-Instruct. Since we need to ac-361

curately manipulate the inference template in the362

stated approach, we only consider local open-363

source LRMs. Regarding RL-based LRMs, we364

select QwQ-32B (Team, 2025), which is derived365

by RL from Qwen-2.5-32B-Instruct. Regard-366

ing distillation-based LRMs, we select Deepseek-367

Distillation-Qwen-2.5-14B-Instruct and its 32B368

version, which distills the CoT generated from 369

DeepSeek-R1 on Qwen series (DeepSeek-AI 370

et al., 2025). Specifically, we use a 4-bit 371

AWQ (Lin et al., 2024) quantized version of 372

these models to save GPU memory and utilize the 373

vLLM (Kwon et al., 2023) framework for efficient 374

inference. Regarding the decoding algorithm, we 375

follow their official guideline1 and use greedy de- 376

coding to generate the outputs, where temperature 377

is set to 0.7 and top-p is set to 0.95. In the effi- 378

ciency and utility experiment, the max output to- 379

ken number of the AIME-2024 dataset is set to 380

30,000 due to the problem complexity, while we 381

set the max output token number to 20,000 for the 382

remaining datasets. 383

Baselines. We take the following methods as our 384

baselines: 385

• Empty Thought works like ThoughtMani while 386

placing empty CoT within the thinking tokens. 387

• Truncation directly terminates the thinking pro- 388

cess by interrupting the generation when a pre- 389

defined thinking budget is met and inserting a 390

</think> token to output the answer. Specifi- 391

cally, we cut 50% length of the original thinking 392

process. 393

• Prompt Reduction (Ding et al., 2024) provides 394

specific instructions like “Let’s quickly con- 395

clude the answer without showing step-by-step 396

reasoning.” to reduce the thinking process. 397

• Tokenskip (Xia et al., 2025) first constructs a 398

dataset where less important tokens are pruned 399

and fine-tunes the models on the compressed 400

dataset to enable the model to selectively skip 401

the redundant tokens in inference. For GSM-8k 402

and MATH-500, we first fine-tune the model on 403

the training set and evaluate the performance on 404

the test set, where the training dataset has 7,453 405

and 7,500 problems, respectively. Since AIME- 406

2024 and Code have no official training set, we 407

transfer the tuned model from MATH, which in- 408

cludes more challenging problems. 409

• CoT-Valve (Ma et al., 2025) utilizes interpola- 410

tion of the LLMs’ and LRMs’ parameters to 411

collect CoTs of varying lengths, followed by 412

progressively fine-tuning the LRMs to compress 413

the length of CoT. We fine-tune the model on 414

their officially provided dataset, i.e., MixChain- 415

Z-GSM8K (6,863 samples), and select the best 416

1https://huggingface.co/Qwen/QwQ-32B

5

https://huggingface.co/Qwen/QwQ-32B

Table 2: Efficiency and Utility Results: Utility is reported by Accuracy and Pass@1 for different datasets (repli-
cated three times each). Efficiency is reported by the number of generated tokens. Full and Empty represent
inference with vanilla and EmptyThought, respectively. Prompt represents inference with Prompt Reduction. For
ThoughtMani, we additionally reported the number of generated CoT tokens, which represents the additional cost.

AIME-2024 GSM-8k MATH-500 Livebench/Coding
Method Acc Tokens CoT Acc Tokens CoT Acc Tokens CoT Pass@k Tokens CoT

QwQ-32B

Full 70.0 13661 95.3 1791 88.5 4537 66.7 6840
Empty 40.0 12085 95.1 1552 80.4 4321 64.3 5865
Prompt 43.3 10897 93.1 665 82.2 3190 63.5 6518

Truncation 36.7 12508 95.7 1624 81.0 4938 57.8 4128
TokenSkip 50.0 11172 94.4 536 86.8 3225 65.9 4269
CoT-Valve 74.4 14199

