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Abstract. Large-scale vision foundation models such as Segment Any-
thing (SAM) demonstrate impressive performance in zero-shot image
segmentation at multiple levels of granularity. However, these zero-shot
predictions are rarely 3D-consistent. As the camera viewpoint changes
in a scene, so do the segmentation predictions, as well as the character-
izations of “coarse" or “fine" granularity. In this work, we address the
challenging task of lifting multi-granular and view-inconsistent image
segmentations into a hierarchical and 3D-consistent representation. We
learn a novel feature field within a Neural Radiance Field (NeRF) rep-
resenting a 3D scene, whose segmentation structure can be revealed at
different scales by simply using different thresholds on feature distance.
Our key idea is to learn an ultrametric feature space, which unlike a
Euclidean space, exhibits transitivity in distance-based grouping, natu-
rally leading to a hierarchical clustering. Put together, our method takes
view-inconsistent multi-granularity 2D segmentations as input and pro-
duces a hierarchy of 3D-consistent segmentations as output. We evaluate
our method and several baselines on synthetic datasets with multi-view
images and multi-granular segmentation, showcasing improved accuracy
and viewpoint-consistency. We additionally provide qualitative examples
of our model’s 3D hierarchical segmentations in real world scenes.1

1 Introduction

Different applications often need different semantic understandings of a scene.
This fact necessitates that segmentation methods offer a diverse set of predic-
tions that span different modalities, showcase multiple levels of granularity, and
offer hiearchical relationships. With the advent of the “Segment Anything Model”
(SAM) [24], reliable multi-granular single-view segmentation might be described
as accomplished. Yet, in a multi-view or moving-camera system, multi-granular
segmentation of each image can produce an overwhelming total number of seg-
ments, many of which disagree with each other and most of which are not useful
for the downstream application of interest. In this work, we attempt to distill
these thousands of 2D segmentation options (which may be conflicting) into an
organized 3D segmentation which is view-consistent and hierarchical.

1 The code and dataset are available at: https://github.com/hardyho/ultrametric_
feature_fields
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Fig. 1: Our method takes as input multi-view posed images, paired with segmentation
masks from the recent “Segment Anything Model” (SAM), and merges these into a
coherent 3D representation where segmentation is view-consistent and hierarchical.

As demonstrated in many recent works, view-consistency can be achieved by
distilling the segmentation information into a 3D implicit field, such as a Neural
Radiance Field (NeRF) [33]. The first works in this area simply optimized a
semantic labelling branch alongside the color branch of the NeRF [27, 32, 63].
This delivers view-consistent semantic segmentation, but does not generalize to
unseen categories. More recent methods have proposed to distill generic image
features into the implicit field [21, 26], allowing these features to be queried
in 2D or 3D for segmentation or other tasks. However, these methods often
struggle to capture precise segmentation boundaries, perhaps because language-
aligned features are region-based and not pixel-based. Furthermore, most of these
works do not directly account for multiple levels of granularity, and those that
do [21] must re-render the feature field for every scale of interest. Nonetheless,
the expressiveness and wide adoption of NeRFs makes them a natural choice as
underlying 3D representation, and we adopt this same choice here.

Unlike prior work, we explicitly aim for our scene segmentation to be hierar-
chical. This means that the scene segmentation has a tree structure, where the
root group is the full scene, and any group can be recursively divided into smaller
groups, all the way down to the point level. A group is defined as a spatially
connected neighborhood where all pairwise feature distances are within some
threshold. At first glance, this is a familiar contrastive learning problem: within-
segment feature pairs should have small distances, and cross-segment feature
pairs should have large distances, so that thresholding yields groups that follow
segmentation boundaries. However, we demonstrate this typical setup is not suf-
ficient to create a consistent hierarchy, and we find it is crucial to use ultrametric
distances, rather than standard Euclidean distances, in the contrastive loss. In
an ultrametric space, for any three points x, y, and z, distances satisfy a con-
dition stronger than the standard triangle inequality d(x, z) ≤ d(x, y) + d(y, z),
namely that d(x, z) ≤ max{d(x, y), d(y, z)}. Ultrametric spaces are ideally suited
for hierarchical clustering because distance-based groupings are transitive: if
d(x, y) ≤ ϵ and d(y, z) ≤ ϵ, then it follows that d(x, z) ≤ ϵ. In other words,
if we group x and y together and y and z together, then we automatically also
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Fig. 2: Method Overview: We train a NeRF with an ultrametric feature field using
images and view-inconsistent segmentation masks from SAM [24]. After training, we
use the depth estimation and feature maps from training views to construct a 3D point
cloud. At inference, for a specified threshold t representing the granularity level, we
apply a 3D watershed transform to segment the 3D point cloud. Then, we can query
the point clouds in novel views and obtain view-consistent segmentation results.

group x and z together. Thus, as ϵ grows, smaller clusters are naturally merged
into larger clusters, automatically giving rise to a hierarchy.

We optimize our 3D ultrametric feature fields by rendering them to 2D, and
using SAM as a noisy supervision signal for grouping. After optimization, we
produce view-consistent hierarchical segmentations at arbitrary levels of granu-
larity, by simply specifying a threshold ϵ, and running a Watershed transform
to retrieve all groups that exist under this threshold.

We evaluate our approach on models from the PartNet dataset, showing that
our method recovers a view-consistent hierarchy of segmentations that captures
the natural part decomposition of a 3D object. Furthermore, we introduce a syn-
thetic dataset with hierarchical segmentation annotations based on the NeRF
Blender Dataset. Unlike PartNet, our proposed dataset offers hierarchical de-
composition of more complex scenes. In all evaluations, we compare our method
to a set of competitive baselines, measuring IoU accuracy and 3D consistency,
and we demonstrate that our method outperforms existing open-vocabulary 3D
segmentation methods, such as DFF [26], LeRF [21], and SAM-3D [7]. Addi-
tionally, we introduce a metric for measuring the quality of a hierarchy, and
demonstrate that the segmentations in prior work lack hierarchical structure,
while our output is hierarchical by construction.

