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ABSTRACT

Subgraph representation learning has been effective in solving various real-world
problems. However, current graph neural networks (GNNs) produce suboptimal
results for subgraph-level tasks due to their inability to capture complex interac-
tions within and between subgraphs. To provide a more expressive and efficient
alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for
subgraphs by applying the WL algorithm on induced k-hop neighborhoods. We
combine kernels across different k-hop levels to capture richer structural informa-
tion that is not fully encoded in existing models. Our approach can balance ex-
pressiveness and efficiency by eliminating the need for neighborhood sampling.
In experiments on eight real-world and synthetic benchmarks, WLKS signifi-
cantly outperforms leading approaches on five datasets while reducing training
time, ranging from 0.01x to 0.53x compared to the state-of-the-art.

1 INTRODUCTION

Subgraph representation learning has effectively tackled various real-world problems (Bordes et al.,
2014; Luo, 2022; Hamidi Rad et al., 2022; Maheshwari et al., 2024). However, existing graph neural
networks (GNNs) still produce suboptimal representations for subgraph-level tasks since they fail
to capture arbitrary interactions between and within subgraph structures. These GNNs cannot cap-
ture high-order interactions beyond and even in their receptive fields. Thus, state-of-the-art models
for subgraphs have to employ hand-crafted channels (Alsentzer et al., 2020), node labeling (Wang
& Zhang, 2022), and structure approximations (Kim & Oh, 2024) to encode subgraphs’ complex
internal and border structures.

As an elegant and efficient alternative, we generalize graph kernels to subgraphs, which measure
the structural similarity between pairs of graphs. We propose WLKS, the Weisfeiler-Lehman (WL)
Kernel for Subgraphs based on WL graph kernel (Shervashidze & Borgwardt, 2009). Specifically,
we apply the WL algorithm (Leman & Weisfeiler, 1968) on induced k-hop subgraphs around the
target subgraph for all possible ks. The WL algorithm’s output (i.e., the color histogram) for each k
encodes structures in the receptive field of the k-layer GNNs; thus, the corresponding kernel matrix
can represent the similarity of k-hop subgraph pairs. A classifier using this kernel can be trained
without GPUs in a computationally efficient way compared to deep GNNs.

To enhance the expressive power, we linearly combine kernel matrices of different k-hops. The
motivation is that simply using larger hops for WL histograms does not necessarily lead to more
expressive representations. We theoretically demonstrate that WL histograms of the (k + 1)-hop
are not strictly more expressive than those of k-hop in distinguishing isomorphic structures, while
(k+1)-hop structures include entire k-hop structures. Therefore, combining kernel matrices across
multiple k-hop levels can capture richer structural information around subgraphs.

However, sampling k-hop subgraphs can increase the time and space complexity, as the number of
nodes in the k-hop neighborhoods grows exponentially (Hamilton et al., 2017). To mitigate this
issue, we choose only two values of k: 0 and the diameter D of the global graph. No neighborhood
sampling is required for the case where k = 0 since it only uses the internal structure. When k is set
to the diameter D, the expanded subgraph encompasses the entire global graph, making the k-hop
neighborhood identical for all subgraphs. Consequently, there is no need for explicit neighborhood
sampling in this case; we only perform the WL algorithm on the global graph once. This approach
balances expressiveness and efficiency, providing a practical solution for subgraph-level tasks.
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We evaluate WLKS’s classification performance and efficiency with four real-world and four syn-
thetic benchmarks (Alsentzer et al., 2020). Our model outperforms the best-performed methods
across five of the eight datasets. Remarkably, this performance is achieved with ×0.01 to ×0.53
training time compared to the state-of-the-art models. Moreover, unlike existing models, WLKS
does not require pre-computation, pre-training embeddings, utilizing GPUs, and searching a large
hyperparameter space.

The main contributions of our paper are summarized as follows. First, we propose WLKS, a gen-
eralization of graph kernels to subgraphs. Second, we theoretically show that combining WLKS
matrices from multiple k-hop neighborhoods can increase the expressiveness. Third, we evaluate
our method on real-world and synthetic benchmarks and demonstrate superior performance in a
significantly efficient way. We make our code available for future research1.

