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Figure 1: DIVE in qualitative and quantitative visualizations. (a) DIVE generates multi-view videos
that exhibit strong realism, consistency, and controllability, making it an excellent simulator for
controllably generating real-world driving scenarios under multi-modal conditions. (b) DIVE out-
performs previous state-of-the-art multi-view generation models. With the proposed Resolution
Progressively Sampling (RPS), we further significantly accelerate the inference of DIVE without
sacrificing performance. (c) DIVE enables controllable video generation with varying attributes
such as weather, time of day, location, and vehicle color.

ABSTRACT

Collecting multi-view driving scenario videos to enhance the performance of 3D
visual perception tasks presents significant challenges and incurs substantial costs,
making generative models for realistic data an appealing alternative. Yet, the
videos generated by recent works suffer from poor quality and temporal con-
sistency, which restricts their effectiveness in advancing perception tasks under
driving scenarios. This gap highlights the need for a more robust and versatile
framework capable of generating high-fidelity and temporally consistent multi-
view videos, tailored to the complexities of driving scenarios. We introduce
DIVE, a framework based on the Diffusion Transformer (DiT), designed to gener-
ate videos that are both temporally and cross-view consistent, aligning seamlessly
with bird’s-eye view (BEV) layouts and textual descriptions. Specifically, DIVE
leverages cross-attention and a SketchFormer to exert precise control over mul-
timodal data, while incorporating a view-inflated attention mechanism that adds
no extra parameters, thereby guaranteeing consistency across views. To address
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the computational costs associated with high-resolution video generation, we fur-
ther propose a training-free sampling strategy for acceleration called Resolution
Progressively Sampling, achieving a remarkable ×1.62 speedup without compen-
sating the generation quality. In summary, DIVE delivers multi-view videos with
outstanding visual quality and has demonstrated state-of-the-art performance on
the nuScenes dataset. Additionally, the highly efficient and robust generation ca-
pabilities of DIVE offer promising avenues to support 3D perception models in
achieving substantial performance improvements.

1 INTRODUCTION

3D visual perception tasks, such as 3D object detection and map segmentation, are crucial for au-
tonomous driving systems. The perception methods (Huang et al., 2021; Zhou & Krähenbühl, 2022;
Li et al., 2022; Yang et al., 2023a) based on bird’s-eye view (BEV) holistic representations derived
from multi-camera images have garnered significant attention for their ability to comprehensively
understand complex environments. However, image data alone often falls short in capturing time-
relevant targets such as velocity (Huang & Huang, 2022), whereas multi-view video data, with its
temporal dynamics and rich information, is crucial for enhancing precise scene perception in au-
tonomous driving systems (Wang et al., 2023; Liu et al., 2023a). Nevertheless, collecting and anno-
tating multi-view video across various scenes is both challenging and expensive. Notably, existing
studies (Swerdlow et al., 2024; Yang et al., 2023b; Gao et al., 2024; Wen et al., 2024) have validated
that synthetic data can significantly improve the performance of perception models, and this paper
mainly focuses on generating controllable high-quality synthetic videos to serve for the training of
3D perception models in autonomous driving.

Generally, scene text and BEV layouts are utilized to describe driving scenarios for producing di-
verse annotated videos in a controlled manner. Additionally, consistency and resolution are particu-
larly important for the quality of synthetic videos, especially for tasks involving temporal modeling
and perception (Wang et al., 2023; Wen et al., 2023). However, previous works (Gao et al., 2024;
Wen et al., 2024) have often generated data with poor consistency, facing issues both in temporal
dimensions and across viewpoints, and are limited to low-resolution videos, which can restrict the
performance ceiling when using such low-quality synthetic data for model training.

Video generation models based on the Diffusion Transformer (DiT) (Peebles & Xie, 2023) archi-
tecture have recently demonstrated their ability to produce impressive high-quality videos, such
as Sora (OpenAI, 2024). However, these methods (Zheng et al., 2024; Yang et al., 2024) gener-
ate videos only rely on text conditioning but not multi-modal conditions, and effective models for
multi-view video generation in challenging driving scenarios remain lacking. Considering DiT’s po-
tential for temporal consistent and high-quality video generation, we aim to implement controllable
generation of multi-view driving scene videos based on this architecture.

