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ABSTRACT

Subgraph representation learning has been effective in solving various real-world
problems. However, current graph neural networks (GNNs) produce suboptimal
results for subgraph-level tasks due to their inability to capture complex interac-
tions within and between subgraphs. To provide a more expressive and efficient
alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for
subgraphs by applying the WL algorithm on induced k-hop neighborhoods. We
combine kernels across different k-hop levels to capture richer structural informa-
tion that is not fully encoded in existing models. Our approach can balance ex-
pressiveness and efficiency by eliminating the need for neighborhood sampling.
In experiments on eight real-world and synthetic benchmarks, WLKS signifi-
cantly outperforms leading approaches on five datasets while reducing training
time, ranging from 0.01x to 0.53x compared to the state-of-the-art.

1 INTRODUCTION

Subgraph representation learning has effectively tackled various real-world problems (Bordes et al.,
2014;|Luo}[2022;Hamidi Rad et al., 2022} Maheshwari et al.|[2024). However, existing graph neural
networks (GNNis) still produce suboptimal representations for subgraph-level tasks since they fail
to capture arbitrary interactions between and within subgraph structures. These GNNs cannot cap-
ture high-order interactions beyond and even in their receptive fields. Thus, state-of-the-art models
for subgraphs have to employ hand-crafted channels (Alsentzer et al [2020), node labeling (Wang
& Zhang| 2022)), and structure approximations (Kim & Oh, 2024) to encode subgraphs’ complex
internal and border structures.

As an elegant and efficient alternative, we generalize graph kernels to subgraphs, which measure
the structural similarity between pairs of graphs. We propose WLKS, the Weisfeiler-Lehman (WL)
Kernel for Subgraphs based on WL graph kernel (Shervashidze & Borgwardt, [2009). Specifically,
we apply the WL algorithm (Leman & Weisfeiler, |1968) on induced k-hop subgraphs around the
target subgraph for all possible ks. The WL algorithm’s output (i.e., the color histogram) for each k
encodes structures in the receptive field of the k-layer GNNs; thus, the corresponding kernel matrix
can represent the similarity of k-hop subgraph pairs. A classifier using this kernel can be trained
without GPUs in a computationally efficient way compared to deep GNNs.

To enhance the expressive power, we linearly combine kernel matrices of different k-hops. The
motivation is that simply using larger hops for WL histograms does not necessarily lead to more
expressive representations. We theoretically demonstrate that WL histograms of the (k + 1)-hop
are not strictly more expressive than those of k-hop in distinguishing isomorphic structures, while
(k -+ 1)-hop structures include entire k-hop structures. Therefore, combining kernel matrices across
multiple k-hop levels can capture richer structural information around subgraphs.

However, sampling k-hop subgraphs can increase the time and space complexity, as the number of
nodes in the k-hop neighborhoods grows exponentially (Hamilton et al., 2017). To mitigate this
issue, we choose only two values of k: 0 and the diameter D of the global graph. No neighborhood
sampling is required for the case where k = 0 since it only uses the internal structure. When £ is set
to the diameter D, the expanded subgraph encompasses the entire global graph, making the k-hop
neighborhood identical for all subgraphs. Consequently, there is no need for explicit neighborhood
sampling in this case; we only perform the WL algorithm on the global graph once. This approach
balances expressiveness and efficiency, providing a practical solution for subgraph-level tasks.
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We evaluate WLKS’s classification performance and efficiency with four real-world and four syn-
thetic benchmarks (Alsentzer et al., |2020). Our model outperforms the best-performed methods
across five of the eight datasets. Remarkably, this performance is achieved with x0.01 to x0.53
training time compared to the state-of-the-art models. Moreover, unlike existing models, WLKS
does not require pre-computation, pre-training embeddings, utilizing GPUs, and searching a large
hyperparameter space.