2 RELATED WORK

WLKS is a ‘graph kernel’ method designed for ‘subgraph representation learning.’ This section
explains both of these areas and their relationship to our model.

Subgraph Representation Learning Subgraph representation learning can address various real-
world challenges by capturing higher-order interactions that nodes, edges, or entire graphs cannot
model. For example, subgraphs can formulate diseases and patients in gene networks (Luo, 2022),
teams in collaboration networks (Hamidi Rad et al., 2022), and communities in mobile game user
networks (Zhang et al., 2023). Existing methods are often domain-specific (Zhang et al., 2023; Li
et al., 2023; Trümper et al., 2023; Ouyang et al., 2024; Maheshwari et al., 2024) or rely on strong
assumptions about the subgraph (Meng et al., 2018; Hamidi Rad et al., 2022; Kim et al., 2022; Luo,
2022; Liu et al., 2023), limiting their generalizability.

Recently, deep graph neural networks, which are universal for subgraphs, have been proposed, but
they often generate suboptimal representations due to their inability to capture arbitrary interactions
between and within subgraph structures. They struggle to account for high-order interactions be-
yond their limited receptive fields; thus, they should incorporate additional techniques including
hand-crafted channels (Alsentzer et al., 2020), node labeling (Wang & Zhang, 2022), random-walk
sampling (Jacob et al., 2023), and structural approximations (Kim & Oh, 2024). In contrast, we
design kernels that can capture local and global interactions of subgraphs, respectively, to enable
simple but strong subgraph prediction.

Graph Kernels Graph kernels are algorithms to measure the similarity between graphs to
enable the kernel methods, such as Support Vector Machines (SVMs) to graph-structured
data (Vishwanathan et al., 2010). Early examples measure the graph similarity based on random
walks (Kashima et al., 2003) or shorted paths (Borgwardt & Kriegel, 2005). One of the most in-
fluential graph kernels is the Weisfeiler-Lehman (WL) kernel (Shervashidze & Borgwardt, 2009),
which leverages the WL algorithm to refine node labels iteratively, improving the expressiveness of
the graph structure comparison. Kernels for graph-level prediction by counting, matching, and em-
bedding subgraphs have been deeply explored (Shervashidze et al., 2009; Kriege & Mutzel, 2012;
Yanardag & Vishwanathan, 2015; Narayanan et al., 2016). However, there has been no research on
kernels to solve subgraph-level tasks by computing the similarity of subgraphs and their surround-
ings. To the best of our knowledge, our paper is the first to investigate this approach.

3 WL GRAPH KERNELS FOR SUBGRAPH-LEVEL TASKS

This section introduces WLKS, the WL graph kernels generalized for subgraphs. We first describe
the original WL algorithm and its extension for subgraphs, which is a foundation of WLKS. Then,
we suggest WLKS and its enhancement of expressiveness and efficiency.

1see supplementary materials
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3.1 SUBGRAPH REPRESENTATION LEARNING

We first formalize subgraph representation learning as a classification task. Let G = (V,A) represent
a global graph, where V denotes a set of nodes (with |V| = N ) and A ⊂ V × V represents a set of
edges (with |A| = E). A subgraph S = (Vsub,Asub) is a graph formed by subsets of nodes and edges
in the global graph G (with |Vsub| = N sub and |Asub| = Esub). There exists a set of M subgraphs,
with M < N , denoted as S = {S1,S2, . . . ,SM}. In a subgraph classification task, the model learns
representation hi ∈ RF and the logit vector yi ∈ RC for Si where F and C are the dimension size
and the number of classes, respectively.

3.2 1-WL ALGORITHM FOR k-HOP SUBGRAPHS

1-WL for Graphs We briefly introduce the 1-dimensional Weisfeiler-Lehman (1-WL) algorithm.
As illustrated in Algorithm 1, the 1-WL is an iterative node-color refinement by updating node
colors based on a multiset of neighboring node colors. This process produces a histogram of refined
coloring that captures graph structure, which can distinguish non-isomorphic graphs in the WL
isomorphism test.

