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Abstract
Graph neural networks (GNNs) are powerful tools
for handling graph-structured data but often lack
transparency. This paper aims to generate inter-
pretable global explanations for GNN predictions,
focusing on real-world scenarios like chemical
molecules. We develop an approach that pro-
duces both factual and counterfactual explana-
tions while incorporating domain constraints, en-
suring validity and interpretability for domain ex-
perts. Our contributions include creating global
explanations, integrating domain constraints, and
improving random walk in global explanations
using fragment-based editing. We demonstrate
the effectiveness of our approach on AIDS and
Mutagenicity datasets, providing a comprehen-
sive understanding of GNNs and aiding domain
experts in evaluating generated explanations.

1. Introduction
Graph neural networks (GNNs) are a natural and beneficial
choice when the underlying data distribution can be char-
acterized by a graph structure, such as social network (Ya-
nardag & Vishwanathan, 2015), chip design (Mirhoseini
et al., 2021), chemical molecules (Gilmer et al., 2017;
Wieder et al., 2020). However, the lack of transparency
in GNNs preventing the full exploitation of the rich in-
formation available in both the topology structure and the
node/edge features (Zhang et al., 2020; Zhou et al., 2020).

As a result, there is a growing demand for interpretable
explanations of GNN predictions. Existing methods can
be classified into local and global explanations based on
their granularity. Local explanations generate explanations
for individual instances by selecting the most influential
sub-graph for that particular prediction (Bajaj et al., 2021;
Lucic et al., 2022; Tan et al., 2022), while global methods
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create a set of explanations for a specific class to explain
why GNNs predict them as that class (Ying et al., 2019;
Kosan et al., 2023). Furthermore, these methods can be cat-
egorized as factual or counterfactual explanation methods.
Counterfactual explanations identify necessary sub-graphs
that can alter model predictions (Lucic et al., 2022; Bajaj
et al., 2021; Abrate & Bonchi, 2021), while factual expla-
nations focus on sufficient parts that maintain the original
explanations (Ying et al., 2019; Luo et al., 2020; Yuan et al.,
2020).

The local explanations are known for the vulnerability to the
small noise in the input graph (Bajaj et al., 2021) and the lack
of high-level insight to explain the behavior of GNNs (Kosan
et al., 2023). Therefore, our work focuses on generating
global interpretable explanations for GNNs, particularly
in real-world scenarios like chemical molecules. Previous
global methods concentrated on either factual or counterfac-
tual aspects, insufficient for a comprehensive understanding
of GNNs (Tan et al., 2022). Although some research over-
comes the limitation of sub-graph-as-explanation and uses
common-neighbor-graph-as-explanation for molecules, it
still disregards the validity of new molecule candidates,
complicating explanations for domain experts (Kosan et al.,
2023).

In this paper, we develop both factual and counterfactual
explanations for molecules to examine the sufficiency and
necessity conditions of undesirable chemical attributes from
a GNN classifier viewpoint. To enhance domain experts’
understanding, we incorporate domain constraints in our
explainer, ensuring the validity of molecules that can be
easily evaluated and verified by experts.

To conclude, our contributions can be described as:

• We develop both factual and counterfactual explanations
using a global perspective, examining graph space and
embedding space.

• We explore various approaches to integrate domain con-
straints into global explanations, enhancing interpretabil-
ity for domain experts.

• We advance fragment-based editing to refine the random
walk in global explanations, increasing their effectiveness
in the Mutagenicity dataset.
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2. Related Work
Explanations of Graph Neural Networks Prior studies
aimed at explaining GNNs can be divided into two cate-
gories: local and global explainers. Local explainers se-
lect sub-structures from a given graph that contribute to its
GNN’s prediction (Ying et al., 2019; Lucic et al., 2022; Tan
et al., 2022), whereas global explainers produce new graphs
to illustrate the model behavior across a set of graphs (Kosan
et al., 2023; Yuan et al., 2020). The generated explanations
pivot on either factual or counterfactual reasoning. Factual
reasoning yields an explanation preserving the original pre-
diction, thus acting as a sufficient condition. Conversely,
counterfactual reasoning presents a necessary condition that
would, if not met, alter the prediction (Tan et al., 2022).
Initially, research predominantly focused on factual expla-
nations (Ying et al., 2019; Luo et al., 2020; Yuan et al.,
2020), however, recent trends indicate growing interest in
counterfactual explanations (Bajaj et al., 2021; Lucic et al.,
2022; Kosan et al., 2023; Numeroso & Bacciu, 2021). Tan
et al. (2022) discuss the advantages and disadvantages of
and combine them together. Yet, no previous work has ex-
plored the application of global factual and counterfactual
explanations.