In sum, our key contribution is a novel formulation for 3D scene segmentation:
ultrametric feature fields. Using this formulation, we are able to distill view-
inconsistent 2D masks into a 3D representation which is not only view-consistent
but also hierarchical, allowing arbitrary-granularity segmentation at test time.
We also contribute a new synthetic dataset, and propose new evaluation metrics,
to quantify our progress and facilitate future work in this direction. Finally we
provide qualitative examples of our model’s 3D hierarchical segmentations in
real world scenes.
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2 Related Work

Neural Radiance and Feature Fields Neural Radiance Fields (NeRFs) [33]
are a popular representation for novel view synthesis and 3D reconstruction,
and in the last few years there has been an explosion of research surrounding
NeRFs. To name a few research directions, NeRF has been extended to improve
rendering quality [3, 15, 43], accelerate training and inference [9, 10, 17, 30, 37],
improve geometry [40,52,57,61], and learn with fewer viewpoints [39,42,50]. In
this work we are most interested in related research that integrates segmentation
into NeRF [7,21,26,27,31,32,35,45,55,59,63].

One line of research aimed to learn a semantic or instance branch alongside
the NeRF’s color and density, thus yielding view-consistent segmentation [27,32,
45,51,63]. Semantic-NeRF [63] was a seminal work that learned a semantic field
to propagate 2D segmentations into new views. Instance-NeRF [32] improved
Semantic-NeRF by handling panoptic segmentation from Mask2Former [12].
Nevertheless, these methods are restricted to a closed vocabulary of instance
categories, and additionally do not attempt a hierarchical understanding of the
segmented instances.

Another recent direction has been to learn a generic volumetric feature field
alongside NeRF. DFF [26], N3F [49], and LeRF [21] distilled 2D image fea-
tures generated by off-the-shelf feature extractors such as CLIP [41], DINO [5],
and LSeg [28] into feature fields that enable 3D segmentation and editing in
NeRF. However, these methods often struggle to recover precise segmentation
boundaries, and also do not establish a hierarchical structure on the features. In
contrast, we learn a feature field that distills a hierarchy of segmentations from
noisy multi-view SAM predictions.

Finally, other works [6, 7, 59] used NeRF or 3D Gaussians [20] to propagate
a single SAM query into novel views and establish view-consistency. However,
these methods handle one segmentation at a time, while our approach trains a
feature field to jointly aggregate and reconcile hundreds of noisy 2D masks.

Hierarchical Segmentation Hierarchical segmentation, a specialized domain
within image segmentation, partitions an image into regions that exhibit a
hiearchical tree structure, (i.e., each segmentation can be recursively divided
into smaller segmentations). In the pre-deep learning era, researchers utilized
non-parametric approaches to generate contours and enable hierarchical seg-
mentation [1,2,4,38,46]. Ultrametric distance and the watershed transform were
employed to identify hierarchical clusters based on RGB values [1, 4, 38], and
subsequent advancements by Yarkony et al. [58] and Xu et al. [56] improved the
efficiency and flexibility of ultrametric hierarchical segmentation methods. More
recently, Zhao et al. [62] and Li et al. [29] shifted their focus from hierarchical
segmentation within an image toward estimating the hierarchy of segmentation
classes. This class hierarchy has also been of particular interest in the field of
human parsing, where segmentation is performed according to the hierarchical
structure of the human body [14,16,53,54]. In the 3D domain, Mo et al. [36] in-
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troduced PartNet, a large scale 3D mesh dataset annotated with hierarchical seg-
mentation, and researchers have subsequently explored hierarchical structure in
3D shapes, including multi-granularity segmentation on point clouds [47,48,65].

Most relevant to us, the recent Segment Anything Model [24] emphasized
multi-granular segmentation in its open-vocabulary and zero-shot segmentation
setting. Given its impressive performance, we use off-the-shelf SAM segmenta-
tions as supervision for our method. Furthermore, while concurrent works [23,60]
also attempt to distill SAM masks into NeRF, our ultrametric feature field con-
stitutes a fundamentally different approach to the problem.

3 Preliminaries and Notation

In this section we describe the core building blocks of our approach: (1) im-
plicit feature fields, (2) hierarchical segmentation via watershed transform and
ultrametrics, and (3) an off-the-shelf image segmentation model.

NeRF and Feature Fields A Neural Radiance Field (NeRF) [33] is a vol-
umetric representation that outputs a density σ and color c given a 3D coor-
dinate x = (x, y, z) and 2D viewing direction d. Given a pixel’s camera ray r,
the NeRF samples N points along the ray x1, ...,xN at corresponding intervals
δ1, ..., δN and performs approximate volume rendering to estimate the pixel’s
color: C(r) =

∑N
k=1 Tk(1− e(−σkδk))ck , with Tk = e−

∑k
i=1 σiδi .

Recently, Distilled Feature Fields (DFF) [26] proposed to learn a volumetric
feature fields within a NeRF. Given 3D coordinate x, DFF outputs a feature f in
addition to the original density σ and color c. Using the same volume rendering
equation, DFF renders a features in addition to colors. We follow DFF and learn
a NeRF with an accompanying feature field.