Algorithm 1: 1-WL Algorithm

Input: Graph G = (V,A) and T iterations
Output: Refined node coloring (cT1 , c

T
2 , ..., c

T
|V|) for nodes in V after T iterations

Initialize c0v for all v ∈ V
for i← 1 to T do

for node v ∈ V do
Mv ← multiset of labels {ci−1

u | u ∈ N (v)}
c̃iv ← concatenate ci−1

v and sorted Mv

end
Use a bijective function to map each unique c̃iv to a new color civ

end
return (cT1 , c

T
2 , ..., c

T
|V|)

1-WL for Subgraphs (WLS) We then propose the WLS, the 1-WL algorithm generalized for
subgraphs. Since surrounding structures are the core difference between graphs and subgraphs, the
main contribution of the WLS lies in encoding the k-hop neighborhoods of the subgraph. Here, k
will be denoted in superscript as WLSk if a specific k is given.

Formally, for a subgraph S = (Vsub,Asub) in a global graph G = (V,A), the WLSk’s goal is to get
the refined colors of nodes in Vsub, where each color represents a unique subtree in k-hop neigh-
borhoods. As in the Algorithm 2, we first extract the k-hop subgraph Sk of S, which contains all
nodes in S as well as any nodes in G that are reachable from the nodes in S within k hops. The
1-WL algorithm is then run on this induced k-hop subgraph to generate the colors of the nodes in
Sk. The WLS returns the node coloring belonging to the original S, not in Sk. In general, k-hop
neighborhoods are much larger than the original subgraph, so using all the colors in Sk will likely
produce a coloring irreverent to the target subgraph.

Algorithm 2: WLSk Algorithm: 1-WL for subgraphs with their k-hop neighborhoods

Input: A subgraph S = (Vsub,Asub), a global graph G = (V,A), and T iterations
Output: Refined node coloring (cT1 , c

T
2 , ..., c

T
|Vsub|) for nodes in Vsub after T iterations

Sample Sk = (Vsub,k,Asub,k), which is the induced k-hop subgraph of G around all nodes in S
reachable within k hops

Run 1-WL (Algorithm 1) on (Sk, T ) to get node colors in Vsub,k

return (cT1 , c
T
2 , ..., c

T
|Vsub|). Note that this coloring is about nodes in S, not Sk.
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k=0 k=1 k=2 …

Color

Histogram

k=1
k=2

k=0

Figure 1: An example of WLSk algorithm (Algorithm 2) for k ∈ {0, 1, 2}. Left: A subgraph (red
shade) and its k-hop neighborhoods (dashed lines). Right: The outputs of WLSk algorithm as colors
and histograms for the left subgraph. The WLKS kernel matrix for each k is constructed by an inner
product of histogram pairs.

After WLSk’s color refinement, we can get a feature vector (or a color histogram) ϕk
S ∈ R#colors

which is the aggregation of the refined colors in S. Each element ϕk
S [c] is the number of occurrences

of the color c in the output of WLSk. We illustrate an example of a subgraph and its WLSk outputs for
different ks in Figure 1.

WL Kernels for Subgraphs (WLKS) Now, we suggest WLKS, the corresponding kernel matrix
Kk

WLS ∈ RM×M of which is defined as the number of common subtree patterns of two subgraphs in
their k-hop neighborhoods. That is, each element can be formulated as an inner product of a pair
of ϕk

∗ . This WLKS is a valid kernel since Kk
WLS is positive semi-definite for all non-negative ks, as

demonstrated in Proposition 3.1.

Proposition 3.1. ∀k ≥ 0,Kk
WLS is positive semi-definite (p.s.d.).

Proof. Each element in Kk
WLS is defined as an inner product of two feature vectors ϕk

∗ . This leads∑M
i=1

∑M
j=1 cicj⟨ϕk

i ,ϕ
k
j ⟩ = ⟨

∑M
i=1 ciϕ

k
i ,
∑M

j=1 cjϕ
k
j ⟩ = ∥

∑M
i=1 ciϕ

k
i ∥2 ≥ 0 for any real c. Thus,

Kk
WLS is positive semi-definite.

