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Abstract

We study reinforcement learning from human feedback in general Markov decision
processes, where agents learn from trajectory-level preference comparisons. A
central challenge in this setting is to design algorithms that select informative
preference queries to identify the underlying reward while ensuring theoretical
guarantees. We propose a meta-algorithm based on randomized exploration, which
avoids the computational challenges associated with optimistic approaches and
remains tractable. We establish both regret and last-iterate guarantees under mild
reinforcement learning oracle assumptions. To improve query complexity, we
introduce and analyze an improved algorithm that collects batches of trajectory
pairs and applies optimal experimental design to select informative comparison
queries. The batch structure also enables parallelization of preference queries,
which is relevant in practical deployment as feedback can be gathered concurrently.
Empirical evaluation confirms that the proposed method is competitive with reward-
based reinforcement learning while requiring a small number of preference queries.

1 Introduction

Reinforcement learning (RL) is a fundamental paradigm in machine learning, where agents learn
to make sequential decisions by interacting with an environment to maximize cumulative rewards
[Barto, 2021]. RL has enabled advances in domains such as game play [Silver et al., 2017], robotics
[Todorov et al., 2012], or autonomous driving [Lu et al., 2023]. However, the practicality of RL is
hindered by the challenge of designing rewards: crafting a reward function that aligns with human
objectives is often difficult, and a misspecified reward function can lead to suboptimal or unsafe
behavior [Amodei et al., 2016, Hadfield-Menell et al., 2017]. This motivates the development of
principled alternatives to manual reward design.

Rather than relying on manually specified reward functions, reinforcement learning from human
feedback (RLHF) guides learning through preference feedback: at each step, a human oracle compares
trajectories and indicates which is preferable [Christiano et al., 2017]. This preference signal is often
much easier to provide than engineering a reward function [Pereira et al., 2019, Lee et al., 2023].
RLHF has proven to be effective in robotics [Jain et al., 2013] and, more recently, fine-tuning of large
language models [Ziegler et al., 2019, Stiennon et al., 2020, Rafailov et al., 2023]. This highlights
the practical relevance of RLHF compared to reward-based learning.

Despite its empirical success, the theoretical foundations of RLHF are still in development. Existing
works first studied the simpler setting of dueling bandits. In this context, the learner selects pairs
of actions and observes noisy preference feedback [Yue et al., 2012, Komiyama et al., 2015]. Clas-
sical algorithms for regret minimization in this setting include approaches based on zeroth-order
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optimization [Yue and Joachims, 2009] or the principle of optimism [Ailon et al., 2014]. A key
challenge in this setting is reducing the number of preference queries. For this purpose, several recent
works propose strategic query selection strategies for dueling bandits [Das et al., 2024, Liu et al.,
2024, Scheid et al., 2024, Mukherjee et al., 2024], often hinging on optimal experimental design
mechanisms [Pukelsheim, 2006]. However, such approaches are usually limited to finite-armed
bandits, where the resulting optimization problems can be solved efficiently.

In the online RL setting, the theory of RLHF has received increasing attention, with several works
establishing either regret or probably approximately correct (PAC) guarantees. PAC-RL methods
aim to identify a near-optimal policy with high probability [Xu et al., 2020, Novoseller et al., 2020,
Zhu et al., 2023], while regret-based approaches provide bounds on the cumulative reward during
learning [Pacchiano et al., 2021, Chen et al., 2022, Wu and Sun, 2023]. Similar to dueling bandits,
a central challenge in RLHF is to actively select informative trajectory comparisons to drive learning.
In RL, however, this active-learning problem presents additional difficulties: First, the learner cannot
freely choose arbitrary state-action pairs or trajectories, but must reach them through exploration
[Wagenmaker et al., 2022]. Second, many existing approaches with guarantees [Pacchiano et al., 2021,
Zhan et al., 2024] rely on maximizing an exploration bonus involving a norm of state distributions
– a problem which is computationally intractable even in tabular settings [Efroni et al., 2021].

To sidestep these challenges, another line of work focuses on RLHF with offline data. In this setting,
learning proceeds over a fixed pre-collected dataset of trajectory preferences [Zhu et al., 2023, Zhan
et al., 2023]. Although this offline paradigm avoids the need for online exploration and active query
selection, it depends critically on having access to sufficiently diverse and informative preference
data a priori [Rashidinejad et al., 2021, Xie et al., 2021, Zanette et al., 2021, Zanette, 2023] — a
requirement that can be difficult to meet in practice. Hence, this merely shifts the exploration and
active learning challenges to the data collection phase.

Despite progress on statistical guarantees in RLHF, two key challenges remain open: the design
of tractable algorithms for active preference query selection and reducing the workload of human
preference annotators. In existing approaches, a human must provide feedback at every round, which
is impractical in real-world applications. Our goal in this work is to develop RLHF algorithms that
are computationally efficient, reduce the demand for human feedback, and actively select informative
queries. Some recent work has made progress on tractability. For instance, Wu and Sun [2023]
propose a randomized exploration algorithm with regret guarantees limited to linear dynamics, and
Dwaracherla et al. [2024] show empirically that randomized exploration is efficient for finetuning
of language models. In parallel, Wang et al. [2023] introduces a general reduction from RLHF to
standard RL and establishes PAC-style guarantees under RL oracle access. However, neither approach
addresses the open challenges of reducing feedback requirements or enabling active query selection.

Contributions In this work, we focus on reinforcement learning from human feedback (RLHF)
and develop meta-algorithms that reduce the RLHF problem to standard RL by leveraging existing
RL algorithms as subroutines. Our approach combines randomized exploration for tractability, lazy
updates to reduce human workload, and experimental design to actively select informative preference
queries. We provide both regret and PAC-style guarantees under RL oracle assumptions. Our
contributions are as follows:

• We propose two meta-algorithms for RLHF using RL oracles: Algorithm 1, optimized
for regret minimization, and Algorithm 2, which performs preference-free exploration and
defers preference collection to a single batch at the end. For these methods, we establish
regret and PAC-style guarantees, respectively, holding in general MDPs.

• We present a second meta-algorithm for regret minimization (Algorithm 3) with better
scalability and query efficiency thanks to: Lazy updates, inspired by linear bandits [Abbasi-
Yadkori et al., 2011], which enables parallelization of the preference oracle calls; Greedy op-
timal design, which selects high-quality preference queries and improves sample efficiency.

• We provide empirical results showing that: Our algorithms are implementable, competitive
with reward-based RL, and substantially outperform a baseline that relies solely on
entropy-based exploration; Algorithm 3 achieves comparable performance to Algorithm 1
while significantly reducing the query complexity.2

2The code is openly accessible at https://github.com/andrschl/isaac_rlhf.
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2 Preliminaries

Notation Let N and R denote the sets of natural and real numbers, respectively. We write ∥·∥ for
the Euclidean norm and ⟨·, ·⟩ for the standard inner product in Rd. Moreover, for a positive definite
matrix A ∈ Rd×d, we denote ∥x∥A :=

√
⟨x,Ax⟩ for the Mahalanobis norm. Furthermore, we

denote the closed Euclidean ball of radius a > 0 by Bd(a) ⊂ Rd, and for a compact subset X ⊂ Rn,
we denote the set of all probability measures supported on X by ∆X . Finally, we use the standard
notation O(n) and Ω(n) for asymptotic upper and lower bounds, as well as Õ(n) = O(npolylog(n))
for suppressing polylogarithmic terms.

Setting We consider an infinite-horizon3 Markov decision process (MDP) M = {S,A, ν0, P, r, γ}
with state and action spaces S ⊆ Rn and A ⊂ Rm, respectively, initial state distribution s0 ∼ ν0,
transition law sh+1 ∼ P (·|sh, ah), and discount rate γ ∈ (0, 1). We assume a linear reward model
rθ∗(s, a) := ⟨θ∗, ϕ(s, a)⟩, where ∥θ∗∥ ≤ B and ϕ : S × A → Rd is a continuous feature mapping
such that maxs,a ∥ϕ(s, a)∥ ≤ L. We denote the set of all trajectories as T := (S ×A)

∞, and the
distribution over T induced by a stationary Markov policy π : S → ∆A as Pπ. For a trajectory
τ = (s0, a0, s1 . . .) ∈ T , we denote the discounted sum of features by ϕ(τ) :=

∑∞
h=0 γ

hϕ(sh, ah)
and the feature expectation of a policy π by ϕ(π) := Eτ∼Pπ

[ϕ(τ)]. Furthermore, given a reward
parameter θ, we denote the value of a policy π by V π

θ := Eτ∼Pπ

[∑∞
h=0 γ

hrθ(sh, ah)
]
= ⟨θ, ϕ(π)⟩

and the optimal value by V ∗
θ := maxπ V

π
θ .

Interaction protocol For each round t = 1, . . . , T of RLHF, a learner, the MDP, and a preference
oracle interact as follows. The learner selects two policies πt and π′

t, and executes them to obtain
two trajectories τt ∼ Pπt

and τ ′t ∼ Pπ′
t
. Subsequently, the learner may query the preference oracle,

which returns a binary label yt = 1 (τt ≻ τ ′t) ∈ {0, 1}. The label equals one if the trajectory τt is
preferred over τ ′t , denoted as τt ≻ τ ′t , and zero otherwise. Each such interaction is one RLHF round.

Preference model We consider a stochastic preference model characterized by a preference function
P : T × T → [0, 1], assigning to each pair of trajectories τ, τ ′ ∈ T the probability P(τ ≻ τ ′) of
preferring τ to τ ′. We make the following assumption about the preference model.

Assumption 2.1 (Bradley–Terry model). The preference function P satisfies for all τ, τ ′ ∈ T

P(τ ≻ τ ′) = σ (⟨θ∗, ϕ(τ)− ϕ(τ ′)⟩) , (1)

where σ(x) = 1/(1 + e−x) denotes the sigmoid function.

This preference model is a special case of the Plackett-Luce model [Plackett, 1975, Luce et al., 1959],
and is commonly used in the dueling bandit setting as well as the RLHF framework [Yue et al., 2012,
Christiano et al., 2017, Ouyang et al., 2022]. It captures that the probability of preferring τ over τ ′ is
increasing in the difference between their values ⟨θ∗, ϕ(τ)− ϕ(τ ′)⟩.
Remark 2.2. In practice, we cannot compare trajectories of infinite length. Fortunately, many
environments terminate in finite time, and otherwise one may truncate each trajectory at horizon
H = O(logγ(ε)), introducing at most an ε error in value estimates (see e.g. [Schlaginhaufen and
Kamgarpour, 2024]). For simplicity, however, we omit this truncation step in our presentation.

Regret To assess the learner’s online performance, we consider the cumulative regret

R(T ) =

T∑
t=1

(V ∗
θ∗ − V πt

θ∗ ) + (V ∗
θ∗ − V

π′
t

θ∗ )

2
=

1

2

T∑
t=1

(
2V ∗

θ∗ − V πt

θ∗ − V
π′
t

θ∗

)
.

Cumulative regret has been widely adopted in the RL and RLHF literature [Abbasi-Yadkori et al.,
2011, Zanette et al., 2020, Wang et al., 2023, Zhan et al., 2024]. However, cumulative regret doesn’t
provide us with a guarantee of the last iterate’s suboptimality. As a second metric, we therefore also
consider the suboptimality of an output policy.

3Our results extend directly to the finite-horizon setting as well. However, we focus on the infinite-horizon
discounted setting, as it is more commonly encountered in practical reinforcement learning applications.
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Suboptimality The suboptimality of an output policy π̂ is defined by

SubOpt(π̂) := V ∗
θ∗ − V π̂

θ∗ .