Watershed Transform and Ultrametrics The Watershed transform [4, 38]
is a traditional hierarchical segmentation method. The method interprets edge
energies as a heightmap, and initiates a flooding process, wherein energy basins
beneath a given threshold are merged into regions, and higher thresholds cause
regions to merge. Since the “water level” is uniform across the whole space, this
yields a hierarchical segmentation.

Representing an image or scene as a graph, denoted as G = (V,E), where V
includes all of the pixels/points and E connects points which are adjacent, the
minimum water level that merges two points can be expressed as:

d(vi, vj) = min
p∈P

max
e∈p

|e| , (1)

where P denotes all paths that connect vi and vj in the graph, and e is an edge
on the path p. Computing the distance between vi and vj means first finding
the shortest path between the nodes, where path length is determined by the
maximum edge along the path, and then reporting that crucial edge length. This
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Fig. 3: Ultrametric Segmentation: Left : We overlay a simple graph on the image,
showing edge lengths corresponding to feature distances between points. Right : The
hierarchical segmentation derived from the graph on the left. The numbers on the tree
indicate the ultrametric distance between nodes on the two branches.

is sometimes called the minimax path problem. This distance is an ultrametric
distance [18,34], which satisfies a triangle inequality of the form

d(x, y) ≤ max{d(x, z), d(y, z)} . (2)

Fig. 3 provides an illustration of paths and distances in a simple scene graph.
In our setup, we use Eq. (2) to define an ultrametric contrastive loss for our

scene features. We use feature distances as edge lengths in Eq. (1), enabling us
to obtain hierarchical segmentations at test time via the Watershed transform.

Segment Anything Model (SAM) SAM [24] is a state-of-the-art vision foun-
dation model for image segmentation. Given a query in the form of points, a
mask, a box, or a language prompt, SAM predicts a segmentation that best re-
flects the prompt. SAM generates segmentations at three levels of granularity:
instance, part, and subpart.

While SAM produces excellent results on single images, it is nontrivial to
lift its predictions into 3D. This is because SAM’s predictions are not consistent
across viewpoints. For example, a pen may be segmented into multiple parts
in a close-up view, then segmented as a single instance in a wider view, and
then be completely missed when viewed from farther away. Furthermore, it is
unclear how to best lift outputs from a “queryable" design into a well-organized
3D representation: given an abundance of queries, SAM will generate an abun-
dance of masks, which overlap with one another unpredictably, and have no
straightforward unification.

In our setup, we use SAM to provide a noisy signal of viable segmentations
within each viewpoint, and rely on multi-view feature field optimization, using
ultrametrics, to distill this knowledge into a 3D scene segmentation which is
view-consistent and hierarchical.

4 Method

The previous section described the core components of our approach. In this
section we describe how these pieces fit together, and explain the training and
inference pipelines.
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Fig. 4: Hierarchical Segmentation: Our method can hierarchically segment real
world scenes at various levels of granularity.

4.1 Learning an Ultrametric Feature Field

Problem Formulation We take as input a set of multi-view images, along with
their camera parameters. We run SAM on every image, typically yielding 50-150
masks per image. Our goal is to learn an implicit feature field that encodes a
hiearchical understanding of these masks.

Contrastive Learning The SAM masks are inconsistent across views, but
carry a great deal of information within each view. We use contrastive learning
[11,22,41] to distill this information into a 3D feature field.

We sample a pair of pixels in an image, and define it as a positive pair if both
lie within a same mask, and a negative pair otherwise. We supervise the features
of positive pairs to be more similar than those of negative pairs. Concretely, we
follow Chen et al. [11] and minimize a binary cross entropy loss on distances
between positive pairs and negative pairs. Given a positive pair sp = {vp1, vp2}
and a negative pair sn = {vn1, vn2}, our contrastive loss is

ℓ(sp, sn) = − log(
ed(vp1,vp2)/τ

ed(vp1,vp2)/τ + ed(vn1,vn2)/τ
)

+ log(
ed(vn1,vn2)/τ

ed(vp1,vp2)/τ + ed(vn1,vn2)/τ
) ,

(3)

where d is a distance metric, and τ is the temperature.
Minimizing the loss in Eq. (3) across many pairs sp and sn yields a feature

space where segmentations can be recovered by querying a point and finding
the neighborhood where pairwise feature distances are all below some threshold.
As discussed in earlier sections, whether or not the resulting segmentation will
be hierarchical depends on whether the distance metric d is an ultrametric or a
standard Euclidean metric. Our main goal is to reduce ultrametric distances, but
to improve optimization, we apply loss in both ultrametric space and Euclidean
space:

Lfeat =
∑

(sp,sn)∈S

ℓultra(sp, sn) + αℓEuclid(sp, sn) . (4)

The ultrametric term forces the optimization to find a hierarchical decomposi-
tion of the scene, while the Euclidean term serves as regularization. Note that
the Euclidean term has the advantage of directly providing a gradient to all
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considered feature pairs, whereas the ultrametric loss only provides a loss to the
active (maximal) edge along the path between two segments.

As described in Eqs. (1) and (2), ultrametric distances are defined on a graph.
At each training step, we form an approximate graph by sampling 4096 pixels
within the image, connect each pixel to its 10 nearest neighbors, and use feature
distances as edge weights. We use the binary partition tree algorithm [13] to
efficiently compute ultrametric distances during training.

Hierarchical Sampling Because our input segmentations overlap within and
across views, it is ambiguous whether a pair of pixels “lie within the same mask”
and therefore represent a positive pair in our contrastive formulation. For exam-
ple, two pixels may be within the same mask at a coarse granularity but not for
a finer granularity. We address this ambiguity with a simple tree-based strategy
for sampling positive and negative pairs of pixels.

