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Abstract

In cooperative multi-agent reinforcement learn-
ing, centralized training with decentralized exe-
cution (CTDE) shows great promise for a trade-
off between independent Q-learning and joint ac-
tion learning. However, vanilla CTDE methods
assumed a fixed number of agents could hardly
adapt to real-world scenarios where dynamic team
compositions typically suffer from dramatically
variant partial observability. Specifically, agents
with extensive sight ranges are prone to be af-
fected by trivial environmental substrates, dubbed
the “distracted attention” issue; ones with lim-
ited observation can hardly sense their teammates,
degrading the cooperation quality. In this paper,
we propose Complementary Attention for Multi-
Agent reinforcement learning (CAMA), which
applies a divide-and-conquer strategy on input
entities accompanied with the complementary at-
tention of enhancement and replenishment. Con-
cretely, to tackle the distracted attention issue,
highly contributed entities’ attention is enhanced
by the execution-related representation extracted
via action prediction with an inverse model. For
better out-of-sight-range cooperation, the lowly
contributed ones are compressed to brief mes-
sages with a conditional mutual information es-
timator. Our CAMA facilitates stable and sus-
tainable teamwork, which is justified by the im-
pressive results reported on the challenging Star-
CraftII, MPE, and Traffic Junction benchmarks.

1. Introduction
Cooperative multi-agent deep reinforcement learning
(MARL) has gained increasing attention in many areas such
as games (Berner et al., 2019; Samvelyan et al., 2019; Ku-
rach et al., 2019), social science (Jaques et al., 2019), sensor
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networks (Zhang & Lesser, 2013), and autonomous vehicle
control (Xu et al., 2018). With practical agent cooperation
and scalable deployment capability, centralized training with
decentralized execution (CTDE) (Rashid et al., 2018; Gupta
et al., 2017) has been widely adopted for MARL. Current
CTDE methods usually assume a fixed number of agents
such as QMIX (Rashid et al., 2018), MADDPG (Lowe et al.,
2017), QPLEX (Wang et al., 2020a), etc.

Figure 1: The dynamic sight range dilemma. (a) Agents can
hardly cooperate beyond their sight ranges. (b) Agents with
large sight ranges may perform worse due to “distracted
attention”. (c) A sketch of our CAMA.

To adapt to complicated and dynamic real-world scenar-
ios with dynamic team compositions (i.e., the team size
varies), researchers extend these methods by introducing the
attention mechanism (Vaswani et al., 2017), which usually
requires splitting the state of the environment into a series
of entities (Yang et al., 2020; Agarwal et al., 2019; Iqbal
et al., 2021).

However, attention-based methods can hardly handle the
varying partial observability (e.g., the varying sight range
of each agent) in multi-agent systems, Fig. 1. With severe
partial observability, agents usually lose the sight of team-
mates, leading to the poor coordination quality. We use a
demo in Sec. 5.1 to verify the phenomenon. With slight
partial observability (large sight ranges with near perfect
information), these methods exhibit apparent performance
degradation that more trivial entities may distract the agents’
attention and interfere with their decision making. See
Sec. 4.1 for a detailed analysis. Therefore, maintaining
agents’ attention on potential cooperators and execution-
related entities to adapt to the partial observability variation
is crucial for MARL in challenging environments.

In this paper, we propose a Complementary Attention for
Multi-Agent reinforcement learning (CAMA) approach,
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which roots in a divide-and-conquer strategy to facilitate sta-
ble and sustainable teamwork via attention learning. Specif-
ically, we first use an Entity Dividing Module (EDM) to di-
vide the raw entities into two parts for each agent according
to its attention weights. For the distracted attention issue in
settings with large sight ranges, an Attention Enhancement
Module (AEM) is applied on the entities with high atten-
tion weights for execution-related representation extraction
via action prediction with an inverse model. For out-of-
sight-range coordination in low sight ranges, an Attention
Replenishment Module (ARM) with a novel conditional
mutual information estimator is applied to compress the
information in entities with low attention weights. With
the above three modules, agents’ attention can be properly
concentrated on execution of local actions and potential
teamwork to deal with dynamic partial observability.

We evaluate our method on three commonly used bench-
marks: StarCraftII (SC2) (Samvelyan et al., 2019), Multi-
agent Particle Environment (MPE) (Lowe et al., 2017), and
Traffic Junction (Sukhbaatar et al., 2016). The proposed
CAMA outperforms SOTA methods significantly on all con-
ducted experiments and exhibits remarkable robustness to
sight range variation and dynamic team composition.

2. Related Work
As a popular paradigm for single reward MARL, CTDE
is a trade-off between independent Q-learning (Tan, 1993)
and joint action learning (Claus & Boutilier, 1998). Central-
ized training makes agents cooperate better while decentral-
ized execution benefits the flexible deployment capability.
A series of works concentrate on distributing the team re-
ward to all agents by value function factorization (Sunehag
et al., 2018; Rashid et al., 2018), deriving and extending the
Individual-Global-Max (IGM) principle for policy optimal-
ity analysis (Son et al., 2019; Wang et al., 2020a; Rashid
et al., 2020; Wan et al., 2021). To avoid constraints of IGM,
some works then delve into applying centralized critics on
local policies using the actor-critic paradigm (Lowe et al.,
2017; Foerster et al., 2018; Zhou et al., 2020). Although
CTDEs have achieved great progresses in recent years, with
fixed sizes of agents, they are typically impeded by the dy-
namic team composition issue (Schroeder de Witt et al.,
2019; Liu et al., 2021) in real-world applications.

Dynamic Team Composition. When the agent number
varies in each episode, the attention mechanism (Vaswani
et al., 2017) is commonly adopted to handle the issue (Jiang
et al., 2018; Agarwal et al., 2019; Yang et al., 2020; Hu
et al., 2020; Iqbal et al., 2021). Some works develop a set
of curricula to adapt to the increasing team sizes (Baker
et al., 2019; Long et al., 2020; Wang et al., 2020c) with
non-negligible computational costs for training on different
team sizes. Iqbal et al. (2021) add auxiliary Q-learning tasks

to increase the multi-agent system’s robustness by randomly
masking out part of agents’ observability, which increases
the types of situations encountered by agents. Although
these methods adapt to different team sizes well, they still
suffer obvious distracted attention when the sight ranges of
agents is large, and are prone to fail in some situations where
agents with limited observability must cooperate beyond
their sight ranges (Liu et al., 2021).