Suboptimality has previously been considered as a performance metric for offline RLHF Zhu et al.
[2023], contextual bandits Das et al. [2024], and online RLHF [Wang et al., 2023]. In the following,
we propose a meta-algorithm that features two variants: one with theoretical guarantees on cumulative
regret, and another specifically ensuring a bound on last-iterate suboptimality.

3 Randomized Preference Optimization
3.1 Algorithm

Both algorithms share the same key ingredients: (i) estimating the reward parameter from preference
feedback using maximum likelihood estimation, (ii) sampling reward parameters from a Gaussian
distribution, reminiscent of linear Thompson sampling [Abeille and Lazaric, 2017], and (iii) lever-
aging an RL oracle to find an approximately optimal policy for the sampled reward parameter. In
Algorithm 1, we apply these steps iteratively and, at each round, query the preference oracle by
comparing a trajectory from the new policy to one from the previous policy to minimize regret. In
contrast, Algorithm 2 performs preference-free exploration and defers all preference queries to a
single batch at the end.

Maximum likelihood estimation Considering our preference model (1), a standard approach for
estimating the reward parameter θ∗ is via maximum likelihood estimation. Given a pair of trajectories
τk = (sh,k, ah,k)

∞
h=0 and τk = (s′h,k, a

′
h,k)

∞
h=0 we consider the design points xk := ϕ(τk)−ϕ(τ ′k) =∑∞

h=0 γ
h(ϕ(sh,k, ah,k)− ϕ(s′h,k, a

′
h,k)) and the preference labels yk = 1(τk ≻ τ ′k). In round t, the

preference dataset is Dt = {(xk, yk)}t−1
k=1 and the corresponding (constrained) maximum likelihood

estimator (MLE) is given by θ̂t = argmin∥θ∥≤B LDt(θ), where

LDt(θ) := −
∑

(x,y)∈Dt

[y log σ(⟨θ, x⟩) + (1− y) log σ(−⟨θ, x⟩)] , (2)

is the negative log-likelihood of the Bradley-Terry model (1). The loss function (2) is the familiar
logistic loss from logistic regression [Shalev-Shwartz and Ben-David, 2014]. In particular, it is a
convex problem that can be solved efficiently using standard methods such as LBFGS [Liu and
Nocedal, 1989]. Moreover, we have the following time-uniform confidence result.

Lemma 3.1. Let λ ≥ 0 and define the design matrix at time t given by Vt = λI +
∑t−1

k=1 xkx
⊤
k .

Then, with probability 1− δ, for all t ∈ N, the true reward parameter θ∗ is contained in the ellipsoid

Et(δ) :=
{
θ :
∥∥∥θ − θ̂t

∥∥∥2
Vt

≤ βt(δ)
2 := O

(
κ

[
log

(
1

δ

)
+ d log

(
t− 1

d

)]
+ λ

)}
.

Here, κ := maxθ∈Bd(B),x∈Bd(2LHγ) 1/σ̇ (⟨θ, x⟩) denotes the Lipschitz constant of the inverse sig-
moid function, and Hγ = (1− γ)−1 the effective horizon of the MDP.

The above lemma hinges on a result for likelihood-ratio confidence sets by Lee et al. [2024]. The
proof and the precise constants are deferred to Appendix D.
Remark 3.2. Compared to the standard analysis of stochastic linear bandits Abbasi-Yadkori et al.
[2011], our parameter βt includes an additional factor of

√
κ, which arises naturally due to preference-

based feedback. This result improves upon the bound provided by Zhu et al. [2023], which incurs a
larger factor of κ instead of

√
κ. While the

√
κ factor can theoretically be avoided by constructing

confidence sets using the Hessian of the negative log-likelihood LDt [Lee et al., 2024, Das et al.,
2024], it reappears in the regret bounds as shown in [Das et al., 2024]. We adopt confidence sets based
on Vt, as this facilitates preference-free exploration, and both Vt and its inverse can be efficiently
updated via rank-one operations, unlike Hessian-based approaches.

Randomized exploration Many approaches to regret minimization and pure exploration
in RLHF rely on maximizing an exploration bonus of the form ∥ϕ(πt)− ϕ(π′

t)∥V −1
t

or
Eτ∼Pπt ,τ

′∼Pπ′
t
∥ϕ(τ)− ϕ(τ ′)∥V −1

t
. Although such methods yield provable guarantees for regret

[Pacchiano et al., 2021] or last-iterate suboptimality [Das et al., 2024], they are computationally
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intractable in RL settings (see Appendix E.2). To address this, we adopt a randomized exploration
scheme inspired by Thompson sampling algorithms for linear bandits. In line with Abeille and
Lazaric [2017], we sample the reward parameter from an inflated version of the confidence set defined
in Lemma 3.1, which produces a computationally efficient alternative to optimism-based approaches.
Furthermore, we also show that this randomized strategy extends to the pure exploration setting.

RL oracle With the objective of a meta-algorithm, we assume access to the following RL oracle.

Assumption 3.3 (PAC-RL oracle). We assume access to an (ε, δ)-PAC oracle, APACRL , for the RL
problem. That is, a polynomial-time algorithm that produces for every ε > 0, δ > 0, and θ ∈ Rd a
policy π = APACRL (θ, ε, δ) such that with probability at least 1− δ we have V ∗

θ − V π
θ ≤ ε.

This assumption of a PAC-RL oracle is satisfied in several settings, including tabular and linear MDPs
[Dann et al., 2019, Ménard et al., 2021, Al Marjani et al., 2021, Wagenmaker et al., 2022, He et al.,
2021]. Moreover, it is relatively mild compared to stronger oracles considered in the RLHF literature
[Zhan et al., 2024], such as reward-free algorithms [Wang et al., 2020, Kaufmann et al., 2021, Ménard
et al., 2021]. In practice, common choices for APACRL are policy optimization methods such as proximal
policy optimization (PPO) [Schulman et al., 2017] or soft actor critic [Haarnoja et al., 2018], which
have shown strong empirical performance in continuous control and large-scale applications such as
training large language models.

Algorithm statement Our algorithm randomized preference optimization (RPO) presented below
comes in two variants: (i) RPO-Regret (Algorithm 1) which balances exploration and exploitation for
regret minimization, and (ii) RPO-Explore (Algorithm 2) which performs preference-free exploration
and collects a single batch of preferences at the end. In RPO-Regret, we sample in each round a
reward parameter from a confidence set inflated by

√
d, compute the policy πt via the RL oracle, and

update the reward estimate by maximum likelihood using the newly collected preference. In contrast,
RPO-Explore samples reward parameters centered at zero, stores trajectory pairs during exploration,
and collects a single batch of preferences at the end.

Algorithm 1: RPO–Regret (online preference learning for regret minimization)
Input: T, δ > 0, λ > 0

1 Initialize: ε = 1/
√
T ; δ′ = δ/5; V1 = λI; D1 = ∅; choose θ̂1 and π0.

2 for t = 1, 2, . . . , T do
3 θ̃t ∼ N

(
θ̂t, βt(δ

′)2V −1
t

)
// Reward sampling

4 πt = APACRL
(
θ̃t, ε, δ

′/T
)
, π′

t = πt−1 // RL update
5 τt ∼ Pπt , τ

′
t ∼ Pπ′

t

6 xt = ϕ(τt)− ϕ(τ ′t), Vt+1 = Vt + xtx
⊤
t

7 yt = 1(τt ≻ τ ′t), Dt+1 = Dt ∪ (yt, xt) // Preference feedback
8 θ̂t+1 ∈ argmin∥θ∥≤B LDt+1

(θ) // Reward estimation
9 end

Algorithm 2: RPO–Explore (preference-free exploration and batched reward estimation)
Input: T, δ > 0, λ > 0

1 Initialize: ε = 1/
√
T ; δ′ = δ/5; V1 = λI; B = D = ∅; choose π0.

2 for t = 1, 2, . . . , T do
3 θ̃t ∼ N

(
0, V −1

t

)
// Reward sampling

4 πt = APACRL
(
θ̃t, ε, δ

′/T
)
, π′

t = πt−1 // RL update
5 τt ∼ Pπt , τ

′
t ∼ Pπ′

t

6 xt = ϕ(τt)− ϕ(τ ′t), Vt+1 = Vt + xtx
⊤
t

7 B = B ∪ {(τt, τ ′t , xt)} // Defer preference feedback
8 end
9 foreach (τ, τ ′, x) ∈ B do

10 y = 1(τ ≻ τ ′); D = D ∪ {(y, x)} // Preference feedback
11 end

Output: Policy π̂ = APACRL

(
θ̂, ε, δ′

)
with θ̂ ∈ argmin∥θ∥≤B LD(θ) // One MLE at end
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3.2 Theoretical results

We analyze the regret of RPO-Regret and the suboptimality of the output policy π̂ of RPO-Explore.

3.2.1 Regret analysis

We show that RPO-Regret incurs sublinear regret with high probability.

Theorem 3.4. For any δ > 0 and T ∈ N, Algorithm 1 satisfies, with probability at least 1− δ,

R(T ) = O
(√

κd3T log(dT/δ)3
)
.

The regret bound of Theorem 3.4 matches the best existing bounds for algorithms with randomized
exploration in reinforcement learning, see [Efroni et al., 2021, Ouhamma et al., 2023]. In addition,
due to learning from preferences, we have an extra

√
κ factor (see Remark 3.2), which is in line with

other recent work on RLHF [Wu and Sun, 2023, Das et al., 2024].

Comparison with prior work For episodic tabular MDPs Pacchiano et al. [2021] prove a regret
bound of Õ(κd

√
T ). Similarly, Chen et al. [2022] considers episodic linear MDPs and derives

a regret bound of Õ(d
√
HT ), avoiding dependence on κ by assuming a linear preference model.

However, these approaches rely on a type of optimism which is computationally intractable in this
setting (see Appendix E.2). Similar to us, Wu and Sun [2023] avoid this challenge by resorting to
randomized exploration and proves a Õ(d3

√
κT ) regret bound for linear MDPs. Compared to Wu

and Sun [2023], our analysis improves the dependence on dimensionality from d3 to d3/2 and avoids
the need for truncation techniques on the value function. Furthermore, our settings differ in two key
points: First, we assume access to an RL oracle without restricting the class of MDPs, whereas Wu
and Sun [2023] considers linear MDPs. Second, their approach is model-based, while Algorithm 1 is
oracle-based and can accommodate both model-based and model-free implementations.

Proof idea The full proof of Theorem 3.4 is provided in Appendix A. Analogous to the analysis
of linear Thompson sampling [Abeille and Lazaric, 2017], the main idea is to control the regret
by showing that randomized exploration ensures a constant probability of optimism. However,
compared to the linear bandit analysis, our setting comes with additional challenges: First, due to
preference-based learning we require a different regret decomposition accounting for the reference
policy. Second, as we observe preference feedback on trajectories rather than policies, we need
to apply Freedman’s inequality (see Lemma D.8) to control the deviation between expected and
observed features. Lastly, as we assume a PAC RL oracle – in place of an exact maximization oracle –
we need to carefully track the resulting approximation error.

3.2.2 Suboptimality gap

As RPO-Explore collects no preferences during exploration, it may incur linear regret as the policies
πt can be highly suboptimal. However, Theorem 3.5 below shows that the final output policy is
Õ(1/

√
T )-optimal.

Theorem 3.5. For any δ > 0 and T ∈ N, Algorithm 2 satisfies, with probability at least 1− δ,

SubOpt (π̂) = O

√κd3

T
log

(
dT

δ

)3
 .

In other words, we need Õ(κd3/ε2) iterations to output an ε-optimal policy with high probability.