-

95.5 1697

-

89.2 4546

-

74.6 6714

-

ThoughtMani- 3b 70.0 14329 11 95.3 1725 7 86.1 4077 22 65.6 6842 2
ThoughtMani- 7b 70.0 13101 77 94.0 1075 52 86.0 3526 56 62.2 4409 120
ThoughtMani- Plus 75.6 11400 209 93.5 961 79 86.7 2792 141 64.1 4461 137
ThoughtMani- Max 60.0 9607 568 93.9 759 132 85.6 2335 209 60.9 4209 183

Deepseek-Distillation-Qwen-2.5-32B-Instruct

Full 68.9 9915 88.3 439 84.0 2973 60.2 6777
Empty 43.3 9032 89.7 223 69.4 609 43.2 737
Prompt 50.0 8808 89.6 370 78.2 2167 57.3 5882

Truncation 30.0 4638 88.8 267 75.8 1760 54.7 10103
TokenSkip 40.0 3455 89.4 423 76.6 1567

-

49.5 6084
CoT-Valve 63.3 10359

-

88.8 478

-

82.1 2856 60.2 6012

-

ThoughtMani- 3b 62.2 10210 11 88.3 415 7 82.6 2526 22 59.1 6557 2
ThoughtMani- 7b 54.3 7985 77 86.8 292 52 79.4 2170 56 41.7 528 120
ThoughtMani- Plus 20.1 2076 209 87.5 263 79 68.3 554 141 45.8 528 137
ThoughtMani- Max 21.1 1482 568 88.7 267 132 67.8 562 209 44.5 465 183

Deepseek-Distillation-Qwen-2.5-14B-Instruct

Full 31.1 8273 87.6 756 65.3 2392 54.7 6871
Empty 30.0 8215 75.2 216 63.8 796 33.6 657
Prompt 33.3 8803 88.3 516 65.2 1904 54.9 6312

Truncation 26.7 5204 84.2 214 62.6 1627 46.9 9245
TokenSkip 30.0 8503 89.3 314 73.2 1356 0.0 10750
CoT-Valve 15.0 10967

-

86.7 681

-

62.9 2190

-

56.2 6042

-

ThoughtMani- 3b 19.9 8649 11 86.4 691 7 65.2 2080 22 53.9 6670 2
ThoughtMani- 7b 24.4 7952 77 85.7 356 52 69.2 1742 56 38.5 588 120
ThoughtMani- Plus 16.6 2209 209 88.1 272 79 65.4 600 141 39.6 625 137
ThoughtMani- Max 18.8 1838 568 89.6 281 132 64.6 595 209 37.0 523 183