The main contributions of our paper are summarized as follows. First, we propose WLKS, a gen-
eralization of graph kernels to subgraphs. Second, we theoretically show that combining WLKS
matrices from multiple k-hop neighborhoods can increase the expressiveness. Third, we evaluate
our method on real-world and synthetic benchmarks and demonstrate superior performance in a
significantly efficient way. We make our code available for future researclﬁ

2 RELATED WORK

WLKS is a ‘graph kernel’ method designed for ‘subgraph representation learning.” This section
explains both of these areas and their relationship to our model.

Subgraph Representation Learning Subgraph representation learning can address various real-
world challenges by capturing higher-order interactions that nodes, edges, or entire graphs cannot
model. For example, subgraphs can formulate diseases and patients in gene networks (Luo, |2022),
teams in collaboration networks (Hamidi Rad et al.l [2022), and communities in mobile game user
networks (Zhang et al.| [2023). Existing methods are often domain-specific (Zhang et al., 2023} |L1
et al., 2023; Triimper et al., 2023} |Ouyang et al., 2024; [Maheshwari et al., 2024)) or rely on strong
assumptions about the subgraph (Meng et al.| 2018} Hamidi Rad et al.| [2022; |Kim et al., 2022} Luo}
2022; Liu et al., [2023)), limiting their generalizability.

Recently, deep graph neural networks, which are universal for subgraphs, have been proposed, but
they often generate suboptimal representations due to their inability to capture arbitrary interactions
between and within subgraph structures. They struggle to account for high-order interactions be-
yond their limited receptive fields; thus, they should incorporate additional techniques including
hand-crafted channels (Alsentzer et al.,[2020), node labeling (Wang & Zhang} [2022)), random-walk
sampling (Jacob et al., |2023)), and structural approximations (Kim & Ohl 2024). In contrast, we
design kernels that can capture local and global interactions of subgraphs, respectively, to enable
simple but strong subgraph prediction.

Graph Kernels Graph kernels are algorithms to measure the similarity between graphs to
enable the kernel methods, such as Support Vector Machines (SVMs) to graph-structured
data (Vishwanathan et al.l 2010). Early examples measure the graph similarity based on random
walks (Kashima et al.} 2003) or shorted paths (Borgwardt & Kriegel, |2005). One of the most in-
fluential graph kernels is the Weisfeiler-Lehman (WL) kernel (Shervashidze & Borgwardt, |2009),
which leverages the WL algorithm to refine node labels iteratively, improving the expressiveness of
the graph structure comparison. Kernels for graph-level prediction by counting, matching, and em-
bedding subgraphs have been deeply explored (Shervashidze et al., [2009; [Kriege & Mutzell |2012;
Yanardag & Vishwanathan, 2015; Narayanan et al., [2016)). However, there has been no research on
kernels to solve subgraph-level tasks by computing the similarity of subgraphs and their surround-
ings. To the best of our knowledge, our paper is the first to investigate this approach.

3 WL GRAPH KERNELS FOR SUBGRAPH-LEVEL TASKS

This section introduces WLKS, the WL graph kernels generalized for subgraphs. We first describe
the original WL algorithm and its extension for subgraphs, which is a foundation of WLKS. Then,
we suggest WLKS and its enhancement of expressiveness and efficiency.

1Isee supplementary materialsl
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3.1 SUBGRAPH REPRESENTATION LEARNING

We first formalize subgraph representation learning as a classification task. Let G = (V, A) represent
a global graph, where V denotes a set of nodes (with |[V| = N) and A C V x V represents a set of
edges (with |A| = E). A subgraph S = (V*'®_ A%") is a graph formed by subsets of nodes and edges
in the global graph G (with [VS®°| = N and |A*®| = E*'). There exists a set of M subgraphs,
with M < N, denoted as S = {S1,Sa, ..., Sy }- In a subgraph classification task, the model learns

representation h; € RY" and the logit vector y; € R for S; where F and C are the dimension size
and the number of classes, respectively.