In this paper, we introduce DIVE, the first DiT-based video generation model with enhanced multi-
modal control, tailored for generating controllable multi-view driving scene videos. Building upon
OpenSora 1.1 (Zheng et al., 2024) as base model, we exploit its strengths in temporal priors and
long-range dependencies to establishing a strong foundation for temporal consistency and high-
resolution generation. We employ a cross-attention mechanism to simultaneously process driving
scene descriptions, decomposed 3D objects, and camera information, to align complex scenes and
precisely control foreground elements and consistent motion trajectories. For BEV road map align-
ment, inspired by (Chen et al., 2024), we employ SketchFormer to effectively handle road sketches.
To ensure multi-view consistency, we incorporate a view-inflated attention that adds no extra param-
eters. Following (Zheng et al., 2024), we adopt a multi-resolution and multi-phase training strategy.
This not only aids the model in learning features across different scales, but also enhances its ability
to generate multi-resolution videos. Additionally, we introduce a first-k frame masking strategy to
enable the generation of controllable, infinitely long multi-view videos in a rollout manner.

Nonetheless, generating high-resolution videos cannot overlook the computational burdens involved
in the process. High-resolution generation typically requires more computations and longer infer-
ence times. Therefore, the ability to sample high-resolution videos with faster inference speeds is
a crucial factor in evaluating the effectiveness of a generating model. To address this issue, we
present an efficient and training-free inference strategy called Resolution Progressively Sampling,
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which is built on multi-resolution generative ability. Specially, we perform inference at lower res-
olutions during the initial and mid-stages, gradually transitioning to desired high resolution in the
later stages.

Our key contributions can be summarized as:

• We introduce DIVE, the first framework that attempts to apply the DiT architecture to generate
multi-camera perspectives videos in driving scenarios. This framework enables effective simul-
taneous control over multiple conditions while ensuring strong consistency across views and in
temporal aspects.

• We propose Resolution Progressively Sampling (RPS), a training-free acceleration strategy,
where the inference mode with progressively increasing resolution alleviates the computational
burden required for the early-stage inference. Equipped with RPS, DIVE achieves a ×1.62
speedup with minimal performance degradation.

• We achieve state-of-the-art generation performance on the nuScenes (Caesar et al., 2020) dataset,
with a notably significant reduction in FVD score by 36.7 compared to current SOTA methods.
We also demonstrate that our consistent and high-resolution generated data can further improve
the performance of current perception models.

2 RELATED WORK

Diffusion Transformer for Generation. Diffusion Transformer (DiT)(Peebles & Xie, 2023) re-
places U-Net with Vision Transformers (Dosovitskiy, 2020) to enhance scalability in Latent Diffu-
sion Models (LDMs)(Rombach et al., 2022). While SD3 (Esser et al., 2024) advances DiT for text-
to-image synthesis, Sora(OpenAI, 2024), OpenSora (Zheng et al., 2024), and CogVideoX (Yang
et al., 2024) extend it to video generation using temporal or spatiotemporal attention. However,
applying DiT to multi-view driving scenarios remains unexplored, as it demands cross-view consis-
tency and precise control over foreground and background elements.

Multi-View Generation for Driving Scenes. Multi-view driving scene generation relies on BEV
layouts for synthesis. BEVGen (Swerdlow et al., 2024) generates street-view images autoregres-
sively using spatial embeddings and camera bias. BEVControl (Yang et al., 2023b) employs
attribute-specific controllers and cross-view-cross-element attention to ensure consistency, while
MagicDrive (Gao et al., 2024) uses 3D encoding and cross-view attention. Panacea (Wen et al.,
2024) adopts a two-stage pipeline with decomposed 4D attention and BEV-guided ControlNet for
panoramic videos. Drive-WM (Wang et al., 2024b) integrates end-to-end planning with video gen-
eration. Despite progress, challenges in resolution, fidelity, and cross-view coherence remain, moti-
vating our approach.