Except for the extra
√
d dependency, which is inherent to approaches based on randomized explo-

ration,4 we match the last iterate guarantee proposed by Das et al. [2024] for a contextual linear
bandit setting, but with an algorithm that (i) collects a single batch of preferences and (ii) remains
tractable in a full RL setting with trajectory-level feedback, given the PAC RL oracle is tractable.

4Recently, Abeille et al. [2025] showed that, in certain cases, the factor
√
d can be removed by an improved

analysis. Their assumptions do not hold in our setting, so whether
√
d can be avoided remains open.
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Comparison with prior work Algorithm 2 is reminiscent of reward-free RL algorithms [Wang
et al., 2020], but in a preference-based setting. To our knowledge, Algorithm 2 is the first tractable
algorithm to perform efficient preference-free exploration with trajectory-level preferences, and the
first – across preference- or reward-based RL – to do so via randomized exploration. Few other
works provide suboptimality guarantees in preference-based RL, but require preference-feedback at
every round. Wang et al. [2023] propose a meta-algorithm interfacing with a PAC-RL oracle that
outputs an ε-optimal policy after Õ(κ2d3/ε2) queries. A different approach by Zhan et al. [2024]
leverages optimal design to prove a bound of Õ((|S|2|A|d+ κ2d2)/ε2), but their method relies on
an intractable maximization oracle. In comparison, Algorithm 2 achieves a bound of Õ(κd3/ε2),
improving the dependence on κ over both prior results. The extra

√
d compared to Zhan et al. [2024]

is expected for randomized (rather than optimistic) exploration [Abeille and Lazaric, 2017]. Finally,
note that an online-to-batch conversion yields similar suboptimality bounds for Algorithm 1, but
would require preferences at every round [Ménard et al., 2021].

Proof idea The proof of Theorem 3.5, presented in Appendix B, builds on Das et al. [2024]’s
suboptimality analysis for the contextual bandits setting. However, to sidestep the intractability of
maximizing an exploration bonus over policies, we leverage randomized exploration [Abeille and
Lazaric, 2017] to ensure a constant probability of optimism. This allows us to derive a bound on the
output policy’s suboptimality that mirrors the regret bound, without needing additional assumptions.

3.3 Practical limitations

While Algorithm 1 is tractable and efficient, it presents certain limitations. Issuing preference queries
at each round (line 7) is impractical, due to the need for continuous feedback, and requesting a label
for all trajectory pairs can be expensive and inefficient, as many comparisons may be uninformative.
Moreover, the large regret of Algorithm 2 may be undesirable for certain applications. The next
section introduces a refined regret-minimization algorithm that addresses these issues by decoupling
trajectory collection from query selection and querying only the most informative comparisons.

4 A practical algorithm with efficient query selection

We present Algorithm 3, an improved method for preference collection and active query selection.

4.1 Algorithm

As discussed earlier, we design Algorithm 3 by using lazy updates to collect a batch of tra-
jectory pairs, then applying optimal design to select the informative queries from the batch.

Algorithm 3: LRPO-OD-Regret (lazy randomized preference optimization with optimal design)
Input: T , δ > 0, λ > 1, C > 0

1 Initialize: ε = 1/
√
T ; δ′ = δ/5; V1 = W2 = λI; D1 = D = ∅; tstop = 1 ; choose θ1.

2 for t = 1, 2, . . . , T do
3 if det(Wt) > (1 + C) det(Wtstop) then
4 Dopt, Vt = D-OptDes(D, Vtstop ,det(Wt)) // Optimal design
5 Dt = Dtstop

6 for (τ, τ ′) ∈ Dopt do
7 Dt = Dt ∪ {(x, y)}, x = ϕ(τ)− ϕ(τ ′), y = 1(τ ≻ τ ′) // Preferences
8 end
9 θ̂t ∈ argmin∥θ∥≤B LDt(θ) // Reward estimation

10 tstop = t, D = ∅, π′ = APACRL

(
θ̂t, ε, δ

′/T
)

11 end
12 θ̃t ∼ N (θ̂tstop , βtstop(δ

′)2V −1
tstop) // Reward sampling

13 πt = APACRL

(
θ̃t, ε, δ

′/T
)

// Update policy with RL

14 D = D ∪ {(τt, τ ′t)}, xt = ϕ(τt)− ϕ(τ ′t) with τt ∼ Pπt
, τ ′t ∼ Pπ′

15 If t = tstop, then Wt+1 = Vt + xtx
⊤
t , else: Wt+1 = Wt + xtx

⊤
t

16 end
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Lazy updates We use an idea from Abbasi-Yadkori et al. [2011] to collect many trajectory pairs
without querying the preference oracle. The modification compared to Algorithm 1 is collecting
trajectories without updating the MLE θ̂tstop until the information gain, represented by det(Vt),
increases by a multiplicative constant; see line 4 of Algorithm 3. We show that this procedure limits
the number of batches to O(log(T )). In other words, the average (over batches) size of a given batch
is of order O(T/ log(T )). A key advantage of this lazy update structure is that the preference queries
(line 7) can be collected in parallel across all trajectory pairs within a batch. This significantly reduces
the workload of the preference oracle, e.g. a human annotator, by eliminating the need for round-
by-round feedback, and the algorithm no longer pauses at each timestep to wait for preference labels.

D-Optimal design To select informative preference queries from the collected trajectories above,
we leverage tools from optimal experimental design. Specifically, we apply an approximate D-optimal
design criterion to each collected batch of trajectory pairs; see Appendix E.1 for background on
D-optimal design. Given the current matrix Vtstop and the set of candidate trajectory pairs D, we use
a greedy algorithm to solve the following maximization problem:

max
{nx}

log det

(
Vtstop +

∑
x∈D

nxxx
⊤

)
subject to

∑
x∈D

nx = |D|, nx ∈ N.

Due to the submodularity of the log det function for λ greater than one, the greedy procedure of
Algorithm 4 achieves an (1 − 1/e)-approximation to the optimal solution; see [Nemhauser et al.,
1978, Krause et al., 2008] and Appendix E.1.

Another key feature of Algorithm 4 is that the while loop is stopped early if det(V ) exceeds the
threshold value. This threshold is set as the determinant of the naive design, where every trajectory
pair is queried once. When this early termination is satisfied, Algorithm 3 requires fewer samples
than Algorithm 1. In particular, since the optimal design maximizes the information gain (measured
by det(V )), this termination condition is expected to be satisfied frequently in practice.

Algorithm 4: Greedy D-Optimal Design
Input: Dataset D, current design matrix V , threshold for the determinant value α.

1 Initialize and dataset Dopt = ∅
2 while det(V ) < α and |Dopt| ≤ |D| do
3 (τ, τ ′) = argmax(τ,τ ′)∈D det(V + (ϕ(τ)− ϕ(τ ′))(ϕ(τ)− ϕ(τ ′))⊤)

4 V = V + xx⊤, where x = ϕ(τ)− ϕ(τ ′); Dopt = Dopt ∪ {(τ, τ ′)}
5 end

Output: Curated dataset Dopt, design matrix V .

4.2 Theoretical result

We now provide our high probability regret bound for Algorithm 3.
Theorem 4.1. Instantiating Algorithm 3 with C > 0 and λ > 1, it holds for any δ > 0 and T ∈ N,
with probability at least 1− δ that

R(T ) ≤ O
(√

(1 + C)κd3T log(dT/δ)3
)
.

In addition, the number of times the condition of line 4 holds is at most d
log(1+C) log

(
1 +

T (LHγ)
2

λd

)
.

Therefore, the size of the batches is on average of order Õ(T/(d log(T ))).

Compared to Theorem 3.4, the above regret bound increases only by constant factors. Regarding the
number of preference queries, Sekhari et al. [2023] shows that at least Ω(T ) queries are required to
achieve O(

√
T ) regret in the worst case. However, optimal design may lead to significantly fewer

queries in favorable instances, as demonstrated in our experiments. Importantly, approximate optimal
design does not compromise our guarantees, as it ensures a 1/(1− 1/e) approximation to the optimal.

Proof idea We present here the key ideas of the proof of Theorem 4.1, the full proof is in Appendix
C. The lazy update mechanism used in our algorithm does not degrade the regret bound beyond a
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constant factor. This follows from the analysis of Abbasi-Yadkori et al. [2011], which shows that
the elliptical potentials (related to the determinant of the design matrix) grow by at most a factor
of (1 + C) compared to the standard design matrix of Algorithm 1. For the experimental design
component, we adapt the proof of the standard elliptical lemma [Lattimore and Szepesvári, 2020,
Lemma 19.4] to bring out the information gain, measured as log detWt. This information gain is
then related to log detVt thanks to standard results from submodular optimization. Specifically, the
greedy strategy in Algorithm 4 achieves a (1− 1/e) approximation of the optimal information gain.
Together, these results allow us to derive a regret bound for this improved algorithm, which matches
the original up to constant factors.

5 Experiments

We first validate our theoretical results on regret minimization in a tabular gridworld environment,
where our RL oracle assumption provably holds, and then compare Algorithm 1 and 3 on more
challenging continuous control tasks. The validation of Algorithm 2 is deferred to Appendix F.

5.1 Tabular environment

Figure 1: We compare the regret of RPO-Regret
(orange, Algorithm 1) against a baseline with en-
tropy exploration (blue). The solid lines indicate
the median and the shaded areas the 0.2 and 0.8
quantiles, across 20 independent runs. The re-
gret is computed with respect to the ground truth
reward parameter θ∗.

We consider a 6× 6 gridworld environment with
deterministic transitions and 4 actions (up, down,
left, right). The agent starts in the center and re-
ceives reward 0.5 if it reaches one of two boundary
states. The reward features are one-hot features of
six boundary states – including the two goal states
(see Figure 3 for an illustration of the environ-
ment). We compare RPO-Regret (Algorithm 1)
against an RLHF baseline that explores purely
through entropy regularization, using synthetic
preferences generated from the ground truth re-
ward parameter θ∗. We compute optimal policies
using soft value iteration [Haarnoja et al., 2017],
and to reduce variance in the reward estimate, we
sample 100 trajectories from πt and π′

t in each
RLHF round.

As shown in Figure 1, RPO-Regret attains consid-
erably lower regret with less variance across runs
than the baseline. These results underscore that en-
tropy exploration, does not necessarily guarantee
low regret in MDPs.

5.2 Continuous control

We validate our theoretical results on regret minimization (Theorems 3.4 and 4.1) on the
Isaac-Cartpole-v0 environment from Nvidia Isaac Lab [Mittal et al., 2023]. In this task the
goal is to balance a pole on a cart by applying left or right forces, preventing the pole from
falling. We compare RPO-Regret with its lazy variants (LRPO-Regret without optimal design
and LRPO-OD-Regret with optimal design). To simulate human preferences, we generate synthetic
preferences using the built-in task-specific reward function, which is a linear combination of 5 reward
terms (see Appendix F). Furthermore, we adopt PPO [Schulman et al., 2017] as our RL oracle using
30 PPO steps per iteration of Algorithm 1 and 3. Again, we sample 100 trajectories from πt and π′

t
in each RLHF round.