For each image, we organize the segmentation masks into a hierarchical struc-
ture determined by the inclusion ratio between them. We additionally include
an all-positive mask as the root of the tree. Then, for each view, we sample
positive and negative pairs starting from the leaf nodes of the hierarchical tree,
i.e. masks at the finest granularity. For a leaf mask A with parent mask B, we
randomly select two pixels in A and designate these as a positive pair. We then
randomly select one pixel in A and one pixel in Ā ∩B and designate these as a
negative pair. We then move to the parent mask and repeat. Additional details
are provided in the supplementary.

We note that masks grow in size as we rise up the hierarchy, and pairs
which were declared negative at finer granularity will be declared positive in
courser segmentations. We mitigate this conflict by computing the contrastive
loss within each level. This asks that the positive distances be smaller than the
negative distances within a single level, and avoids the possibility of a pair being
simultaneously positive and negative in Eq. (3). Taken together, our sampling
strategy reflects an ultrametric structure and helps the segmentation hierarchy
propagate across the scene.

Improving Depth with Segmentation Our approach shows that the 3D
structure of a scene can resolve conflicts in segmentation cues. Conversely, can
segmentation cues help resolve ambiguity in 3D structure? To explore this pos-
sibility, we add an assumption that regions belonging to the same semantic
mask have smoothly changing depth. We propose a regularization that penalizes
changes in curvature (i.e. the third derivative of depth) within a segment. Con-
cretely, at each training iteration, we sample kdepth local patches of 4× 4 pixels,
ensuring that each sampled patch lies within one of the SAM’s finest-grained
mask predictions. The depth continuity loss is defined as

Ldc =
∑

p0∈PD

max(
(dp0

− 3dp1
+ 3dp2

− dp3
)

(max(dp0 , dp1 , dp2 , dp3)∆θ)3
− t, 0) (5)
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where ∆θ represents the ray angle difference between adjacent pixels, t denotes a
threshold, and PD contains the sampled pixels, with p0, . . . , p3 denoting adjacent
pixels in a row or column. For training stability, we start using this loss halfway
through training. Fig. 5 presents the benefits of the depth continuity loss.

4.2 Segmentation from Ultrametric Features

After training our ultrametric feature field, we can perform 2D or 3D hierarchical
segmentation by applying the Watershed transform on either rendered feature
maps or the 3D feature field itself.

Segmenting in 2D To segment a 2D image from our feature field, we begin by
rendering our feature field to the viewpoint of the image. We then construct a
graph from the feature map, denoted as G = (V,E), where V contains the pixel
features, and E contains edges connecting each pixel to its 4 spatial neighbors.
Edge lengths are defined as feature distances. With a given threshold t as the
indicator of granularity, we remove all edges longer than this threshold, result-
ing in a new graph denoted as Gt. We then identify all connected components
within this graph, and return these components as our segmentation. We use
this approach to compare against 2D segmentation methods, but we note that
2D-based segmentation is not view-consistent.

Segmenting in 3D To achieve 3D-consistent segmentation, we create a fea-
turized 3D point cloud by unprojecting feature maps and depth maps rendered
from the optimized implicit field. Following related NeRF works, we remove out-
liers and downsample the pointcloud using Open3D [64]. Then, we construct a
k-nearest-neighbor (KNN) graph on the 3D point cloud, and we set each edge
weight in the KNN graph to the feature distance between the connected ver-
tices. For a threshold t indicating the level of granularity, we remove all edges
longer than that threshold, and the remaining connected components represent
segments at the specified level of granularity. In practice, we keep the N largest
components as our final segmentation. Using different values of t allows for seg-
mentation at varying levels of granularity.

To propagate the 3D segmentation into a novel view, we first render a depth
map of the novel view and unproject the render into 3D points. Then, for each
unprojected pixel, we find its k nearest neighbors to the previously estimated
KNN graph and assign a segmentation label using the mode of the neighborhood.

5 Experiments

We report qualitative and quantitative evaluations for our method and a set of
relevant baselines. In Sec. 5.1 we give an overview of the datasets we evaluate on,
and we define our evaluation metrics. In Sec. 5.2 and Sec. 5.3, we present quan-
titative comparisons and ablation studies. We present implementation details in
Sec. 5.4.
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(a) Image (b) Original (c) DC (d) DC & COLMAP

Fig. 5: Depth Continuity: Our depth continuity loss (labeled as DC above) leads to
smoother and more plausible depth estimation, and can be seamlessly combined with
additional depth cues such as COLMAP [44], resulting in even greater accuracy.

5.1 Datasets and Metrics

PartNet Dataset The official PartNet dataset [8,36] contains 26, 671 3D models
with professionally verified hierarchical part decomposition. Furthermore, each
object model is rendered into 24 viewpoints that uniformly cover the viewing
sphere. PartNet offers us the unique ability to evaluate on hierarchical segmen-
tation that verifiably aligns with human perception of structural hierarchy. We
evaluate on five objects from each of the chair, table, and storage furniture cat-
egories, totalling to 15 objects models.

Blender with Hierarchical Segmentation While PartNet contains 3D objects with
hierarchical part annotations, each model is visually simplistic and lacks the
photometric complexity often associated with NeRFs. To the best of our knowl-
edge, no publicly available dataset exists that displays both complex photomet-
ric structure as well as 3D-consistent hierarchical segmentation labels. Thus, we
create a new synthetic dataset based on the Blender Dataset [33] which we call
Blender with Hierarchical Segmentation (Blender-HS). We choose three scenes
from the Blender Dataset that exhibit clear hierarchical structure: Lego, Hotdog,
and Drums, and for each we define three granularity levels, which we denote as
“scene”, “collection”, and “object”. The object level consists of each distinct 3D
asset; the “collection” level contains 3D asset groupings that were decided by the
original artist; the “scene” level consists of the entire scene. While many poten-
tial hierarchies exist in general, the artist-defined groupings naturally represent
a hierarchy that makes sense for humans. We present visualizations of the hi-
erarchical ground truth in the supplementary. We use 100 views in the training
set for training and 10 views from the validation set for evaluation.