3.2 1-WL ALGORITHM FOR k-HOP SUBGRAPHS

1-WL for Graphs We briefly introduce the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm.
As illustrated in Algorithm [T} the 1-WL is an iterative node-color refinement by updating node
colors based on a multiset of neighboring node colors. This process produces a histogram of refined
coloring that captures graph structure, which can distinguish non-isomorphic graphs in the WL
isomorphism test.

Algorithm 1: 1-WL Algorithm

Input: Graph G = (V, A) and T iterations
Output: Refined node coloring (c{, c3 , ..., cfy) for nodes in V after T iterations

Initialize ¢ for allv € V
fori < 1toT do
for node v € V do
M, + multiset of labels {c:1 | u € N'(v)}
& < concatenate ¢! and sorted M,
end
Use a bijective function to map each unique ¢ to a new color ¢!,
end
return (c{, ¢, ..., cly))

1-WL for Subgraphs (WLS) We then propose the WLS, the 1-WL algorithm generalized for
subgraphs. Since surrounding structures are the core difference between graphs and subgraphs, the
main contribution of the WLS lies in encoding the k-hop neighborhoods of the subgraph. Here, k
will be denoted in superscript as WLS* if a specific k is given.

Formally, for a subgraph S = (V**°, A*'®) in a global graph G = (V, A), the WLS*’s goal is to get
the refined colors of nodes in V**®, where each color represents a unique subtree in k-hop neigh-
borhoods. As in the Algorithm we first extract the k-hop subgraph S* of S, which contains all
nodes in & as well as any nodes in G that are reachable from the nodes in & within £ hops. The
1-WL algorithm is then run on this induced k-hop subgraph to generate the colors of the nodes in
S*. The WLS returns the node coloring belonging to the original S, not in S*. In general, k-hop
neighborhoods are much larger than the original subgraph, so using all the colors in S* will likely
produce a coloring irreverent to the target subgraph.

Algorithm 2: WLS* Algorithm: 1-WL for subgraphs with their k-hop neighborhoods

Input: A subgraph S = (V*u*_ A% a global graph G = (V, A), and T iterations
Output: Refined node coloring (c{, c3 , ..., ¢fyu ) for nodes in V*** after 7 iterations

Sample S¥ = (V*ub:F ASW:k) "which is the induced k-hop subgraph of G around all nodes in S
reachable within k& hops

Run 1-WL (Algorithm on (S*,T) to get node colors in V5o
return (¢, cl, ..., Cﬁmb‘ ). Note that this coloring is about nodes in S, not S*.
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Figure 1: An example of WLS” algorithm (Algorithm [2) for k¥ € {0,1,2}. Left: A subgraph (red
shade) and its k-hop neighborhoods (dashed lines). Right: The outputs of WLS¥ algorithm as colors
and histograms for the left subgraph. The WLKS kernel matrix for each k is constructed by an inner
product of histogram pairs.

After WLS*’s color refinement, we can get a feature vector (or a color histogram) q’)g € [R#colors
which is the aggregation of the refined colors in S. Each element ¢%[c] is the number of occurrences

of the color ¢ in the output of WLS*. We illustrate an example of a subgraph and its WLS* outputs for
different ks in Figure

WL Kernels for Subgraphs (WLKS) Now, we suggest WLKS, the corresponding kernel matrix
Kl o € RMXM of which is defined as the number of common subtree patterns of two subgraphs in
their k-hop neighborhoods. That is, each element can be formulated as an inner product of a pair
of ¢*. This WLKS is a valid kernel since K is positive semi-definite for all non-negative ks, as
demonstrated in Proposition [3.1]

Proposition 3.1. Vk > 0, Kk ; is positive semi-definite (p.s.d.).