model for comparison. Specifically, we choose417

CoT-Valve+P as the fine-tuning pattern.418

5.2 Efficiency and Utility Performance419

The main results of our experiments are shown in420

Table 2. EmptyThought can effectively reduce the421

tokens on the distillation-based models at the cost422

of performance, while showing limited effects on423

RL-based models. Prompt Reduction and Trunca-424

tion can decrease token counts to some extent, but425

the reduction varies unpredictably, and the associ-426

ated performance drop can be substantial. For To-427

kenskip, the performance of in-domain cases, i.e.,428

GSM-8k and MATH-500, is competitive in both429

utility and efficiency, while showing limited abil-430

ity to transfer to other datasets. For CoT-Vavle,431

the reproduced performance shows increased util-432

ity while the compression ability is usually. 433

Generally, ThoughtMani shows competitive 434

performance. For the RL-based model (QwQ), 435

ThoughtMani with four different CoT generators 436

reduces the response length by 1%, 18%, 26%, 437

and 37% with 1.5%, 2.8%, 0.8%, and 7.2% per- 438

formance drop for the average on four differ- 439

ent datasets. For the distillation-based models, 440

ThoughtMani with four different CoT generators 441

reduces the response length by 2%, 45%, 82%, 442

and 86% with a relatively higher 4.5%, 11.5%, 443

20.4%, and 18.2% performance drop for the aver- 444

age on four different datasets. Since smaller CoT 445

generators may refuse to provide CoT in many 446

hard cases and return empty thoughts, this makes 447

the average CoT length relatively short. 448

Larger CoT Generators Are Not Better. Across 449

6

various experiments, we observe that using450

stronger CoT generators, such as Qwen-Max,451

can negatively impact the performance of our452

ThoughtMani inference framework. Larger mod-453

els generate more specific and detailed CoT pro-454

cesses. While these detailed thoughts may appear455

helpful, they often contain hallucinations or rea-456

soning paths that are misaligned with the LRM’s457

expectations, leading to suboptimal performance.458

In contrast, as discussed in Section 4, we459

prompt the CoT generator to return an identifier460

(e.g., <STOP>) when the problem is too complex461

to provide meaningful insights. Due to their rela-462

tively limited reasoning capabilities, smaller mod-463

els tend to reject generating detailed thoughts and464

leave the heavy burden to the LRM. Generally, we465

find Qwen-2.5-7b-Instruct is the optimal or subop-466

timal solution in nearly all scenarios.467

RL-based LRMs Benefits More. Our find-468

ings indicate that RL-based LRMs benefit more469

significantly from external CoTs compared to470

distillation-based LRMs. This is because RL-471

based LRMs are trained to dynamically evaluate472

the sufficiency of their reasoning process with re-473

wards. Given the observation in Section 3, the RL-474

based model has the capability to “rethink”, thus475

dynamically deciding when to accept the external476

CoT and when to rethink to support and revise the477

provided insufficient information. As a result, RL-478

based LRMs are less sensitive to the quality of pro-479

vided while preserving the accuracy and utility.480

On the other hand, distillation-based LRMs,481

which rely more heavily on pattern-matching482

during training, tend to terminate their reason-483

ing process immediately upon encountering the484

</think> token, regardless of the quality or485

completeness of the provided CoT. This rigid-486

ity limits their ability to fully utilize external487

thoughts, resulting in less pronounced gains com-488

pared to RL-based models.489

5.3 Safety Performance490

Despite the improved efficiency, it remains unclear491

whether the efficiency-oriented methods will in-492

fluence the safety performance. To fill this gap, we493

evaluate the robustness of ThoughtMani, along494

with other baselines, against jailbreak prompts.495

We generate the CoT and response using the496

pipeline stated in Section 4 and set the model497

length to 10,000. The experiment compares498

the performance across different baselines and499

Table 3: Safety Results: Safety is reported based on
the judgment from Llama-Guard-3-8B, which assigns
scores within a range of 100. Higher values indicate
safer responses.

QwQ Qwen-32B-distill Qwen-14B-distill

Full 66.33 65.48 64.80
Empty 95.56 98.18 95.97
Prompt 79.35 66.86 72.70

Truncation 95.79 71.67 73.85
TokenSkip 73.30 60.07 61.40
CoT-Valve 64.40 34.67 72.26

ThoughtMani-3b 70.41 64.98 65.66
ThoughtMani-7b 66.47 60.68 65.11
ThoughtMani-Plus 77.92 74.34 75.07
ThoughtMani-Max 74.03 71.45 73.48

Figure 1: Relation between Model Performance and
Token Budgets: Bar plot represents the token con-
sumption and line plot represents the model utility (Ac-
curacy or Pass@1)

ThoughtMani with different CoT generators. The 500

results are shown in Table 3. Benefit from the CoT 501

generated by well-aligned non-reasoning models, 502

we find that ThoughtMani improves the model 503

safety by 10% on average, while the fine-tuning- 504

based methods show an average 7% safety drop. 505

Additionally, an interesting observation is that 506

empty or truncated thoughts can effectively im- 507

prove safety performance, while the mechanism 508

remains to be further discussed. These findings 509

uncover an important yet largely ignored aspect of 510

the current study. 511

5.4 Dataset-specific CoTs 512

For the Code dataset, the task involves coding 513

rather than mathematical reasoning, and we eval- 514

uate the impact of using task-specific system 515

7

Table 4: Performance of Utilizing CoTs generated from Different Prompts The results are reported using
Pass@1 and number of generated tokens. Normal represents using original COTs, while Specific represents using
the task-specific CoTs.