Communication Mechanism is a feasible solution to en-
hance agents’ cooperation. Recently some works regard the
relationship between agents as a proximity-based or fully-
connected graph and assume the information can propagate
among the graph edges (Foerster et al., 2016; Suttle et al.,
2020; Agarwal et al., 2019; Zhang et al., 2018; Sukhbaatar
et al., 2016; Liu et al., 2020; Mao et al., 2020a). These
methods usually let agents communicate with all neighbors
or the whole team, which brings high communication costs.
Moreover, the communication mode is sensitive to team
sizes. Some works assume the existence of a centralized
coach to integrate information and send messages to all
agents (Liu et al., 2021; Mao et al., 2020b; Niu et al., 2021),
which requires centralized execution, with relatively low
communication costs. The communication messages are
usually trained by backpropagation of RL loss, sometimes
with constraint from mutual information objective to re-
duce the communication bandwidth (Wang et al., 2020b),
help action decision (Yuan et al., 2022) or predict future
trajectories (Liu et al., 2021). Unlike these methods, we use
communication from a centralized coach to apply attention
replenishment for agents’ better coordination.

3. Background
MARL Symbols. We model a fully collaborative multi-
agent task with n agents as a decentralised partially observ-
able Markov decision process (Dec-POMDP) (Oliehoek
et al., 2016) G = ⟨S,A, I, P, r, Z,O, n, γ⟩, where s ∈ S
is the environment’s state. At time step t, each agent
i ∈ Ia ≡ {1, ..., na} chooses an action ai ∈ A, which
makes up the joint action a ∈ A ≡ Ana . P (st+1|st,at) :
S × A × S → [0, 1] is the environment’s state transition
distribution. All agents share the same reward function
r(s,a) : S × A → R. The discount factor is denoted by
γ ∈ [0, 1). Each agent i has its local observations oi ∈ O
drawn from the observation function Z(s, i) : S × I → O
and chooses an action by its stochastic policy πi(ai|ρi, χi) :
Γ×X → ∆([0, 1]|A|), where ρi ∈ Γ ≡ (O ×A)l denotes
the action-observation history of agent i, and l is the number
of state-action pairs in ρi. ρ is the action-observation histo-
ries of all agents. χi ∈ X denotes the additional communi-
cation message and πi has no dependence on χi in CTDE.
The agents’ joint policy π induces a joint action-value
function: Qπ(st,at) = Est+1:∞,at+1:∞ [Rt|st,at], where
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Rt =
∑∞

k=0 γ
krt+k is the discounted accumulated team

reward. The goal of MARL is to find the optimal joint
policy π∗ such that Qπ∗

(s,a) ≥ Qπ(s,a), for all π and
(s,a) ∈ S ×A.

Value Function Factorization. During execution in
CTDE, each agent chooses actions by its local Q func-
tion Qi(ρi) induced by local observation oi. During
training, since all agents share a common team reward,
a global Q function Qtot is calculated from all local
Qi conditioned on the global state s by a Mixer mod-
ule as: Qtot(ρ, a) = g(Q1(ρ1, a1), ..., Qn(ρn, an), s).
To guarantee the global optimality from the local
optimality, a Mixer should satisfy the IGM prin-
ciple (Son et al., 2019): argmaxa Q

tot(ρ, a) =
(argmaxa1 Q1(ρ1, a1), ..., argmaxan Qn(ρn, an)).

Multi-Head Attention (MHA) in MARL. Under the con-
dition of dynamic teams, the observation vector for each
agent may have varying sizes during one episode, and there-
fore we can hardly apply traditional methods which only
accept fixed-size input. In contrast, we use the “entity-wise
input” to represent the observation and the multi-head at-
tention (MHA) module to embed the entities with dynamic
number into a fixed length vector for each agent. To feed
MHA, the raw state s of the environment is commonly ex-
pressed as a series of entities ei, i.e., se := {ei}, i ∈ [1, ne]
with the same vector length, where ne is the maximum num-
ber of entities. The entities include agents we can or can not
control, and other substrates in the multi-agent scenario (e.g.
obstacles).

We consider a proximity-based observation function
Z(se, i) for agent i, i.e., each agent has a sight range
SR, and Z(se, i) := {ej |d(i, j) <= SR}, j ∈ [1, ne],
where d(i, j) is the Euclidean (or Manhattan) dis-
tance between entity i and j. Let X ∈ Rne×d be
the entity input, in which each row is an entity. Let
Ia ⊆ I := {1, ..., ne} be the set of indices that selects
which entities of the input X are used to compute queries
such that XIa ∈ Rna×d (usually i ∈ Ia means entity
i is an controllable agent, and Ia := {1, ..., na}). The
attention head is: AH

(
I,X ,M;WQ,WK ,W V

)
=

softmax
(
mask(QK⊤

√
h

,M)
)
V ∈ R|I|×h, where

Q = XIaW
Q,K = XWK ,V = XW V ,M ∈

{0, 1}na×ne ,WQ,WK ,W V ∈ Rd×h. The mask(Y,M)
operation takes two matrices with the same size as input,
and fills the entries of Y with −∞ where M equals 0. If
we set the values in the positions of unseen entities to 0,
this operation blocks the information from certain entities
after softmax, to uphold the partial observability for local
agents. WQ, WK , and W V are learnable parameters.
Then we can define the mulit-head attention module by con-
catenating nh attention heads together: MHA(I,X ,M) =

concat
(
AH

(
I,X ,M;WQ

j ,WK
j ,W V

j

)
, j ∈

(
1 . . . nh

))
,

where information not blocked can be integrated across all
entities.