High-Resolution Generation. High-resolution diffusion models aim to transcend fixed resolution
limits. DemoFusion (Du et al., 2024) employs progressive upscaling with noise inversion, but re-
quires full inference steps per scale. CheapScaling (Guo et al., 2024) introduces tuning-free pivot
replacement and U-Net-specific time-aware upsampling for multi-scale synthesis. Megafusion (Wu
et al., 2024) adopts a tuning-free truncate-and-relay strategy but lacks rectified flow optimization.
Unlike these image-centric methods, our approach leverages DiVE’s multi-resolution generation
with resolution-aware timestep shift (Esser et al., 2024), enabling efficient high-quality video syn-
thesis through low-to-high resolution sampling while reducing computational costs.

3 PRELIMINARY

Rectified Flow (Liu et al., 2023b) bridges DDPM (Ho et al., 2020) (SDE-based, high-quality but
slow) and DDIM (Song et al., 2020) (ODE-based, fast but lower fidelity) by optimizing straight
ODE trajectories between distributions. Given an initial distribution π1 and a target data distribution
π0, it trains a velocity field vθ to minimize path curvature via:

ℓ(θ) := Ex1,x0

[∫ 1

0

∥υθ(xt, t, c)− (x1 − x0)∥22 dt
]
, (1)

where x0 ∼ π0, x1 ∼ π1. xt := (1 − t)x0 + tx1 is a linear interpolation between x0 and x1.
Rectified flow guarantees well-defined and unique ODE solutions by preventing paths from crossing,
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Figure 2: Overview of DIVE for multi-view video generation. Our model encodes four inputs for
controllable generation: scene description words for global context, camera information for motion
control, bounding boxes that locate 3D objects placement, and road sketches for road conditions.
Each block in DIVE consists of spatial attention, temporal attention, cross attention, and an MLP.
Notably, the view-inflated attention, which enhances view consistency, is integrated into the spatial
attention mechanism within the backbone network.
which also leads to a theoretical reduction in convex transport costs by reconfiguring flows along
straight paths between distributions. Practically, this approach results in nearly straight trajectories
that require only a few reflow steps, enabling fewer Euler discretization steps and thus improving
computational efficiency while minimizing discretization error.

Diffusion Transformer (DiT) (Peebles & Xie, 2023) replaces UNet backbones with scalable ViT-
like (Dosovitskiy, 2020) blocks, where each layer combines multi-head self-attention and MLP mod-
ules. By integrating class and timestep-conditioned AdaLN layers, DiT enables efficient conditional
generation while maintaining superior scalability over traditional diffusion architectures.

4 METHODOLOGY

In this section, we first elucidate the mechanisms by which DIVE attains cross-view consistency
and multi-view controllability in Sec. 4.1. Then the training strategies are demonstrated in Sec. 4.2
accordingly. Finally, Sec. 4.3 addresses our strategy to foster a training-free inference acceleration.

4.1 DIVE

Figure 2 outlines our model’s architecture, adopting OpenSora 1.1 (Zheng et al., 2024) as the base-
line. We extract latent features z of multi-view video x using a frozen LDM (Rombach et al., 2022)
pre-trained VAE, then encode them with a 3D patch embedder to capture spatiotemporal dynamics.

Unified Cross-Attention for Multimodal Conditioning. As shown in Figure 2, DIVE integrates
multimodal conditions through a unified cross-attention with three coordinated encoding pathways:

• Linguistic Guidance. We establish a dual-scale text conditioning system where scene-level
context and instance-specific captions are encoded through T5 (Raffel et al., 2020) and CLIP
text encoder (Radford et al., 2021) respectively, producing semantic tokens L ∈ R200×d and
T ∈ Rnins×d, where nins is the number of instances.