QwQ-32B Deepseek-Distillation-Qwen-2.5-32B-Instruct Deepseek-Distillation-Qwen-2.5-14B-Instruct

Normal Specific Normal Specific Normal SpecificMethod

Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens Pass@1 Tokens

ThoughtMani- 3b 65.6 6842 64.1 7009 59.1 6557 55.7 6163 53.9 6670 54.4 6535

ThoughtMani- 7b 62.3 4409 61.7 4485 41.7 528 42.4 627 38.5 588 35.9 582

ThoughtMani- Plus 64.1 4461 61.9 4408 45.8 528 45.3 539 39.8 625 41.9 536

ThoughtMani- Max 60.9 4209 62.2 4181 44.5 465 41.1 577 36.9 523 38.8 572

prompts for CoT generators. In the common516

setting, we utilize the general prompt described517

in Section 4, which is designed to generate high-518

level reasoning steps applicable to a wide range of519

tasks. For the code generation task, we modify the520

prompt slightly to emphasize the coding scenario,521

while still adhering to the principle of providing522

only high-level ideas without delving into imple-523

mentation details. Prompts and the comparison of524

the generated CoTs are shown in Appendix B.525

The results, shown in Table 4, reveal no sig-526

nificant performance difference between the two527

settings. This finding highlights the one-for-all528

property of our approach: the general CoT gen-529

eration framework is robust enough to handle di-530

verse tasks without requiring task-specific adjust-531

ments. In other words, ThoughtMani demon-532

strates strong adaptability across domains, elimi-533

nating the need for choosing different CoT tem-534

plates for different types of problems.535

5.5 Performance under Different Token536

Budgets537

For more challenging datasets, such as AIME and538

Code, the inference process of RL-based LRMs539

typically demands a significant number of tokens540

to achieve high-quality reasoning. To systemat-541

ically study the impact of token budgets on per-542

formance, we adjust the max_model_length pa-543

rameter during inference and evaluate the corre-544

sponding outcomes. Specifically, for the AIME545

dataset, we set the maximum token length to546

10,000, 20,000, and 30,000, while for the Code547

dataset, we use 10,000, 15,000, and 20,000. The548

results are presented in Figure 1. Generally, as549

the max_model_length increases, the accuracy im-550

proves while maintaining inference efficiency.551

An interesting observation is that the per-552

formance gap between the baseline and553

ThoughtMani is more pronounced when the554

token budget is limited. One possible explanation 555

is that the externally generated CoTs, especially 556

for very hard problems, may include hallucina- 557

tions or insufficient information. In such cases, 558

the LRM compensates by generating additional 559

thoughts to supplement the provided CoTs, 560

showcasing one limitation of ThoughtMani. In 561

contrast, for simpler datasets like GSM-8k, where 562

most questions can be resolved within fewer than 563

1,000 tokens, this performance gap does not exist. 564

These findings underscore the importance of 565

balancing token budgets with problem complex- 566

ity. While ThoughtMani demonstrates benefits 567

in reducing computational overhead, it shows 568

effectiveness more evidently in scenarios where 569

the token budget is sufficient. 570

6 Conclusion 571

In this paper, we propose ThoughtMani, a sim- 572

ple yet efficient inference pipeline, and reveal 573

an important characteristic of LRM behaviors. 574

Through extensive experiments, we demonstrate 575

that ThoughtMani can significantly reduce com- 576

putational costs while keeping the utility. By 577

providing a practical solution to improve effi- 578

ciency without compromising utility or safety, 579

ThoughtMani makes LRMs more accessible for 580

real-world, resource-constrained applications. 581

Implications. Our findings highlight significant 582

implications for LRMs. By understanding the 583

distinct behaviors of RL-trained and distillation- 584

trained LRMs, we can make better-informed de- 585

ployment decisions. Since model vendors typi- 586

cally serve models of different sizes simultane- 587

ously, ThoughtMani offers a practical solution to 588

reduce computational costs while maintaining ac- 589

curacy, making LRMs more efficient and accessi- 590

ble for real-world, resource-constrained scenarios. 591