4. Method
4.1. Intuition and Overview

Intuition. The performance of traditional MARL methods
is highly affected by the partial observability of the envi-
ronment. We use the agents in a game (e.g., StarCraftII)
for example. When the sight range is small, the agents can
hardly find the teammates and support them, leading to poor
team coordination (a demo in Sec. 5.1 verifies this hypoth-
esis). However, it is counterintuitive that with increasing
sight ranges, the agents’ performance typically degrades
(this phenomenon is detailed in Sec. 5.1). We argue that the
agents’ attention is easily distracted by unrelated scenarios,
causing the distracted attention issue. To reveal the impor-
tance of agents’ attention on their performance, we train
the SOTA algorithm REFIL (Iqbal et al., 2021) on different
sight ranges (3,9, and ∞) and visualize the agents’ attention
weights on all entities (i.e., the value of the matrix QK⊤ in
MHA module) in Fig. 3. It can be seen that when more enti-
ties are visible, the agents’ attentions get more dispersed so
that more difficulties need to be overcome to win the preset
AI. Existing dynamic team MARL methods commonly face
such problem (see Appendix E).

To deal with the dilemma of the dynamic partial observabil-
ity in MARL, we resort to a divide-and-conquer learning
strategy, dubbed CAMA, for stable performance and sustain-
able teamwork. Concretely, in low sight ranges we need to
improve agents’ attention on realizing the potential coopera-
tors by out-of-sight-range information, while in large sight
ranges, agents’ attention concentration on execution-related
entities should be kept.

Framework and RL Training. CAMA mainly consists
of three components, including an Entity-Dividing Mod-
ule (EDM) for dynamic partial observability control, an
Attention Enhancement Module (AEM) for attention con-
centration on execution-related entities, and an Attention
Replenishment Module (ARM) for agents’ out of sight
range coordination, Fig. 2. Specifically, for each agent
i, EDM divides and embeds the raw entities as f i and f−i

to feed AEM and ARM respectively. For AEM, an in-
verse model is applied to resolve the distracted attention
issue. For ARM, a coach with global sights is introduced to
generate a communication message ζi for agents’ coordina-
tion. Following Yuan et al. (2022), we generate a Qi(local)

from f i and agent i’s observation-action history ρi (which
is the output of a gated recurrent unit (GRU) cell), and a
Qi(global) from ζi. Qi is computed by their summation, i.e.,
Qi = Qi(local) + Qi(global). All local Qis are fed into a
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Figure 2: Network structure of our proposed CAMA. Entities and the observation mask are first fed into the Entity Dividing
Module (EDM) to get the Attention Enhancement embedding f i and Attention Replenishment embedding f−i, which is
trained by inverse model (IM) loss and mutual information (MI) objective, respectively. For RL training, a local Qi is
generated by f i, f−i, and its observation-action history with a GRU, and further fed into the mixing network for Qtot.

Figure 3: The distracted attention issue illustration with the agents’ average attention heatmap of REFIL on StarCraftII
map “3-8sz_symmetric” (the hardest scenario “8sz_vs_8sz”) during one episode on all entities. The y axis denotes 8
agents (A1-A8), while the x axis with additional 8 enemies (E1-E8) records 16 entities. The sum of each row is normalized
to 1. “SR” is each agent’s sight range, and “WR” is the winning rate against preset AI. For more visualization results, please
refer to Appendix E.

mixing network (Yang et al., 2020) to calculate a Qtot. The
RL loss can be formulated as follows:

LQL =E(at,rt,ρt,ρt+1)∼D

[(
rt+

γmax
a′

Q̂tot(ρt+1, a′)−Qtot(ρt, at)
)2]

,

(1)

where Q̂tot is the target network, and D is the replay buffer.

4.2. Entity Dividing Module

An EDM divides raw entities into an attention enhancement
part and an attention replenishment part by their ranking of
attention weights. For the former one, we wish to constrain
the maximum of observed entities to avoid the distracted
attention. And the latter one should contain enough out-of-
sight-range information for team coordination. We first deal
with the attention enhancement part. Recall that in MHA
module, M ∈ {0, 1}na×ne is a binary mask applied on the
entity embeddings which is generated by the environment.
To uphold each agent’s partial observability, a more sparse
mask Ms is introduced to replace M which satisfies the

following constraints:

||Ms||∞ ≤ αne,¬Ms ⊙ ¬M = ¬M, (2)

where ne is the maximum number of entities, α ∈ (0, 1] is
a hyper-parameter, and ⊙ means the element-wise mul-
tiplication operation. The negation of M is defined as
¬M := 1 −M, where 1 is an all 1 matrix with the same
shape as M. The left side of Eq. (2) ensures that the percent
of observable entities is less than α, while the right side
makes the agent observe the entities available in the original
mask M only. We can assign a low value for α (e.g., 0.4)
to limit each agent’s visible entities in complicated environ-
ments. To get Ms, we define a Bi(W ) operation to get the
indices of the top i values in each row of W . Ms can be
calculated as follows:

Ms = M⊙Mf ,Mf [I] = 1,Mf [others] = 0, (3)

where I = B⌊αne⌋(QK⊤). ⌊·⌋ means to round down the
value, and Q, K are matrices of queries and keys in MHA
module, respectively. Under Eq. (3), each agent only re-
mains the sight on at most ⌊αne⌋ entities with the highest
attention weight, and improves its attention concentration.
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We prove in Appendix A that Ms obtained by Eq. (3) is
adequate for Eq. (2). After getting Ms, we can compute f i

for the attention enhancement part, which is the output of
MHA(I,X ,Ms).

Since the attention replenishment part should contain all
the information not involved in the former one for better
out-of-sight-range coordination, we transmit it with f−i,
which is the embedding of the complement entities of Ms

on s with the same MHA module as MHA(I,X ,¬Ms).

4.3. Attention Enhancement for Local Agent

When knowing what will happen when a specific action is
taken, the learned agents can hardly be distracted. Thereby,
we aim to concentrate agents’ attention on execution-related
information distilled from the high-dimensional state space.
Specifically, we resort to the inverse model (Pathak et al.,
2017), a two-layer MLP, that uses the local observation
oit and oit+1 to predict the agent i’s action ai. In the pre-
diction module, the local observation oit and oit+1 are first
fed into the same EDM to get the features f i

t and f i
t+1.

