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ABSTRACT

Understanding how language and embedding models encode semantic relation-
ships is fundamental to model interpretability. While early word embeddings ex-
hibited intuitive vector arithmetic (“king” - “man” + “woman” = “queen”), modern
high-dimensional text representations lack straightforward interpretable geomet-
ric properties. We introduce Rotor-Invariant Shift Estimation (RISE), a geomet-
ric approach that represents semantic-syntactic transformations as consistent rota-
tional operations in embedding space, leveraging the manifold structure of modern
language representations. RISE operations have the ability to operate across both
languages and models with high transfer of performance, suggesting the existence
of analogous cross-lingual geometric structure. We compare and evaluate RISE
using two baseline methods, three embedding models, three datasets, and seven
morphologically diverse languages in five major language groups. Our results
demonstrate that RISE consistently maps discourse-level semantic-syntactic trans-
formations with distinct grammatical features (e.g., negation and conditionality)
across languages and models. This work provides the first systematic demonstra-
tion that discourse-level semantic-syntactic transformations correspond to consis-
tent geometric operations in multilingual embedding spaces, empirically support-
ing the Linear Representation Hypothesis at the sentence level.

1 INTRODUCTION

Understanding how contemporary language models encode and manipulate semantic knowledge has
become a central challenge in deep learning interpretability. The ability to interpret (probe) and con-
trol (steer) these internal representations is fundamental to developing trustworthy, safe Al systems.
In word2vec (Mikolov et al.|2013a) and similar models, semantic relationships could be captured
with simple vector arithmetic in the embedding space (i.e. the famous “king” - “man” + “woman” =
“queen” analogy). This linear transparency offered both interpretability and controllability, enabling
researchers to navigate semantic space through intuitive mathematical operations.

However, this clarity has largely disappeared in modern transformer-based language models. While
large language models (LLMs) have achieved remarkable performance across diverse language tasks
(Achiam et al.l 2023} Touvron et al.,|2023), their internal workings remain largely opaque (Elhage
et al.,|2022;|Rogers et al.,[202 1)), limiting our ability to understand, predict, and control their behavior
in critical applications. Unlike the interpretable, linear directions found in static word embeddings,
the geometry of modern text representations lacks the same straightforward correspondence to se-
mantic operations. This opacity poses significant challenges for understanding how these models
organize linguistic knowledge and limits our ability to interpret their behavior in principled ways.

The central challenge lies in identifying which geometric operations correspond to meaningful se-
mantic transformations in these complex representation spaces. Current approaches often rely on
task-specific probes (Rogers et al.|[2021; |[Hewitt & Manning} [2019; |Alain & Bengiol 2017)) or steer-
ing vectors (Zou et al., 2023 [Wang et al., 2023} [Turner et al., 2023} Merullo et al., [2023; [Trager
et al., [2023), but lack generalizable frameworks for systematically mapping semantic relationships
to geometric structure. Without such principled methods, we cannot determine whether the geo-
metric regularities that made static word embeddings interpretable persist in modern language or
embedding models, albeit in more complex forms.
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We address this gap by introducing Rotor-Invariant Shift Estimation (RISE), a geometric approach
that represents semantic-syntactic transformations as consistent rotational operations in embedding
space, leveraging the manifold structure of modern language representations. RISE is a rotor-based
alignment method that identifies cross-lingual and cross-model geometric transformations. Specifi-
cally, we demonstrate how RISE identifies three discourse-level semantic-syntactic changes (nega-
tion, conditionality, and politeness) across seven morphologically distinct languages and general-
izes across three different embedding model architectures. The goal of this study is to develop a
framework for identifying discourse-level semantic-syntactic changes that correspond to con-
sistent geometric transformations, and determine how well these transformations can be cross-
lingually mapped across model architectures. Our approach treats semantic-syntactic transforma-
tions as rotations on the unit hypersphere where sentence embeddings reside, enabling us to align
different linguistic contexts into a common geometric framework. This paper presents evidence that
certain semantic-syntactic transformations exhibit generalizable geometric structure while others
vary based on context-dependence, extending the linear representation hypothesis to cross-lingual
discourse. We demonstrate this through empirical experiments across two baselines, three models,
and seven languages — revealing that negation, conditionality, and politeness transformations can be
captured as consistent rotational operations.

2 RELATED WORK

2.1 LINEAR REPRESENTATION HYPOTHESIS

The linear representation hypothesis (LRH), or linear subspace hypothesis, has emerged as a promis-
ing theory for bridging the interpretability gap for embeddings (Mikolov et al., 2013b; Levy &
Goldberg, [2014} |Bolukbasi et al., 2016; Ethayarajh, |2019; |Park et al.| [2024};[2025). The LRH posits
that semantic concepts are encoded as linear structures within embedding spaces, meaning linear
algebraic operations can be used for interpretation and control (e.g., “king” - “man” + “woman” =
“queen” presented by [Mikolov et al.[(2013b)). |Park et al|(2024) formalized the LRH by unifying
three distinct notions of linearity that had developed independently across the literature:

