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ABSTRACT

Understanding how the human brain processes and integrates visual and linguis-
tic information is a long-standing challenge in both cognitive neuroscience and
artificial intelligence. In this work, we present two contributions toward attribut-
ing visual representations in the cortex by bridging brain activity with natural
modalities. We first align fMRI signals with image and text embeddings from a
pre-trained CLIP model by proposing a whole-brain representation module that
follows anatomical alignment, preserves voxel spatial topology, and captures dis-
tributed brain dynamics. Building on this foundation, we further develop an In-
formation Bottleneck-based Brain Attribution (IB-BA) method, which extends
information-theoretic attribution to a tri-modal setting. IB-BA identifies the most
informative subset of voxels for visual tasks by maximizing mutual information
with image and text embeddings while enforcing compression relative to per-
turbed brain features. Experiments demonstrate superior cross-modal retrieval
performance and yield more interpretable cortical attribution maps compared to
existing approaches. Collectively, our findings point to new directions for linking
neural activity with multimodal representations.

1 INTRODUCTION

A fundamental question in cognitive neuroscience and artificial intelligence concerns the manner in
which the human brain integrates visual and linguistic information (Huth et al., 2016; Fedorenko
& Thompson-Schill, 2014). Recent advances in multimodal representation learning, exemplified
by CLIP, have demonstrated powerful alignment between images and text (Radford et al., 2021).
However, the neural mechanisms underlying comparable cross-modal integration in the brain remain
elusive (Kriegeskorte & Douglas, 2018; Schrimpf et al., 2021). Addressing this gap is imperative for
enhancing our knowledge of human cognition and for cultivating brain-inspired and interpretable AI
systems (Yamins & DiCarlo, 2016; Hassabis et al., 2017).

In computational cognitive neuroscience, deep learning has become central to predicting brain re-
sponses to sensory stimuli, a paradigm known as fMRI encoding (Naselaris et al., 2011). These
models have advanced our understanding of how sensory features map onto voxel activations, yet
they typically emphasize isolated voxels rather than distributed patterns that are essential for cogni-
tion (Haxby et al., 2001; Wu et al., 2020). Parallel progress in fMRI decoding has moved from early
work on coarse object categorization (Cox & Savoy, 2003; Kay et al., 2008; Walther et al., 2011;
Zhou et al., 2024) to recent breakthroughs in reconstructing and retrieving natural images (Lin et al.,
2022; Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Scotti et al., 2023; 2024; Li et al.,
2025) and associated text (Ferrante et al., 2023; Ren et al., 2024; Xia et al., 2024; Shen et al., 2024;
Qiu et al., 2025). Despite these successes, decoding has been criticized as “wishful thinking” (Vig-
otsky et al., 2024), since it prioritizes performance over probing the mechanisms of neural represen-
tations. Specifically, models operate on incoherent voxel vectors with subject-specific patterns that
are highly responsive to visual tasks (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023; Scotti
et al., 2023; 2024; Gong et al., 2024b), while ignoring inter-voxel interactions (Wu et al., 2020) and
functional connectivity across brain regions (Fingelkurts et al., 2005; Park & Friston, 2013). More-
over, current dense networks fail to preserve the brain’s intrinsic spatial topology, further hindering
interpretability and reliable backward attribution.
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In parallel, existing attribution methods (Selvaraju et al., 2017; Petsiuk et al., 2018; Chefer et al.,
2021) are not well-suited for investigating the mechanisms of brain representations. They typically
depend on explicit ground-truth labels to assess feature relevance, which are generally unavailable
for neural data. Recent advances in multimodal interpretability have largely focused on vision-
language models (Radford et al., 2021), where attribution is confined to image-text pairs (Wang
et al., 2023). By contrast, interpreting brain activity requires a triadic perspective that bridges voxel-
level patterns with both visual semantics (vision) and conceptual (linguistic) representations.

Can we bridge brain activity with natural modalities to advance our understanding of human cogni-
tion? We approach it from two complementary perspectives: modeling whole-brain representations
and developing interpretable brain attribution methods. First, we propose a whole-brain represen-
tation module that aligns brain activity with visual and linguistic representations via contrastive
learning. The module learns brain embeddings that are aligned with image and text embeddings
from a pretrained CLIP model. It respects the anatomical alignment established during fMRI pre-
processing, incorporates 3D patch embeddings to capture the spatial topology of voxel activity,
and employs self-attention to model distributed brain dynamics. We evaluate the module through
bidirectional cross-modal retrieval (Brain-Image/Text and Image/Text-Brain) on the Natural Scenes
Dataset (NSD), achieving superior performance compared to state-of-the-art brain decoding models.

Building on this alignment, we introduce a brain attribution method, termed Information Bottleneck-
based Brain Attribution (IB-BA), to interpret the relationships between conceptual and visual rep-
resentations and brain activity. Inspired by Information Bottleneck Attribution (IBA) (Schulz et al.,
2020) and its multimodal extension M2IB (Wang et al., 2023), IB-BA extends the framework to a tri-
modal setting encompassing brain, image, and text. The method perturbs intermediate feature layers
of the brain encoder and identifies voxels that are most informative for visual tasks by maximizing
mutual information with image and text embeddings while minimizing redundancy with perturbed
features. Experimental results show that IB-BA outperforms commonly used perturbation-based
(Petsiuk et al., 2018), gradient-based (Selvaraju et al., 2017), and attention-based (Chefer et al.,
2021) methods and enables the exploration of visual representation mechanisms in the brain cortex.