Proof. Each element in K% ¢ is defined as an inner product of two feature vectors ¢*. This leads
M M M M M

Dim1 Zj:l CiCj <¢’f» ¢§> = (> i1 ¢ i’cv Zj:l Cj¢§> = >i Ci¢f||2 > 0 for any real c. Thus,

K ¢ is positive semi-definite. O

3.3 EXPRESSIVENESS DIFFERENCE OF THE WLS BETWEEN k£ AND k + 1

How do we choose k7 Intuitively, selecting one large k seems reasonable since the k-hop neighbor-
hoods include the &’-hop structures of all smaller &’s. Against this intuition, we present a theoretical
analysis that the WLS**! histogram is not strictly more expressive than the WLS* histogram.

In Proposition we show that non-equivalent colorings of two subgraphs in WLS**! do not guar-
antee non-equivalent colorings in WLS*. This is also true for the inverse: equivalent colorings in
WLS**1 do not guarantee equivalent colorings in WLS¥.

Proposition 3.2. Given two subgraphs S, and Ss of a global graph G and T iterations,

WLSk:+1 (81) 7—é WLSk:+l(82) N WLSk:(Sl) ?_é WLSk‘ (82)7 (1)
WLSH 1 (81) = WLS' 1 (82) # WLSH(S) = WLSH (S2), @

for any k < T where WLS*(S) := WLSF(S, G, T) and ‘=’ denotes the equivalence of colorings.

Proof. We will prove both statements by contradiction.

Proof of Equation For the sake of contradiction, assume that whenever WLSFT1(S;) #
WLSF1(Sy), it must follow that WLS*(S;) # WLS*(S,). Consider two subgraphs S, and Sy of
a global graph G such that their k-hop neighborhoods are isomorphic, i.e., S¥ = SF, but their
(k + 1)-hop neighborhoods are not isomorphic. This means that within the k-hop radius, S, and
Sy, have identical structures, but beyond that, their structures differ. Since S¥ = SZ’f, applying WLSF
will yield identical colorings, WLS*(S,) = WLS¥(S,). However, because their (k + 1)-hop neigh-
borhoods differ, the subtree patterns of height-7" rooted captured by WLS**! will differ, leading to
different colorings, WLS¥+1(S,) # WLS**1(S,) (e.g., the top part in Figure . This contradicts our
assumption that WLS**1(S;) # WLSF+1(S,) implies WLSF(Sy) # WLS*(Ss).



Under review as a conference paper at ICLR 2025

Figure 2: Example pairs of subgraphs that WLS¥ produces equivalent colorings while WLS**! does
not, and vice versa (where £ = 0). The gray area represents the subgraph.

Proof of Equation For the sake of contradiction, assume that whenever WLSFT1(S;) =
WLSF+1(Ss,), it must follow that WLS*(S;) = WLS*(S,). Let G be a global graph, and consider
its two subgraphs S, and S;,. Suppose that in G, (k + 1)-hop neighborhoods of S, and Sy, are iden-
tical, WLS*+1(S,) = WLS**1(S,). However, within the k-hop neighborhoods, the local structures
can differ such that the rooted subtree patterns of S, and Sp, up to height 7' > k are not identical,
WLSF+1(S,) = WLS*+1(S,) (e.g., the bottom part in Figure. This contradicts our assumption that
WLSF+1(S;) = WLSFH1(S,) implies WLSF(S;) = WLS*(Sy). O

Our analysis implies that WLS" cannot represent all information on a smaller &’-hop structure (k' <
k) from the perspective of graph isomorphism. Then, we need to combine WLS* with multiple ks
to encode various levels of structures. Based on our findings, we suggest WLKS-K, a mixture of
WLKS for multiple hops k£ € K where its kernel matrix Ky s-K is a linear combination of KvlfLs-

KWLS_K = ZkGK akK‘ffLS where ap € R“F (3)

Note that WLKS-K can be defined even when only one k is used (e.g., Kys-{0} = agK{g for
WLKS-{0}). WLKS-K is a valid kernel since a positive linear combination of p.s.d. kernels is
p.s.d. (Shervashidze et al., 2011).