Normalized Covering Score To assess the quality of hierarchical segmentation, we
use the Normalized Covering (NC) score [19]. This metric averages the Intersec-
tion over Union (IoU) between each ground truth mask and the best-matching
(i.e. most-overlapping) predicted mask. We calculate a separate NC score for
each granularity and report the mean of these scores. We also adapt the metric
to evaluate the accuracy of point clouds segmentation on PartNet [36].
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Segmentation Injectivity Score In hierarchical segmentation, it is important that
each pixel belongs to only one mask for each level of granularity. To measure
this, we propose a metric which we call Segmentation Injectivity (SI). For each
ground truth segmentation, we retrieve its best-matching predicted mask and
sample two random points p1 and p2 from that mask. We then query the model
for a new mask at each of these points, at the same granularity. We compute
the Intersection over Union (IoU) between the two resulting masks. Note that
a perfect model will return the same mask at both locations, since these points
belong to the same ground-truth segment, whereas a worse model will return
masks which may not even overlap. Since the random point sampling introduces
randomness, we run this 100 times per ground truth mask and average the scores
across all ground truth masks and all viewpoints. We find this is more tractable
than estimating masks densely, and in practice exhibits low variance. Note there
is a trade-off between the SI score and the NC score: predicting an excessive
number of overlapping masks could inflate the NC score but would significantly
lower the SI score.

View Consistency Score We use a View Consistency (VC) score to measure the
3D consistency of image segmentations. The key idea of this score is to estimate
segmentations in two nearby viewpoints independently, and then warp these
estimates onto one another, and measure their agreement. To compute this score,
we begin by defining a pixel transformation T from a source viewpoint to another
one shifted 10 degrees, using ground truth depth and camera pose. Next, for
each ground truth segmentation, we retrieve its best-matching predicted mask,
sample a random point p1 from that mask, and compute the point’s location
in the shifted viewpoint p2 = T (p1). We then obtain segmentation estimates to
compare, centered on p1 in the first view and centered on p2 in the second. Finally
we warp p2’s mask into the p1 viewpoint, and measure IoU with the p1 mask. To
ensure that the IoU does not merely reveal occlusion/disocclusion differences, we
use ground truth visibility masks to remove pixels which are invisible in either
view, before computing the IoU. Similar to the other scores, we compute this
score 100 times per ground truth mask and average the scores across all ground
truth masks and all viewpoints.

5.2 View-Consistent Hierarchical Segmentation

Baselines Because the exact task of 3D-consistent hierarchical segmentation
from images collections is less explored, we adapt state-of-the-art NeRF base-
lines to this setting. We adapt language-based methods LSeg [28], DFF [26], and
LeRF [21] to predict a segmentation mask based on a 2D pixel query, by query-
ing the rendered feature map and estimating a segmentation mask via feature
similarity. We generate multi-granular predictions by using different thresholds
on the feature similarity. We also adapt SAM3D [7] as a baseline, which we
modify to produce multiple segmentations instead of only one. We propagate
SAM outputs from 20 training views into the novel view to generate a variety of
masks.
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Table 1: Results on Blender-HS. We report the Normalized Covering (NC), Seg-
mentation Injectivity (SI), and View Consistency (VC) as a percentage. NCobj, NCcoll,
and NCscene refer to the NC score on objects, collections, and scenes, respectively.

Method NCobj ↑ NCcoll ↑ NCscene ↑ NCmean ↑ SI ↑ VC ↑

LSeg [28] 21.8 40.6 67.0 43.2 69.8 53.6
LSeg + DFF [26] 16.4 42.7 83.9 47.7 84.8 82.7
LeRF [21] 26.6 41.3 85.7 51.2 59.8 64.1
SAM [24] 44.3 65.2 78.7 62.7 80.8 46.2
SAM3D [7] 46.0 59.3 53.2 52.8 - 72.4
Ours, 2D 50.0 63.0 94.0 69.0 100.0 67.8
Ours 48.0 67.7 97.1 70.9 100.0 78.9

Quantitative Evaluation In Table 1, we report segmentation metrics for our 2D
inference mode, our 3D inference mode, and our baselines. Our method signif-
icantly outperforms all other methods in Normalized Covering score (i.e. seg-
mentation accuracy). We even outperform SAM, suggesting that our ultrametric
feature field not only distills thousands of SAM predictions into a compact set
of hierarchical and view-consistent masks, but that our masks are more accu-
rate than any of the original SAM predictions. Due to the Watershed transform,
we also achieve a perfect score on segmentation injectivity (SI), while the other
methods (which are non-hierarchical) tend to predict overlapping masks. Fi-
nally, our 3D inference shows significant improvements in view consistency over
all methods except DFF. We also point out that DFF’s object-level NC score
suggests that it does not segment small objects, which are significantly more
challenging to segment in a view-consistent manner, and this fact may inflate
the VC score for the method.

We additionally visualize our ultrametric feature field on the Lego scene in
the supplementary, showing sharper features than DFF.

Qualitative Analysis We provide qualitative validation of our method on two
real-world scenes from the Tanks and Temples Dataset [25]. In Fig. 4, we vi-
sualize three segmentation granularities on the truck scene. In Fig. 1, we show
our segmentations on the Bobcat tractor scene, which resolves inconsistencies
from the source SAM masks. Our method’s segmentations tend to have sharp
boundaries, and the hierarchical structure decomposes the truck and tractor into
intuitive parts and subparts.