In this work, we make the following contributions:

• We align fMRI activity with visual and linguistic embeddings through CLIP-style con-
trastive learning by proposing a whole-brain representation module that preserves spatial
topology and captures distributed brain dynamics.

• We develop the Information Bottleneck-based Brain Attribution (IB-BA), extending
information-theoretic attribution to a three-modality setting (brain, image, text) to identify
informative voxel subsets for mechanistic studies in neuroscience.

• We evaluate the proposed methods on the NSD dataset, demonstrating the state-of-the-art
cross-modal retrieval performance and more interpretable cortical attribution maps.

2 RELATED WORKS

FMRI Decoding. FMRI decoding aims to recover human perceptual states across a range of tasks,
from coarse-grained object category recognition (Kay et al., 2008; Walther et al., 2011; Zhou et al.,
2024) to fine-grained cross-modal retrieval (Lin et al., 2022; Scotti et al., 2023; 2024; Li et al.,
2025) and reconstruction of natural images (Takagi & Nishimoto, 2023; Ozcelik & VanRullen, 2023;
Scotti et al., 2023; 2024; Li et al., 2025) or textual descriptions (Ferrante et al., 2023; Ren et al.,
2024; Xia et al., 2024; Shen et al., 2024; Qiu et al., 2025). Recent studies have further extended
decoding to video (Chen et al., 2023; Gong et al., 2024a; Lu et al., 2024), audio (Liu et al., 2024;
Denk et al., 2023), 3D pictures (Gao et al., 2024), and language (Ye et al., 2025). However, these
methods primarily focus on the pursuit of accurate results while overlooking the underlying neural
mechanisms.

Brain Representation. Previous work has modeled brain activity by selecting task-relevant voxel
vectors and applying linear ridge regression (Takagi & Nishimoto, 2023; Ozcelik & VanRullen,
2023), nonlinear MLPs (Scotti et al., 2023; 2024), or customized Fourier models (Gong et al.,
2024b). In medical imaging, 3D MRI volumes are often decomposed into 2D slices and processed
using CNNs or ViTs (Kang et al., 2021; Alp et al., 2024), while GNNs have been employed to op-
erate on ROI-level functional connectivity graphs (Li et al., 2021; Zheng et al., 2024a;b). However,
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Figure 1: The voxels with high response to visual stimulation in 8 subjects.

these approaches are limited in capturing the full spatial topology of whole-brain voxel activity. For
whole-brain modeling, 3D CNNs have been applied in both disease diagnosis (Kim et al., 2020)
and functional decoding (Kong et al., 2025). Shen et al. (2024) introduced 3D patch embeddings
to represent brain tokens and employed self-attention to capture long-range dependencies, similar
to UNETR (Hatamizadeh et al., 2022), although their tokens are derived only from task-relevant
regions rather than the full brain.

Model Attribution. Numerous methods have been proposed to improve the interpretability of deep
neural networks, which can be broadly categorized into three classes. First, perturbation-based ap-
proaches, such as RISE (Petsiuk et al., 2018), estimate the contribution of input features by system-
atically masking or perturbing them and observing the resulting effect on model outputs. Second,
gradient-based Grad-CAM (Selvaraju et al., 2017), leverage the gradients of the output with respect
to intermediate feature maps to identify salient regions. Third, attention-based methods, such as
Chefer et al. (Chefer et al., 2021), utilize the internal attention weights of transformer-based models
to highlight important features. More recently, Information Bottleneck Attribution (IBA) (Schulz
et al., 2020) has been proposed to identify informative components in feature representations, and
its multimodal extension M2IB (Wang et al., 2023) provides explanations for image-text alignment.
In this work, we adapt this information-theoretic attribution to brain modeling and further extend it
to a tri-modal setting encompassing brain, image, and text.

3 PRELIMINARIES

Natural Scenes Dataset. We leverage the Natural Scenes Dataset (NSD) (Allen et al., 2022), a
large-scale fMRI dataset in which participants viewed 73,000 richly annotated natural images from
the COCO dataset (Lin et al., 2014). Each subject was presented with up to 10,000 distinct images
across multiple sessions, while high-resolution whole-brain responses were recorded. NSD provides
both the scale necessary to train deep models and fine-grained voxel-level coverage for investigating
distributed brain representations.

Union - 27430 Whole Brain

Figure 2: Visual cortex (collection of high-response voxels
in 8 subjects) and whole-brain cortex.

Brain Region Analysis. Pre-
vious studies often selected non-
contiguous, stimulus-responsive vox-
els, providing only a partial view
of brain representations. For each
subject, approximately 15,000 of the
most strongly activated voxels are se-
lected in the visual cortex, but their
coverage is incomplete and highly
variable across individuals (Fig. 1).
Combining voxels across eight subjects yields over 27,000 voxels, covering most of the visual cortex
but still omitting higher-order regions (Fig. 2, left). In contrast, our whole-brain model incorporates
all voxels, enabling the identification of visual representation patterns both within visual areas and
across non-visual regions, providing a more comprehensive account of brain activity (Fig. 2 right).

4 METHODS

To investigate visual representations in the brain, we first align brain activity with visual and lin-
guistic modalities within a shared representational space. Building on this alignment, we introduce
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Figure 3: Bridging brain activity with visual-language through contrastive learning.