3.4 SELECTING k& FOR MINIMAL COMPLEXITY

In WLKS, selecting appropriate values of k during the k-hop subgraph sampling is crucial for bal-
ancing expressive power and complexity. As the number of nodes in the k-hop neighborhood grows
exponentially with increasing & (Hamilton et al, [2017), an unbounded increase in & can result in
substantial computation and memory overhead. To mitigate this, we strategically limit the choice of
k to two specific values: £ = 0 and k = D, where D is the diameter of the global graph G.

When k£ = 0, the WLKS consumes the least computation and memory by using only the internal
structure of the subgraph without neighborhood sampling. In contrast, when k is set to diameter D,
every subgraph has the same k-hop neighborhood, which is the global graph G; thus, the WLS is
performed just once on G without per-subgraph computations. By using 0 and D, WLKS-{0, D}
can capture both the local and the largest global structure of subgraphs. This approach offers a
practical model that balances expressive power and efficiency, avoiding excessive computation and
memory consumption from intermediate k values.

3.5 COMPUTATIONAL COMPLEXITY

The original WL Kernel has a computational complexity of O (T S B+ MTY . Nf“b) for M
subgraphs, T iterations, and the number of nodes N;“b and edges Ej“b of the subgraph ¢
[vashidze & Borgwardt, [2009). When k is 0, a set of subgraphs is identical to a set of individ-
ual graphs, so its complexity is the same as the original’s. When k is D, after performing the
WL algorithm on the global graph once (i.e., O(T'E)), the coloring of each subgraph is aggre-
gated to a histogram (i.e., O(}_, N:"°)). Thus, the computational complexity of WLKS-{0, D} is
O(T(E+ Y, EM) + MT Y, Ni*b).

We note that WLKS-{0, D} do not perform k-hop neighborhood sampling, which adds a complexity
of O(N*'-F 4 E390.k) per subgraph from a breadth-first search from V***. Learning SVM with pre-
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Table 1: Statistics of real-world and synthetic datasets.

PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component
#nodes in G 17,080 14,587 14,587 57,333 5,000 5,000 5,000 19,555
#edgesin G 316,951 3,238,174 3,238,174 4,573,417 29,521 83,969 118,785 43,701
# subgraphs (S) 1,591 2,400 4,000 324 250 250 221 250
#nodes/S 10.2110_5 14.4i6_2 14~8i6.5 155-4i100.2 20.0i0_0 ZO-OiO.O 20~0i0.0 74~2i52.8
#components /S 7~0i5.5 1.6i0_7 1~5i0.7 52~1i15.3 3.8i3_7 ].Oio_g 1'0i0.0 4-9i3.5
Density (G) 0.0022 0.0304 0.0304 0.0028 0.0024 0.0067 0.0095 0.0002
Avg. density (S)  0.216 0.757 0.767 0.010 0.232 0.945 0.219 0.150
# classes 6 10 6 2 3 3 3 2
Labels Single Multi Single Single Single Single Single Single
Dataset splits 80/10/10  80/10/10 80/10/10 70/15/15 80/10/10  80/10/10  80/10/10  80/10/10

computed kernels has a complexity of O(M?) dependent on the number of subgraphs M, but this
step is typically secondary to the WLS in practice.

3.6 GNNs WITH THE WLKS KERNEL MATRIX AS ADJACENCY MATRIX

A kernel expresses the similarity between each data point. In this perspective, we consider the kernel
matrix Kyrs of WLKS as the adjacency matrix of a weighted graph where subgraphs S are nodes.
That is, the edge weight between subgraphs ¢ and j will be Kysi, j]. If deep GNNs are applied to
this graph, we can leverage both the expressiveness of WLKS for structures and that of GNNs for
features. In this paper, we adopt the state-of-the-art GNN-based models, S2N+0 and S2N+A (Kim!
& Oh, 2024), for the graph created by WLKS-{0, D} as an instantiation of this approach.