3.3 EXPRESSIVENESS DIFFERENCE OF THE WLS BETWEEN k AND k + 1

How do we choose k? Intuitively, selecting one large k seems reasonable since the k-hop neighbor-
hoods include the k′-hop structures of all smaller k′s. Against this intuition, we present a theoretical
analysis that the WLSk+1 histogram is not strictly more expressive than the WLSk histogram.

In Proposition 3.2, we show that non-equivalent colorings of two subgraphs in WLSk+1 do not guar-
antee non-equivalent colorings in WLSk. This is also true for the inverse: equivalent colorings in
WLSk+1 do not guarantee equivalent colorings in WLSk.

Proposition 3.2. Given two subgraphs S1 and S2 of a global graph G and T iterations,

WLSk+1(S1) ̸≡ WLSk+1(S2) ⇏ WLSk(S1) ̸≡ WLSk(S2), (1)

WLSk+1(S1) ≡ WLSk+1(S2) ⇏ WLSk(S1) ≡ WLSk(S2), (2)

for any k < T where WLSk(S) := WLSk(S,G, T ) and ‘≡’ denotes the equivalence of colorings.

Proof. We will prove both statements by contradiction.

Proof of Equation 1 For the sake of contradiction, assume that whenever WLSk+1(S1) ̸≡
WLSk+1(S2), it must follow that WLSk(S1) ̸≡ WLSk(S2). Consider two subgraphs Sa and Sb of
a global graph G such that their k-hop neighborhoods are isomorphic, i.e., Ska ≡ Skb , but their
(k + 1)-hop neighborhoods are not isomorphic. This means that within the k-hop radius, Sa and
Sb have identical structures, but beyond that, their structures differ. Since Ska ≡ Skb , applying WLSk

will yield identical colorings, WLSk(Sa) ≡ WLSk(Sb). However, because their (k + 1)-hop neigh-
borhoods differ, the subtree patterns of height-T rooted captured by WLSk+1 will differ, leading to
different colorings, WLSk+1(Sa) ̸≡ WLSk+1(Sb) (e.g., the top part in Figure 2). This contradicts our
assumption that WLSk+1(S1) ̸≡ WLSk+1(S2) implies WLSk(S1) ̸≡ WLSk(S2).

4
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k=1k=0Two Subgraphs in a Graph

≢

≡

≡

≢

Figure 2: Example pairs of subgraphs that WLSk produces equivalent colorings while WLSk+1 does
not, and vice versa (where k = 0). The gray area represents the subgraph.

Proof of Equation 2 For the sake of contradiction, assume that whenever WLSk+1(S1) ≡
WLSk+1(S2), it must follow that WLSk(S1) ≡ WLSk(S2). Let G be a global graph, and consider
its two subgraphs Sa and Sb. Suppose that in G, (k + 1)-hop neighborhoods of Sa and Sb are iden-
tical, WLSk+1(Sa) ≡ WLSk+1(Sb). However, within the k-hop neighborhoods, the local structures
can differ such that the rooted subtree patterns of Sa and Sb up to height T > k are not identical,
WLSk+1(Sa) ≡ WLSk+1(Sb) (e.g., the bottom part in Figure 2). This contradicts our assumption that
WLSk+1(S1) ≡ WLSk+1(S2) implies WLSk(S1) ≡ WLSk(S2).

Our analysis implies that WLSk cannot represent all information on a smaller k′-hop structure (k′ <
k) from the perspective of graph isomorphism. Then, we need to combine WLSk with multiple ks
to encode various levels of structures. Based on our findings, we suggest WLKS-K, a mixture of
WLKS for multiple hops k ∈ K where its kernel matrix KWLS-K is a linear combination of Kk

WLS.

KWLS-K =
∑

k∈K αkK
k
WLS where αk ∈ R+. (3)

Note that WLKS-K can be defined even when only one k is used (e.g., KWLS-{0} = α0K
0
WLS for

WLKS-{0}). WLKS-K is a valid kernel since a positive linear combination of p.s.d. kernels is
p.s.d. (Shervashidze et al., 2011).