Information Bottleneck-based Brain Attribution (IB-BA), which extends information-theoretic attri-
bution to the tri-modal brain-image-text setting and identifies voxel subsets that are most informative
for visual tasks.

4.1 BRAIN VISUAL-LANGUAGE MODEL

To establish alignment between the brain and visual/text modalities, we build upon a pretrained CLIP
model and design a brain encoder that maps fMRI voxels into the shared embedding space. Our
whole-brain representation module processes 3D fMRI volumes, enabling the capture of distributed
and comprehensive brain representation patterns. We employ contrastive learning to align brain
embeddings with image and text embeddings. The overall architecture is illustrated in Fig. 3.

Whole-Brain Representation. To capture comprehensive brain activity patterns, we design a
whole-brain encoder that preserves both the spatial topology of voxels and brain dynamic patterns.
We first normalize fMRI volumes to the standard MNI152-2mm space provided by the preprocess-
ing pipeline to account for anatomical variability. The normalized 3D volume is then partitioned
into non-overlapping patches, each of which is flattened and linear projected into a latent embed-
ding of dimension d. We select valid patches based on a brain mask and discard those non-brain
regions. A learnable class token aggregates information from all patches to form the global brain
representation, while learnable positional embeddings maintain spatial structure. This sequence
is processed by stacked transformer encoder layers (Vaswani et al., 2017) with multi-head self-
attention, enabling the model to capture long-range dependencies and distributed patterns across the
whole brain. Finally, the class token is projected to obtain the final brain embedding, analogous to
the global embedding used in the CLIP image encoder.

Brain Visual-Language Alignment. To align brain embeddings with image and text embeddings,
we employ a contrastive learning objective similar to CLIP (Radford et al., 2021). Given a batch of
N image-text pairs and their corresponding brain activity, we obtain the image embeddings EI ∈
RN×d and text embeddings ET ∈ RN×d from the pretrained CLIP encoders, where d denotes the
embedding dimensionality. The brain embeddings EB ∈ RN×d are obtained from the whole-brain
encoder. We then compute the contrastive loss between brain-image and brain-text embeddings as

LBI = − 1

N

N∑
i=1

[
log

exp (Ei
B · Ei⊤

I /τ)∑N
j=1 exp (E

i
B · Ej⊤

I /τ)
+ log

exp (Ei
I · Ei⊤

B /τ)∑N
j=1 exp (E

i
I · E

j⊤
B /τ)

]
,

LBT = − 1

N

N∑
i=1

[
log

exp (Ei
B · Ei⊤

T /τ)∑N
j=1 exp (E

i
B · Ej⊤

T /τ)
+ log

exp (Ei
T · Ei⊤

B /τ)∑N
j=1 exp (E

i
T · Ej⊤

B /τ)

]
,

(1)

where τ is the temperature parameter which is learnable in CLIP but fixed to the original CLIP value
in our model. The overall loss L = LBI + LBT encourages the brain embeddings to be close to
their corresponding image and text embeddings while being distant from non-corresponding ones.
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4.2 INFORMATION BOTTLENECK-BASED BRAIN ATTRIBUTION (IB-BA)

In this section, we propose Information Bottleneck-based Brain Attribution (IB-BA) to identify sub-
sets of voxels that are most informative for alignment of visual and language modalities. IB-BA
extends the information bottleneck attribution to a tri-modal setting (brain, image, text) and em-
ploys a fitting term and a compression term to balance informativeness and redundancy.

Information Bottleneck. The information bottleneck (IB) principle (Tishby et al., 2000) provides
a framework for extracting task-relevant representations by balancing sufficiency and compression.
Formally, given an input X and target Y , the objective is to learn a representation Z that preserves
information about Y while discarding irrelevant details from X:

max
p(z|x)

I(Z;Y )− βI(Z;X), (2)

where I(·; ·) denotes mutual information and β gives a trade-off between fitting and compression.
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Figure 4: Information bottleneck brain attri-
bution diagram

Problem Formulation. We apply the information
bottleneck to the pretrained brain encoder, which
produces a brain embedding ZB aligned with image
and text embeddings. Instead of retraining the en-
coder, IB-BA introduces a perturbation module, pa-
rameterized by θB , at an intermediate feature layer.
This module adds noise to the intermediate features,
controlled by θB , before passing them through the
remaining fixed layers, yielding a perturbed brain
embedding ZB . The parameters θB are optimized to
preserve information relevant for cross-modal align-
ment while discarding redundant information from
the original brain activity. This procedure identifies
the voxels that are most informative for visual tasks.
Formally, the optimization follows the standard in-
formation bottleneck objective:

max
θB

I(ZB ; EI , ET ) − β I(ZB ; XB), (3)

where ZB is the perturbed brain embedding, EI and
ET are the image and text embeddings, and β con-
trols the trade-off between fitting and compression.