Then, the probability of each action can be predicted as
p(âit) = IM(f i

t , f
i
t+1; θ). The learning loss can be defined

as:
LIM = CE(p(âit), a

i
t), (4)

where CE means the cross entropy. f i will contain the nec-
essary information for predicting ai by optimizing Eq. (4),
which encourages EDMs to discard irrelevant distracting in-
formation for the consciousness enhancement embedding f i.
With the auxiliary representation learning task, the learned
embedding f i can be used to calculate each agent’s local Q
function Qi(local).

4.4. Attention Replenishment by Global Coach

To equip agents with the ability of out-of-sight-range coor-
dination, we use a centralized coach equipped with global
states to generate a message ζi from f−i and compute a
Qi(global) for each agent i at each time step (Liu et al., 2021;
Niu et al., 2021; Mao et al., 2020b). The message plays the
role of attention replenishment when agents facing difficulty
to cooperate through their local observations. The learning
objective for ζi should contain the information unknown to
agent i, and not distract the agent’s attention. Therefore, we
maximize:

I(ζi; f−i)− βI(ζi; s) = (1− β)I(ζi; s)−I(ζi; f i|f−i),
(5)

where s is the global state, and I(·; ·) means the mutual in-
formation. f−i indicates the replenishment information for
agent i. We leave the derivation of Eq. (5) to Appendix B.
Maximizing I(ζi; f−i) let ζi be the summary of f−i. By
feeding ζi to agent i, the agent can sense the information
beyond its sight range, and further alleviate the difficulties

of cooperation caused by partial observability. Minimizing
I(ζi; s) compresses the information ζi has, which can be re-
garded as an information bottleneck constraint on ζi (Wang
et al., 2020b). We use a hyper-parameter β ∈ [0, 1] to con-
trol the compression degree of ζi. Combining the two terms,
we (1) discard the information in f i, which is already known
to agent i, and (2) compress the sophisticated f−i into a
brief message, which can hardly distract the agent while
promotes coordination.

We then separately optimize the two mutual information
term in the right side of Eq. (5). Directly maximizing
I(ζi; s) is difficult, but there exist some tools estimating
its differentiable lower bound, e.g. infoNCE (Oord et al.,
2018) and MINE (Belghazi et al., 2018). We choose the
CatGen formulation (Fischer, 2020) of the former one and
maximize the following lower bound of I(ζi; s):

ĪNCE(ζ
i; s) = −Eζi,s[log

p(ζi|s)
1
K

∑K
k=1 p(ζ

i|sk)
], (6)

where K is the sample number of a mini-batch.

Then we move on to minimizing I(ζi; f i|f−i). There are
existing tools that minimize the upper bound of the mu-
tual information between two random variables, such as
CLUB (Cheng et al., 2020) and L1Out (Poole et al., 2019).
But these methods can not be directly applied to the condi-
tional mutual information paradigm. Therefore, we extend
the CLUB estimator to the conditional form and present
Conditional-CLUB (CC) estimator as a differentiable upper
bound of I(ζi; f i|f−i):

ICC(ζ
i, f i|f−i) =Eζi,fi,f−i [log p(ζi|f i, f−i)]

−EfiEζi,f−i [log p(ζi|f i, f−i)].
(7)

Theorem 4.1. For three random variables ζi, f i and f−i,

ICC(ζ
i, f i|f−i) ≥ I(ζi, f i|f−i). (8)

The equality holds if and only if f i is independent of the
joint distribution of ζi, f−i.

The proof of Thm. 4.1 can be referred in Appendix C. Ac-
cordingly, we can minimize the conditional mutual informa-
tion via minimizing ICC . In practice, assuming we have the
conditional distribution p(ζi|f i, f−i), we can sample pairs
{(ζik, f i

k, f
−i
k )}Kk=1 and get an unbiased estimation of ICC :

ÎCC=
1

K

K∑
k=1

log p(ζik|f i
k,f

−i
k )− 1

K2

K∑
k=1

K∑
j=1

log p(ζik|f i
j ,f

−i
k ).

(9)
Since the second part of Eq. (9) requires O

(
K2

)
computa-

tional complexity, we use the following faster counterpart:
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Figure 4: (a) A sketch of environment “Resource Collection”.(b) A sketch of the demo “Catch Apple”. (c) Task sovling
rate in “Catch Apple”. Qatten and REFIL are CTDE, and MAIC and CAMA have a centralized coach. (d) Visualization of
messages received (grouped by the next action agents take).

ĪCC=
1

K

K∑
k=1

log p(ζik|f i
k,f

−i
k )− 1

K

K∑
k=1

log p(ζik|f i
µ(k),f

−i
k ),

(10)
where µ(·) is a mapping from k ∈ {1, ..,K} to its random
permutation. Since ÎCC and ĪCC are both unbiased esti-
mators, E[ÎCC ] = E[ĪCC ] = ICC . In practice, we assume
p(ζi|f i, f−i) as a Gaussian distribution. We use a neural
network with input concat(f i, f−i) to calculate its mean
and variance and optimize it with the reparameterization
trick (Kingma & Welling, 2013). Since concat(f i, f−i) has
involved all the information in the global state s, we can
use the same distribution to represent p(ζi|s) in ĪNCE and
therefore optimizing LMI = ĪCC − (1− β)ĪNCE . If we
need a coach with stronger capability by e.g., introducing the
memory module, we will get the prior distribution p(ζi|ρ)
instead of p(ζi|f i, f−i), therefore we can not estimate ĪCC

directly. In Appendix D we introduce a variational distribu-
tion to estimate p(ζi|f i, f−i) when it is unknown.