8

Limitations592

Dataset and Models. Despite extensive experi-593

ments having been conducted, we mainly cover594

the performance of ThoughtMani on mathemat-595

ical and code reasoning tasks, leaving other im-596

portant aspects such as instruction-following and597

function-calling untested. Additionally, since we598

cannot manipulate the inference template of API599

calling, we only employ ThoughtMani for main-600

stream local reasoning models. Further studies on601

different tasks and APIs are encouraged.602

Manipulation for Other Tasks. In this paper,603

we propose ThoughtMani primarily for achieving604

efficient inference. However, the insights gained605

from our study open up several other meaningful606

research directions. One direct application is to607

insert malicious or misleading thoughts into the608

reasoning process to manipulate model behavior.609

Another promising line of research is to investi-610

gate the inherent mechanisms that govern when a611

model stops thinking or how to detect whether a612

model is actively engaged in reasoning. Under-613

standing these dynamics could lead to more pre-614

cise control over the reasoning process, enabling615

better alignment with desired outcomes and fur-616

ther optimizing computational efficiency.617

References 618

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, 619
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, 620
Mengfei Zhou, Zhuosheng Zhang, and 1 others. 621
2024. Do not think that much for 2+3=? on 622
the overthinking of o1-like llms. arXiv preprint 623
arXiv:2412.21187. 624

Jeffrey Cheng and Benjamin Van Durme. 2024. 625
Compressed chain of thought: Efficient reason- 626
ing through dense representations. arXiv preprint 627
arXiv:2412.13171. 628

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 629
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 630
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 631
Nakano, Christopher Hesse, and John Schulman. 632
2021. Training verifiers to solve math word prob- 633
lems. arXiv preprint arXiv:2110.14168. 634

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 635
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao 636
Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang 637
Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, 638
Zhihong Shao, Zhuoshu Li, Ziyi Gao, and 81 oth- 639
ers. 2025. Deepseek-r1: Incentivizing reasoning ca- 640
pability in llms via reinforcement learning. CoRR, 641
abs/2501.12948. 642

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 643
uan Wang, Bochao Wu, Chengda Lu, Chenggang 644
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 645
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 646
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 647
and 81 others. 2024. Deepseek-v3 technical report. 648
CoRR, abs/2412.19437. 649

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024. 650
From explicit cot to implicit cot: Learning to 651
internalize cot step by step. arXiv preprint 652
arXiv:2405.14838. 653

Mengru Ding, Hanmeng Liu, Zhizhang Fu, Jian Song, 654
Wenbo Xie, and Yue Zhang. 2024. Break the chain: 655
Large language models can be shortcut reasoners. 656
arXiv preprint arXiv:2406.06580. 657

Yichen Gong, Delong Ran, Xinlei He, Tianshuo Cong, 658
Anyu Wang, and Xiaoyun Wang. Safety misalign- 659
ment against large language models. 660

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 661
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 662
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 663
ten, Alex Vaughan, and 1 others. 2024. The llama 3 664
herd of models. arXiv preprint arXiv:2407.21783. 665

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu 666
Zhao, Shiqing Ma, and Zhenyu Chen. 2024. 667
Token-budget-aware llm reasoning. arXiv preprint 668
arXiv:2412.18547. 669

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam 670
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 671

9

https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2412.19437

Akila Welihinda, Alan Hayes, Alec Radford, Alek-672
sander Madry, Alex Baker-Whitcomb, Alex Beutel,673
Alex Borzunov, Alex Carney, Alex Chow, Alex Kir-674
illov, Alex Nichol, Alex Paino, and 79 others. 2024.675
Gpt-4o system card. CoRR, abs/2410.21276.676