Figure 2 shows that for all three algorithms the regret slope flattens out after a few RLHF rounds,
demonstrating sublinear regret and performance competitive with RL using ground truth rewards.
Although LRPO-OD-Regret suffers slightly higher regret initially, it quickly reaches the same
performance as RPO-Regret and LRPO-Regret, while reducing the number of preference queries
considerably. This highlights that, despite theoretical worst-case lower bounds, the number of
preference queries can be considerably reduced in practice by selecting informative queries with
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(a) (b)

Figure 2: Comparison of regret minimization algorithms in terms of (a) the cumulative regret
(estimated from samples against an RL policy trained with θ∗) and (b) number of preference
queries performed. In particular, we compare RPO-Regret (orange, Algorithm 1) with it’s
lazy versions LRPO-Regret and LRPO-OD-Regret (orange & blue). Here, LRPO-Regret and
LRPO-OD-Regret refer to Algorithm 3 without and with optimal design subroutine. The solid lines
indicate the median and the shaded areas the 0.2 and 0.8 quantiles, across 20 independent runs.

optimal design. Additional experimental results and further implementation and evaluation details
are provided in Appendix F.

6 Conclusion

We presented two simple meta-algorithms for reinforcement learning from human feedback (RLHF)
that combine an RL oracle and randomized exploration, achieving complementary guarantees: regret
bounds for Algorithm 1 and PAC-style guarantees for Algorithm 2. Algorithm 2, to our knowledge,
is the first tractable method to perform preference-free exploration with trajectory-level preferences.
Building on this framework, we introduced Algorithm 3, a practical regret-minimization algorithm
that combines lazy updates to enable parallelization with optimal design to reduce query complexity,
while maintaining regret guarantees. Empirically, our approach is competitive with reward-based
RL while requiring significantly fewer preference queries. Overall, our contributions advance the
state of RLHF by combining strong theoretical guarantees with practical algorithm design, improving
efficiency and broadening applicability to real-world scenarios.

Our work opens several directions for future research. First, we adopt the Bradley-Terry model for
preference generation, which may not fully capture the complexity of real-world human feedback.
Extending the framework to richer preference models is an important direction. Second, our approach
relies on an RL oracle at every RLHF step, which may be computationally demanding. While using a
reward-free algorithm as an RL oracle is theoretically efficient, practical RL implementations are
typically based on policy optimization, which is not a reward-free algorithm, and often entails high
sample complexity. Thus, it remains open whether we could require fewer RL oracle calls or whether
reward-free oracles can be successfully implemented. Finally, our experimental evaluation is limited
to tabular settings and simple robotic control tasks with synthetic feedback. Assessing performance
on more complex tasks and with real human or LLM-generated feedback would offer a stronger test
of the method’s practical applicability.

Acknowledgments Andreas Schlaginhaufen is funded by a PhD fellowship from the Swiss Data
Science Center.
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A Proof of Theorem 3.4

Theorem 3.4. For any δ > 0 and T ∈ N, Algorithm 1 satisfies, with probability at least 1− δ,

R(T ) = O
(√

κd3T log(dT/δ)3
)
.

Proof. The proof proceeds in four steps. We first define a set of good events of concentration of
parameters and sums of trajectory features, we show that they are satisfied with high probability.
Second, we decompose the regret into two terms: a pessimism term and an estimation error term. We
then show that the pessimism term is controlled by establishing a constant probability of optimism,
and the estimation error term is controlled by the estimation error of the maximum likelihood
estimator.

Throughout the proof, we work with the two filtrations Ft = σ(x1, y1, . . . , xt−1, yt−1) and Fθ
t =

σ(Ft, θ̃t). In particular, both θ̂t and Vt are Ft measurable. Therefore, θ̃t follows a Gaussian
distribution given Ft, i.e. θ̃t | Ft ∼ N (θ̂t, β

2
t V

−1
t ), while it is fully determined by Fθ

t .

Step 1 (good events): Recall that in Algorithm 1 we set ε = 1/
√
T and δ′ = δ/5. We define the

following high probability events.

1. Let δ′′ = δ′/T and c(δ′′) :=
√

2d log(2d/δ′′) =
√
2d log(10dT/δ). Consider the inflated

ellipsoid

ETS
t :=

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Vt

≤ βt(δ
′)c(δ′′)

}
= c(δ′′)Et(δ′).

We define the events

Êt := {θ∗ ∈ Et} , Ẽt :=
{
θ̃t ∈ ETS

t

}
, and Et := Êt ∩ Ẽt

and let G1 :=
⋂T

t=1 Et. This event implies that θ∗ lies in the confidence set uniformly over
times t ∈ [1, T ], and the sampled parameter is close to θ̂t.

2. Let G2 denote the event that for

CT := 2

√
T

(
2d log

(
1+

4TL2H2
γ

dλ

)
+
12dL2H2

γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log

(
2

δ′

)
,

it holds that
T∑

t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Ft

]
≤ CT ,

and that
T∑

t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Fθ

t

]
≤ CT .

3. Let G3 =
{
∀t ∈ [1, T ] : V ∗

θ̃t
− V πt

θ̃t
≤ ε
}

, where πt = APACRL

(
θ̃t, ε, δ

′/T
)

.

As shown below, with probability at least 1− δ, all the above good events happen at the same time.

Proposition A.1. Let G :=
⋂3

i=1 Gi. It holds that Pr [G] ≥ 1− δ.

Proof. For the event G1, Lemma 3.1 and D.1 imply that Pr
[⋃T

t=1 Ê
∁
t

]
≤ δ′ and Pr[Ẽ∁

t ] ≤ δ′/T for

any t ∈ [1, T ]. Hence, a union bound yields Pr
[
G∁

1

]
≤ 2δ′. Furthermore, by Lemma D.4 2), we

have Pr
[
G∁

2

]
≤ δ′. Moreover, by union bound and the definition of APACRL , we have Pr

[
G∁

3

]
≤ δ′.

Hence, we have Pr [G] ≥ 1−
∑3

i=1 Pr
[
G∁

i

]
≥ 1− 4δ′ ≥ 1− δ.
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Step 2 (regret decomposition): Recall that in algorithm 1, we choose π′
t = πt−1. Hence, we can upper

bound the cumulative regret as follows

R(T ) =
1

2

T∑
t=1

(
2V ∗

θ∗ − V πt

θ∗ − V
π′
t

θ∗

)
≤

T∑
t=1

(V ∗
θ∗ − V πt

θ∗ ) + V ∗
θ∗ − V

π′
0

θ∗

≤
T∑

t=1

(V ∗
θ∗ − V πt

θ∗ )︸ ︷︷ ︸
rt

+BLHγ .

Let ∆t(θ) := maxπ⟨θ, ϕ(π)− ϕ(π′
t)⟩. On the good event G, we can decompose the instantaneous

regret as follows

rt := V ∗
θ∗ − V πt

θ∗

=
(
V ∗
θ∗ − V

π′
t

θ∗

)
−
(
V πt

θ̃t
− V

π′
t

θ̃t

)
+
(
V πt

θ̃t
− V

π′
t

θ̃t

)
−
(
V πt

θ∗ − V
π′
t

θ∗

)
≤
(
V ∗
θ∗ − V

π′
t

θ∗

)
−
(
V ∗
θ̃t
− V

π′
t

θ̃t

)
+ ε+

(
V πt

θ̃t
− V

π′
t

θ̃t

)
−
(
V πt

θ∗ − V
π′
t

θ∗

)
= ∆t(θ

∗)−∆t(θ̃t)︸ ︷︷ ︸
rTS
t

+ ⟨θ̃t − θ∗, ϕ(πt)− ϕ(π′
t)⟩︸ ︷︷ ︸

rMLE
t

+ε.

Here, rTS
t is a pessimism term that is negative by construction for optimistic algorithms, and rMLE

t is
related to the estimation error of the reward parameter.

Step 3 (bounding rTS
t ): This part of the analysis highlights the distinctiveness of randomized explo-

ration. While optimistic algorithms ensure negativity of rTS
t through their intractable optimization

procedures, randomized exploration controls it using probability arguments. Specifically, following
the proof of Abeille and Lazaric [2017], we begin by bounding rTS

t on the good event via a conditional
expectation given the optimism event. The bound on rTS

t then follows by a careful application of the
anti-concentration property established in Lemma D.2.

Conditioned on Ẽt, we can lower bound

∆t(θ̃t) ≥ min
θ∈ETS

t

∆t(θ) = max
π

⟨θt, ϕ(π)− ϕ(π′
t)⟩ =: ∆t,

for some θt ∈ ETS
t . Moreover, if Ot :=

{
∆t(θ̃t) ≥ ∆t(θ

∗)
}

denotes the event of θ̃t being optimistic
at time t, we can upper bound ∆t(θ

∗) as follows

∆t(θ
∗)1(Et) ≤ E

[
∆t(θ̃t)1(Et) | Ft, Ot

]
.

Putting this together, we get

rTS
t 1(Et) ≤ E

[(
∆t(θ̃t)−∆t

)
1(Et) | Ft, Ot

]
(i)

≤ E
[(

⟨θ̃t, ϕ(πt)− ϕ(π′
t)⟩+ ε−max

π
⟨θt, ϕ(π)− ϕ(π′

t)⟩
)
1(Et) | Ft, Ot

]
(ii)
= E

[(
⟨θ̃t, ϕ(πt)− ϕ(π′

t)⟩ − ⟨θt, ϕ(πt)− ϕ(π′
t)⟩
)
1(Et) | Ft, Ot

]
+ ε

(iii)

≤ 2βt(δ
′)c(δ′′)E

[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft, Êt, Ot

]
Pr
[
Êt | Ft

]
+ ε,

where (i) follows from ε-optimality of πt, in (ii) we used that maxπ⟨θt, ϕ(π) − ϕ(πt)⟩ ≥ 0, and
(iii) follows from the Cauchy-Schwarz inequality. By the law of total probability, we have that

E
[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft, Êt, Ot

]
≤ E

[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft, Êt

]
/Pr

[
Ot|Ft, Êt

]
.
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Next, as θ∗ ∈ Et on Êt, we have

Pr
[
Ot | Ft, Êt

]
≥ Pr

[
∆t(θ̃t) ≥ max

θ∈Et

∆t(θ) | Ft

]
.

Since θ 7→ ∆t(θ) is the sum of a linear function and the function θ 7→ maxπ⟨θ, ϕ(π)⟩ which
is convex and continuous by Proposition D.6. Then, applying Lemma D.2 with f(θ) = ∆t(θ),
x̃ = θ̃t | Ft, and E = Et, we have

Pr
[
Ot | Ft, Êt

]
≥ 1/

(
4
√
eπ
)
=: p.

As a result, we can upper bound the instantaneous regret as

rTS
t 1(Et) ≤

2βt(δ
′)c(δ′′)E

[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft

]
p

+ ε

≤
2βt(δ

′)c(δ′′)E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Ft

]
p

+ ε,

where the second inequality follows from the convexity of norms. Applying Lemma D.4 2), we have
on the good event G that

T∑
t=1

rTS
t ≤ 2βT (δ

′)c(δ′′)

p

T∑
t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Ft

]
+ Tε (3)

≤ 2βT (δ
′)c(δ′′)

p
CT + Tε,

for the constant

CT = 2

√
T

(
2d log

(
1+

4TL2H2
γ

dλ

)
+
12dL2H2

γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log

(
2

δ′

)
.