Partnet Experiments Each object in PartNet has a unique hierarchical part
decomposition that may vary in both the number of parts and number of rela-
tionships between parts. To evaluate the part hierarchy using our NC metric,
we categorize the part hierarchy of each object into three levels: finest, middle,
and coarse. The finest level corresponds to the leaf level, while the coarse level
represents the root level (i.e., full object), and the rest are the middle level. In
Table 2, we compare our approach with LSeg+DFF [26] and SAM3D [7], two
other methods that produce 3D-consistent segmentation. Our method surpasses
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Table 2: Evaluation in PartNet. We report the Normalized Covering (NC) as a
percentage on PartNet dataset. NCfine, NCmid, and NCcoar refer to the NC score on
three different hierarchy levels. † means the method is evaluated based on point clouds.

Method NCfine ↑ NCmid ↑ NCcoar ↑ NCmean ↑

LSeg + DFF [26] 22.4 48.5 70.6 47.2
SAM3D [7] 51.0 60.8 66.8 59.6
Ours 49.9 63.3 82.8 65.3

Ours† 48.9 60.4 - -
3D-PIS† [48] 52.2 75.0 - -

both in NC score, while also being the only method to produce hierarchical seg-
mentation. We also report the NC Score based on point clouds and compare our
method with 3D-PIS [48], a supervised point clouds segmentation network. We
can see that our method can achieve comparable NC Score on the finest level.
Our method falls behind on the middle level, as the ground truth hierarchical
tree is constructed semantically, 3D-PIS learns these semantics from supervision
while ours does not.

5.3 Ablation Experiments

Hierarchical Data Sampling In Tab. 3 we evaluate the influence of hierarchical
data sampling for contrastive learning. In the baseline approach, positive pairs
are randomly sampled within each mask, and negative pairs are sampled with one
point inside and one point outside. Results indicate that using the hierarchical
sampling strategy improves the overall performance by 5.7 points.

Ultrametric training In Tab. 3 we report the impact of the ultrametric loss, ℓultra.
In the baseline method, we train the feature space using only the Euclidean loss,
ℓEuclid. Results show that the ultrametric training improves the segmentation
performance by 2.1 points.

Depth Continuity Loss Tab. 4 shows the influence of using the depth continuity
loss during training. In addition to evaluating the NC score, we evaluate depth
estimation accuracy, using mean ℓ2 error. Incorporating the depth continuity loss
improves both segmentation accuracy and depth accuracy. Fig. 5 qualitatively
illustrates the benefit of the depth continuity loss in real data.

5.4 Implementation Details

We implement our method with help from the publicly available codebase from
DFF [26]. We model our feature branch after the RGB branch of Instant-
NGP [37] – we employ a multi-resolution grid hash encoder to transform 3D
coordinates into features, followed by an MLP. For the grid hash encoder, we
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Table 3: Ablation on Hierarchical Sampling
(HS) and Ultrametric Training (UT).

Method NCobj NCcoll NCscene NCmean

Ours 48.0 67.7 97.1 70.9
w/o UT 47.1 62.8 96.4 68.8
w/o HS 42.6 64.0 89.0 65.2

Table 4: Ablation on Depth Con-
tinuity (DC) loss.

Method NCmean Depth Error

Ours 70.9 0.059
w/o DC 67.1 0.089

configure the number of levels to 17, features per level to 4, and the hash map
size to 220. The MLP comprises three hidden layers with 128 dimensions each,
producing a final output feature of 256 dimensions. We provide additional im-
plementation details in the supplementary.

For our quantitative evaluation on Blender-HS, we compute the NC score of
LSeg, DFF, LeRF, and our method across 50 distance thresholds ranging from
0.01 to 0.50. We follow DFF [26] and perform all evaluation on 4× downsampled
images. For all methods, we exclude masks containing fewer than 20 pixels.

6 Discussion and Limitations

A key limitation of our approach is its dependence on high-quality point clouds
produced by the NeRF. While the depth-smoothing loss outlined in Section 5.3
improves point cloud quality, there is much room for further improvement. Re-
garding our evaluation, we find there is a scarcity of high-quality datasets for
hierarchical 3D segmentation that exhibit complex scene structure. Additionally,
it is ambiguous which hierarchies are the most meaningful and appropriate in
complex environments, without defining end-tasks that rely on these hierarchies.
While our Blender-HS Dataset is a first step in providing ground truth on hierar-
chical 3D segmentation in complex scenes, it is limited to only three scenes. We
hope that future efforts can develop better and larger hierarchical 3D datasets,
to enable more comprehensive evaluations.

7 Conclusion

Consistent hierarchical 3D segmentation is essential for many applications in-
volving mobile agents interacting with the real world at scale, such as robotics
and augmented reality. In this work we have demonstrated significant progress
towards achieving consistent hierarchical segmentation, building on state-of-the-
art systems that perform multi-granularity segmentation in images, whose out-
put predictions are neither hierarchical nor consistent across different views. Our
ultrametric feature field distills this inconsistent 2D information into a represen-
tation that can be queried at will for arbitrary-granularity segmentations that
are consistent across views.
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8 Supplementary Material

We provide additional implementation details in Sec. A. We present additional
qualitative results on Blender-HS dataset, PartNet dataset, and LLFF dataset
in Sec. B. Additionally, we include a video attachment with visualizations of the
view-consistent hierarchical segmentation results.