Liwei Jiang, Kavel Rao, Seungju Han, Allyson Et-677
tinger, Faeze Brahman, Sachin Kumar, Niloofar678
Mireshghallah, Ximing Lu, Maarten Sap, Yejin679
Choi, and Nouha Dziri. 2024. Wildteaming at scale:680
From in-the-wild jailbreaks to (adversarially) safer681
language models. Preprint, arXiv:2406.18510.682

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying683
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.684
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-685
cient memory management for large language model686
serving with pagedattention. In Proceedings of the687
ACM SIGOPS 29th Symposium on Operating Sys-688
tems Principles.689

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,690
Tongliang Liu, and Bo Han. 2023. Deepinception:691
Hypnotize large language model to be jailbreaker.692
arXiv preprint arXiv:2311.03191.693

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri694
Edwards, Bowen Baker, Teddy Lee, Jan Leike,695
John Schulman, Ilya Sutskever, and Karl Cobbe.696
2023. Let’s verify step by step. arXiv preprint697
arXiv:2305.20050.698

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,699
Wei-Ming Chen, Wei-Chen Wang, Guangxuan700
Xiao, Xingyu Dang, Chuang Gan, and Song Han.701
2024. Awq: Activation-aware weight quantization702
for llm compression and acceleration. Preprint,703
arXiv:2306.00978.704

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-705
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.706
2024a. Can language models learn to skip steps?707
arXiv preprint arXiv:2411.01855.708

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei709
Xiao. 2023. Autodan: Generating stealthy jailbreak710
prompts on aligned large language models. arXiv711
preprint arXiv:2310.04451.712

Yule Liu, Zhen Sun, Xinlei He, and Xinyi Huang.713
2024b. Quantized delta weight is safety keeper.714
arXiv preprint arXiv:2411.19530.715

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gong-716
fan Fang, and Xinchao Wang. 2025. Cot-717
valve: Length-compressible chain-of-thought tun-718
ing. arXiv preprint arXiv:2502.09601.719

Maxwell-Jia. 2024. AIME 2024 Dataset. https:720
//huggingface.co/datasets/Maxwel721
l-Jia/AIME_2024.722

OpenAI. 2025a. Introducing openai o1. https://723
openai.com/o1/. Accessed: 01-April-2025.724

OpenAI. 2025b. Openai o3-mini. https://open 725
ai.com/index/openai-o3-mini/. Ac- 726
cessed: 01-April-2025. 727

Aske Plaat, Annie Wong, Suzan Verberne, Joost 728
Broekens, Niki van Stein, and Thomas Back. 2024. 729
Reasoning with large language models, a survey. 730
arXiv preprint arXiv:2407.11511. 731

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 732
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 733
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek- 734
math: Pushing the limits of mathematical rea- 735
soning in open language models. arXiv preprint 736
arXiv:2402.03300. 737

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku- 738
mar. 2024. Scaling llm test-time compute optimally 739
can be more effective than scaling model parame- 740
ters. arXiv preprint arXiv:2408.03314. 741

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu 742
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An- 743
drew Wen, Hanjie Chen, Xia Hu, and 1 others. 744
2025. Stop overthinking: A survey on efficient rea- 745
soning for large language models. arXiv preprint 746
arXiv:2503.16419. 747

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, 748
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun 749
Xiao, Chenzhuang Du, Chonghua Liao, and 1 oth- 750
ers. 2025a. Kimi k1. 5: Scaling reinforcement learn- 751
ing with llms. arXiv preprint arXiv:2501.12599. 752

M.-A-P. Team, Xinrun Du, Yifan Yao, Kaijing Ma, 753
Bingli Wang, Tianyu Zheng, Kang Zhu, Minghao 754
Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, Chu- 755
jie Zheng, Kaixin Deng, Shian Jia, Sichao Jiang, 756
Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, and 77 757
others. 2025b. Supergpqa: Scaling LLM eval- 758
uation across 285 graduate disciplines. CoRR, 759
abs/2502.14739. 760