Evaluation of GNN Explanations It is difficult to cre-
ate GNN datasets with annotated explanations. Previous
studies often evaluate their methods on the small synthetic
datasets and conduct human evaluation on limited cases
of real datasets (Ying et al., 2019; Yuan et al., 2020; Luo
et al., 2020). Given the ground-truth labels, they calculate
the accuracy of prediction as the evaluation metric. Pope
et al. (2019) introduced fidelity to measure the decrease
of prediction confidence after removing the explanation for
counterfactual explanations. Bajaj et al. (2021) proposed ro-
bustness for quantifying how much an explanation changes
after adding noise to the input graph. Tan et al. (2022)
adopted Probability of Sufficiency (PS) and Probability of
Necessity (PN) from causal inference theory for factual and
counterfactual explanations. Kosan et al. (2023) propose
coverage and cost for global explanations. Amara et al.
(2022) extended fidelity to model-level for both sufficiency
and necessity explanations. In this paper, since we do not
have the ground-truth labels and focus on global level, we
follow Kosan et al. (2023)’s setting to use coverage and
cost as the evaluation metrics.

Graph-based Molecule Generation Graph neural net-
work are widely used in 2D molecule tasks (Gilmer et al.,
2017; Wieder et al., 2020).A molecule can be graphically
represented with atoms as vertices and chemical bonds as
edges. The atom-based generation methods take the atom as
the basic generation units (Li et al., 2018; You et al., 2018),
while the fragment-based methods build their vocabulary
based on the chemical substructure (Jin et al., 2018; Liu

et al., 2017; Kong et al., 2022). The fragment-based gener-
ation is more likely to produce meaningful molecule with
chemical properties, which is reflected in the substructure.
Besides, it can make the edit-based sampling more effec-
tive and efficient (Xie et al., 2021). In this paper, we use
the fragment-based editing to ensure the validation of the
molecule candidates.

3. Method
Given a graph classifier ϕ and a set of n input molecule G =
{G1, G2, · · · , Gn}, we assume ϕ(Gi) = 0 indicates that
Gi has the undesirable attribute, while ϕ(Gi) = 1 represent
that it has the desired attribute. Following Kosan et al.
(2023), The goal of the global explanation is find a small set
of valid molecules C with optimal explanation ability. The
explanation ability is evaluated by coverage, cost and size.
The size is the number of graphs in the set C. The coverage
is to measure how many input graphs G ∈ G can be covered
by explanations in C under a given distance threshold θ:

coverage(C) = |{G ∈ G|minC∈C d(G,C) ≤ θ}|
|G|

, (1)

where d(G,C) is the function to calculate graph distance,
and |G| indicates the size of the set G. The cost is the
distance between the input graphs G and the explanations C:

cost(C) = 1

|G|

|G|∑
i=1

min
C∈C

d(G,C). (2)

We would like to maximize the coverage while minimize
and cost and size to make the explanation set C cover as
many input graphs as possible while keeps small enough for
human cognition. Therefore, the objective is :

max
C

coverage(C) s.t. size(C) = k. (3)

Here, the size of the C is limited by k, and the cost is con-
strained based on the threshold θ in coverage.

To obtain global explanations, we generate candidates from
the input molecule. We edit the input molecule by adding,
deleting, or replacing nodes and edges, creating a meta
edit map EG . Each node v ∈ EG in the meta edit map
represents a modified molecule derived from the original
input molecules through the defined edit operations. The
random walk is based on the importance score calculated
on each node v:

I(v) = p(ϕ(v) = 1)(α coverage(v) + (1− α) gain(v)), (4)
gain(v) = coverage(C ∪ {v})− coverage(C) (5)

3.1. Exploring Counterfactual Explanations under
Domain Constraints

Random editing operations based on atoms, such as adding,
removing, or replacing nodes and edges, often produce nu-
merous invalid molecules that are meaningless to domain
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experts. To make explanations more comprehensible, we
must integrate domain constraints, like valence, into the
random walk process.

One straightforward approach involves verifying validation
after candidate generation and discarding illegal candidates.
We refer to this method as Post-checking. Alternatively, we
can modify the importance function to ensure that it only
moves to valid nodes during the random walk. The updated
importance function is as follows:

I(v) =

{
p(ϕ(v))(α coverage(v) + (1 − α) gain(v)) f(v) = 1

0 f(v) = 0

(6)

Here, f(v) is the verification function and f(v) = 1 in-
dicate v is a valid molecule. This method is denoted by
In-checking.