Compression term. The compression term I(ZB , XB ; θB) measures how much information the
brain representation ZB retains about the input brain activity XB . It can be expressed as

I(ZB , XB ; θB) = DKL(p(zB , xB ; θB)∥p(zB ; θB)p(xB))

= Ep(zB ,xB ;θB)

[
log

p(zB , xB ; θB)

p(zB)P (xB)

]
= Ep(zB ,xB ;θB)

[
log

p(zB |xB ; θB)

p(zB)

]
,

(4)

where p(ZB |XB ; θB) can be sampled empirically whereas p(ZB) is intractable. We can use the
variational distribution q(ZB) to approximate p(ZB), and we have

I(ZB , XB ; θB) = Ep(zB ,xB ;θB)

[
log

p(zB |xB ; θB)

q(zB)

]
− Ep(zB ,xB ;θB)

[
log

p(zB)

q(zB)

]
= Ep(zB ,xB ;θB)

[
log

p(zB |xB ; θB)

q(zB)

]
−DKL(p(zB)∥q(zB))

≤ Ep(zB ,xB ;θB)

[
log

p(zB |xB ; θB)

q(zB)

]
= Ep(xB)

[
DKL(p(zB |xB ; θB)∥q(zB))

]
,

(5)

where the inequality is due to the non-negativity of KL divergence. In practice, we set q(zB) =
N (zB ; 0, I) and p(zB |xB ; θB) = N (µxB

, σ2
xB

; θB), where µxB
and σ2

xB
are the mean and variance

of ZB over the batch XB .

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Fitting term. The fitting term I(ZB ;EI , ET ; θB) measures how much information the brain repre-
sentation ZB contains about the image and text embeddings EI and ET :

I(ZB ;EI , ET ; θB) = DKL(p(zB ; eI , eT ; θB)∥p(zB ; θB)p(eI , eT ))
= Ep(zB ;eI ,eT )

[
log p(eI , eT |zB ; θB)

]
− Ep(eI ,eT )

[
log p(eI , eT )

]
.

(6)

The second term is the joint entropy of the variables EI and ET , which is a constant indepen-
dent of θB usually ignored in the optimization problem. The conditional probability distribution
p(eI , eT |zB ; θB) in the first term is not in general tractable. Therefore, we approximate it with a
variational distribution qϕB

(eI , eT |zB), and we have

I(ZB ;EI , ET ; θB)

.
= Ep(zB ;eI ,eT )

[
log qϕB

(eI , eT |zB ; θB)
]
+ Ep(zB ;eI ,eT )

[
log

p(eI , eT |zB ; θB)
qϕB

(eI , eT |zB ; θB)
]

.
= Ep(zB ;eI ,eT )

[
log qϕB

(eI , eT |zB ; θB)
]
+ Ep(zB)

[
DKL(p(eI , eT |zB)∥q(eI , eT |zB))

]
≥ Ep(zB ;eI ,eT )

[
log qϕB

(eI , eT |zB ; θB)
]
.

(7)

Total objective. The total optimization objective of the information bottleneck brain attribution is
to maximize the weighted sum of the fitting term and the compression term, expressed as

θ∗B = argmax
θB

I(ZB ;EI , ET ; θB)− βI(ZB , XB ; θB)

= argmax
θB

Ep(zB ;eI ,eT )

[
log qϕB

(eI , eT |zB)
]
− βEp(xB)

[
DKL(p(zB |xB ; θB)∥q(zB))

]
.

(8)

In practice, we use empirical samples of xB , eI , and eT to approximate the variational optimization
objective p̂(xB , eI , eT )

.
= 1

N

∑N
i=1 δ(xB − xi

B)δ(eI − eiI)δ(eT − eiT ). Since eI ∼ p(eI |xI ; θI)
and eT ∼ p(eT |xT ; θT ) are conditionally independent, the joint distribution can be decomposed as
qϕB

(eI , eT |zB) = qϕB
(eI |zB)qϕB

(eT |zB). In CLIP-style models, the embeddings are projected
and normalized into a shared space by a modality-specific mapping function fm(·). Thus, the log
of the Gaussian probability density log qϕB

(em|zB) simplifies and is proportional to the cosine
similarity between fm(em) and fϕB

(zB), giving the optimization objective of the fitting term

max
θB

Ep(xB ,eI ,eT )

[
log qϕB

(eI , eT |zB ; θB)
]

.
= max

θB
Ep(zB |xB)

[
log

(
qϕB

(eI |zB)
)
+ log

(
qϕB

(eT |zB)
)]

∝ max
θB

Ep(zB |xB)

[
cos

(
fI(eI), fϕB

(zB)
)
+ cos

(
fT (eT ), fϕB

(zB)
)]
.

(9)

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Datasets. We use fMRI data collected from 8 subjects in the NSD dataset, who viewed a total
of 73,000 images (each subject viewed 9,000 unique images and 1,000 shared images) with each
image presented 3 times across 40 sessions. Each image is accompanied by a corresponding text
description, providing rich visual and linguistic information.

• Brain. We use nsd mapdata.m1 to map the GLMdenoised BOLD signals from the func1mm
to the MNI152 T1 1mm space. The input voxel data is resampled to a 2mm isotropic resolution,
resulting in a volume shape of (91, 109, 91), and normalized to zero mean and unit variance as model
input. We apply the MNI152 T1 2mm brain mask to exclude non-brain patches.

• Image. We use the original images from the NSD dataset, which are resized to 224 × 224 pixels
and normalized.

1https://github.com/cvnlab/nsdcode
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Table 1: Brain multimodal retrieval accuracy.