Qwen Team. 2025. Qwq-32b: Embracing the power of 761
reinforcement learning. 762

Colin White, Samuel Dooley, Manley Roberts, Arka 763
Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz- 764
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, 765
and 1 others. 2024. Livebench: A challenging, 766
contamination-free llm benchmark. arXiv preprint 767
arXiv:2406.19314. 768

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie 769
Wang, and Wenjie Li. 2025. Tokenskip: Control- 770
lable chain-of-thought compression in llms. arXiv 771
preprint arXiv:2502.12067. 772

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, 773
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui 774
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others. 775
2025. Towards large reasoning models: A survey 776
of reinforced reasoning with large language models. 777
arXiv preprint arXiv:2501.09686. 778

10

https://doi.org/10.48550/ARXIV.2410.21276
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2406.18510
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.00978
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://doi.org/10.48550/ARXIV.2502.14739
https://doi.org/10.48550/ARXIV.2502.14739
https://doi.org/10.48550/ARXIV.2502.14739
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

An Yang, Baosong Yang, Beichen Zhang, Binyuan779
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-780
heng Liu, Fei Huang, Haoran Wei, and 1 others.781
2024. Qwen2. 5 technical report. arXiv preprint782
arXiv:2412.15115.783

Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei784
He, Jiaxing Song, Ke Xu, and Qi Li. 2024. Jailbreak785
attacks and defenses against large language models:786
A survey. arXiv preprint arXiv:2407.04295.787

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,788
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen789
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen790
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,791
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and792
3 others. 2023. A survey of large language models.793
CoRR, abs/2303.18223.794

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,795
J Zico Kolter, and Matt Fredrikson. 2023. Universal796
and transferable adversarial attacks on aligned lan-797
guage models. arXiv preprint arXiv:2307.15043.798

A Supplement for Thought799

Manipulation800

Prompt for CoT Generation. The prompt for801

generating the CoT is shown as follows:802

CoT Generation - Standard

“If you are a teacher, you are listing the im-
portant key points for solving the problem and
no calculation details should be included. You
are not allowed to produce any final answer.
Add <STOP> when the key points are fin-
ished. You may provide **only very high-
level ideas** for solving the problem, no cal-
culation details should be included.”

803

Code Example for ThoughtMani Template.804 � �805
1 def process_example(question,806

↪→ external_thought):807
2 messages = [808
3 {"role": "user", "content": f"809

↪→ Question: {question}"},810
4 {"role": "assistant", "content":811

↪→ ""}812
5]813
6 template = tokenizer.814

↪→ apply_chat_template(815
7 messages,816
8 add_generation_prompt=True,817
9 tokenize=False818

10)819
11 if not template.endswith((’<think>’,820

↪→ ’<think>\n’)):821
12 template += ’</think>’822
13 template += f’{external_thought}\n\823

↪→ n</think>’824
14 return template825 � �826

Ablation Study for Optimal Manipulation. Ad- 827

ditionally, we conduct an ablation study to show 828

the effectiveness of placing CoTs, enclosed by 829

<think> and </think>, at the end of the chat 830

template. Specifically, we design the following 831

two cases and represent them using chat templates, 832

where the dashed line represents the start position 833

for model generation. 834

For the first case, we consider placing the CoTs 835

enclosed by thinking tokens within the template, 836

i.e., before <|im_end|>. The experiment results 837

are shown in Table 5. 838

Inference Template - Case 1 (within chat)

<|im_start|> User: [Question]
<|im_end|>
<|im_start|> Assistant:
<think>
[Generated Thought]
</think>
<|im_end|>

839

Table 5: Number of occurrences of </think> in the
response using different models to generate CoT, which
indicates the frequency of rethinking. The dataset is
sampled from the original one.