3.4 SELECTING k FOR MINIMAL COMPLEXITY

In WLKS, selecting appropriate values of k during the k-hop subgraph sampling is crucial for bal-
ancing expressive power and complexity. As the number of nodes in the k-hop neighborhood grows
exponentially with increasing k (Hamilton et al., 2017), an unbounded increase in k can result in
substantial computation and memory overhead. To mitigate this, we strategically limit the choice of
k to two specific values: k = 0 and k = D, where D is the diameter of the global graph G.

When k = 0, the WLKS consumes the least computation and memory by using only the internal
structure of the subgraph without neighborhood sampling. In contrast, when k is set to diameter D,
every subgraph has the same k-hop neighborhood, which is the global graph G; thus, the WLS is
performed just once on G without per-subgraph computations. By using 0 and D, WLKS-{0, D}
can capture both the local and the largest global structure of subgraphs. This approach offers a
practical model that balances expressive power and efficiency, avoiding excessive computation and
memory consumption from intermediate k values.

3.5 COMPUTATIONAL COMPLEXITY

The original WL Kernel has a computational complexity of O
(
T
∑

i E
sub
i +MT

∑
i N

sub
i

)
for M

subgraphs, T iterations, and the number of nodes N sub
i and edges Esub

i of the subgraph i (Sher-
vashidze & Borgwardt, 2009). When k is 0, a set of subgraphs is identical to a set of individ-
ual graphs, so its complexity is the same as the original’s. When k is D, after performing the
WL algorithm on the global graph once (i.e., O(TE)), the coloring of each subgraph is aggre-
gated to a histogram (i.e., O(

∑
i N

sub
i )). Thus, the computational complexity of WLKS-{0, D} is

O
(
T (E +

∑
i E

sub
i ) +MT

∑
i N

sub
i

)
.

We note that WLKS-{0, D} do not perform k-hop neighborhood sampling, which adds a complexity
of O(N sub,k +Esub,k) per subgraph from a breadth-first search from Vsub. Learning SVM with pre-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Statistics of real-world and synthetic datasets.

PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

# nodes in G 17,080 14,587 14,587 57,333 5,000 5,000 5,000 19,555
# edges in G 316,951 3,238,174 3,238,174 4,573,417 29,521 83,969 118,785 43,701
# subgraphs (S) 1,591 2,400 4,000 324 250 250 221 250
# nodes / S 10.2±10.5 14.4±6.2 14.8±6.5 155.4±100.2 20.0±0.0 20.0±0.0 20.0±0.0 74.2±52.8

# components / S 7.0±5.5 1.6±0.7 1.5±0.7 52.1±15.3 3.8±3.7 1.0±0.0 1.0±0.0 4.9±3.5

Density (G) 0.0022 0.0304 0.0304 0.0028 0.0024 0.0067 0.0095 0.0002
Avg. density (S) 0.216 0.757 0.767 0.010 0.232 0.945 0.219 0.150
# classes 6 10 6 2 3 3 3 2
Labels Single Multi Single Single Single Single Single Single
Dataset splits 80/10/10 80/10/10 80/10/10 70/15/15 80/10/10 80/10/10 80/10/10 80/10/10

computed kernels has a complexity of O(M2) dependent on the number of subgraphs M , but this
step is typically secondary to the WLS in practice.

3.6 GNNS WITH THE WLKS KERNEL MATRIX AS ADJACENCY MATRIX

A kernel expresses the similarity between each data point. In this perspective, we consider the kernel
matrix KWLS of WLKS as the adjacency matrix of a weighted graph where subgraphs S are nodes.
That is, the edge weight between subgraphs i and j will be KWLS[i, j]. If deep GNNs are applied to
this graph, we can leverage both the expressiveness of WLKS for structures and that of GNNs for
features. In this paper, we adopt the state-of-the-art GNN-based models, S2N+0 and S2N+A (Kim
& Oh, 2024), for the graph created by WLKS-{0, D} as an instantiation of this approach.