5. Experiments
5.1. Dilemma in Sight Ranges

Coordination in Low Sight Ranges. We first show the
defect of CTDE methods with a demo1. In a 11× 11 grid-
world, an apple is uniformly generated at one grid of the
3×3 grids in the map center, with obstacles of length 4 at its
right&left or up&down, Fig. 4(b). 2 controllable agents are
initialized at random places. They can move towards 4 direc-
tions, one grid at a time. The goal is that two agents should
arrive the apple simultaneously, rewarded 10. Any agent
touching the apple or team reaching the episode time limit
will end the game. The reward of one agent touching apple is
1. The reward for time penalty is −0.1. The agents can only
see the entities in the 3× 3 grids, each centered on its posi-
tion. Agents can not overlap, which means the only way to
achieve the team goal is the two agents moving towards the

1We submit the code of all the experiments in a github reposi-
tory: https://github.com/qyz55/CAMA.

apple from the opposite sides of the obstacles, at which time
they can not see each other. We train two CTDE methods:
Qatten (Yang et al., 2020) and REFIL (Iqbal et al., 2021),
and two communication-based methods: our CAMA and
MAIC (Yuan et al., 2022) (with a global coach, see Sec. 5.2
for details). The target achieving rate during training are
shown in Fig. 4(c). Only methods with communication can
solve the task while CTDE methods fail completely.

To validate the effect of communication, we use t-
SNE (Van der Maaten & Hinton, 2008) to visualize the
messages ζi from 160 testing episodes of our method in
3D-space. We show the results of the last time step of each
episode in Fig. 4(d). Each point is a message and the color
means the agent’s action after it receives the message. The
results show that agents’ actions have obvious correlation
with messages received, which shows the importance of
communication in out-of-sight coordination.

Distracted Attention in Large Sight Ranges. We use
the Resource Collection (RC) task (Fig. 4(a)) to show the
attention concentration effect of CAMA. In this task, a
group of 3-8 agents coordinate to collection resources from
various places and bring them home. It is slightly mod-
ified from Liu et al. (2021) to make it suitable for both
CTDE and communication-based settings. Please refer to
Appendix G.2 for a detailed description. We test the per-
formance of the following methods on three sight ranges
in Fig. 5: (1) 2 CTDE methods: Qatten (Yang et al.,
2020), REFIL (Iqbal et al., 2021). (2) 1 graph commu-
nication method: EMP (Agarwal et al., 2019). (3) 4 central-
ized communication methods: MAGIC (Niu et al., 2021),
Gated_Qatten (Mao et al., 2020b), COPA (Liu et al., 2021),
and our CAMA. MAGIC and Gated_Qatten are modified
to make them suitable for the entity-wise input setting. The
results show that CAMA outperforms all baselines in all
sight range settings. And only CAMA performs better in
SR = 1.5 than SR = 1.0 and SR = 0.5, while others
suffer from distracted attention and perform worse in larger
sight range.

6
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Figure 5: Test returns of 3 sight ranges (SR) on RC.

LIM LMI SR = 0.5 SR = 1

260.47±37.45 339.88±21.44
✓ 343.73±52.26 393.14±23.01

✓ 280.36±27.96 393.93±32.1
✓ ✓ 385.25±25.61 458.13±46.93

Table 1: Test returns on 2 sight ranges (SR)
on RC. “✓” means the corresponding loss is
added.

β 1l-TJ 2l-TJ RC-SR=1 RC-SR=0.5

0.1 30.89±2.54 95.54±5.73 389.47±41.88 366±15.35
0.3 29.9±2.99 99.64±4.45 398.74±68.33 379.8±36.11
0.5 29.89±3.21 95.85±3.49 458.13±46.93 385.25±25.61
0.7 27.58±1.23 91.32±0.74 373.19±25.43 396±63.19
0.9 27.29±0.74 91.28±4.23 354.06±20.24 369.4±52.52

Table 2: The effect of β on different tasks: 1-lane and 2-lane
Traffic Junction, Resource Collection with sight range (SR)
1 and 0.5. From left to right, the task gets harder.

5.2. Component Analysis

Figure 6: The Effect of α on differ-
ent sight ranges (SR).

Entity Dividing
Module. In EDM,
the parameter α
plays the role
of balancing the
observability be-
tween AEM and
ARM. We explore
how to choose α
in different sight
ranges in Fig. 6.
To make the error
bars (std) more
clear, points with the same α are slightly offset on the
X axis. Note that α = 1.0 means no constraint on
observability function, i.e., the degeneration from EDM to
the common MHA module. We find that as the sight range
increases, the agents can see more entities, and therefore a
lower α can help attention concentration.

Attention Enhancement. We analyze the contribution of
each loss in Table 1. LIM (AEM) is important when SR is
large, which is reasonable since large SR brings distracted
attention issue and requires agents to focus attention on
execution-related entities.

Attention Replenishment. Table 1 shows that LMI (ARM)
can bring obvious improvement under both SR conditions.

To check whether the improvement comes from the com-
munication mechanism or mutual information objective,
we turn to a grid-world based traffic junction environ-
ment (TJ). We use the map from Sukhbaatar et al. (2016),
which is a crossroads where cars are continuously gen-
erated from a Poisson distribution at one of the four en-
trances, and aiming for one of the other three exits (Fig. 7).
Unlike the original simplified setting that the routes are
fixed so that agents only choose to accelerate or brake,
we use a more difficult setting that agents can move to-
wards four directions freely, which is harder and more real-
istic. Please refer to Appendix G.2 for environment details.

Figure 7: Traffic Junc-
tion teaser (SR=1).

We compare four MI-based
message generators under
our entity-wise setting:
MAIC&NDQ (Yuan et al.,
2022; Wang et al., 2019),
IMAC (Wang et al., 2020b),
COPA (Liu et al., 2021) and
our CAMA. To make a fair
comparison on MI objective,
we only implement the mutual
information part of each
method and keep the others
same to ours, e.g., the structure of neural networks and
communication mechanism. Since MAIC and NDQ use
similar MI objectives under the centralized coach setting,
we regard them as one method. The test return results are
shown in Table 3, which exhibit the superior performance
of our MI objective in limited sight range. We check the
effect of information compression degree β in LMI with
different environment difficulties in Table 2, and find that
in simple tasks such as 1-lane TJ, the coach can handle
f−i without obvious information compression. While in
hard tasks, e.g., RC with SR = 0.5, a large β can simplify
communication messages, so that not to distract the agents
and bring higher performance.