Dataset Model CoT Template – within chat
3b 7b plus max

GSM-8k
Distill-qwen-14b 86 88 85 86
Distill-qwen-32b 0 0 0 0

QwQ-32B 98 97 86 89

MATH-500
Distill-qwen-14b 164 160 172 155
Distill-qwen-32b 9 1 1 0

QwQ-32B 193 183 184 163

For the second case, we consider directly plac- 840

ing the CoTs enclosed after the template, i.e., after 841

<|im_end|> but without thinking tokens. The 842

experiment results are shown in Table 6. 843

Inference Template - Case 2 (no thinking to-
ken)

<|im_start|> User: [Question]
<|im_end|>
<|im_start|> Assistant: <|im_end|>
[Generated Thought]

844

Rethinking Example. We provide an example for 845

11

https://doi.org/10.48550/ARXIV.2303.18223

Table 6: Number of occurrences of </think> in the
response using different models to generate CoT, which
indicates the frequency of rethinking. The dataset is
sampled from the original one.

Dataset Model CoT Template – no thinking
3b 7b plus max

GSM-8k
Distill-qwen-14b 86 87 91 81
Distill-qwen-32b 0 0 0 0

QwQ-32B 97 81 83 55

MATH-500
Distill-qwen-14b 165 161 172 163
Distill-qwen-32b 12 2 0 0

QwQ-32B 195 193 180 145

rethinking as follows, which is referred to as re-846

generating the thinking process, although external847

thoughts have been provided.848

A Rethinking Example

<|im_start|> User: A tower is made out
of 4 blue blocks, twice as many yellow blocks,
and an unknown number of red blocks. If
there are 32 blocks in the tower in total, how
many red blocks are there? <|im_end|>
<|im_start|> Assistant: <|im_end|>
<think>
[External CoT]
- Identify the number of blue blocks, which is
given as 4.
-Determine the number.
...
</think>

[Inner Thought]
Okay, let’s see here. The problem is about ...
...
Final AnswerThe number of red blocks is
boxed{20}.
[Final Response]
The tower is made up of 4 blue blocks,
...,Thus, the number of red blocks is (
boxed{20}).",

849

B Supplement for Dataset-specific850

Prompt851

Prompt for Code Reasoning. The prompt for852

generating code-specific CoT is shown as follows:853

CoT Generation

“If you are a teacher, you are listing the im-
portant key points for writing code. You are
not allowed to output any Final Code. Add
<STOP> when the key points are finished.
Note that you may provide **only very high-
level ideas** for solving the problem and writ-
ing code. If you feel that you cannot solve it,
output <STOP> and return. ”

854

Difference in Generated CoTs. We provide two 855

examples to demonstrate the difference between 856

the CoTs generated by general and code-specific 857

prompts. The code-specific prompts generally 858

provide more details and reminders for the code- 859

writing task. 860

Example of General CoT

“To solve this problem, follow these key
points: newline 1. Understand that the goal
is to remove elements smaller than ‘k‘ until all
remaining elements are greater than or equal
to ‘k‘.
2. Count how many elements in the array are
less than ‘k‘.
3. The count of such elements will be the min-
imum number of operations required.
<STOP>”

861

Example of Code-specific CoT

“ 1. Initialize a counter to zero, which will
keep track of the number of operations.
2. Iterate through the array ‘nums‘ and count
how many elements are less than ‘k‘.
3. Each element less than ‘k‘ represents one
operation needed to remove it.
4. Return the total count as the minimum num-
ber of operations required.
5. If all elements are already greater than or
equal to ‘k‘, return 0 operations.
<STOP>”

862

12

	Introduction
	Related Work
	Large Reasoning Model
	Chain-of-Thought Compression

	Thought Manipulation
	Pipeline of ThoughtMani
	Experiment
	Experimental Setup
	Efficiency and Utility Performance
	Safety Performance
	Dataset-specific CoTs
	Performance under Different Token Budgets

	Conclusion
	Supplement for Thought Manipulation
	Supplement for Dataset-specific Prompt