A. Additional Implementation Details

A.1. Hyperparameters On Blender-HS and PartNet, we train our model
for 20, 000 iterations with a batch size of 4096 and use the same optimization
parameters as DFF. In contrastive learning (see Eq. (3)), we set the temperature
τ to 0.1 and sample 64 positive and negative pairs from each mask. We set the
loss weight α of the Euclidean loss in Eq. (4) to 1. For depth continuity loss,
we sample 16 patches per mask, and begin using the depth continuity loss after
5000 iterations. During 3D inference, we extract a point cloud from training-
view depth maps, apply voxel downsampling with voxel size 2 × 10−3, and run
outlier removal with distance threshold 4× 10−3 and number threshold of 1. We
build the graph of points using kgraph = 16 nearest neighbors, and we transfer
point segmentation labels into a novel view using the mode of kquery = 5 nearest
neighbors. We retain N = 200 graph components and set the distance threshold d
to be 5×10−3. Please refer to Sec. 4 for definitions of the above hyperparameters.

A.2. Hierarchical Sampling We first organize the segmentation masks into a
hierarchical structure determined by the inclusion ratio between them. One mask
A is designated as a child of another mask B when |A∩B|

|A| > pin and |A∩B|
|A∪B| < pIoU .

We empirically set pin = 0.95 and pIoU = 0.85. We present the hierarchical
sampling algorithm we introduced in Sec. 4.1 in Algorithm 1.

We sample same number of positive pairs and negative pairs for training
for training efficiency. Implementing a 4-1 ratio (4× more negatives than posi-
tives) instead of 1-1, the normalized covering (NC) score increases from 0.709 to
0.720. However, this slow down our training by 43%, primarily due to the time-
consuming computation of ultrametric distances and the associated minimum
spanning tree.

A.3. Additional Details on Evaluation Metrics

Normalized Covering Score As discribed in Sec. 5.1, we measure the quality of
hierarchical segmentation with the Normalized Covering (NC) score [19]. This
metric averages the Intersection over Union (IoU) between each ground truth
mask and the best-matching (i.e. most-overlapping) predicted mask. The metric
is defined as

NC(S′ → S) =
1

|S|
∑
A∈S

max
A′∈S′

|A ∩A′|
|A ∪A′|

(6)
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Algorithm 1 Data Sampling
pos_samples ← []
neg_samples ← []
for all A ∈ leaf_masks do

# Sampling positive pairs from the leaf node
sample ← (Random(A), Random(A))
while A has Parent do

B ← A.Parent
pos_samples += sample
# Sampling negative pairs for the current level
sample ← (Random(A), Random(Ā ∩B))
neg_samples += sample
A ← B

end while
end for
return pos_samples, neg_samples

Where S denotes all segmentation masks and S′ denotes all predicted masks.
For LSeg, DFF, and LeRF, which only output feature fields without segmenta-
tion results (S′), we adopt a similar approach as our method, and we extract
segmentations by thresholding feature distances.

Segmentation Injectivity Score We propose the Segmentation Injectivity (SI)
score to measure if each pixel belongs to only one mask for each level of gran-
ularity. As described in Sec. 5.1, given a ground truth mask, we first randomly
sample p1 and p2 from that mask, and then query the model at these points
and granularity for a new mask prediction. Then, we measure the IoU between
the two resulting masks. We iterate this process N = 100 for each ground truth
mask, calculating scores for each run. The final SI score is obtained by averaging
the scores across all ground truth masks and viewpoints.

We represent the segmentation model as F (v, p, t) → A′ where v denotes the
viewpoint, p represents the pixel query, t corresponds to the granularity level,
and A′ is the resulting segmentation mask. The SI score is defined as

SI(S′ → S) =
1

|N ||S|
∑
A∈S

N∑
i=1

|F (v, pi1, t) ∩ F (v, pi2, t)|
|(F (v, pi1, t) ∪ F (v, pi2, t)|

where t = argmax
t

|A ∩ |F (v, pi1, t)|
|A ∪ |F (v, pi1, t)|

where v represents the view corresponding to the ground truth mask A.

View Consistency Score We use the View Consistency (VC) score to measure the
3D consistency of image segmentations. Starting with the source view, we rotate
the camera by 10 degrees, rendering both a new image and the corresponding
ground truth visibility mask in the shifted view – Fig. 6 provides an example of
two viewpoints and their visibility mask on the Blender Hotdog scene.
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For a given point query p1 and a granularity t and its mask prediction A1 =
F (v, p1, t) in the source view, we leverage the ground truth camera parameters
to warp the point to p2 = T (p1) and the mask prediction to T (A1) in the
shifted view where T denotes the pixel transformation. Following this, we query
the model in the shifted view with p2 using the same threshold t, resulting in
A2 = F (v′, p2, t).

Utilizing the visibility mask V , we eliminate pixels that are occluded in ei-
ther view from A2 and T (A1). The Intersection over Union (IoU) between the
remaining masks is computed as the VC score for this sample. We reduce the
noise induced by random sampling by computing this score for N = 100 times
per ground truth mask.

Taken together, the VC score is defined as

VC(S′ → S) =
1

|N ||S|
∑
A∈S

N∑
i=1

|T (Ai
1) ∩Ai

2 ∩ V |
|(T (Ai

1) ∪Ai
2) ∩ V |

where Ai
1 = F (v, pi1, argmax

t

|A ∩ |F (v, pi1, t)|
|A ∪ |F (v, pi1, t)|

)

Ai
2 = F (v′, pi2, argmax

t

|A ∩ |F (v, pi1, t)|
|A ∪ |F (v, pi1, t)|

)

For additional details, please refer to Sec. 5.1.
We also evaluate the View Consistency across multiple angles, in Tab. 5. The

ranking of the methods is the same.

Table 5: View Consistency score with different view angles.