• Geometric Grounding. Building on spatial disentanglement approach (Yang et al., 2023b), 3D
instances are projected into 2D space where bounding boxes B and orientation angles θ undergo
Fourier encoding F (Mildenhall et al., 2020). These geometric features are fused with T via
parameterized blending:

I = Φ(F(B),F(θ), T ) , (2)

where Φ denotes our geometric fusion MLP.
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• Ego-motion Awareness. To ensure cross-view consistency and motion direction, we derive
camera-aware embeddings P through coordinate transformation:

P = Φ

(
F
((

R t
0 1

)
·
(
K−1 0
0 1

)))
, (3)

where rotation matrix R ∈ R3×3 and translation vector t ∈ R3×1 define the camera’s pose in the
global coordinate system. K ∈ R3×3 is the camera intrinsic matrix.

The final condition C = [L; I;P] ∈ R(200+nins+1)×d establishes cross-modal correlations through
cross-attention, enabling joint conditioning on semantic, geometric, and dynamic constraints.

SketchFormer for Road Guidance. Drawing from (Chen et al., 2024), we introduce SketchFormer,
a novel framework for geometry-aware road generation. Our method injects latent sketch guidance
through a three-stage process: (1) A pre-trained VAE compresses road sketches into disentangled
embeddings; (2) A shared 3D patch embedder—identical to the one in the primary network—aligns
these embeddings with the feature space; and (3) A cascade of 13 mirrored fusion cells (synchro-
nized with the early layers of primary network) progressively blend sketch semantics via zero-
initialized linear layers. This hierarchical conditioning ensures spatial alignment while mitigating
feature collision.

View-Inflated Attention. Departing from parameter-heavy cross-view attention (Gao et al., 2024;
Wen et al., 2024), we propose view-inflated attention: a simple yet effective approach that reshapes
input features from B × V × T × H ′ × W ′ × C to B × T × (V H ′W ′) × C prior to attention
computation. This parameter-free operation implicitly enables cross-view interaction by treating
V H ′W ′ as token length, achieving comparable consistency without introducing additional learnable
weights. For SketchFormer, we deliberately omit this reshaping step to maintain training stability
and computational efficiency, as sketches provide inherent spatial constraints.

4.2 TRAINING DIVE
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Figure 3: The overall process of Resolution Pro-
gressively Sampling. Larger quadrilaterals repre-
sent higher resolutions, and deeper colors indicate
more noisy regions.

Multi-Scale Training. We propose a hierarchi-
cal training paradigm that progressively learns
scale-aware representations through three dis-
tinct phases: (1) Conditional Image Gener-
ation, which establishes cross-modal ground-
ing by mapping 3D constraints to multi-view
images; (2) Low-Resolution Video Train-
ing, focusing on global spatiotemporal pat-
terns and low-frequency features; and (3) High-
Resolution Video Refinement, dedicated to
capturing fine-grained visual details. This
multi-scale framework provides dual benefits:
(1) implicit data augmentation through scale
variation, and (2) native support for Resolution
Progressively Sampling (Section 4.3).

First-k Frame Masking. To enable arbitrary-
length video generation, we introduce a first-k frame masking strategy, allowing the model to seam-
lessly predict future frames from the preceding ones. Formally, given a binary mask m ∈ RT , where
mi = 1 for i ≤ k and 0 otherwise and the masked frames serve as the condition for future frame
generation, we update xt as

xt ← xt ⊙ (1−m) + x1 ⊙m , (4)
with losses calculated only on unmasked frames. At inference, generation proceeds autoregressively,
using the last-k frames as context for seamless extension.

4.3 RESOLUTION PROGRESSIVELY SAMPLING

To alleviate the computational pressure in multi-view high-resolution video generation, we propose
a training-free acceleration strategy: Resolution Progressively Sampling (RPS). It leverages the
inherent multi-resolution capability of DIVE through two key innovations:
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• Progressive Resolution Scaling. Inspired by (Guo et al., 2024; Du et al., 2024; Wu et al.,
2024), we employ a multi-stage sampling framework. It iteratively refines the video from low-
resolution (e.g., 240p) latent z1 to high-resolution (e.g., 480p) x, with s stages and nk steps
per stage (N =

∑s
k=1 nk). The sampling timesteps of each stage Sk decrease from tknk

to tk1 .
Between stages, after completing the first nk−1 steps, a one-step straight flow at tk1 estimates zk0 ,
which is decoded by the VAE into a clear video at the current resolution. This is then upsampled
and encoded into the initial state of the next stage via diffusion, creating a cyclic progression
from low to high resolution until the target resolution hs × ws is achieved.