Methods Brain-Image Image-Brain Brain-Text Text-Brain
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Ridge 22.07 51.36 65.54 26.14 56.94 70.68 18.07 46.33 61.17 20.61 50.31 65.17
Mindeye 32.81 63.56 75.89 27.55 59.04 72.55 23.23 52.80 57.17 20.17 49.26 63.62
Mindeye2 23.46 51.37 64.77 23.05 51.31 65.09 17.79 43.23 57.26 17.57 43.34 57.03
TGBD 29.28 60.82 74.38 22.81 54.09 69.72 20.91 50.18 64.79 17.70 45.33 60.25
Ours 53.16 83.24 91.00 41.34 74.04 84.36 40.73 73.73 84.75 33.75 66.70 78.27
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Figure 5: Brain retrieval accuracy.

• Text. We do not use the COCO captions provided
by NSD (Lin et al., 2014) for training, as they are
too brief for effective alignment. Instead, we em-
ploy a vLLM (4-bit quantized Qwen2.5-VL-32B)
to generate detailed descriptions, constraining their
length to within 70 words to ensure compatibility
with the CLIP text encoder. These descriptions pro-
vide richer semantic information, facilitating more
effective alignment between brain and text embed-
dings. For attribution analysis with IB-BA, however,
we revert to the original COCO captions.

Model Implementation. The whole-brain represen-
tation module is constructed by replacing the CLIP
image encoder with a 3D patch embedding (de-
fault patch size 14). Except for setting the num-
ber of transformer blocks to 12, all other hyperpa-
rameters follow the CLIP configuration. We use
CLIP-ViT-H/14 as the default vision-language
model. Training is performed on 2 NVIDIA GTX
4090 GPUs with the AdamW optimizer and an initial
learning rate of 3×10−4. The batch size is 256 (128
per GPU), with a memory queue that caches the pre-
vious 4096 samples. We apply linear warm-up for
the first 1% of training steps, followed by cosine an-
nealing to decay the learning rate to 1 × 10−5. The
model is trained for 150 epochs. For each {brain,
image, text} triplet, we insert a parameterized bot-
tleneck module into the brain encoder to perturb in-
termediate features. The bottleneck is trained using
a single sample, with a batch size of 10 for 20 steps,
optimized by Adam with a learning rate of 1.

5.2 EVALUATION METRICS

We evaluate the alignment between brain and image/text modalities using cross-modal retrieval
tasks. Specifically, we compute the retrieval accuracy (R@1, R@5, R@10) for brain-to-image/text
and image/text-to-brain, which measures the proportion of correct matches in the top 1, 5, and 10
retrieval results. For attribution, a major challenge lies in the absence of explicit ground-truth brain
maps, and attribution results depend on both the attribution method itself and the underlying model
performance. To address this, we adopt degradation-based metrics (Chattopadhay et al., 2018; Wang
et al., 2020), which are grounded in the principle that eliminating regions with high attribution scores
should lead to a decrease in retrieval performance, whereas eliminating regions with low attribution
scores should have little impact or may even improve performance by eliminating irrelevant regions.

5.3 RESULTS

Brain Visual-Language Alignment. We compare our whole-brain representation module with
several neural decoding methods, including Ridge regression (Takagi & Nishimoto, 2023), Mindeye
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RISE

Chefer

GradCAM

IB-BA
(Ours)

Figure 6: Qualitative results of brain attribution methods.

Table 2: Brain attribution degradation metrics.

Methods Conf. Img-Drop↓ Conf. Img-Incr↑ Conf. Txt-Drop↓ Conf. Txt-Incr↑
RISE 4.739 6.594 3.024 27.786
GradCAM 8.435 2.480 5.859 13.932
Chefer 4.416 11.418 3.089 27.462
IB-BA 2.201 19.339 1.666 35.549

(Scotti et al., 2023), Mindeye2 (Scotti et al., 2024), and TGBD (Kong et al., 2025). As shown
in Table 1 and Figure 5, our approach achieves superior performance in both brain-to-image/text
and image/text-to-brain retrieval, demonstrating the effectiveness of the whole-brain representation
and establishing a reliable basis for attributing brain activity to visual representations. Additional
cross-modal retrieval results are provided in Appendix C.1.

Brain Attribution. We compare our IB-BA method with commonly used attribution techniques,
including RISE (perturbation-based (Petsiuk et al., 2018)), Grad-CAM (gradient-based (Selvaraju
et al., 2017)), and Chefer (attention-based (Chefer et al., 2021)). Due to the absence of ground-
truth labels for visual representations in the cerebral cortex, directly assessing attribution accuracy
is challenging. To address this, we adopt an degradation-based evaluation strategy: brain features
are ablated according to the attribution maps, and the resulting changes in cross-modal alignment
are analyzed. As shown in Table 2, the IB-BA outperforms these baselines in both degradation met-
rics and improvement metrics, indicating its effectiveness in identifying informative brain regions
for visual tasks. We further evaluate reverse mapping for image attribution maps and word-level
attribution. As illustrated in Figure 6, IB-BA produces attribution maps that are more focused and
interpretable, effectively highlighting object recognition in images and concept localization in text,
while maintaining consistent cross-modal correspondence.Furthermore, we observe that the corti-
cal attribution maps generated by IB-BA align well with known visual cortex, providing stronger
biological plausibility than alternative methods. Attribution results for all subjects are provided in
Appendix C.2.