3.2. Fragment-based editing

Throughout our experiments, we found that only a limited
number of editing operations yield new valid molecules,
while most result in valence violations. To enhance
search efficiency, we transition from atom-based editing to
fragment-based editing, which exclusively adds or deletes
legal fragments.

To construct a fragment vocabulary, we follow Xie et al.
(2021) by breaking each single bond of molecules in the
dataset and considering the smaller arms as separate frag-
ments. During the random walk, we implement fragment
addition and removal for the current node. For addition, we
enumerate node positions to insert the fragment and test all
fragments in the vocabulary. For removal, we break single
bonds and delete the smaller fragment. After each edit, we
verify their validation. This process is depicted in Figure 1.

Method: Random walk with Fragment-based editing

14

Add

Delete

Create Vocabulary

Figure 1. Fragment-based Editing.

3.3. Global Factual and Counterfactual Explanations

To better comprehend the GNN classifier’s behavior, we
generate factual and counterfactual explanations near the de-
cision boundary, serving as the classifier’s supporting points.
By comparing candidates on both sides, we can identify

significant patterns for different categories and determine
the distance between them.

As described in Section 3, we initially create global counter-
factual explanations for graphs with undesirable attributes
(ϕ(G) = 0). As counterfactual explanations provide neces-
sary conditions for altering predictions, candidates will have
ϕ(G) = 1 (desirable attributes). These counterfactual expla-
nations offer insights on transforming undesirable attributes
into desirable ones.

To acquire factual explanations for undesirable attributes,
we use the same input (ϕ(G) = 0) and change the coun-
terfactual probability p(ϕ(v) = 1) to factual probability
p(ϕ(v) = 0) in the importance function:

I(v) = p(ϕ(v) = 0)(α coverage(v) + (1− α) gain(v)). (7)

However, since the original input graphs G have label 0,
factual explanations might directly use the input graphs,
leading to oversimplified explanations far from the decision
boundary.

To generate factual explanations closer to the decision
boundary, we employ another counterfactual explanation
generation for input molecules with desirable attributes
(ϕ(G) = 1). This process generates candidates with la-
bel=0, but factual and counterfactual explanations are not
for the same input graphs. Our goal is to generate global
explanations for the GNN classifier to understand why it
predicts a specific label, rather than instance-level expla-
nations for each input. Hence, it is unnecessary to use the
same input graphs to create explanations.

4. Experiments
4.1. Datasets

We focus on graph classification and conduct our experi-
ments on two real-world molecule datasets that are com-
monly used in graph classification: AIDS (Riesen et al.,
2008) and Mutagenicity (Kazius et al., 2005). Detailed
information is listed in Table 1. These datasets provide
essential node information (atom type) and edge attributes
(bond type) for molecules. Following Kosan et al. (2023),
we keep atom types that appear at least 50 times in the
dataset, resulting in 9 common atoms in AIDS and 10 in
Mutagenicity.

4.2. Implementation

Our method is implemented using Pytorch. We em-
ploy the rdkit library for molecular operations. First,
we convert the original graph into the molecule format
by re-mapping the one-hot node feature to atom type
and using the edge attribute as bond type. We then
use rdkit.Chem.detectChemistryProblems to check validity,
which identifies and captures error messages when creating
molecule objects. We evaluate performance using coverage
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Result: AIDS performance fluctuates 

❖ Coverage and Cost for different candidate size

16
Figure 2. Coverage and cost for different candidate size.

Table 1. Dataset Statistic. Here # indicates the number size. We
use the GNN classifiers trained by Kosan et al. (2023) to predict
the category.

AIDS Mutagenicity

#Graphs 1837 4308
#Nodes per graph 15.73 30.34
#Edges per graph 16.32 30.80
#Atom Type 9 10
#Graph label=0 (pred/true) 1473/1467 2438/2394

and cost as defined in Section 3. For fragment-based editing,
we first build the vocabulary for fragments following Xie
et al. (2021) for each dataset, and enumerate all potential
edit operations, which is similar as the atom-based editing.
And then we traverse the meta edit map EG based on the
importance function in Equation 6.

4.3. Explanations under Domain Constraint

We compare different methods for incorporating domain
constraints into global explanation generation in Table 2.
We see that compared to the original GCFExplainer, the
performance degrades in the Mutagenicity dataset but im-
proves in AIDS under the in-checking settings. We assume
this is because the graphs in AIDS are relatively simple but
exhibit various patterns. Adding validity checking actually
prunes the illegal ones and prevents the random walk from
reaching some local optima. However, for fragment-based
methods, the patterns between different input graphs are
so diverse that they can hardly be used for other graphs.
Simultaneously, fragment-based editing cannot apply sim-
ple modifications based on atoms, which limits exploration
in AIDS. Conversely, although the Mutagenicity dataset is
much larger than AIDS, the fragment vocabulary size is
small. It suggests that the graphs share similar patterns.
Thus, a fragment from one graph is likely to be helpful for
another graph. Therefore, the fragment-based method is
more efficient than the other two checking methods.