Given the original feature X € RNx#features iy §9N4(, the hidden feature H < RM x# features jq
a sum of original features in the subgraph, and then a GNN on K s € RM*M ig applied to get
the logit matrix Y € RM>#classes for the prediction. S2N+A first encodes each subgraph as an
individual graph with a GNN, readout its output to get the hidden feature H, then the other GNN
on Ky is applied for the prediction. Formally,

WLKS for S2N+0:  Hli,:] = 11, X[V 2], Y = GNN(H, Kys), (4)

WLKS for S2N+A:  HI[i,:] = 1, GNN; (X [V5*™ ;] A%*®) Y = GNNo(H, Kyis), (5)

where 1,, € R™*! is a vector of ones. Since the kernel matrix is dense for GPUs, we sparsify and
normalize it using the same method in the S2N’s paper.

4 EXPERIMENTS
This section outlines the experimental setup, covering the datasets, training details, and baselines.

Datasets We employ four real-world datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and
four synthetic datasets (Density, Cut-Ratio, Coreness, and Component) introduced by |Alsentzer et al.
(2020). Given the global graph G and subgraphs S, the goal of the real-world benchmark is subgraph
classification on various domains: protein-protein interactions (PPI-BP), medical knowledge graphs
(HPO-Neuro and HPO-Metab), and social networks (EM-User). For synthetic benchmarks, the goal is
to determine the structural properties (density, cut ratio, the average core number, and the number of
components) formulated as a classification. Note that WLKS does not need pretrained embeddings.
We summarize dataset statistics in Table [Tl

Models We experiment with five WLKS-K where K is {0}, {1}, {2}, {D}, {0, D}. Coefficients
« is set to 1 when one k is selected, and oy + ap = 1 for WLKS-{0, D}. We do a grid search
of five hyperparameters: the number of iterations ({1, 2, 3,4, 5}), whether to combine kernels of all
iterations, whether to normalize histograms, L2 regularization ({22 /100, 24 /100, ..., 214 /100}), and
the coefficient «({0.999,0.99,0.9,0.5,0.1,0.01,0.001}). For fusing WLKS-{0, D} to S2N, we
follow the GCNII-based (Chen et al., | 2020) architecture and settings presented in|Kim & Oh|(2024).
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Table 2: Mean performance in micro Fl-score on real-world and synthetic datasets over 10 runs. A
subscript indicates the standard deviation. The higher the performance, the darker the blue color.

The results of baselines are reprinted from respective papers.

Model PPI-BP HPO-Neuro HPO-Metab  EM-User Density ~ Cut-Ratio Coreness Component
SubGNN 59.9i2,4 63.23:1‘0 53-7j:2.3 81.414,6 91-9:(:1.6 62.9;{;3‘9 65-9;{:9.2 95-8j:9.8
GLASS 61.940.7 68.510.5 61.4105 88.8106 93.04009 | 935406 84.0109 | 100.0+0.0
VSubGAE - 65.241.4 56.340.9 85.043.5 - - - -
SSNP-NN 63.640.7 | 68.240.4 58.7+1.0 88.840.5 - - - -
S2N+0 GCNII 63.512_4 66.4111 61.6:&1.7 86.5;&3.2 67.212_4 56.0i0_0 57.014_9 100.0:{:0.0
S2N+Agenn  63.7423 | 68:444 63.2407 | 89.0416 932426 56.0100 85.7455 | 100.0+0.0
WLKS-{0,D} [ 648500 65.310.0 57.940.0 91.8400 96.04090 60.0000 91.3400 100.049.9

Table 3: Runtime for the entire training stage and 1-epoch inference on the validation set for our
model and baselines on real-world datasets.