5.4 ABLATION STUDIES

Brain Representation. We conduct ablations on subj01 to examine the effect of modality align-
ment, brain region selection, and caption sources (Table 3). First, we compare unimodal versus
bimodal alignment. Using only image–brain or text–brain pairs fails to yield competitive retrieval
performance, whereas combining both modalities produces substantial gains across all retrieval di-
rections, confirming the necessity of tri-modal alignment. Second, we investigate the impact of
different brain regions. Using only the visual cortex leads to lower accuracy compared to the whole
brain, indicating that non-visual regions also contribute to visual cognition, particularly in support-
ing the abstract and conceptual dimensions required for textual-alignments. Finally, we evaluate
different caption sources. High-quality descriptions from Qwen32B lead to the best results, while

8
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Layer 0 Layer 3 Layer 6 Layer 9

𝛽 = 0.1𝛽 = 0.001 𝛽 = 0.01 𝛽 = 1

Figure 7: Ablation study of the IB-BA hyperparameter target layer and β.

Table 3: Retrieval accuracy for the ablation of the module of brain visual-language alignment.

Modality Brain Region Captions Top 1 Acc.
Image Text Brain-Image Image-Brain Brain-Text Text-Brain

✓ ✗ Whole Brain Qwen32B 73.89 58.93 36.37 18.94
✗ ✓ Whole Brain Qwen32B 34.14 13.97 51.83 39.81

✓ ✓ Visual Cortex Qwen32B 70.30 54.50 53.71 43.27

✓ ✓ Whole Brain COCO 60.52 44.91 32.81 29.33
✓ ✓ Whole Brain llava13B 68.39 54.21 44.68 36.58
✓ ✓ Whole Brain Qwen32B 70.30 57.12 55.03 46.33

COCO annotations significantly impair brain-text alignment. This demonstrates that the richness of
textual supervision directly impacts the quality of learned brain embeddings.

IB-BA parameter sensitivity. We investigate the sensitivity of IB-BA to its hyperparameters (Fig-
ure 7). First, we deploy IB-BA at different layers of the brain encoder and observe that spatial
extent of the attribution maps decreases progressively from shallow to deeper layers. This reflects
the hierarchical aggregation of features across stacked self-attention blocks: shallow layers retain
more information due to a permissive bottleneck, whereas deeper layers enforce stricter filtering of
salient features. In addition, we examine the effect of different values of β, which controls the rel-
ative weight of the compression term in the information bottleneck. As expected, smaller β values
yield broader activation maps, while larger β values result in more localized maps, highlighting the
trade-off between informativeness and compression. We further examine other hyperparameters, in-
cluding noise variance, learning rate, and the number of training steps, with all quantitative analyses
and visualizations reported in Appendix C.2.

6 CONCLUSION

In this paper, we bridge brain activity with visual and linguistic modalities by modeling whole-brain
representations that capture brain dynamics and preserve spatial topology, enabling attribution of
cortical representations beyond models focused solely on decoding results. We further propose IB-
BA, an information-theoretic attribution method that leverages the bottleneck’s compression prop-
erty to identify brain regions most informative for cross-modal alignment. Extensive experiments on
the NSD dataset demonstrate the effectiveness of our approach in both brain visual-language align-
ment and brain region attribution, which offers a principled foundation for exploring the human
brain.

9
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STATEMENT OF ETHICS

This research was conducted using the NSD dataset, which is publicly available and was collected
with informed consent from all participants. The study protocol was approved by the relevant institu-
tional review boards, ensuring adherence to ethical standards for research involving human subjects.
We are committed to maintaining the privacy and confidentiality of the participants’ data, and all
analyses were performed in accordance with ethical guidelines.

REPRODUCIBILITY STATEMENT

We provide comprehensive implementation details in the Experiments section, including model ar-
chitecture, training procedures, and dataset descriptions. We also include ablation studies to analyze
the impact of various components and hyperparameters on performance. To facilitate reproducibil-
ity, we release the core implementation code in the supplementary materials, enabling researchers
to reproduce our results and build upon our framework in future studies.
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Appendix

A USE OF LLMS

To enhance the readability of the manuscript, large language models (LLMs) were employed for
grammar checking and refinement of wording. We confirm that the final version of the manuscript
has been carefully reviewed and validated by humans. At no stage were hidden “prompt injections”
inserted into the paper.

To enrich the descriptive details available for model training, we incorporate automatically gen-
erated captions from vision-language models (LLaVA-v1.6-13B2 and Qwen2.5-VL-32B3). These
captions serve as supplementary annotations that complement the original stimuli, thereby provid-
ing finer-grained semantic information that can better guide brain-modality alignment. The detailed
implementation procedures and representative examples are provided in Section D.

B TRAINING TRICK.

Contrastive learning typically benefits from large batch sizes, as they provide a diverse set of nega-
tive samples. However, limited GPU memory poses challenges for small-batch training. To address
this, we employ several strategies. First, we maintain a dynamically updated queue that caches
embeddings from previous batches, effectively increasing the number of negative samples available
for contrastive learning. Second, we utilize mixed-precision training, which accelerates computa-
tion and reduces memory usage, allowing for larger effective batch sizes within the available GPU
memory. Finally, we implement distributed data parallelism (DDP), further enhancing training ef-
ficiency and enabling larger batch sizes across multiple GPUs. By combining these techniques, we
can effectively train our contrastive learning model despite memory constraints.

C RESULTS

C.1 BRAIN VISUAL-LANGUAGE ALIGNMENT RESULTS

Subject-wise results. We provide subject-wise results of brain visual-language alignment in Table 4.