Given the original feature X ∈ RN×# features, in S2N+0, the hidden feature H ∈ RM×# features is
a sum of original features in the subgraph, and then a GNN on KWLS ∈ RM×M is applied to get
the logit matrix Y ∈ RM×# classes for the prediction. S2N+A first encodes each subgraph as an
individual graph with a GNN, readout its output to get the hidden feature H , then the other GNN
on KWLS is applied for the prediction. Formally,

WLKS for S2N+0: H[i, :] = 1⊤
N subX[Vsub

i , :], Y = GNN(H,KWLS), (4)

WLKS for S2N+A: H[i, :] = 1⊤
N subGNN1(X[Vsub

i , :],Asub
i ), Y = GNN2(H,KWLS), (5)

where 1n ∈ Rn×1 is a vector of ones. Since the kernel matrix is dense for GPUs, we sparsify and
normalize it using the same method in the S2N’s paper.

4 EXPERIMENTS

This section outlines the experimental setup, covering the datasets, training details, and baselines.

Datasets We employ four real-world datasets (PPI-BP, HPO-Neuro, HPO-Metab, and EM-User) and
four synthetic datasets (Density, Cut-Ratio, Coreness, and Component) introduced by Alsentzer et al.
(2020). Given the global graph G and subgraphs S, the goal of the real-world benchmark is subgraph
classification on various domains: protein-protein interactions (PPI-BP), medical knowledge graphs
(HPO-Neuro and HPO-Metab), and social networks (EM-User). For synthetic benchmarks, the goal is
to determine the structural properties (density, cut ratio, the average core number, and the number of
components) formulated as a classification. Note that WLKS does not need pretrained embeddings.
We summarize dataset statistics in Table 1.

Models We experiment with five WLKS-K where K is {0}, {1}, {2}, {D}, {0, D}. Coefficients
α is set to 1 when one k is selected, and α0 + αD = 1 for WLKS-{0, D}. We do a grid search
of five hyperparameters: the number of iterations ({1, 2, 3, 4, 5}), whether to combine kernels of all
iterations, whether to normalize histograms, L2 regularization ({23/100, 24/100, ..., 214/100}), and
the coefficient α0({0.999, 0.99, 0.9, 0.5, 0.1, 0.01, 0.001}). For fusing WLKS-{0, D} to S2N, we
follow the GCNII-based (Chen et al., 2020) architecture and settings presented in Kim & Oh (2024).
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Table 2: Mean performance in micro F1-score on real-world and synthetic datasets over 10 runs. A
subscript indicates the standard deviation. The higher the performance, the darker the blue color.
The results of baselines are reprinted from respective papers.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

SubGNN 59.9±2.4 63.2±1.0 53.7±2.3 81.4±4.6 91.9±1.6 62.9±3.9 65.9±9.2 95.8±9.8

GLASS 61.9±0.7 68.5±0.5 61.4±0.5 88.8±0.6 93.0±0.9 93.5±0.6 84.0±0.9 100.0±0.0

VSubGAE - 65.2±1.4 56.3±0.9 85.0±3.5 - - - -
SSNP-NN 63.6±0.7 68.2±0.4 58.7±1.0 88.8±0.5 - - - -

S2N+0 GCNII 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2 67.2±2.4 56.0±0.0 57.0±4.9 100.0±0.0

S2N+A GCNII 63.7±2.3 68.4±1.0 63.2±2.7 89.0±1.6 93.2±2.6 56.0±0.0 85.7±5.8 100.0±0.0

WLKS-{0, D} 64.8±0.0 65.3±0.0 57.9±0.0 91.8±0.0 96.0±0.0 60.0±0.0 91.3±0.0 100.0±0.0

Table 3: Runtime for the entire training stage and 1-epoch inference on the validation set for our
model and baselines on real-world datasets.