• Resolution-Aware Timestep Shift. Inspired by (Esser et al., 2024; Hoogeboom et al., 2023),
higher resolutions require greater noise to effectively disrupt the signal. The relationship between
tk+1
nk+1

and tk1 follows a shift function:

tk+1
nk+1

=
tk1
√

(hk+1wk+1)/(hkwk)

1 + tk1

(√
(hk+1wk+1)/(hkwk)− 1

) , (5)

ensuring increased noise at the k + 1 stage.

As shown in Figure 1 and Table 4, RPS achievse 1.62× faster inference versus baseline, while
enhancing visual fidelity through log-SNR consistency log hkwk

hk+1wk+1
(Hoogeboom et al., 2023).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset. We conduct experiments on the nuScenes (Caesar et al., 2020) dataset, a publicly available
3D perception dataset for driving scenarios. The nuScenes dataset comprises 700 video sequences
for training and 150 for validation. Each sequence is recorded at 12 Hz and lasts approximately 20
seconds, with annotations provided at 2 Hz. To achieve high-frame-rate generation, we utilized the
12 Hz interpolated annotations provided by W-CODA* for both training and evaluation.

Quality Metrics. To evaluate the quality of the generated video, we utilize two primary metrics:
the frame-wise Fréchet Inception Distance (FID) (Heusel et al., 2017) and the Fréchet Video Dis-
tance (FVD) (Unterthiner et al., 2018). FID assesses the quality of individual frames, whereas FVD
evaluates both the quality and temporal consistency of the video.

Controllability Metrics. To assess controllability, we employ CVT (Zhou & Krähenbühl, 2022)
and BEVFusion (Liu et al., 2023c) to conduct a quantitative analysis of two perception tasks—BEV
segmentation and 3D object detection. We generate the corresponding data based on the anno-
tations from the validation set and evaluate performance using a model pretrained on real data.
Additionally, we generate data on the training set and utilize the video-based perception method
StreamPETR (Wang et al., 2023) to evaluate the effectiveness of DIVE in augmenting data.

5.2 IMPLEMENTATION DETAILS.

Our implementation is based on the OpenSora 1.1 (Zheng et al., 2024) codebase, initialized with
pretrained weights. The multi-scale training process is carried out on 8 NVIDIA A800 GPUs, with
each of the three phases comprising 20k, 30k and 80k iterations, respectively. For inference, we
utilize rectified flow (Liu et al., 2023b) with a classifier-free guidance (Ho & Salimans, 2021) scale
of 2.0, performing 30 sampling steps to generate videos at a resolution of 480p (480×854) and 16
frames. Our Resolution Progressively Sampling acceleration strategy conducts 10 sampling steps at
resolutions of 240p (240×426), 360p (360×640), and 480p (480×854) sequentially. When gener-
ating long videos, we generally set k to 4.

5.3 MAIN RESULTS

Quantitative Results. Table 1 shows the performance of DIVE and previous methods on the
nuScenes validation. Our model achieves state-of-the-art FID (11.62) and FVD (68.4) scores, sur-
passing existing multi-view image generation models, including BEVGen (Swerdlow et al., 2024),

*W-CODA’s homepage: https://coda-dataset.github.io/w-coda2024/
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Table 1: Quantitative comparison of driving scenario generation methods evaluated on the nuScenes
validation set. BEV segmentation and 3D object detection tasks use models pre-trained on nuScenes
data. ’+RPS’ denotes the Resolution Progressively Sampling acceleration technique. DIVE (Ours)
achieves top performance in all metrics, with and without RPS. The best (bold) and second-best
(underlined) results are highlighted. Higher/lower metric values are preferred as indicated by ↑ / ↓.

