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Abstract

Medical image segmentation requires explainable AI for clinical deployment, yet1

Vision-language models like MedSAM [Ma et al., 2024] operate as black boxes.2

Existing methods like Grad-CAM [Selvaraju et al., 2017] suffer from computational3

instability and fail to capture multi-modal feature interactions. We present a4

gradient-free framework generating anatomically-aligned saliency maps across5

embedding layers via calculated similarity between image features and reference6

representations. Our three-level methodology progresses from derived insights7

from image embeddings to organ prototype similarity, prompt-spatial embeddings8

to a four-component spatial system. Evaluated on CHAOS [Kavur et al., 2021] and9

FLARE22 [Ma et al., 2023] datasets (13 organs), our approach reveals progressive10

reasoning: early layers show broad attention, intermediate layers narrow to organ-11

specific regions, and final layers produce precise boundary identification, enabling12

clinicians to verify model decisions against medical expertise.13

1 Introduction14

Explainable AI (XAI) in medical imaging addresses the critical gap between high-performing deep15

learning models and their clinical acceptance [Bhati et al., 2024, Gipiškis et al., 2024]. Although16

Vision-language models achieve high accuracy in segmenting anatomical structures, their black-box17

nature prevents clinical adoption, as clinicians cannot verify which image regions drive the decisions.18

Challenges: Current explainability methods face three key limitations. Gradient-based techniques19

like Grad-CAM [Selvaraju et al., 2017] are prone to vanishing gradients and computational instability20

[Suara et al., 2023]. They also produce coarse spatial localization, which is inadequate for precise21

anatomical verification. Furthermore, they fail to capture the multi-modal interactions between vision22

encoders and prompt embeddings in modern architectures like MedSAM [Ma et al., 2024].23

Goal: We aim to develop a gradient-free explainability framework that reveals how Vision-language24

models build reasoning across layers, generating clinically interpretable saliency maps that align with25

anatomical structures and capture multi-modal interactions in prompt-based segmentation models.26

2 Methodology27

We implement adaptive contrast enhancement tailored for low-contrast CT and MRI images [Ma28

et al., 2023]. Our pipeline applies percentile-based stretching and CLAHE with histogram clipping to29

prevent noise amplification, selectively enhancing foreground anatomical structures while preserving30

natural background appearance.31

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



The architecture of the segmentation model is built on (1) an image encoder processing inputs into32

feature maps, (2) a prompt encoder converting bounding box coordinates into spatial embeddings,33

and (3) a mask decoder generating segmentation outputs. Our framework generates anatomically34

grounded saliency maps across progressive embedding layers by computing normalized dot products35

between image features and multiple reference representations at different architectural depths.36

stage 1 produces diffused maps from visual similarity to organ prototypes (averaged features within37

bounding boxes), capturing broad anatomical context. stage 2 integrates spatial prompt embeddings38

with weighted combinations between organ prototypes and box embeddings, narrowing focus to39

specific structures. stage 3 implements a four-component system combining global image features,40

organ-specific prototypes, spatial prompt embeddings, and baseline context, with spatial weighting41

emphasizing regions near bounding box centers while maintaining awareness of distant anatomical42

context. All similarity scores are normalized and visualized as heatmaps, enabling layer-by-layer43

analysis of attention progression from coarse to fine-grained anatomical localization.44

Figure 1: Overview of the multi-embedding explainability framework combining image and prompt
encoders with spatial weighting to generate anatomically grounded, layer-wise saliency maps.

3 Discussions and Results45

We evaluated our framework on CHAOS [Kavur et al., 2021] and FLARE22 [Ma et al., 2023] datasets46

(50 abdominal CT scans, 13 organs, 100% processing success). The results in Figs. 2-4 show clear47

progressive refinement across embedding layers: early layers showed broad anatomical attention,48

intermediate layers narrowed to organ-specific regions, and final layers produced sharp localization49

on segmentation regions. Sample outputs reveal more localized anatomical alignment compared to50

Grad-CAM baselines [Selvaraju et al., 2017, Suara et al., 2023], with stable explanations free from51

gradient-induced noise. The multi-component system successfully concentrated final-layer attention52

on target organ boundaries while maintaining contextual awareness.53

Our gradient-free framework overcomes key XAI limitations by eliminating unstable gradient com-54

putations while revealing progressive feature interactions that align with clinical reasoning. We55

demonstrate three foundational contributions: (1) normalized dot products generate anatomically56

meaningful explanations without backpropagation; (2) multi-component weighting captures multi-57

modal interactions in prompt-based architectures; and (3) layer-wise progression shows how models58

build reasoning from context to localized organ regions, enabling direct verification against medical59

expertise [Bhati et al., 2024, Gipiškis et al., 2024].60

The limitations include dependence on ground-truth bounding boxes for prototype extraction, while61

Future work should explore unsupervised prototype learning and extend validation across diverse62

pathological conditions, demographic groups, and scanner manufacturers. This work establishes a63

foundation for clinically deployable explainability in medical image segmentation.64
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Figure 2: Sample output for ’Liver’ a) input image b) segmented organ c) feature interaction d)
Multi-level explainability

Figure 3: Sample output for ’spleen’ a) input image b) segmented organ c) feature interaction d)
Multi-level explainability

Figure 4: Sample output for ’Left Kidney’ a) input image b) segmented organ c) feature interaction
d) Multi-level explainability
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3.1 Potential Negative Societal Impact65

A key risk to this work is the misinterpretation of these explanations as proof of accuracy. The66

generated similarity maps reveal which regions influenced the prediction, but they do not measure67

how well the segmentation was performed. Overinterpreting visually coherent explanations can foster68

misplaced trust in flawed or biased models. The framework could also be misused to justify poor-69

performing systems by selectively presenting convincing maps, creating a false sense of reliability.70

Therefore, clear communication of its limits is essential. This tool should be used to aid the inspection71

of model reasoning, not as evidence of performance quality.72

References73

Deepshikha Bhati, Fnu Neha, and Md Amiruzzaman. A survey on explainable artificial intelligence74

(xai) techniques for visualizing deep learning models in medical imaging. Journal of Imaging, 1075

(10):239, 2024. doi: 10.3390/jimaging10100239.76

Rokas Gipiškis, Chun-Wei Tsai, and Olga Kurasova. Explainable ai (xai) in image segmentation in77

medicine, industry, and beyond: A survey. arXiv preprint arXiv:2405.01636, 2024.78
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