Stage Entire Training Inference (1 epoch)
Model PPI-BP HPO-Neuro HPO-Metab EM-User PPI-BP HPO-Neuro HPO-Metab EM-User

SubGNN N/A 1798.2 1082.1 108.1 N/A 432.9 257.1 35.8
GLASS 1009.6 2462.6 1397.0 4597.4 8.2 27.0 26.4 39.0

S2N+0 GCNII 16.7 36.7 37.1 31.0 9.9 9.3 8.3 14.6
S2N+A GCNII 14.9 78.0 72.2 39.0 8.4 11.1 9.6 13.4
WLKS-{0,D} 3.5 25.2 10.9 9.6 1.0 11.7 2.7 1.8

Baselines We use state-of-the-art GNN-based models for subgraph classification tasks as base-
lines: Subgraph Neural Network (SubGNN; Alsentzer et al., 2020), GNN with LAbeling trickS
for Subgraph (GLASS; Wang & Zhang, 2022), Variational Subgraph Autoencoder (VSubGAE; Liu
et al., 2023), Stochastic Subgraph Neighborhood Pooling (SSNP; Jacob et al., 2023) and Subgraph-
To-Node Translation (S2N; Kim & Oh, 2024). Baseline results are taken from the corresponding
research papers.

Efficiency Measurement When measuring the complete training time, we run models of the best
hyperparameters from each model’s original code, including batch sizes and total epochs, using
Intel(R) Xeon(R) CPU E5-2640 v4 and a single GeForce GTX 1080 Ti (for deep GNNs).

Implementation All models are implemented with PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019). We use the implementation of Support Vector Machines (SVMs)
in Scikit-learn (Pedregosa et al., 2011).

5 RESULTS AND DISCUSSIONS

In this section, we compare the classification performance and efficiency of WLKS and baselines.
In addition, the performance of WLKS according to K is demonstrated to exhibit the usefulness of
the kernel combination. Finally, we investigate how structure and features across subgraph datasets
affect downstream performance by fusing WLKS and GNNs.

Performance and Efficiency In Table 2, the classification performance of WLKS-{0, D} and
baselines on eight datasets is summarized. Our results show that our model outperforms the best-
performing baseline in five out of eight datasets. Specifically, WLKS-{0, D} achieves the highest
micro F1-score on PPI-BP, EM-User, Density, Coreness, and Component. For HPO-Neuro, HPO-Metab,
and Cut-Ratio, our model shows similar performance to SubGNN but relatively lower performance
than the state-of-the-art model.

In terms of efficiency, we present the total training time of our model and four representative base-
lines on real-world datasets in Table 3. Note that an experiment on PPI-BP with SubGNN cannot
be conducted since it takes more than 48 hours in pre-computation. WLKS-{0, D} demonstrates
significantly faster training times across all real-world datasets compared to other models (e.g., the
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Table 4: Mean performance of WLKS-K in micro F1-score by K: {0}, {1}, {2}, {D}, and {0, D}.
The standard deviations are omitted (all 0). The higher the performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

WLKS-{0, D} 64.8 65.3 57.9 91.8 96.0 60.0 91.3 100.0

WLKS-{0} 34.0 31.4 26.4 67.3 96.0 36.0 87.0 100.0

WLKS-{1} 39.0 OOM OOM 79.6 68.0 56.0 39.1 100.0

WLKS-{2} 64.2 OOM OOM 89.8 68.0 56.0 39.1 100.0

WLKS-{D} 64.2 65.1 57.9 89.8 68.0 56.0 39.1 100.0

Table 5: Mean performance in micro F1-score of S2N models with kernel matrix KWLS-{0, D} as
adjacency matrix between subgraphs over 10 runs. S2N models are based on GCNII. The higher the
performance, the darker the blue color.

Model PPI-BP HPO-Neuro HPO-Metab EM-User Density Cut-Ratio Coreness Component

S2N+0 63.5±2.4 66.4±1.1 61.6±1.7 86.5±3.2 67.2±2.4 56.0±0.0 57.0±4.9 100.0±0.0

S2N+A 63.7±2.3 68.4±1.0 63.2±2.7 89.0±1.6 93.2±2.6 56.0±0.0 85.7±5.8 100.0±0.0

WLKS-{0, D} 64.8±0.0 65.3±0.0 57.9±0.0 91.8±0.0 96.0±0.0 60.0±0.0 91.3±0.0 100.0±0.0

WLKS-{0, D} for S2N+0 64.8±1.5 66.3±0.6 62.4±1.1 86.5±2.4 92.0±0.0 51.2±3.9 69.6±1.9 100.0±0.0