Method Avenue Resolution FID↓ FVD↓ BEV segmentation 3D object detection

Road mIoU↑ Vehicle mIoU↑ mAP↑ NDS↑

Real Data - - - - 73.67 34.81 35.54 41.21

BEVGen RA-L’24 224×400 25.54 - 50.20 5.89 - -
BEVControl arXiv’23 - 24.85 - 60.80 26.80 19.64 -
MagicDrive ICLR’24 224×400 16.20 - 61.05 27.01 12.30 23.32

DriveDreamer ECCV’24 256×448 26.80 353.2 - - - -
DriveDreamer-2 arXiv’24 256×448 25.00 105.1 - - - -
Panacea CVPR’24 256×512 16.96 139.0 55.78 22.74 11.58 22.31
Drive-WM CVPR’24 192×384 15.80 122.7 65.07 27.19 20.66 -

Ours - 480×854 7.14 68.4 68.16 30.50 25.75 33.61
Ours+RPS - 480×854 8.70 78.8 67.92 29.31 24.87 32.84

Ours Ours + RPS

PanaceaMagicDrive

Ground TruthBEV Layouts

View

T
im

e

Figure 4: Qualitative comparison of DIVE with MagicDrive and Panacea. We use dashed boxes
to highlight some of the noticeable issues in MagicDrive and Panacea, and arrows to indicate the
changes in vehicle positions over time. In contrast, DIVE demonstrates superior realism, temporal
and cross-view consistency, and controllability, both before and after applying RPS.

BEVControl Yang et al. (2023b), and MagicDrive (Gao et al., 2024), as well as video gener-
ation models such as DriveDreamer (Wang et al., 2024a), DriveDreamer-2 (Zhao et al., 2024),
Panacea (Wen et al., 2024), Drive-WM (Wang et al., 2024b). This demonstrates DIVE’s unique
advantage in maintaining temporal consistency while preserving frame-level quality. The control
precision analysis reveals deeper strengths: BEV segmentation performance (Road and Vehicle
mIoU) aligns closely with real data distributions, while 3D detection performance (mAP and NDS)
validates its precise spatial alignment capabilities. Despite minor performance dips under RPS,
DIVE consistently outperforms existing methods. These quantitative findings confirm DIVE’s dual
capability to simultaneously optimize photorealism and geometric fidelity.

Qualitative Results. In Figure 4, DIVE demonstrates superior generation quality compared to
MagicDrive (Gao et al., 2024) and Panacea (Wen et al., 2024), which suffer from issues like vehi-
cle fragmentation and unrealistic artifacts (e.g., rearview mirrors on vehicle backs). DIVE excels
in producing highly realistic vehicles with precise fidelity, maintaining both temporal and cross-
view consistency, unlike the significant color and shape variations in MagicDrive and Panacea.
Additionally, DIVE ensures accurate scene controllability, generating correct object counts, road
layouts, and realistic zebra crossings, while offering flexible customization of weather, time, archi-
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Table 2: Comparison about support for
StreamPETR.

Real DiVE mAP↑ mAOE↓ mAVE↓ NDS↑

✓ - 35.5 52.7 32.1 47.3
- ✓ 27.3 56.3 50.3 40.4
✓ ✓ 36.7 42.1 32.4 49.2

Table 3: Ablation on the different spatial attention
types.

Attention Type FVD↓ Object mAP↑ Map mIoU↑

Self 93.14 24.57 35.87
Left-Self-Right 86.15 25.88 36.97
View-Inflated 86.13 26.30 37.41

tectural styles, and even vehicle colors (Figure 1 (c) and Figure 7) — a feature often lacking in prior
methods. Notably, even when using the RPS inference acceleration strategy, the visual quality of
DIVE’s generated results remains almost indistinguishable from those produced without accelera-
tion, demonstrating the effectiveness of RPS.

Generated Videos for Data Augmentation. To assess whether DIVE-generated data can enhance
perception tasks, we adopt a similar approach to Panacea by synthesizing a new training dataset with
DIVE and evaluating its impact using StreamPETR (Wang et al., 2023). When trained separately on
the original nuScenes set and the DIVE-generated dataset, we achieve mAP and NDS scores of 27.3
and 40.4, respectively — 85.4% and 76.9% of those obtained using only real data (Table 2). This
highlights the significant potential of synthetic data as a valuable training resource. Moreover, aug-
menting the original dataset with synthetic data further boosts StreamPETR’s performance across
nearly all metrics, underscoring DIVE’s practical effectiveness in advancing perception tasks.