Table 4: Subject-wise brain visual-language retrieval results.

Methods Brain-Image Image-Brain Brain-Text Text-Brain
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

subj01 70.30 94.68 97.98 57.12 88.63 95.42 55.03 85.86 93.54 46.33 80.91 90.29
subj02 61.90 90.91 96.17 48.71 83.32 92.36 46.96 80.31 90.18 39.39 72.63 84.12
subj03 47.36 78.40 88.56 37.07 71.93 83.12 33.83 69.16 81.27 29.79 62.51 75.07
subj04 47.36 79.97 89.47 38.83 70.97 81.94 33.33 67.49 80.33 27.20 59.79 73.89
subj05 74.98 96.42 98.98 62.38 92.92 97.01 60.70 90.97 96.11 52.90 86.69 93.37
subj06 61.78 89.74 95.17 51.06 84.38 91.40 46.87 82.63 91.28 41.93 76.20 86.51
subj07 53.59 84.10 92.44 41.51 75.96 87.77 39.89 74.37 86.27 32.92 67.62 80.36
subj08 32.67 66.32 80.40 25.73 57.49 70.43 24.70 56.19 68.79 19.61 48.91 63.16

UMAP visualization. We visualize the brain visual-language alignment for each subject using
UMAP, as shown in Figure 8. The UMAP plots demonstrate that our method effectively aligns brain
representations with corresponding image and text embeddings, forming distinct clusters for each
modality. This indicates that the learned brain embeddings capture meaningful semantic information
related to both visual and textual stimuli, facilitating cross-modal understanding.

Representation similarity matrix. We compute the representation similarity matrix (RSM) be-
tween brain, image, and text embeddings for each subject, as shown in Figure 12. The RSMs reveal
strong correlations between brain representations and both image and text embeddings.

2https://huggingface.co/liuhaotian/llava-v1.6-vicuna-13b
3https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
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Figure 8: UMAP plot of brain visual-language alignment for each subject.

C.2 IB-BA ATTRIBUTION RESULTS

Subject-wise results. We provide subject-wise results of IB-BA attribution in Table 5. Qualitative
results are shown in Fig. 9, where our method highlights brain regions that are more interpretable
and relevant to the stimuli.

Hyperparameter sensitivity analysis. We conduct a hyperparameter sensitivity analysis of the IB-
BA method, varying the target layer, β, variance of the Gaussian noise, learning rate, and training
steps. The results are presented in Table 6 and Figure 10. We find that the filtering effect of the attri-
bution bottleneck intensifies with increasing depth of the self-attention layers, as feature aggregation
becomes progressively more hierarchical. Applying IB-BA to shallower target layers, while quanti-
tatively advantageous due to the retention of more information, yields cortical attribution maps that,
although concentrated in the visual cortex, fail to differentiate between unique patterns of visual
and conceptual representations. Conversely, deeper target layers impose stronger information con-
straints, producing maps dominated by a single peak. Attribution at intermediate layers provides a
balanced solution, retaining sufficient information while distinguishing distinct visual representation
patterns. The β parameter controls the weight of the compression term in the information bottleneck,
thereby regulating the amount of information retained in the attribution. Smaller β values preserve
more redundant information, while larger β values enforce stricter filtering of relevant features. We
adopt an intermediate value of β = 0.1 as a balanced choice. Although quantitative results in Ta-
ble 6 show that smaller β values yield higher scores, this advantage primarily reflects the retention of
additional information in ablation evaluations, rather than necessarily indicating superior specificity
of the attribution maps. We further evaluated the sensitivity of IB-BA to other hyperparameters, in-
cluding the noise variance σ, the learning rate, and the number of training steps. The results indicate
that the method is relatively robust to these settings, provided they remain within a reasonable range.

Table 5: Subject-wise brain attribution degradation metrics.

Methods Conf. Img-Drop↓ Conf. Img-Incr↑ Conf. Txt-Drop↓ Conf. Txt-Incr↑
subj01 1.748 21.7 0.958 49.9
subj02 2.158 17.3 1.652 34.5
subj03 3.741 11.828 2.469 29.7845
subj04 1.839 24.035 1.629 35.061
subj05 2.071 18.7 1.706 33.3
subj06 2.825 14.516 1.977 32.688
subj07 1.680 20.5 1.425 34.1
subj08 1.548 26.130 1.516 35.061
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Figure 9: Qualitative results of IB-BA attribution for each subject.

Table 6: Degradation metrics for the hyperparameter ablation study of the IB-BA method.

Param Conf.
layer β var lr tr steps Img-Drop↓ Img-Incr↑ Txt-Drop↓ Txt-Incr↑

0 0.1 0.1 1 20 0.969037506 32.1 0.572495244 56.4
3 0.1 0.1 1 20 1.092111657 29.3 0.623991036 55.3
6 0.1 0.1 1 20 1.748184163 21.7 0.957850823 49.9
9 0.1 0.1 1 20 7.910103352 2.1 4.388324832 21.9

6 0.001 0.1 1 20 0.554912387 40.7 0.383127444 58.9
6 0.01 0.1 1 20 0.965436275 31.9 0.569898229 56.1
6 0.1 0.1 1 20 1.748184163 21.7 0.957850823 49.9
6 1 0.1 1 20 4.614267919 7.5 2.318432829 38.9