Step 4 (bounding rMLE
t ): Conditioned on event Et we have

rMLE
t = ⟨θ̃t − θ∗, ϕ(πt)− ϕ(π′

t)⟩
= ⟨θ̃t − θ̂t, ϕ(πt)− ϕ(π′

t)⟩+ ⟨θ̂t − θ∗, ϕ(πt)− ϕ(π′
t)⟩

≤ βt(δ
′)(1 + c(δ′′)) ∥ϕ(πt)− ϕ(π′

t)∥V −1
t

≤ βt(δ
′)(1 + c(δ′′))E

[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
|Fθ

t

]
,

where the last inequality follows from the convexity of norms. From here, we can again apply the
second result of Lemma D.4. We deduce that on the good event G, we have

T∑
t=1

rMLE
t ≤ βT (δ

′)(1 + c(δ′′))

T∑
t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
|Fθ

t

]
≤ βT (δ

′)(1 + c(δ′′))CT .
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In summary, we can conclude that with probability at least 1− δ, the regret can be bounded as follows

R(T ) ≤
T∑

t=1

(
rTS
t + rMLE

t

)
+ Tε+BLHγ

≤
(
2βT (δ

′)c(δ′′)

p
+ βT (δ

′)(1 + c(δ′′))

)
CT + 2Tε+BLHγ

≤ 3βT (δ
′)c(δ′′)

p
CT + 2Tε+BLHγ

=

3

[√
κ
[
log
(
5
δ

)
+ d log

(
max

{
e,

4eBLHγ(T−1)
d

})]
+ 2

√
λB

]√
2d log(10dT/δ)

p

·

[
2

√
T

(
2d log

(
1+

4TL2H2
γ

dλ

)
+
12dL2H2

γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log

(
10

δ

)]
+ 2

√
T +BLHγ

= O

√κd3T log

(
dT

δ

)3
 .

B Proof of Theorem 3.5

Theorem 3.5. For any δ > 0 and T ∈ N, Algorithm 2 satisfies, with probability at least 1− δ,

SubOpt (π̂) = O

√κd3

T
log

(
dT

δ

)3
 .

In other words, we need Õ(κd3/ε2) iterations to output an ε-optimal policy with high probability.

Proof. Similar to the proof of Theorem 4.1, we start by defining a set of good events.

Step 1 (good events): Recall that in Algorithm 2 we set ε = 1/
√
T and δ′ = δ/5; we sample

θ̃t ∼ N (0, V −1
t ), and θ̂ is the MLE estimate at time T + 1. We define the following high probability

events.

1. Let δ′′ = δ′/T and c(δ′′) :=
√
2d log(2d/δ′′) =

√
2d log(10dT/δ). Consider the centred

inflated ellipsoid

ĒTS
t :=

{
θ ∈ Rd : ∥θ∥Vt

≤ c(δ′′)
}
= c(δ′′)Et(δ′).

We define the events

Ê := {θ∗ ∈ ET+1} , Ẽt :=
{
θ̃t ∈ ĒTS

t

}
,

and let G1 :=
⋂T

t=1 Et ∩ Ê. This event implies that θ∗ lies in the confidence set at time
T + 1, and the sampled parameter is not too large for all t ∈ [1, T ].

2. Let G2 denote the event that for

CT := 2

√
T

(
2d log

(
1+

4TL2H2
γ

dλ

)
+
12dL2H2

γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log

(
2

δ′

)
,

it holds that
T∑

t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Ft

]
≤ CT ,
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and that
T∑

t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Fθ

t

]
≤ CT .

3. Let G3 =
{
∀t ∈ [1, T ] : V ∗

θ̃t
− V πt

θ̃t
≤ ε
}

, where πt = APACRL

(
θ̃t, ε, δ

′/T
)

.

4. Let G4 denote the event that V ∗
θ̂
− V π̂

θ̂
≤ ε where π̂ = APACRL

(
θ̂, ε, δ′

)
.

By definition of APACRL , we have Pr
[
G∁

4

]
≤ δ′. Hence, analogously to Proposition A.1 the good event

G :=
⋂4

i=1 Gi happens with probability at least 1− δ.

Step 2 (suboptimality bound): In the following, we will denote π∗ ∈ argmaxπ⟨θ∗, ϕ(π)⟩ for an
arbitrary optimal policy corresponding to the ground truth reward parameter θ∗. Under the above
good event G, we can bound the suboptimality of π̂ as follows

SubOpt(π̂) = ⟨θ∗, ϕ(π∗)− ϕ(π̂)⟩ ≤ ⟨θ∗ − θ̂, ϕ(π∗)− ϕ(π̂)⟩+ ε

≤ 2max
π,π′

⟨θ∗ − θ̂, ϕ(π)− ϕ(π′)⟩+ ε ≤ 2βT+1(δ
′)max

π,π′
∥ϕ(π)− ϕ(π′)∥V −1

T+1
+ ε. (4)

From here on, it remains to show that maxπ,π′ ∥ϕ(π)− ϕ(π′)∥V −1
T+1

= O(d log(dT/δ)/
√
T ), which

means that the comparisons {xt}Tt=1 constitute an approximate G-optimal design [Pukelsheim, 2006]
for estimating θ∗.

Step 3 (approximate G-optimal design): Due to the Loewner order inequalities VT+1 ⪰ VT ⪰ . . . ⪰
V1, we have

∥·∥V −1
T+1

≤ ∥·∥V −1
T

≤ . . . ≤ ∥·∥V −1
1

.

Therefore, we can bound the right-hand-side of (4) as follows

max
π,π′

∥ϕ(π)− ϕ(π′)∥V −1
T+1

≤ 1

T

T∑
t=1

max
π,π′

∥ϕ(π)− ϕ(π′)∥V −1
T+1

≤ 1

T

T∑
t=1

max
π,π′

∥ϕ(π)− ϕ(π′)∥V −1
t

≤ 2

T

T∑
t=1

max
π

∥ϕ(π)− ϕ(π′
t)∥V −1

t
,

where we used the triangle inequality in the last step. Next, we consider the function ft(θ) =

maxπ⟨θ, ϕ(π) − ϕ(π′
t)⟩, the ellipsoid Ēt =

{
θ : ∥θ∥Vt

≤ 1
}

, and the event Ot = {ft(θ̃t) ≥
maxθ∈Ēt

ft(θ)}. By Proposition D.6 ft is convex and continuous. Applying Lemma D.2 with
f = ft, θ̃ = θ̃t | Ft, and E = Ēt, it holds that Pr [Ot | Ft] ≥ p := 1/(4

√
eπ). Hence, we can

proceed analogously to the proof of Theorem 3.4:

max
π

∥ϕ(π)− ϕ(π′
t)∥V −1

t
1

(
Ẽt

)
(i)
= max

θ∈Ēt

ft(θ)1
(
Ẽt

)
≤ E

[
ft(θ̃t)1

(
Ẽt

)
| Ot,Ft

]
≤ E

[
⟨θ̃t, ϕ(πt)− ϕ(π′

t)⟩1
(
Ẽt

)
| Ot,Ft

]
+ ε

≤ c(δ′′)E
[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ot,Ft

]
+ ε

(ii)

≤ c(δ′′)

p
E
[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft

]
+ ε.

Here, (i) follows because Ēt is a centered ellipsoid, and (ii) from the total law of probability.
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Using Lemma D.4, we conclude that with probability 1− δ, we have that

SubOpt(π̂) ≤ ε(1 + 2βT+1(δ
′)) +

2βT+1(δ
′)c(δ′′)

pT

T∑
t=1

E
[
∥ϕ(πt)− ϕ(π′

t)∥V −1
t

| Ft

]
≤

[√
κ

[
log

(
5

δ

)
+ d log

(
max

{
e,

4eBLHγT

d

})]
+ 2

√
λB

]{
3√
T

+
2
√

2d log(10dT/δ)

pT

·

[
2

√
T

(
2d log

(
1+

4TL2H2
γ

dλ

)
+
12dL2H2

γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log

(
10

δ

)]}

=O

√κd3

T
log

(
dT

δ

)3
 .

C Proof of Theorem 4.1

Theorem 4.1. Instantiating Algorithm 3 with C > 0 and λ > 1, it holds for any δ > 0 and T ∈ N,
with probability at least 1− δ that

R(T ) ≤ O
(√

(1 + C)κd3T log(dT/δ)3
)
.

In addition, the number of times the condition of line 4 holds is at most d
log(1+C) log

(
1 +

T (LHγ)
2

λd

)
.

Therefore, the size of the batches is on average of order Õ(T/(d log(T ))).

We start the proof by showing that the number of rounds where the design matrix is updated is small.

Lemma C.1 (Number of design matrix updates). Using Algorithm 3 with a parameter C > 0, it
holds that:

T∑
t=1

1{Vt ̸= Vt−1} ≤ d

log
(

1+C
1−1/e

) log

(
1 +

T (LHγ)
2

λd

)
.

That is, the number of updates of the matrix Vt is at most logarithmic in the number of interactions T .

Proof. Denote NT =
∑T

t=1 1 [Vt ̸= Vt−1], and let T ′ < T be the last time the matrix Vt was updated.
Then,

det(VT ) ≥ (1 + C)/(1− 1/e) det(VT ′)

≥ ((1 + C)/(1− 1/e))NT det(λI).

The first inequality follows because detWT ≥ (1 + C) detVT ′ and because greedy D-Optimal
design ensures that detVT ≥ 1

1−1/e detWT , where Wt is defined in Algorithm 3.

Then, using the trace-determinant inequality, we have:(
1 + C

1− 1/e

)NT

λd ≤
(
λd+ T (LHγ)

2

d

)d

and then,

NT ≤ d

log
(

1+C
1−1/e

) log

(
1 +

T (LHγ)
2

λd

)
.
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We now present the proof for the regret bound, which proceeds similarly to that of Theorem 3.4 up
to some modifications. The first change is in the regret decomposition, which needs to be adapted
because we no longer compare to the past policy but rather to π′

t = APACRL (θ̂tstop(t), ε, δ). The second
change is using Lemma D.5 instead of Lemma D.4 to bound the sum of norms of trajectory features.
Finally, the good events defined in the proof of Theorem 3.4 are slightly modified to account for the
lazy design matrix and the new choice of comparator policy π′

t.

Proof. Let us first define the function tstop : N → N, which to a time t, assigns the last time
tstop(t) ≤ t that the update condition (line 4 in Algorithm 3) was met.

We work with the same two filtrations as before Ft = σ(x1, y1, . . . , xt−1, yt−1) and Fθ
t = σ(Ft, θ̃t).

And we recall that, given Ft, θ̃t in Algorithm 3 is sampled from N (θ̂tstop(t), β
2
tstop(t)

V −1
tstop(t)

).

Step 1 (good events): Consider δ′ = δ/4, we redefine the high-probability events:

1. Let δ′′ = δ′/T and c(δ′′) :=
√
2d log(2d/δ′′). Consider the inflated ellipsoid

ETS
tstop(t)

:=

{
θ ∈ Rd :

∥∥∥θ − θ̂tstop(t)

∥∥∥
Vtstop(t)

≤ βtstop(t)(δ
′)c(δ′′)

}
.

We define the events Et := Êt ∩ Ẽt, Êt :=
{
θ∗ ∈ Etstop(t)

}
, Ẽt :=

{
θ̃t ∈ ETS

tstop(t)

}
,

and let G1 :=
⋂T

t=1 Et.

2. Let CT := 2

√
T
(

8(1+C)d

(1−1/e)2
log

(
1+

4TL2H2
γ

dλ

)
+

12dL2H2
γ

log(2)λ
log

(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log
(

2
δ′

)
, and

define G2 as the event under which it holds that

T∑
t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

tstop(t)
| Ft

]
≤ CT ,

and

T∑
t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

tstop(t)
| Fθ

t

]
≤ CT .

3. Let G3 =
{
∀t ∈ [1, T ] : V ∗

θ̃t
− V πt

θ̃t
≤ ε
}

, where πt = APACRL

(
θ̃t, ε, δ

′/T
)

.

We also define the intersection, G :=
⋂3

i=1 Gi, of all good events.