5.4 ABLATION STUDY

Given the high resolution and frame count of DIVE-generated videos, full validation inference
demands substantial resources. To streamline evaluation, we adopt W-CODA’s approach, generating
only the first 16 frames per scene across four runs, assessing quality via FVD and controllability
using BEVFormer (Li et al., 2022) for 3D object detection and BEV segmentation.

View-Inflated Attention. We compare view-inflated attention with self-attention (which lacks view
interaction) and left-self-right attention (focusing on neighboring views) to validate its effectiveness.
As shown in Table 3, view-inflated attention excels in both generation quality and controllability.
While left-self-right attention improves local consistency, it struggles with global semantic coher-
ence, highlighting the superiority of view-inflated attention for achieving cross-view consistency
and maintaining long-term generation quality.

Table 4: Ablation of Resolution Progressively
Sampling.

Steps
Choices

Timestep
Shift

FVD↓ Object
mAP↑

Map
mIoU↑

Latency
(s)↓

10-10-10 - 103.92 25.29 37.60 189.7
0-0-30 - 86.13 26.30 37.41 307.1

20-5-5 ✓ 119.62 24.54 36.72 134.4
5-5-20 ✓ 89.64 26.26 37.92 252.7

10-10-10 ✓ 97.74 26.26 37.68 189.7

Resolution Progressively Sampling (RPS).
Table 4 demonstrates the validity of the
resolution-aware timestep shift in RPS and the
reasonableness of timestep distribution across
resolutions. The i-j-k notation denotes the
number of steps at 240p, 360p, and 480p
resolutions, respectively. Without timestep
shift (e.g., 10-10-10), performance consistently
drops, underscoring its importance. While in-
creasing steps at higher resolutions improves
quality, it also raises inference time; thus, 10-
10-10 strikes the optimal balance between per-
formance and efficiency.

6 CONCLUSION

We present DIVE, a pioneering DiT-based framework for generating multi-view driving scene
videos. Through various improvements to the existing DiT architecture, DIVE is capable of gener-
ating videos that precisely align with 3D annotations and maintain temporal and multi-view consis-
tency. We also introduce Resolution Progressively Sampling, an inference acceleration strategy that
significantly improves efficiency while maintaining generation quality. DIVE achieves SOTA per-
formance both before and after acceleration. By generating higher-quality videos efficiently, DIVE
stands out as the preferred choice for enhancing data used in training perception tasks of autonomous
driving.
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APPENDIX

A MORE IMPLEMENTATION DETAILS

A.1 CLASSIFIER-FREE GUIDANCE

We find that simply setting the text condition to null in the unconditional sampling of Classifier-free
Guidance (CFG) (Ho & Salimans, 2021) is insufficient. While this often improves the fidelity of
the generated videos, it leads to blurriness in 3D objects, weakening the model’s control over them.
Inspired by Gao et al. (2024), we extend the unconditional sampling of CFG. In the unconditional
sampling, we set text condition cT , 3D objects cO and road sketches cR to null ϕ. This approach
maximizes the model’s generation fidelity and controllability. The modified velocity estimate is as
follows:

υ′
θ = υθ(xt, ϕ, ϕ, ϕ) (6)
+ λ · (υθ(xt, cT , cO, cR)− υθ(xt, ϕ, ϕ, ϕ)) . (7)

(b) Set the text condition to 𝑐𝑇 in the unconditional sampling

(a) Set the text condition to null in the unconditional sampling

Figure 5: Night scene generation in different CFG
methods.