6 0.1 0.01 1 20 1.748243716 21.7 0.957881043 49.9
6 0.1 0.1 1 20 1.748184163 21.7 0.957850823 49.9
6 0.1 1 1 20 1.748243716 21.7 0.957881043 49.9
6 0.1 10 1 20 1.742890133 22.0 0.956784532 49.7

6 0.1 0.1 0.1 20 0.454210326 42.9 0.313027213 60.7
6 0.1 0.1 0.5 20 1.692230119 21.2 0.932634623 50.8
6 0.1 0.1 1 20 1.748184163 21.7 0.957850823 49.9
6 0.1 0.1 2 20 1.938998043 19.4 1.040855977 49.0

6 0.1 0.1 1 5 0.503622804 41.1 0.335861445 60.8
6 0.1 0.1 1 10 1.830046162 20.4 1.005303425 48.6
6 0.1 0.1 1 20 1.748184163 21.7 0.957850823 49.9
6 0.1 0.1 1 50 1.824167202 21.4 0.998465185 49.3
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steps = 20steps = 5 steps = 10 steps = 50

Figure 10: Hyperparameter sensitivity analysis of the IB-BA method. From top to bottom: target
layer, β, variance of the Gaussian noise, learning rate, and training steps.

D EXTENDED TEXT DESCRIPTION

D.1 COCO CAPTIONS RETRIEVAL

To illustrate the necessity of detailed text descriptions, we conducted the following cross-modal re-
trieval evaluation. We used three pretrained CLIP models (CLIP-ViT-B/32, CLIP-ViT-L/14,
and CLIP-ViT-H/14) as vision-language models to extract the performance of COCO captions
versus detailed descriptions generated by Llava1.6-13B and Qwen2.5-VL-32B in cross-modal re-
trieval tasks. As shown in Fig. 11, using detailed text descriptions significantly improves retrieval
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performance, demonstrating their effectiveness in capturing richer semantic information for better
alignment with brain activity.
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Figure 11: Cross-modal retrieval Top 1 results using COCO captions versus detailed descriptions
generated by Llava1.6-13B and Qwen2.5-VL-32B.

D.2 GENERATE DETAILED TEXT DESCRIPTIONS

<|im_start|>system
You are an AI visual assistant that can analyze objects in the

image. Currently, you receive an image and some sentences
each describing the image you are observing. \n Please
describe objects and relevance, concepts, background, color
and scene of the image in a detailed manner but without
decoration and embellishment. \n Always answer as if you are
directly looking at the image. \n Describe the image content
clearly and concisely and retain the meanings of each
objects, relevance, concepts, background, color and scene in
the image. \n Describe the image directly from the
beginning. Do not with \’The image shows\’ or \’The image
depicts\’. Don\’t summarize or overall. \n Keep your answer
less than 77 characters and words.

<|im_end|>

<|im_start|>user
{NSD captions of the image from the COCO dataset}
<|vision_start|><|image_pad|><|vision_end|>
<|im_end|>

<|im_start|>assistant
...

D.3 TEXT DESCRIPTIONS EXAMPLES FROM QWEN2.5-VL-32B

A person is kite surfing over ocean waves near the shore. They are
airborne, performing a trick while holding onto the kite lines. The
background includes houses and a clear sky. The water is choppy,
indicating windy conditions.

A black and gray cat is sitting on the edge of a white toilet, facing left
toward an open bathroom door. The scene includes a yellow mat on
the floor and a shower curtain in the background.
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A hand uses a knife to cut a homemade pizza on a wooden board.
Next to it, there’s a bowl of salad with utensils, two glasses of white
wine, and two wine bottles on a wooden table. The scene suggests a
casual dining setup.

A wooden table holds a white plate with a grilled sandwich (possibly
a panini) and a side of green salad. Next to it is a blue Pepsi cup filled
with dark soda. The background includes part of a person’s arm and
a tiled floor. The setting appears casual, likely a café or dining area.

A man is crossing a street near an ice cream truck. The truck is white
with colorful designs and text, parked on the right side of the road.
The background includes urban buildings and a clear sky. The scene
appears to be a busy intersection.

D.4 TEXT DESCRIPTIONS EXAMPLES FROM LLAVA-V1.6-13B

The image shows a person kiteboarding in the ocean on a windy day.
The individual is holding onto a kite and a surfboard. The surfboard
is yellow and black. In the background, there are buildings and cars.
The sky is gray and cloudy.

A black cat is sitting on the edge of a white toilet, looking toward the
open bathroom door. The cat has a fluffy tail. The toilet is next to
a bathtub with a blue shower curtain. The bathroom floor is covered
with a yellow rug.

A hand holding a pizza cutter is slicing a pizza on a table. The table
has a wooden cutting board, a green bottle, two glasses, a metal bowl
with salad, and a wooden table. The hand is wearing a watch. The
scene suggests a meal preparation.

The image displays a dining table with a white plate containing a
grilled sandwich and a salad. Beside the plate is a blue cup with the
Pepsi logo and ice cubes inside. The table is wooden and there’s a
person seated at the table. The background is blurred but suggests an
indoor setting with additional furniture and chairs.
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A man in white shirt walking across street. Blue and white truck with
ice cream sign parked on street. Truck has window and door. Red
traffic light. Buildings in background.
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Figure 12: Representation similarity matrix (RSM) of brain visual-language embeddings.
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