5.3. Hard Task SMAC

7
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Figure 8: (a) An initialization teaser on SC2. (b) TWR comparisons on the 3 SC2 maps.

Method & Object SR 1-lane 2-lane

MAIC&NDQ 0 23.35±4.45 66.81±12.33
↑ I(ζi; ai|s) 1 21.81±3.04 64.62±8.81

IMAC 0 19.67±0.43 65.74±6.59
↓ I(ζi; oi) 1 20.75±0.37 58.5±2.27

COPA 0 17.38±2.92 73.16±12.37
↑ I(ζit ; ρit+T , st) 1 20.39±0.5 59.23±4.68

CAMA 0 30.18±2.94 96.28±7.64
↑ I(ζi; f−i) ↓ I(ζi; s) 1 29.89±3.21 89.23±15.14

Table 3: Results on Traffic Junction. SR = 0 or 1 means
the agents can see themselves only or can observe the 3× 3
grids around them. “↑” means MI maximization and “↓”
means minimization.

Figure 9: TWR comparisons
with different SRs.

We test CAMA’s per-
formance on the hard
SMAC (Samvelyan
et al., 2019) tasks
with dynamic teams
in this section. We
use the setting from
Liu et al. (2021) and
Iqbal et al. (2021) that
at the start of each
episode a total of 3-8
agents are randomly
divided into 2-4 groups and initialized at different places
on the edge of a circle with the radius 9, and enemies are
divided into 1-2 groups, Fig. 8(a). Agents have the sight
range 9. Agents must learn to find teammates first before
fighting against enemies with more quantities. We show the
results of test win rate (TWR) on 3 maps in Fig. 8(b). Our
method remarkably exceeds the current SOTA methods on
all maps.

Sight Range Testing. In Fig. 9, with the varying SR com-

parisons in {3, 6, 9,∞}, our CAMA reports superior TWR
over SOTA methods on all SR settings and exhibits impres-
sive robustness.

Dynamic Team Composition. In Fig. 10, we test the same
model on different team sizes and plot the logarithm of the
relative winning rate of the corresponding agent number
against the total agents, where CAMA shows outstanding
robustness to agent variation with a nearly stationary perfor-
mance curve.

Figure 10: TWR comparisons with dynamic team compo-
sition. The x axis is the agent number which varies from
3-8. The y axis is log(ω/ω̄), where ω is the winning rate
and ω̄ is agents’ average winning rate. The black dotted line
denotes ω̄.

6. Conclusion
In this paper, we explore the dilemma of the partial observ-
ability in MARL. With severe partial observability, agents
usually can not sense the teammates and show poor team co-
ordination. While with large sight range, agents are troubled
by the distracted attention issue and exhibit apparent per-
formance degradation. To tackle such sight range dilemma,
we propose a Complementary Attention for Multi-Agent
reinforcement learning (CAMA) approach. First an Entity
Dividing Module is used to divide raw entities for the lo-
cal agents and the global coach separately. The suitable
division percent varies due to the agents partial observabil-
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ity. For local agents, an Attention Enhancement Module
improves their attention on execution-related entities under
the condition of large sight ranges. For the global coach, the
messages generated by novel conditional mutual informa-
tion estimator replenish the information required for team
coordination in all sight ranges. We evaluate our method
on three commonly used MARL benchmarks: StarCraftII,
MPE, and Traffic Junction. With raised agents’ attention,
the proposed CAMA reports significantly superior perfor-
mance compared with SOTA methods and exhibits remark-
able robustness to sight range variation and dynamic team
composition.
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A. Proof of the Mask Generator
We now prove that Ms got by Eq. (3) is sufficient for Eq. (2).

We first show that Mf in Eq. (3) satisfies ||Mf ||∞ ≤ αne. Recall the definition of Mf , it is a indicator matrix, that at each
row, only the positions of top ⌊αne⌋ values of the corresponding row in the attention weight matrix are 1, and others are 0.
Therefore, at each row of Mf , there are at most ⌊αne⌋ 1s, which means the sum of the absolute value in each row is no
larger than ⌊αne⌋. So ||Mf ||∞ ≤ ⌊αne⌋ ≤ αne. Then we show ||Ms||∞ ≤ αne. Since the observability mask M is also
a 0,1 mask,||Ms||∞ = ||M⊙Mf ||∞ ≤ ||Mf ||∞ ≤ αne.

Then we show that ¬Ms ⊙ ¬M = ¬M, which equals to ¬(Mf ⊙M)⊙ ¬M = ¬M. Recall that Mf and M are both
0,1 matrices with the same shape. For any position in the matrices, we can use Table 4 to conclude all the situations:

M Mf ¬(Mf ⊙M)⊙ ¬M ¬M
0 0 1 1
0 1 1 1
1 0 0 0
1 1 0 0

Table 4: Logical table of the mask.

We can find that at any situation ¬(Mf ⊙M)⊙ ¬M = ¬M, therefore ¬Ms ⊙ ¬M = ¬M. In summary, Ms got by
Eq. (3) is sufficient for Eq. (2).

B. Derivation of Mutual Information Objective
We now give the derivation of Eq 5.

I(ζi; f−i)− βI(ζi; s)
=H(ζi)−H(ζi|f−i)− (βH(ζi)− βH(ζi|s))
=(1− β)H(ζi)− (1− β)H(ζi|s) +H(ζi|s)−H(ζi|f−i)

=(1− β)[H(ζi)−H(ζi|s)]− [H(ζi|f−i)−H(ζi|f i, f−i)] //split s into f i and f−i

=(1− β)I(ζi; s)− I(ζi; f i|f−i),

(11)

C. Proof of Theorem 4.1
For three random variables ζi, f i and f−i,

ICC(ζ
i, f i|f−i) ≥ I(ζi, f i|f−i). (12)

The equality holds if and only if f i is independent of the joint distribution of ζi, f−i.