Notably, we observe that when generating night
scenes, CFG causes the scenes to be overly
dark, as shown in Figure 5 (a). This is because,
without CFG, DIVE already generates night
scenes with reasonable brightness. However,
CFG further emphasizes the darkness, leading
to the disappearance of many foreground ob-
jects. To address this issue, we do not set
the text condition to null in the unconditional
sampling, while still setting the objects and
sketches to null. This approach allows us to
generate more realistic night scenes, as shown in Figure 5 (b). The corresponding modified velocity
estimate is as follows:

υ′
θ = υθ(xt, cT , ϕ, ϕ) (8)
+ λ · (υθ(xt, cT , cO, cR)− υθ(xt, cT , ϕ, ϕ)) . (9)

A.2 MORE TRAINING DETAILS

All three stages of DIVE are trained with the Brain Floating Point (BF16) precision, and the AdamW
optimizer with a learning rate of 1e-4 is adopted. We employ the Bucket mechanism for multi-
resolution training. Specifically, for the main resolutions of 240p, 360p, and 480p, the batch sizes
are 4, 2, and 1, respectively. The resolution for StreamPETR (Wang et al., 2023) training is 480p,
which is different from the 256×704 of the baseline.

B ABLATION OF CAMERA INFORMATION

(b) with Camera Pose

(a) without Camera Information

(c) with Image-to-Global

View Exchange 

Bad Vehicle Lights, Poor Diversity

More Realistic, Richer Elements

Figure 6: Effect of camera information.

We find that DIVE can generate multi-view
videos with reasonable motion directions even
without camera information, but this is not al-
ways reliable. When adjacent views lack both
the road sketch and 3D objects, the generated
video is more likely to exhibit viewpoint ex-
change issues, as shown in Figure 6 (a). To
address this issue, we encode camera informa-
tion into the model. Unlike previous meth-
ods (Gao et al., 2024) that rely on camera poses,
we use an image-to-global coordinate transfor-
mation matrix. This choice stems from our ob-
servation that using the image-to-global trans-
formation matrix results in more realistic and
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element-rich scenes. For example, as shown in Figure 6 (c), the middle two views include addi-
tional elements such as fire hydrants and buildings, which are absent when using camera poses, as
illustrated in Figure 6 (b).

C MORE VISUALIZATION RESULTS

(c) Remove all objects

(b) Rotate all objects 180 degree (head to tail)

(a) Generation from the original nuScenes validation set

Figure 7: Flexible controllable generation from
DIVE.

Flexible Controllable Generation. Figure 7
illustrates the generation results under the vari-
ation of objects conditions. After rotating all
the objects by 180 degree, DIVE remains capa-
ble of generating reasonable and high-fidelity
results, and the orientation after rotation is
highly accurate. We also present the generation
result after removing all the objects. It is clearly
observed that the architecture of the scene has
changed, which demonstrates the diverse gen-
eration ability of DIVE.

More Qualitative Comparison. We present
more qualitative comparisons with Magic-
Drive (Gao et al., 2024) and Panacea (Wen
et al., 2024) in Figure 8, 9. DIVE consistently exhibits a visual quality that is closer to the real
world, as well as more natural and reasonable cross-view and temporal consistency.

Long Video Generation. Figure 10 presents the results of long video generation by DIVE, where
each row depicts the outcomes of the keyframes. Surprisingly, DIVE maintains excellent tempo-
ral consistency even during the continuous generation of 240 frames, avoiding repetitive patterns.
Moreover, the color of the vehicle remains unchanged regardless of the temporal sequence or the
presence of other vehicles in the scene. This level of consistent generation is rare in previous works.

D LIMITATIONS

Although DIVE can generate driving scenes that are remarkably close to the real world at present,
its controllability remains less satisfactory and lags behind the perception results based on real data.
Alternative conditional embedding methods or data types warrant further exploration. For instance,
AdaLN (Peebles & Xie, 2023) could potentially be employed to aggregate a series of control con-
ditions.Additionally, the specific utilization strategy for generated data as augmentation samples is
underdeveloped. Efficient and effective use of generated data for augmentation may yield greater
benefits than developing a superior generative model. Future work could benefit from leveraging
techniques related to dataset distillation.
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Figure 8: Qualitative comparison with MagicDrive and Panacea on driving scene from nuScenes
validation set.
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Figure 9: Qualitative comparison with MagicDrive and Panacea on driving scene from nuScenes
validation set.
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1st frame ~ 121st frame 
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127th frame ~ 241st frame 

Figure 10: Long video generated by DiVE.
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