We also compare the coverage and cost between different
k candidates. As illustrated in Figure 2, we find that the

performance gap in AIDS increases as the size of candidates
increases. This indicates that the random walk in AIDS
heavily depends on the importance function score and can
easily be trapped in local optima.

4.4. Comparing Factual and Counterfactual
Explanations

Case Study As shown in Figure 3, factual explanations are
usually larger and can cover more input graphs. However,
they are sufficient but not necessary. For example, in Figure
3 (f) the explanation only covers one input graph, but it is
much larger than the original one. Conversely, counterfac-
tual explanations typically cover 1 or 2 graphs. Nonetheless,
there are evident patterns that can alter the classifier’s be-
havior, such as HCl to PH3, and H to HF.

Candidates

Coverage

Candidates

Counterfactual

Factual

Coverage

a b c d

e f g

Figure 3. Counterfactual and Factual Candidates in AIDS.

Embeding Space In the process of generating factual and
counterfactual explanations, we navigate a highly non-
smooth, high-dimensional decision boundary from both
sides for the respective explanations. Furthermore, com-
paring these two types of explanations can help narrow
down the space of potential, useful attributes. Although we
lack the expertise to manually evaluate the explanations, we
attempt to analyze them at the feature level.
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Table 2. Comparison of different methods. Time is calculated based on minutes.
AIDS (vocab=1000) Mutagenicity (vocab=408)

Coverage ↑ Cost↓ #Valid / #Total Time (’) Coverage↑ Cost↓ #Valid/#Total Time (’)

GCFExplainer 12.56% 15.35 / / 38.52% 11.37 / /

Post-checking 6.25% 15.89 114/868 9 32.36% 12.84 883/2438 258
In-checking 13.44% 15.25 1473/1473 15 34.95% 12.23 2438/2438 242
Fragment-based 4.55% 16.25 125/125 365 35.32% 12.15 2438/2438 229

a. b.
Factual
Counterfactual

UMAP Projection

Figure 4. UMAP projections of the features in 2D (a) and 3D (b)
in AIDS.

We first convert the graphs into embeddings and then project
a UMAP representation of them. In Figure 4, we observe
that counterfactual and factual explanations are somewhat
separable, with significant regions of overlap along a tight
boundary. This could indicate the difficulty of explaining
transitions and classifying molecules.

Graph Space Having examined the relationship between
explanations in the embedding space, we also want to ex-
plore it in the graph space. We choose the candidates with
the most coverage from the respective generated sets and
compare the pairwise distance between them. As shown in
Table 3, we find that there is a substantial distance between
the graphs, especially for comparisons involving larger sets.
Interestingly, we also discover some graphs with very close
distances to each other.

Table 3. Graph Edit Distance (GED) between factual and counter-
factual explanations.

Candidate Top1 Top5 Top10 Top-25

Min Avg. Min Avg. Min Avg.

AIDS 43.0 28.0 60.2 27.0 90.4 13.0 95.8
Mutagenicity 13.0 4.0 23.0 4.0 23.5 4.0 30.9

5. Conclusion and Discussion
In this paper, we examine global factual and counterfactual
explanations for GNN classifiers. We find common pat-
terns in these explanations that help us better understand the
model’s behavior. Moreover, although these explanations
differ significantly in graph space, it remains challenging to

identify a clear decision boundary in the embedding space.
To incorporate domain constraints, we explore various meth-
ods and discover that in-checking provides a better guide-
line for datasets with diverse patterns, while fragment-based
methods are effective when the vocabulary is representative.

We believe that these techniques could have a substantial
impact in areas such as medicine and drug discovery. To
advance in this direction, there are some obvious next steps:
1) Further investigate the relationship between global fac-
tual and counterfactual explanations. 2) Continue refining
validity checking and fragment-based editing. 3) Convert
graph networks to 3D.

Additionally, more ambitious goals could be pursued. The
explanations are limited by the quality of the sub-graph
classifier, which is not optimal. An interesting avenue to
explore would be to enhance our system by using the expla-
nations to improve the classifier and vice versa, creating a
self-reinforcing loop. Finally, involving humans in this loop
to provide feedback on the desirability and validity of the
explanations could further enhance the system.
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