Proof. Let ∆ be the gap between ICC(ζ
i, f i|f−i) and I(ζi, f i|f−i):

∆ :=ICC(ζ
i, f i|f−i)− I(ζi, f i|f−i)

=

(
Eζi,fi,f−i [log p(ζi|f i, f−i)]− EfiEζi,f−i [log p(ζi|f i, f−i)]

)
−
(
Eζi,fi,f−i [log p(ζi|f i, f−i)]− Eζi,f−i [log p(ζi|f−i)]

)
=Eζi,f−i [log p(ζi|f−i)]− Eζi,f−iEi

f [log p(ζ
i|f i, f−i)]

=Eζi,f−i

(
log[Efip(ζi|f i, f−i)]− Efi [log p(ζi|f i, f−i)]

)
.

(13)

Since log(·) is a concave function, ∆ ≥ 0 due to Jensen’s Inequality.

12
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D. Generate Messages with Memory
In Sec. 4.4, we use concat(f i, f−i) to generate the message ζi. It means we have the true prior distribution p(ζi|f i, f−i),
which can be expediently applied to estimate ICC . However, if we wish to enhance the coach’s ability, e.g., introducing
a memory structure (similar to the GRU cell in local agents) into the message generator, the prior distribution turns into
p(ζi|ρ) and therefore we can not obtain p(ζi|f i, f−i) directly to estimate ICC . Similar to the idea in Cheng et al. (2020),
we propose a variational term q(ζi|f i, f−i)to estimate p(ζi|f i, f−i):

IvCC(ζ
i, f i|f−i) = Eζi,fi,f−i [log q(ζi|f i, f−i)]− EfiEζi,f−i [log q(ζi|f i, f−i)]. (14)

Theorem D.1 gives a sufficient condition to ensure IvCC(ζ
i, f i|f−i) be an upper bound of I(ζi, f i|f−i):

Theorem D.1. Denote q(ζi, f i, f−i) = q(ζi|f i, f−i)p(f i)p(f−i). If

KL(p(f i)p(ζi, f−i)||q(ζi, f i, f−i)) ≥ KL(p(ζi, f i, f−i)||q(ζi, f i, f−i)), (15)

then IvCC(ζ
i, f i|f−i) ≥ I(ζi, f i|f−i). The equality holds when f i and the join distribution ζi, f−i are independent.

Proof. Let ∆̂ be the gap between IvCC(ζ
i, f i|f−i) and I(ζi, f i|f−i). We have:

∆̂ =IvCC(ζ
i, f i|f−i)− I(ζi, f i|f−i)

=

(
Eζi,fi,f−i [log q(ζi|f i, f−i)]− EfiEζi,f−i [log q(ζi|f i, f−i)]

)
−
(
Eζi,fi,f−i [log p(ζi|f i, f−i)]− Eζi,f−i [log p(ζi|f−i)]

)
=

(
Eζi,f−i [log p(ζi|f−i)]− EfiEζi,f−i [log q(ζi|f i, f−i)]

)
−
(
Eζi,fi,f−i [log p(ζi|f i, f−i)]− Eζi,fi,f−i [log q(ζi|f i, f−i)]

)
=EfiEζi,f−i [log

p(ζi|f−i)

q(ζi|f i, f−i)
]− Eζi,fi,f−i [log

p(ζi|f i, f−i)

q(ζi|f i, f−i)
]

=EfiEζi,f−i [log
p(ζi|f−i)p(f i)p(f−i)

q(ζi|f i, f−i)p(f i)p(f−i)
]− Eζi,fi,f−i [log

p(ζi|f i, f−i)p(f i)p(f−i)

q(ζi|f i, f−i)p(f i)p(f−i)
]

=EfiEζi,f−i [
p(f i)p(ζi, f−i)

q(ζi, f i, f−i)
]− Eζi,fi,f−i [

p(ζi, f i, f−i)

q(ζi, f i, f−i)
]

=KL(p(f i)p(ζi, f−i)||q(ζi, f i, f−i))−KL(p(ζi, f i, f−i)||q(ζi, f i, f−i))

(16)

Theorem D.1 reveals that IvCC is an MI upper bound if the variational joint distribution q(ζi, f i, f−i) is more “closer” to
p(ζi, f i, f−i) than to p(f i)p(ζi, f−i). Let qϕ be the parameterization of q. In addition to the Eq. 14 that optimizes IvCC ,
we should minimize the KL divergence between p(ζi, f i, f−i) and q(ζi, f i, f−i):

min
ϕ

KL(p(ζi, f i, f−i)||qϕ(ζi, f i, f−i))

=min
ϕ

Eζi,fi,f−i [log
p(ζi|f i, f−i)p(f i)p(f−i)

qϕ(ζi|f i, f−i)p(f i)p(f−i)
]

=min
ϕ

Eζi,fi,f−i [log p(ζi|f i, f−i)− log qϕ(ζ
i|f i, f−i)]

=max
ϕ

Eζi,fi,f−i [log qϕ(ζ
i|f i, f−i)],

(17)

Therefore, with sample pairs {(ζik, f i
k, f

−i
k )}Kk=1, we can maximize the log-likelihood of qϕ:

max
ϕ

1

K

K∑
k=1

log qϕ(ζ
i
k|f i

k, f
−i
k ). (18)
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With enough optimization times of Eq. 18, IvCC is guaranteed to be an MI upper bound.

We test the effect of coach with memory in the Resource Collection environment with SR = 0.5 and SR = 1.0, Table 5.
We find that although equip the coach with the memory module improves the average performance, it brings large variance
that the method becomes unstable. Therefore, to keep a stable performance of our method, we still use the coach with MLP
in the main paper.

Coach Style Known Prior SR=0.5 SR=1.0

MLP p(ζi|f i, f−i) 385.25±25.61 458.13±46.93
RNN p(ζi|ρ) 419.21±177.99 533.54±91.78

Table 5: Comparison on the style of coach.