We now compare each of these events to their counterparts in the proof of Theorem 3.4. The event
G1 is modified because we replace Vt by Vtstop(t) and θ̂t by θ̂tstop(t). The event G1 still holds with
probability at least 1− 2δ′ using the same concentration arguments as before. The event G2 is also
modified to account for the lazy design matrix, and it holds with probability 1− δ′ thanks to Lemma
D.5. Finally, the event G3 remains unchanged.

We conclude that G happens with probability at least 1− δ.
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Step 2 (regret decomposition): Since Algorithm 3 uses a different comparator policy π′
t than Algorithm

1, we derive a new regret decomposition.

R(T ) =
1

2

T∑
t=1

(
2V ∗

θ∗ − V πt

θ∗ − V
π′
t

θ∗

)
=

1

2

T∑
t=1

((V ∗
θ∗ − V πt

θ∗ ) + ⟨θ∗, ϕ(π∗)− ϕ(π′
t)⟩)

=
1

2

T∑
t=1

((V ∗
θ∗ − V πt

θ∗ ) + ⟨θ∗, ϕ(π∗)− ϕ(πt)⟩+ ⟨θ∗, ϕ(πt)− ϕ(π′
t)⟩)

=
1

2

T∑
t=1

(
2(V ∗

θ∗ − V πt

θ∗ ) + ⟨θ∗ − θ̂tstop(t), ϕ(πt)− ϕ(π′
t)⟩+ ⟨θ̂tstop(t), ϕ(πt)− ϕ(π′

t)⟩
)

≤ 1

2

T∑
t=1

2 (V ∗
θ∗ − V πt

θ∗ )︸ ︷︷ ︸
rt

+
∥∥∥θ∗ − θ̂tstop(t)

∥∥∥
Vtstop(t)

∥ϕ(πt)− ϕ(π′
t)∥V −1

tstop(t)
+ ε

 ,

where the last line follows from the Cauchy-Schwarz inequality and because π′
t = APACRL (θ̂tstop(t), ε, δ).

The second term in the decomposition above can be bounded on the good event G as:
T∑

t=1

∥∥∥θ∗ − θ̂tstop(t)

∥∥∥
Vtstop(t)

∥ϕ(πt)− ϕ(π′
t)∥V −1

tstop(t)
≤ βT

T∑
t=1

∥ϕ(πt)− ϕ(π′
t)∥V −1

tstop(t)

≤ βTCT

where CT = 2

√
T
(

8(1+C)d
(1−1/e)2 log

(
1+

4TL2H2
γ

dλ

)
+

12dL2H2
γ

log(2)λ log
(
1+

4L2H2
γ

log(2)λ

))
+

16LHγ√
λ

log
(

2
δ′

)
.

For the first term in the regret decomposition, similarly to Appendix A, we have that:

rt = V ∗
θ∗ − V πt

θ∗ = ∆t(θ
∗)−∆t(θ̃t)︸ ︷︷ ︸

rTS
t

+ ⟨θ̃t − θ∗, ϕ(πt)− ϕ(π′
t)⟩︸ ︷︷ ︸

rMLE
t

where we recall the gap function ∆t(θ) := maxπ⟨θ, ϕ(π)− ϕ(π′
t)⟩.

Step 3 (bounding rTS
t ): The proof for

∑
t r

TS
t proceeds exactly like Appendix A up to Equation (3),

this is because the probability of the optimism event Ot and the events Et and Êt is unaffected by
the change to the algorithm. Then, we have that:

RTS(T ) =

T∑
t=1

rTS
t ≤ 2βT (δ

′)c(δ′′)

p

T∑
t=1

E
[
∥ϕ(τt)− ϕ(τ ′t)∥V −1

t
| Ft

]
+ Tε.

We can then conclude, on the good event G, that

RTS(T ) ≤ 2βT (δ
′)c(δ′′)

p
CT + Tε.

Step 4 (bounding rMLE
t ): This proof is similar to that of the first term in the regret decomposition. The

only difference is that we use the confidence set for θ̃t instead of θ̂tstop(t). Then, it holds that:

T∑
t=1

rMLE
t ≤ βT (δ

′)(1 + c(δ′′))

T∑
t=1

∥ϕ(πt)− ϕ(π′
t)∥V −1

t

≤ βT (δ
′)(1 + c(δ′′))

T∑
t=1

E[∥ϕ(τt)− ϕ(τ ′t)∥V −1
t

|Fθ
t ],

≤ βT (δ
′)(1 + c(δ′′))CT
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where the second inequality follows from the convexity of the norm.

In summary, we conclude that with probability at least 1− δ, the regret can be bounded as follows:

R(T ) ≤ 1

2

T∑
t=1

2 (V ∗
θ∗ − V πt

θ∗ )︸ ︷︷ ︸
=rTS

t +rMLE
t

+
∥∥∥θ∗ − θ̂tstop(t)

∥∥∥
Vtstop(t)︸ ︷︷ ︸

≤βT

∥ϕ(πt)− ϕ(π′
t)∥V −1

tstop(t)
+ ε


≤ 2βT (δ

′)c(δ′′)

p
CT + Tε+ βT (δ

′)(1 + c(δ′′))CT +
βT

2
CT + Tε.

D Technical results

This section presents the technical results necessary for our theorems’ proofs.

D.1 Confidence sequence

The first result is a confidence sequence for the maximum likelihood estimation. It is an elliptical
relaxation of the likelihood ratio confidence sequence provided in Theorem 3.1 of Lee et al. [2024].
Lemma 3.1. Let λ ≥ 0 and define the design matrix at time t given by Vt = λI +

∑t−1
k=1 xkx

⊤
k .

Then, with probability 1− δ, for all t ∈ N, the true reward parameter θ∗ is contained in the ellipsoid

Et(δ) :=
{
θ :
∥∥∥θ − θ̂t

∥∥∥2
Vt

≤ βt(δ)
2 := O

(
κ

[
log

(
1

δ

)
+ d log

(
t− 1

d

)]
+ λ

)}
.

Here, κ := maxθ∈Bd(B),x∈Bd(2LHγ) 1/σ̇ (⟨θ, x⟩) denotes the Lipschitz constant of the inverse sig-
moid function, and Hγ = (1− γ)−1 the effective horizon of the MDP.

Proof. By a first-order Taylor approximation with integral remainder, we have

LDt(θ
∗) = LDt(θ̂t) + ⟨∇LDt(θ̂t), θ

∗ − θ̂t⟩+ (θ∗ − θ̂t)
⊤Gt(θ̂t, θ

∗)(θ∗ − θ̂t),

where LDt
was defined in Equation (2) and

Gt(θ̂t, θ
∗) =

∫ 1

0

(1− τ)

(
t−1∑
k=1

σ̇(⟨θ̂t + τ(θ∗ − θ̂t), xk⟩)xkx
⊤
k

)
dτ

=

t−1∑
k=1

[∫ 1

0

(1− τ)σ̇(⟨θ̂t + τ(θ∗ − θ̂t), xk⟩) dτ
]
xkx

⊤
k

⪰ κ−1
t−1∑
k=1

xkx
⊤
k . (5)

Rearranging terms gives

LDt(θ
∗)− LDt(θ̂t)

(i)

≥ (θ∗ − θ̂t)
⊤Gt(θ̂t, θ

∗)(θ∗ − θ̂t)

(ii)

≥ (θ∗ − θ̂t)
⊤

(
κ−1

t−1∑
k=1

xkx
⊤
k

)
(θ∗ − θ̂t)

= κ−1
∥∥∥θ∗ − θ̂t

∥∥∥2
Vt

− κ−1λ
∥∥∥θ∗ − θ̂t

∥∥∥2 ,
where (i) follows from the first order optimality condition for θ̂t and (ii) from the lower bound in
(5). Rearranging again and applying Theorem 3.1 by Lee et al. [2024] for likelihood ratio confidence
sequences with the Lipschitz constant of LDt

equal to Lt = 2LHγ(t− 1), we get∥∥∥θ∗ − θ̂t

∥∥∥2
Vt

≤ κ

[
log

(
1

δ

)
+ d log

(
max

{
e,

4eBLHγ(t− 1)

d

})]
+ 4λB2.
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D.2 Optimism with constant probability

We first recall the following standard concentration and anti-concentration property of the Gaussian
distribution.

Lemma D.1 (Appendix A of [Abeille and Lazaric, 2017]). Let z ∼ N (0, I) be a d-dimensional
Gaussian random vector. Then, we have:

1. Anti-concentration: For any u ∈ Bd(1), we have Pr [⟨u, z⟩ ≥ 1] ≥ 1
4
√
eπ

.

2. Concentration: Pr
[
∥z∥ ≤

√
2d log(2d/δ)

]
≥ 1− δ.

The anti-concentration property yields the following key result, which is required to prove a constant
probability of optimism and subsequently control pessimism terms in the regret. While it has been
proven by Abeille and Lazaric [2017] in their linear Thompson sampling analysis, we provide a
concise proof based on convex analysis for completeness.

Lemma D.2. Let f : Rd → R be a continuous and convex function, and consider the ellipsoid
E :=

{
θ ∈ Rd : ∥θ − θ0∥V ≤ b

}
for a positive definite matrix V and b > 0. If θ̃ ∼ N (θ0, b

2V −1),

then Pr
[
f(θ̃) ≥ maxθ∈E f(θ)

]
≥ 1/ (4

√
eπ).

Proof. Note that by definition of θ̃ we have θ̃
d
= θ0 + bV −1/2z̃, where z̃ ∼ N (0, I). Hence,

considering g(z) := f(θ0 + bV −1/2z), we have

p := Pr

[
f(θ̃) ≥ max

θ∈E
f(θ)

]
= Pr

[
g(z̃) ≥ max

z∈Bd(1)
g(z)

]
,

where we used that θ0 + bV −1/2z ∈ E if and only if z ∈ Bd(1). Since g is a continuous convex
function, we can choose z̄ ∈ argmaxz∈Bd(1) g(z) such that ∥z̄∥ = 1. By optimality of z̄ it holds that
[Rockafellar, 1997, Theorem 32.4]

∂g(z̄) ⊆ NBd(1)(z̄),

where NBd(1)(z̄) =
{
h ∈ Rd : h = λz̄, λ ≥ 0

}
denotes the normal cone to Bd(1) at z̄. To see that

this inclusion holds note that by optimality of z̄ we have

∂g(z̄) :=
{
h ∈ Rd : g(z)− g(z̄) ≥ ⟨h, z − z̄⟩,∀z

}
⊆
{
h ∈ Rd : g(z)− g(z̄) ≥ ⟨h, z − z̄⟩,∀z ∈ Bd(1)

}
⊆
{
h ∈ Rd : 0 ≥ ⟨h, z − z̄⟩,∀z ∈ Bd(1)

}
=: NBd(1)(z̄).

Hence, by convexity of g we have

g(z̃) ≥ g(z̄) + ⟨λz̄, z̃ − z̄⟩ = g(z̄) + λ(⟨z̄, z̃⟩ − 1), for some λ ≥ 0.

Therefore, ⟨z̄, z̃⟩ ≥ 1 implies that g(z̃) ≥ g(z̄), which yields the lower bound

p = Pr [g(z̃) ≥ g(z̄)] ≥ Pr [⟨z̃, z̄⟩ ≥ 1] .

In light of Lemma D.1, this establishes p ≥ 1/(4
√
eπ).

The above Lemma is helpful in the following way: Let θ∗ ∈ E , θ̃ ∼ N (θ0, b
2V −1), and xθ̃ =

argmaxx∈X ⟨θ̃, x⟩ for some compact set X ⊂ Rd. If f is the support function of X , i.e. f(θ) =
maxx∈X ⟨θ, x⟩, then we have with probability at least 1/ (4

√
eπ) that

max
x∈X

⟨θ∗, x⟩ = f(θ∗) ≤ max
θ∈E

f(θ) ≤ f(θ̃) = ⟨θ̃, xθ̃⟩.