WLKS-{0, D} for S2N+A 65.4±2.4 68.4±1.1 62.9±1.9 90.0±3.3 95.6±2.8 48.0±0.0 87.4±4.1 100.0±0.0

shorter training time of ×0.01 on HPO-Neuro, ×0.17 on HPO-Metab, ×0.38 on EM-User, ×0.53 on
PPI-BP). This metric does not include the pre-computation or embedding pretraining required in
baselines, so the actual training of WLKS is more efficient. Additionally, WLKS does not require a
GPU, unlike other GNN baselines.

Performance of WLKS-K by K We highlight the importance of selecting the appropriate K in
Table 4. Specifically, the performance of WLKS-K varies significantly depending on the choice of
K. WLKS-{0, D}, which combines kernels of 0 and D, consistently delivers strong results across
datasets. WLKS-{0} and WLKS-{D} perform well independently in certain datasets, but their com-
bination makes the better performance. This result suggests that multiple k-hop neighborhoods are
associated with the labels of the subgraph, and the performance can be improved from the comple-
mentary nature of WLKS capturing different k-hop structures.

Performance of GNNs with the WLKS Kernel Matrix as Adjacency Matrix In Table 5, we
present the results of fusing WLKS-{0, D} and GNNs (i.e., S2N). The performance of the WLKS-
{0, D} for S2N improves over vanilla WLKS-{0, D} on PPI-BP, HPO-Neuro, and HPO-Metab, how-
ever, performance drops on EM-User, Density, Cut-Ratio, and Coreness. Note that applying GNNs to
the WLKS kernel matrix requires kernel sparsification, leading to a loss of structural information.
However, this trade-off can be offset by the enhanced features of neural networks. For subgraph-
level tasks, we interpret that the former set of benchmarks prioritizes features over structure, while
the latter relies more on structural information.

In addition, the performance of WLKS for S2N improves over or is similar to the original S2N
across all datasets except for Cut-Ratio. The original S2N uses edge weights based on the number of
common nodes between subgraphs. This indicates that the structural similarity, as captured by the
kernel matrix, is more important than node membership information for most subgraph benchmarks.

Sensitivity Analysis of Hyperparameters Figures 3 and 4 demonstrate the performance sensitiv-
ity of the WLKS-{0, D} with respect to the number of iterations T and the kernel mixing coefficient
α0. The best performance is achieved at iterations of T = 2 or T = 3, beyond which the WL color-
ing stabilizes and no further improvement is observed. For α0, the WLKS-{0, D} is best-performed
between 10−3 and 10−1, while performance drops sharply as α0 approaches 1. Since αD = 1− α0

is larger than α0 in this range, this suggests that the subgraph labels rely more on global structures
(k = D) than internal ones (k = 0).
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Figure 3: Performance of WLKS-{0, D} by the number of iterations T .
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Figure 4: Performance of WLKS-{0, D} by the coefficient α0 in α0K
0
WLS + (1− α0)K

D
WLS.

6 CONCLUSION

We proposed WLKS, a simple but powerful model for subgraph-level tasks that generalizes the
Weisfeiler-Lehman (WL) kernel on induced k-hop neighborhoods. WLKS can enhance expressive-
ness by linearly combining kernel matrices from multiple k-hop levels, capturing richer structural
information without redundant neighborhood sampling. Through extensive experiments on eight
real-world and synthetic benchmarks, WLKS outperformed state-of-the-art methods on five datasets
with reduced training times—ranging from ×0.01 to ×0.53 compared to existing models. Fur-
thermore, WLKS does not need pre-computation, pre-training, GPUs, or extensive hyperparameter
tuning.

Our method offers a promising and accessible alternative to GNN-based approaches for subgraph
representation learning, but some tasks can still benefit from deep neural networks. We leave as
future work the seamless integration of WLKS with GNNs to leverage the expressive power of both
structures and features.
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