E. Heat Maps of Attention Weights
E.1. Average Heat Maps of More Methods

As mentioned in Sec. 4.1, we visualize the attention weights of four methods in Fig. 11. Only our CAMA pay more attention
to the agents themselves when the sight range is large, and therefore keeps a high performance.

Figure 11: Attention Weights of Qatten, COPA, REFIL and our CAMA.
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E.2. Heat Maps at Single Time Steps

Figure 12: Attention Weights on single time steps of REFIL and our CAMA.

We also visualize the heat maps of our method and REFIL at single time steps. We choose the first attention head of each
saved model, and set the color bar’s range of attention weight to [0,0.35]. We visualize in Fig. 12 both methods’ attention
weights on all agents from t = 0 to t = 24, at which time all the agents are usually alive. We find that the large sight range
distracts the attention of REFIL, while our method CAMA keeps attention concentration.

F. Hyperparameters
We summarize the hyperparameters in Table. 6
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Name Description Value

γ Discounted factor 0.99
ε anneal time Time-steps for ε to anneal from εs to εf . ε is the probability for 500000

agents choosing random actions.
εs Start ε 1
εf Final ε 0.05
nenv The number of parallel environments 8
|D| Replay buffer size 5000
nhead Number of heads in multi-head attention 4
nattn Dimension of Attention embedding in local agent 128
nma Dimension of Attention embedding in mixer 64
nrnn Dimension of RNN cells 64
lr Learning rate 0.0005
α Default attention concentration rate 0.8
β Default communication message compression rate 0.5
αRMS α value in RMSprop 0.99
ϵ ϵ value in RMSprop 0.00001
nbatch Batch size 32
ttarget Time interval for updating the target network 200
λ1 Weight for LIM 0.005
λ2 Weight for LMI 0.1
Gmax Clipping value for all gradients 10

Table 6: Hyper-parameters.

G. Environment Details
G.1. Resource Collection

On a map of [-1,1], agents are initialized at random places with team size sampled from [3,8]. They need to collect resources
from 6 resource points and transport the goods home. The locations of resource points and home are randomly sampled
from the whole map at the start of each episode. The radius of the home and the resource location & agent is 0.1 and 0.05,
respectively. There are 3 kinds of resources, and each agent i has its own ability bei uniformly sampled from {0.1, 0.5, 0.9}
to collect each kind of resource e. Each agent can accelerate towards 4 directions or apply no forces at each time-step. Each
agent has its maximal speed uniformly sampled from {0.3, 0.5, 0.7} and the acceleration is fixed to 3.0. Every time the
agent i collects resource e, the team will get a reward 10 ∗ bei . When an agent brings the resource home, the team will get
a reward 1. An agent can only carry one resource at a time, which means an agent needs to bring the collected resource
home before it starts to collect the next one. The episode limit is 145. The number of the agents for training is uniformly
sampled from {2,3,4,5}, while for testing it is sampled from {6,7,8}. Each agent has a sight range SR. Entities including
other agents and resource points that exceed agent i’s SR are invisible to agent i.

G.2. Traffic Junction

The simulated traffic junction environment from Sukhbaatar et al. (2016) has been a conventional and useful testbed for
testing the performance of multi-agent communication algorithms (Singh et al., 2018; Das et al., 2019; Liu et al., 2020).
Despite its great success, cars in the original traffic junction environment can only move along pre-assigned routes on one or
more road junctions and so the action space for each car only consists of two actions, i.e. gas and brake, which restricts its
ability to simulate real-world environments and test communication algorithms. Moreover, the original observation is not fit
for the need of entity-wise input.

So, we modify the original traffic junction environment to a more flexible version. In stead of pre-assigned routes, a random
selected navigation target is assigned to each active car and the aim of each active car is navigating to its own target and
avoiding collision which occurs when two cars are on same location. Along with the modified setting, the observation
for each active car is altered to entity-wise form which contains the position of cars in a limited visibility (e.g. 3 x 3 for
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Map Nmax max_steps parrive start parrive end entrances targets

1-lane 5 20 0.1 0.3 4 4
2-lane 10 40 0.05 0.2 8 8

Table 7: Detailed environment parameters in two versions of Traffic Junction Environment. max_steps is the length of
each episode. entrances or targets indicate the number of choices of entrance or target and in the hard version the cars are
restricted to keep to the right when entering or exiting, so there are only 8 entrances or targets.

sight_range = 1) and the action space is more flexible with five actions i.e. forward, back, left, right and wait. Besides,
the rewards consists of a linear time penalty −0.01τ , where τ is the number of active time steps for the car since the last
resurrection, a collision penalty rcollision = −10 and the difference Manhattan distance from the target between the previous
and the current step . We choose two different difficulty levels following the settings in Singh et al. (2018), illustrated in
Fig.13. Moreover, the total number of cars is fixed at Nmax and the cars will be turned inactive when reaching the target or
colliding with others and new cars get added to the environment with probability parrive at every time-step which varies
during training consistent with the curriculum learning in (Singh et al., 2018). The detailed environment parameters settings
are indicated in Table.7.

(a) 1-lane (b) 2-lane

Figure 13: Traffic Junction Environment. Cars are navigating to their own assigned target and avoiding collision. There are
two difficulty levels.

H. Hardware
We ran experiments on 2 GPU servers, with each one having 8*RTX3090TI GPUS and 2*AMD EPYC 7H12 CPUs. Each
experiment (one seed) takes 12-24 hours on one GPU.

I. Generalizability
We test the generalizability of our method in the environment Resource Collection. We train each method for 107 time steps
in the environment with 2-5 agents. Every 5× 104 time steps, the model is evaluated on the environment with 6-8 agents
for 160 episodes, and we plot the test return curves in Fig. 14. The results show that our method can generalize well to
larger team sizes than training, which is probably due to the ARM module with the message generator that passes the global
information.

J. Code and Reproducibility
Our code is available at https://github.com/qyz55/CAMA.
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Figure 14: Generalizability on the task Resource Collection. Each method is trained on the agent number 2-5, and tested on
agent number 6-8 every 50k time steps to plot the curve.
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