Moreover, by part 2. of Lemma D.1, we still have that
∥∥∥θ̃ − θ0

∥∥∥
V
≤ Õ

(√
db
)

with high probability.
This idea will be key to the proofs of Theorems 3.4, 3.5, and 4.1.

25



D.3 Elliptical potential bounds

Another key component of the convergence proofs are the following so-called elliptical potential
lemmas that provide an upper bound on the sum of norms of sequentially observed vectors in the
norm induced by their design matrix.
Lemma D.3 (Lemma 19.4 of Lattimore and Szepesvári [2020]). Let {xt}t≥0 ∈ Rd and for all t ≥ 0,
∥xt∥ ≤ L, let Vt = λI +

∑t−1
k=0 xkx

⊤
k for some λ > 0. Then,

T∑
t=1

min{1, ∥xt∥2V −1
t

} ≤ 2d log

(
1 +

TL2

dλ

)
.

In the analysis of our algorithms, a central challenge is to control the norms of policy feature
differences ϕ(πt) − ϕ(π′

t). However, the learner only observes the trajectory-level differences
xt = ϕ(τt)− ϕ(τ ′t), which are random variables with mean ϕ(πt)− ϕ(π′

t). To overcome this, we
build on Lemma D.3 and introduce new tools to bound the sum of norms of policy feature differences.
Lemma D.4 (Elliptical lemma). 1) Let {xt}t≥0 ∈ Rd and for all t ≥ 0, ∥xt∥ ≤ L, let Vt =

λI +
∑t−1

k=0 xkx
⊤
k for some λ > 0. Then,

T∑
t=1

∥xt∥2V −1
t

≤ 2d log

(
1 +

TL2

dλ

)
+

3dL2

log(2)λ
log

(
1 +

L2

log(2)λ

)
.

2) Let {xt}t≥0 ∈ Rd be a sequence of random vectors adapted to a filtration {Ft}t≥0. Assume that
for all t ≥ 0, ∥xt∥ ≤ L almost surely. Then, for all δ > 0, it holds with probability at least 1 − δ
that:

∀T ∈ N,
T∑

t=1

E[∥xt∥V −1
t

|Ft] ≤2

√
T

(
2d log

(
1+

TL2

dλ

)
+

3dL2

log(2)λ
log

(
1+

L2

log(2)λ

))
+

8L√
λ
log(1/δ),

where Vt = λI +
∑t−1

k=0 xkx
⊤
k for some λ > 0.

The first statement is a small improvement over Lemma D.3 because it involves ∥xt∥2V −1
t

instead of

min{1, ∥xt∥2V −1
t

} and maintains a similar upper bound. In the second statement, {xt}t≥0 represent
trajectory features and their expected values are policy features. Hence, the second statement of the
lemma above allows us to control the elliptical potentials of the policy features while only observing
trajectory features.

Proof. First statement: The proof of this result is based on the observation in [Lattimore and
Szepesvári, 2020, Exercise 19.3]. Namely, the number of times the term ∥xt∥2V −1

t
can be larger than

one is at most 3d
log(2) log(1 +

L2

λ log(2) ).

Let’s define the rounds TT = {t ≤ T, ∥xt∥2V −1
t

≤ 1}, we have:

T∑
t=1

∥xt∥2V −1
t

=
∑
t∈TT

∥xt∥2V −1
t

+
∑
t/∈TT

∥xt∥2V −1
t

≤
∑
t∈TT

min{1, ∥xt∥2V −1
t

}+ 3dL2

λ log(2)
log(1 +

L2

λ log(2)
),

where the first term of the last inequality follows by definition of TT . The second term follows
because the number of times 1 ≤ t ≤ T not in TT is at most 3d

log(2) log(1 +
L2

λ log(2) ) as previously

discussed, and because ∥xt∥2V −1
t

≤ L2/λ. Then, the proof is concluded by bounding the first sum on
the right-hand side using Lemma D.3.
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Second statement: The proof proceeds by using Lemma D.8. We have for any δ > 0 that with
probability 1− δ:

T∑
t=1

E[∥xt∥V −1
t

|Ft] ≤ 2

T∑
t=1

∥xt∥V −1
t

+
8L√
λ
log(1/δ)

≤ 2

√√√√T

T∑
t=1

∥xt∥2V −1
t

+
8L√
λ
log(1/δ)

≤ 2

√
T

(
2d log

(
1+

TL2

dλ

)
+

3dL2

log(2)λ
log

(
1+

L2

log(2)λ

))
+

8L√
λ
log(1/δ),

where the first inequality uses Lemma D.8, the second uses the Cauchy-Schwarz inequality, and the
last follows from the first result of the lemma.

We now present a variant of the elliptical potentials lemma above, adapted for the case where the
design matrix is updated with optimal design and lazy updates; see Algorithm 3 for more details.
Lemma D.5 (Lazy elliptical lemma). Let {xt}t≥0 ∈ Rd be a sequence of random vectors adapted to
a filtration {Ft}t≥0. Assume that for all t ≥ 0, ∥xt∥ ≤ L. Then, we have the following results:

1) For all λ > 0 and C > 0, it holds that

T∑
t=1

∥xt∥2V −1
t

≤ 2(1 + C)d

1− 1/e
log

(
1 +

TL2

dλ

)
+

3dL2

log(2)λ
log

(
1 +

L2

log(2)λ

)
.

where Vt is the matrix in Algorithm 3. Recall that Vt is defined with the following lazy update
procedure:

• Initialize V0 = λI , W0 = λI , D = ∅,

• At a given round t ∈ N:

– Update Wt:

* If D = ∅ update Wt = Vt + xt−1x
⊤
t−1,

* else Wt = Wt−1 + xt−1x
⊤
t−1, Vt = Vt−1.

– Update set D = D ∪ {xt−1}
– if detWt > (1 + C) detVt:

* update Vt = Vt−1 +
∑

x∈D-OptDes(D,det(Wt))
xx⊤

* reset D = ∅.

the operator D-OptDes is the procedure described in Algorithm 4.

2) For all δ > 0, it holds with probability at least 1− δ that:

∀T ∈ N,
T∑

t=1

E[∥xt∥V −1
t

|Ft] ≤

√
8(1 + C)dT

(1− 1/e)2
log

(
1 +

TL2

dλ

)
+
12dL2T

log(2)λ
log

(
1+

L2

log(2)λ

)
+

8L√
λ
log(1/δ).

Compared to Lemma D.4, we lose a factor of 1+C
1−1/2 in the first statement and of 1+C

(1−1/e)2 in the
second statement. The factor (1 + C) arises because we only update the matrix Vt once detWt

exceeds detVt by a constant (1 + C). The 1/(1− 1/e) factors arise from the use of optimal design.

Proof. First statement: We proceed in two steps: First, we relate Vt to Wt, similar to the standard
proofs for lazy updates (see proof of Theorem 4 of Abbasi-Yadkori et al. [2011] for example); The
second step consists of using arguments of approximate optimality of greedy optimal design from
[Nemhauser et al., 1978].
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Step 1: Here, we relate the matrix norm in V −1
t to the matrix norm in Wt.

We have for all t ∈ N that Wt ≥ Vt, which implies that V −1
t ≥ W−1

t . Then, using Lemma D.7 we
have:

∀x ∈ Rd, ∥x∥2V −1
t

≤ ∥x∥2W−1
t

det(V −1
t )

det(W−1
t )

. (6)

By definition of Vt, we know that for all t ≥ 1, det(Wt) ≤ (1 + C) det(Vt), which implies that
det(V −1

t ) ≤ (1 + C) det(W−1
t ). Then, from (6) we obtain that:

∀x ∈ Rd, ∥x∥2V −1
t

≤ (1 + C) ∥x∥2W−1
t

.

Now, for rounds tstop ∈ N such that detVtstop > (1 +C) detVtstop−1, and all rounds t > tstop such
that detWt ≤ (1 + C) detVtstop we have:

t∑
q=tstop

∥xq∥2V −1
t

=

t∑
q=tstop

∥xq∥2V −1
tstop

≤ (1 + C)

t∑
q=tstop

∥xq∥2W−1
q

.

In addition, we have:
t−1∑

q=tstop

min{1, ∥xq∥2V −1
t

} ≤ 2(1 + C)

t−1∑
q=tstop

log(1 + ∥xq∥2W−1
q

) = 2(1 + C) log(det(Wt)/ det(Wtstop)),

where the last equality follows because det(Wq+1)
det(Wq)

= 1+∥xq∥2W−1
q

(see the proof of [Abbasi-Yadkori
et al., 2011, Lemma 11] for example).

Step 2: We now relate the terms (log det(Wt))t≤t′stop
to the term log det(Vt′stop

) where t′stop is the
first time greater than tstop such that det(Vt′stop

) > (1 + C) det(Vt′stop−1).

Based on Algorithm 4, there are two possibilities:

1. either the new design matrix Vt′stop
is such that detVt′stop

> detWt′stop
,

2. or the procedure D-OptDes
(
D,det(Wt′stop

)
)

terminates after adding |D| elements to the
matrix Vtstop .

In the first case, we have by definition that detVt′stop
≥ detWt′stop

. We now show that a similar result
also holds in the second case.

Consider the set D at time t′stop. The set function S ⊂ D → log det
(
Vtstop +

∑
x∈S xxT

)
is

submodular [Krause et al., 2008]. Therefore, it follows from [Nemhauser et al., 1978] that the greedy
algorithm maximizing the above function is (1− 1/e) optimal. Namely, consider the set Dopt defined
by greedily adding the features x ∈ D until |Dopt| = |D|. Then, it holds that:

log det

Vtstop +
∑

x∈Dopt

xxT

 ≥ (1− 1/e) max
S⊂D,|S|≤|D|

log det

(
Vtstop +

∑
x∈S

xxT

)
.

From the above, we deduce that for all t ≤ t′stop:

log det(Wt) = log det(Vtstop +

t∑
s=tstop

xsx
T
s ) ≤ max

S⊂D,|S|≤|D|
log det

(
Vtstop +

∑
x∈S

xxT

)

≤ 1

1− 1/e
log det

Vtstop +
∑

x∈Dopt

xxT

 .

We conclude that in both cases of termination of Algorithm 4, it holds for all t ≤ t′stop that:

log det(Wt) ≤ 1
1−1/e log det

(
Vt′stop

)
.
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Combination of steps 1 and 2: From step 1, we know that:
t−1∑
q=1

min{1, ∥xq∥2V −1
t

} ≤ 2(1 + C)

t−1∑
q=1

log(1 + ∥xq∥2W−1
q

) = 2(1 + C) log(det(Wt)/ det(W0)),

In addition, exercise 19.3 of [Lattimore and Szepesvári, 2020] proves that the number of times where
∥xq∥W−1

t
is greater than one is at most 3d

log(2) log
(
1 + L2

λ log(2)

)
. Therefore, we deduce that for all

T ∈ N:
T∑

q=0

∥xq∥2V −1
t

≤
T∑

q=0

min{1, ∥xq∥2V −1
t

}+ 3dL2

λ log(2)
log

(
1 +

L2

λ log(2)

)

≤ 2(1 + C) log(det(Wt)/ det(W0)) +
3dL2

λ log(2)
log

(
1 +

L2

λ log(2)

)
.