Method VC10◦ ↑ VC45◦ ↑ VC90◦ ↑ VC135◦ ↑
LSeg [26] 0.536 0.522 0.510 0.498
LSeg + DFF [24] 0.827 0.813 0.810 0.808
SAM3D [6] 0.724 0.601 0.578 0.539
Ours 0.789 0.763 0.742 0.712

Depth Error We leverage the ground truth depth map rendered in blender to
compute the depth error of our method. The scale of the depth error adheres to
the normalized NeRF scene.

A.4. Additional Details on Baselines

DFF We configure DFF to use a white background and employ uniform ray
sampling on the BlenderHS dataset. All other hyperparameters directly adhere
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(a) Image (b) Shifted Image (c) Visibility Mask

Fig. 6: View Consistency: We evaluate the view consistency between the source
viewpoint (a) and another one shifted 10 degrees (b). We render the ground truth
visibility mask (c) with ray casting to avoid the occlusion/disocclusion between views.

Table 6: Distilled Feature Fields: We present the NC score of DFF with volume
rendering (VR) and the NC score of the official codebase on our BlenderHS dataset.

Method NCobj ↑ NCcoll ↑ NCscene ↑ NCmean ↑

DFF (VR) 0.164 0.427 0.839 0.477
DFF (Official) 0.082 0.286 0.666 0.345

to the official implementation. Furthermore, DFF’s official code2 does not apply
volume rendering to the feature branch. Instead, it generates a feature map by
directly querying the volumetric features at the 3D locations of the predicted sur-
face points. We extended their code to perform volume rendering, and we show
that using volume rendering leads to improved performance on the BlenderHS
dataset (see Tab. 6).

LeRF We use LeRF’s reported NSVF hyperparameters for the Blender synthetic
dataset. This includes configuring the background to white, selecting uniform
sampling as the ray sampling strategy, disabling space distortion, and setting
average appearance embedding to off. We train the model for 20000 steps. For the
Normalized Covering Score, we report the highest result among all 30 semantic
scales available in the LeRF feature field for each ground truth granularity. For
the Segmentation Injectivity score and View Consistency scores, we evaluate
LeRF at the semantic scale corresponding to the ground truth granularity which
yields the highest NC score.

SAM3D Given a pretrained NeRF and a segmentation mask from a single view,
SAM3D optimizes a binary voxel grid using mask inverse rendering and cross-
view self-prompting to propagate the mask into 3D. In our experiments, we
propagate the SAM masks from the segment-everything mode using 20 training
views (while still using all 100 training images to pretrain the NeRF). We ob-
served saturation in SAM3D’s NC score after 20 views, and, on an A6000 GPU,
it takes approximately a day per scene to propagate the segmentation maps from
20 views. In contrast, our method takes around 2 hours.
2 https://github.com/pfnet-research/distilled-feature-fields

https://github.com/pfnet-research/distilled-feature-fields
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SAM We employ the ViT-H model from the official SAM GitHub repository3 to
generate mask predictions. To generate the training data of our model, we use
the segment-everything mode to generate our supervision.

In the evaluation process, when querying segmentation models with a ran-
domly sampled point, we employ the point as a prompt for SAM to generate the
segmentation prediction. This approach, compared to evaluating based on the
output of the segment-everything mode, yields a higher NC score and provides
a clearer granularity level.

A.5. Training and Inference Time We train and perform inference on a
Titan RTX GPU. Training typically takes ∼70 minutes, while inference takes
5 seconds per granularity for 10 views. The main expense in inference is the
watershed algorithm running on 3D point clouds, which is executed once per
granularity and is view-independent.

B. Additional Qualitative Results

B.1. BlenderHS Dataset We first visualize the ground truth segmentations
for the Drums scene in the BlenderHS Dataset [33] in Fig. 8. We then present
qualitative results on the BlenderHS dataset [33] in Fig. 9. Our segmentations
exhibit a hierarchical structure and maintain consistency across different views.
We also visualize our ultrametric feature field on the Lego scene in Fig. 11,
showing sharper features than DFF.

B.2. PartNet Dataset We present qualitative results on the PartNet dataset [36]
in Fig. 10. Our method is able to generate hierarchical segmentation results of
different objects. Leveraging the 2D masks predicted with SAM as guidance,
our method proficiently segments various surfaces of sub-parts within the ob-
ject, while those are not included in the PartNet ground truth annotations.

B.3. LLFF Dataset We present qualitative results on the the LLFF dataset [33]
in Fig. 12. Our approach is able to generate view-consistent hierarchical segmen-
tation results for real-world scenes.

3 https://github.com/facebookresearch/segment-anything

https://github.com/facebookresearch/segment-anything
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Fig. 7: NC Score of SAM3D: We present the Normalized Covering (NC) score
(y-axis) of SAM3D, correlating it with the number of views (x-axis) from which we
propagate the SAM segmentation masks.

Fig. 8: Blender with Hierarchical Segmentation (Blender-HS): We render hi-
erarchical segmentation maps at three levels of granularity, namely Scene, Collection,
and Object, using information saved into the blender file by the scene artist.
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(a) Image (b) Hierarchical Seg-
mentation

Fig. 9: BlenderHS Dataset: We present the qualitative results obtained from our
BlenderHS dataset. The segmentation results demonstrate both view consistency and
hierarchical structure.
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(a) Image (b) Hierarchical Seg-
mentation

Fig. 10: PartNet Dataset: We showcase the qualitative results on the PartNet
dataset.
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(a) Image (b) DFF [26] (c) Ours

Fig. 11: Feature Visualization: We visualize rendered feature maps using PCA. The
feature map generated by DFF [26] fails to distinguish between different parts of the
Lego. In contrast, our method learns features that can distinguish various Lego bricks.

Fig. 12: LLFF Dataset: We showcase the qualitative results on the LLFF dataset.
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