Stage Entire Training Inference (1 epoch)

Model PPI-BP HPO-Neuro HPO-Metab EM-User | PPI-BP HPO-Neuro HPO-Metab EM-User
SubGNN N/A 1798.2 1082.1 108.1 N/A 4329 257.1 35.8
GLASS 1009.6 2462.6 1397.0 4597.4 8.2 27.0 26.4 39.0

S2N+0 genn 16.7 36.7 37.1 31.0 9.9 9.3 8.3 14.6

S2N+A Genn 14.9 78.0 72.2 39.0 8.4 11.1 9.6 13.4

WLKS-{0,D} 3.5 25.2 10.9 9.6 1.0 11.7 2.7 1.8
Baselines We use state-of-the-art GNN-based models for subgraph classification tasks as base-

lines: Subgraph Neural Network (SubGNN; Alsentzer et al.l |2020), GNN with LAbeling trickS
for Subgraph (GLASS;|Wang & Zhang, [2022), Variational Subgraph Autoencoder (VSubGAE; |Liu
et al.,[2023)), Stochastic Subgraph Neighborhood Pooling (SSNP; Jacob et al., 2023) and Subgraph-
To-Node Translation (S2N; |Kim & Ohl 2024). Baseline results are taken from the corresponding
research papers.

Efficiency Measurement When measuring the complete training time, we run models of the best
hyperparameters from each model’s original code, including batch sizes and total epochs, using
Intel(R) Xeon(R) CPU E5-2640 v4 and a single GeForce GTX 1080 Ti (for deep GNNs).

Implementation All models are implemented with PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen,|[2019). We use the implementation of Support Vector Machines (SVMs)
in Scikit-learn (Pedregosa et al.| 2011)).

5 RESULTS AND DISCUSSIONS

In this section, we compare the classification performance and efficiency of WLKS and baselines.
In addition, the performance of WLKS according to K is demonstrated to exhibit the usefulness of
the kernel combination. Finally, we investigate how structure and features across subgraph datasets
affect downstream performance by fusing WLKS and GNNss.

Performance and Efficiency In Table 2} the classification performance of WLKS-{0, D} and
baselines on eight datasets is summarized. Our results show that our model outperforms the best-
performing baseline in five out of eight datasets. Specifically, WLKS-{0, D} achieves the highest
micro F1-score on PPI-BP, EM-User, Density, Coreness, and Component. For HPO-Neuro, HPO-Metab,
and Cut-Ratio, our model shows similar performance to SubGNN but relatively lower performance
than the state-of-the-art model.

In terms of efficiency, we present the total training time of our model and four representative base-
lines on real-world datasets in Table [3] Note that an experiment on PPI-BP with SubGNN cannot
be conducted since it takes more than 48 hours in pre-computation. WLKS-{0, D} demonstrates
significantly faster training times across all real-world datasets compared to other models (e.g., the
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Table 4: Mean performance of WLKS-K in micro F1-score by K: {0}, {1}, {2}, {D}, and {0, D}.
The standard deviations are omitted (all 0). The higher the performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component
WLKS-{0, D} 64.8 65.3 57.9 91.8 96.0 60.0 91.3 100.0
WLKS-{0} 34.0 31.4 26.4 67.3 96.0 36.0 87.0 100.0
WLKS-{1} 39.0 OOM OOM 79.6 68.0 56.0 39.1 100.0
WLKS-{2} 64.2 OOM OOM 89.8 68.0 56.0 39.1 100.0
WLKS-{D} 64.2 65.1 57.9 89.8 68.0 56.0 39.1 100.0

Table 5: Mean performance in micro Fl-score of S2N models with kernel matrix Ky;s-{0, D} as
adjacency matrix between subgraphs over 10 runs. S2ZN models are based on GCNII. The higher the
performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab  EM-User Density  Cut-Ratio Coreness Component
S2N+0 63.5424 664411 61.6417 86.5432 672424 56.0400 57.01a9 | 100.040.0
S2N+A 63.742.3 68.411 0 63.2197 89.0116 932126 56.0100 85.715s  100.0L0.0
WLKS-{0, D} 64.810.0 65.310.0 57.910.0 91.840.0 96.0400 60.0400 91.3400 100.0+0.0