Finally, plugging the result of step 2 above yields that:
T∑

q=0

∥xq∥2V −1
t

≤ 2(1 + C)

1− 1/e
log(det(VT )/ det(V0)) +

3dL2

λ log(2)
log

(
1 +

L2

λ log(2)

)

≤ 2(1 + C)d

1− 1/e
log

(
1 +

TL2

λ

)
+

3dL2

λ log(2)
log

(
1 +

L2

λ log(2)

)
.

This concludes the proof of the first result.

Second statement: We know from inequality (6) that for all t ∈ [τ, τ ′ − 1]:
E[∥xt∥V −1

t
|Ft] ≤ E[∥xt∥W−1

t
|Ft].

Then, using Lemma D.8 we obtain:
τ ′−1∑
t=τ

E[∥xt∥V −1
t

|Ft] ≤ 2

τ ′−1∑
t=τ

∥xt∥W−1
t

+
8L√
λ
log(1/δ).

Then, we can conclude the proof using the same arguments as for the first result.

D.4 Miscellaneous

Proposition D.6. The function f(θ) = supπ∈(∆A)S ⟨θ, ϕ(π)⟩ is convex and continuous over Rd.

Proof. The function f is the support function of the set Z = {ϕ(π) : π : S → ∆A}. To prove the
convexity, note that for any η ∈ (0, 1), we have

f(ηθ + (1− η)θ′) ≤ η sup
z∈Z

⟨θ, z⟩+ (1− η) sup
z∈Z

⟨θ′, z⟩ ≤ ηf(θ) + (1− η)f(θ′).

Furthermore, any convex function is continuous over the relative interior of its effective domain
dom f = {x : f(x) < ∞} (see e.g. [Rockafellar, 1997, Theorem 10.1]). Since |f(θ)| ≤ ∥θ∥LHγ ,
this implies that f is continuous over Rd.

Lemma D.7 (Lemma 12 of [Abbasi-Yadkori et al., 2011]). Let A,B, and C be positive semi-definite
matrices such that A = B + C. Then, we have that:

sup
x ̸=0

xTAx

xTBx
≤ det(A)

det(B)
.

This next lemma is one of the versions of Freedman’s inequality [Freedman, 1975].
Lemma D.8 (Lemma 2 of Zhu and Nowak [2022]). Let (zt)t≤T be a real-valued sequence of random
variables adapted to a filtration Ft. If |zt| ≤ B almost surely, then with probability at least 1− δ,

T∑
t=1

zt ≤
3

2

T∑
t=1

Et [zt] + 4B log
(
2δ−1

)
and

T∑
t=1

Et [zt] ≤ 2

T∑
t=1

zt + 8B log
(
2δ−1

)
.
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E Discussion and background

E.1 Background on optimal experimental design

Given a possibly infinite set of features X ⊂ Rd, a D-optimal design is defined as a distribution π
such that:

π ∈ argmax
π∈∆X

log det

(∑
x∈X

π(x)xx⊤

)
.

The Kiefer-Wolfowitz theorem, see [Kiefer and Wolfowitz, 1960], shows that a D-optimal design also
ensures that maxx∈X ∥x∥2(∑x∈X π(x)xx⊤)

−1 = d. A direct consequence is that X is a subset of the

ellipsoid {x ∈ Rd : ∥x∥2(∑x∈X π(x)xx⊤)−1 ≤ d}. The Kiefer-Wolfowitz theorem can be interpreted

by saying that the set {x ∈ Rd : ∥x∥2(∑x∈X π(x)xx⊤)−1 ≤ d} is the minimum volume ellipsoid
containing X , see [Lattimore and Szepesvári, 2020, Theorem 21.1].

In the case where we have a budget of n samples for the design, we can define D-optimal de-
sign as the best allocation {nx}x∈X ∈ N of the n samples such that log det

(∑
x∈X nxxx

⊤) is
maximized and

∑
x∈X nx = n. Finding a D-optimal design with a budget of n is a challeng-

ing combinatorial optimization problem. However, there is a key property of the log det func-
tion that enables an efficient approximation scheme. Namely, for a set X ⊂ Rd, the set function
S ⊂ X → log det

(
λI +

∑
x∈S xx⊤) is submodular if λ is greater than one. Submodularity is a prop-

erty describing decreasing additional benefit, known as diminishing returns. Fortunately, a submodular
set function can be approximately maximized using a greedy algorithm, [Nemhauser et al., 1978].
Therefore, using Algorithm 4, we know that if tstop and t′stop are two consecutive update times, then

the design matrix satisfies: log det
(
Vt′stop

)
≥ (1− 1/e)maxS⊂X log det

(
Vtstop +

∑
x∈S xx⊤).

E.2 On the intractability of optimistic approaches

Optimism in the face of uncertainty is a widely used principle for regret minimization and exploration
in reinforcement learning. In the bandit setting, optimistic algorithms can be applied directly and
yield minimax-optimal regret bounds [Auer, 2002]. However, in more general settings–such as linear
bandits or MDPs–these approaches often lead to intractable optimization problems.

Optimism for regret minimization For regret minimization in RLHF, an optimistic algorithm would
choose the policy πt to maximize the upper confidence bound on the reward difference relative to a
comparator policy π′

t:

πt = argmax
π

max
θ∈Et

V π
θ − V

π′
t

θ = argmax
π

V π
θ̂t
+ βt ∥ϕ(π)− ϕ(π′

t)∥V −1
t

,

where Et is a confidence set for θ∗. This leads to the following bound on the instantaneous regret:

rt =
(
V ∗
θ∗ − V

π′
t

θ∗

)
−
(
V πt

θ∗ − V
π′
t

θ∗

)
≤
(
max
π

max
θ∈Et

V π
θ − V

π′
t

θ

)
−
(
V πt

θ∗ − V
π′
t

θ∗

)
=
(
V πt

θ̃t
− V

π′
t

θ̃t

)
−
(
V πt

θ∗ − V
π′
t

θ∗

)
≤
∥∥∥θ̃t − θ∗

∥∥∥
Vt

∥ϕ(πt)− ϕ(π′
t)∥V −1

t
≤ 2βt(δ

′) ∥ϕ(πt)− ϕ(π′
t)∥V −1

t
,

where θ̃t ∈ Et. The cumulative regret can then be bounded using standard elliptical potential
arguments (see Lemma D.4).

Optimism for pure exploration As evident from the proof of Theorem 3.5, algorithms that maximize
an exploration bonus of the form

∥ϕ(π)− ϕ(π′
t)∥V −1

t
or Eτ∼Pπ,τ ′∼Pπ′

t
∥ϕ(τ)− ϕ(τ ′)∥V −1

t
,

are also effective for minimizing the suboptimality gap of the final policy. However, it is not clear
how these exploration bonuses can be optimized in practice.
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Challenge of optimizing the exploration bonus The key problem of the above optimistic approaches
is that for trajectory-level feedback – preferences or reward – they lead to optimization problems
over policies that cannot be framed in terms of state-action rewards. Efroni et al. [2021] therefore
conjecture that exactly solving these problems is intractable even in tabular settings. This stands in
contrast to standard reinforcement learning with state–action feedback, where optimistic algorithms,
as well as approaches based on D-optimal design [Wagenmaker et al., 2022, Mutny et al., 2023],
involve exploration bonuses of the form

E(s,a)∼µπ
∥ϕ(s, a)∥V −1 or E(s,a)∼µπ,(s′,a′)∼µπ′

t
∥ϕ(s, a)− ϕ(s′, a′)∥V −1 ,

which are linear in the occupancy measure µπ and can therefore be optimized by standard RL
methods.

These computational challenges motivate exploring alternative approaches, such as randomized ex-
ploration, which can provide almost optimal theoretical guarantees while remaining computationally
tractable.

F Experiments

F.1 Gridworld environment

As illustrated in Figure 3 below, the gridworld consists of 36 grid cells and the initial state lies in
the center. The agent can choose the actions up, down, left, right, and will deterministically move
in that direction or stay if it hits a boundary. The reward features are one-hot features for the six
boundary states in blue, and the ground truth reward is 0.5 for two of these states as indicated in
Figure 3. Moreover, rewards are discounted with γ = 0.9. Our gridworld implementation builds on
the code by Schlaginhaufen and Kamgarpour [2023].

Figure 3: Illustration of the gridworld environment.

F.2 Cartpole environment

Here, we provide additional details for experiments on Isaac Lab’s Isaac-Cartpole-v0 environ-
ment, as well as experimental results for the pure exploration version of our algorithm.

Implementation details All experiments run on Isaac Lab’s unmodified Isaac-Cartpole-v0
environment using the default PPO configuration. As reward features, we use the pre-defined reward
terms. For cartpole these are: 1) Alive term: equal to 1 for all non-terminal states; 2) Termination
term: equal to 1 for terminal states. A state is terminal if the cart goes out of bounds; 3) Goal tracking
term: absolute value of pole angle measured from the upright position; 4) Cart velocity term: absolute
value of cart velocity; 5) Joint velocity term: absolute value of pole angular velocity. However, our
implementation supports any Isaac Lab manager-based tasks.
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We train over 30 RLHF iterations, using 30 steps of PPO at each iteration, and training is repeated for
20 independent seeds. For the randomized exploration, we set βt = 0.001 + 0.1max(1, log t) and
λ = 1, and for lazy updates we set C = 0.5. At each RLHF iteration we compare 100 independently
sampled trajectories. For the maximum likelihood estimation we perform 50 Adam steps (batch
size 64, ℓ2 penalty λ = 10−1). Experiments were executed on a single machine equipped with an
Intel i9-14900KS CPU and an NVIDIA RTX 4090 GPU; completing 30 RLHF iterations required
approximately 2 min 50 s.

Preference-free exploration Our results for the preference-free exploration algorithm
RPO-Explore are shown in Figure 4 and 5 below. In Figure 4, we see that all three versions
of RPO-Explore achieve performance competitive to RL with the ground truth reward5, but
RPO-OD-Explore needs the least preference queries. Moreover, in Figure 5 we see that the per-
formance during training is poor, i.e. the regret is large, which is to be expected due to the pure
exploration scheme.

(a) (b)

Figure 4: Comparison of RLHF algorithms in terms of (a) the last iterate ground truth reward V π̂
θ∗

(estimated from samples) and (b) number of preference queries performed. In particular, we compare
RPO-Explore (green, Algorithm 1) with it’s lazy versions LRPO-Explore and LRPO-OD-Explore
(orange & blue). Here, LRPO-Explore and LRPO-OD-Explore refer to Algorithm 3 without and with
optimal design subroutine. The error bars indicate the 0.2 and 0.8 quantiles, across 10 independent
runs. The dashed blue line indicates the mean reward achieved by PPO with the ground truth
parameter θ∗.

Figure 5: Comparing the ground truth rewards V πt

θ∗ (estimated from samples) of RLHF algorithms
for reward-free exploration during training, using the same color codes as in Figure 4.

5Note that the RL baseline makes 24× 4096× 50 = 4′915′200 queries to the ground truth reward, whereas
RPO uses at most 150 binary preference queries.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide our theoretical claims in Sections 3 and 4, we also provide our
empirical results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We address the limitations of our work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide our assumptions in Section 2 and our proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental environment will be publicly available, and all experimental
details can be found in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code used for our experiment with the supplementary files.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are provided in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiment section provides shaded areas for the standard deviation of
the performance curves over 10 independent training runs. Additional details can be found
therein.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We don’t see any conflict with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not foresee any negative societal impact for our algorithms.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release models or datasets in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are citing and crediting the Isaac Lab creators for their RL environment.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Instructions for reproducing the experiments are provided in the readme.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research is not involving any experiments with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research is not involving any experiments with humans.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We only use LLMs to improve the writing quality.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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