V\/LKS—{O7 D} for S2N+0 64-8;{:1.5 66.3;{:046 62.4;{:1‘1 86-5i2.4 92.0:{:0,0 51~2i3.9 69.6i1,9 100.0:{:0.0
\VLKS—{O7 D} for S2N+A 65-4;{:2.4 68.4;{:1.1 62.9;(:1‘9 90.0:&3‘3 95.6:{:2.8 48.0i0,0 87.414,1 100.0:{:0.0

shorter training time of x0.01 on HPO-Neuro, x0.17 on HPO-Metab, x0.38 on EM-User, x0.53 on
PPI-BP). This metric does not include the pre-computation or embedding pretraining required in
baselines, so the actual training of WLKS is more efficient. Additionally, WLKS does not require a
GPU, unlike other GNN baselines.

Performance of WLKS-K by K We highlight the importance of selecting the appropriate K in
Table[d Specifically, the performance of WLKS-K varies significantly depending on the choice of
K. WLKS-{0, D}, which combines kernels of 0 and D, consistently delivers strong results across
datasets. WLKS-{0} and WLKS-{ D} perform well independently in certain datasets, but their com-
bination makes the better performance. This result suggests that multiple k-hop neighborhoods are
associated with the labels of the subgraph, and the performance can be improved from the comple-
mentary nature of WLKS capturing different k-hop structures.

Performance of GNNs with the WLKS Kernel Matrix as Adjacency Matrix In Table |5 we
present the results of fusing WLKS-{0, D} and GNNs (i.e., S2N). The performance of the WLKS-
{0, D} for S2N improves over vanilla WLKS-{0, D} on PPI-BP, HPO-Neuro, and HPO-Metab, how-
ever, performance drops on EM-User, Density, Cut-Ratio, and Coreness. Note that applying GNNs to
the WLKS kernel matrix requires kernel sparsification, leading to a loss of structural information.
However, this trade-off can be offset by the enhanced features of neural networks. For subgraph-
level tasks, we interpret that the former set of benchmarks prioritizes features over structure, while
the latter relies more on structural information.

In addition, the performance of WLKS for S2N improves over or is similar to the original S2N
across all datasets except for Cut-Ratio. The original S2N uses edge weights based on the number of
common nodes between subgraphs. This indicates that the structural similarity, as captured by the
kernel matrix, is more important than node membership information for most subgraph benchmarks.

Sensitivity Analysis of Hyperparameters Figures [3and [ demonstrate the performance sensitiv-
ity of the WLKS-{0, D} with respect to the number of iterations 7" and the kernel mixing coefficient
ap. The best performance is achieved at iterations of 7' = 2 or T" = 3, beyond which the WL color-
ing stabilizes and no further improvement is observed. For «y, the WLKS-{0, D} is best-performed
between 1073 and 10—, while performance drops sharply as ag approaches 1. Since ap = 1 — o
is larger than oy in this range, this suggests that the subgraph labels rely more on global structures
(k = D) than internal ones (k = 0).
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Figure 3: Performance of WLKS-{0, D} by the number of iterations 7.
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Figure 4: Performance of WLKS-{0, D} by the coefficient o in ag K g + (1 — ag) KZs-

6 CONCLUSION

We proposed WLKS, a simple but powerful model for subgraph-level tasks that generalizes the
Weisfeiler-Lehman (WL) kernel on induced k-hop neighborhoods. WLKS can enhance expressive-
ness by linearly combining kernel matrices from multiple k-hop levels, capturing richer structural
information without redundant neighborhood sampling. Through extensive experiments on eight
real-world and synthetic benchmarks, WLKS outperformed state-of-the-art methods on five datasets
with reduced training times—ranging from x0.01 to x0.53 compared to existing models. Fur-
thermore, WLKS does not need pre-computation, pre-training, GPUs, or extensive hyperparameter
tuning.

Our method offers a promising and accessible alternative to GNN-based approaches for subgraph
representation learning, but some tasks can still benefit from deep neural networks. We leave as
future work the seamless integration of WLKS with GNNSs to leverage the expressive power of both
structures and features.
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