1. word2vec-like embedding differences (Arora et al., 2016; Mimno & Thompson, 2017}
Ethayarajh et al., 2018 |Reif et al., 2019; |L1 et al., 2020; [Hewitt & Manning, 2019; (Chen
et al) [2021; |Chang et al.l 2022} Jiang et al., [2023; Mitchell & Lapatal |2008; Baroni &
Zamparelli, [2010)

2. logistic probing (Alain & Bengio, [2017; |[Kim et al., 2018 |nostalgebraist, [2020; Belinkov,
2022; L1 et al., 2022} |Geva et al.| [2022; Nanda et al., 2023

3. steering vectors (Wang et al.,|2023}; Turner et al., 2023; Merullo et al., 2023} |Trager et al.
2023))

Park et al.| (2024) theoretical framework addresses a critical gap by synthesizing the first formaliza-
tion of what “linear representation” means. However, while the LRH has been validated primarily
within individual languages, there remains a significant gap in understanding how semantic-syntactic
transformations generalize across linguistic contexts. Most existing work examines static concept
encodings (Park et al.l|2025; |2024)) rather than dynamic semantic-syntactic transformations that re-
flect real-world language use. Our work is the first to extend the LRH to multilingual contexts
and embedding models, though the linear representations we consider are not Euclidean lines but
geodesic arcs.

2.2 LINEAR & GEOMETRIC REPRESENTATION TECHNIQUES

The geometric foundations established by [Park et al.|(2024) are crucial for understanding when and
why linear algebraic operations succeed in capturing semantic relationships. With traditional Eu-
clidean geometry, it is hard to accept that arbitrary dot products or cosine similarities have semantic
meaning. Moreover, [Park et al.| (2024) demonstrated that the choice of inner product fundamen-
tally determines the interpretability of geometric operations, providing principled foundations for
representation analysis. Our work builds directly on recent advances in understanding linear rep-
resentations in language models (Park et al., [2024; |Li et al., 2023). RISE implements a technique
that respects semantic structure, similar to the geometric framework developed by |Park et al.[(2024)).
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While previous work focused primarily on categorical concepts and word-level transformations,
RISE extends our understanding to sentence-level, discourse-level transformations through cross-
lingual and cross-model analysis using seven morphologically diverse languages.

2.2.1 STEERING VECTORS & EMBEDDING MODELS

The practical applications of linear representation theory have been explored through steering vector
techniques. [Turner et al.| (2023), [Liu et al.| (2023), and |Zou et al.| (2023) demonstrated that targeted
modifications to internal, latent space representations can systematically alter model behavior with-
out parameter updates. The majority of steering vector research (Im & Li, [2025; Rimsky et al.,
2023 |Zou et al., 2023} L1 et al., 2023)) is connected to activation steering, only investigating the im-
pact of steering vectors in the activation, hidden, and/or latent layer of an LLM. Recently, Pham &
Nguyen| (2024) introduced Householder Pseudo-Rotation (HPR), which addresses activation norm
consistency issues in LLM behavioral modification through direction-magnitude decomposition and
pseudo-rotational transformations. Building on the insight that geometric approaches outperform
additive methods, our work extends geometric reasoning to semantic transformations in embedding
space through Riemannian operations. To our knowledge, there is no work investigating the applica-
tion of steering vectors to embedding models — only completion models. This study extends steering
principles to embedding models on manifolds, not activation-level steering.

2.3 CHALLENGES IN GENERALIZATION AND RELIABILITY

Current knowledge about the generalization properties of linear representations reveals significant
limitations. The taxonomy of generalization research in natural language processing (NLP) (Hup-
kes et all [2023) provides a framework for evaluating robustness, but systematic applications to
representation-based techniques (i.e., steering, probing, or embedding manipulation) have been lim-
ited. Recent empirical studies have revealed that steering vector effectiveness varies substantially
across different inputs and contexts (Tan et al.| 2024). Secondly, the relationship between local
and global linearity represents a particularly critical gap in current understanding. There have been
numerous demonstrations of local linear behavior within specific domains or prompt formats, but
achieving global linearity (generalizable to multiple model architectures with different pre-training)
as required by strong versions of the LRH, remains challenging. While many studies demonstrate
impressive results in controlled settings, they often fail to address the robustness needed in practi-
cal applications. This study contributes to the literature gap by presenting a robust framework for
geometrically identifying discourse-level semantic-syntactic changes across typologically diverse
languages and model architectures.

3 THEORETICAL MOTIVATION

The limitations identified in the related literature point toward a fundamental theoretical chal-
lenge: existing approaches operate in Euclidean/linear space while modern embeddings live on
curved manifolds (spherical space). This geometric mismatch may explain why steering vector
research shows inconsistent cross-context performance and why linear methods struggle with robust
generalization. We hypothesize that discourse-level semantic-syntactic transformations correspond
to intrinsic geometric operations on the embedding manifold, rather than fixed directions derived
from Euclidean computations. If semantic transformations can be characterized as consistent rota-
tional operations on the unit hypersphere where embeddings reside, this would provide theoretical
support for the extension of the Linear Representation Hypothesis in curved spaces (through
geodesics) and cross-lingual interpretability. Testing this hypothesis requires robust evaluation
across diverse languages and embedding architectures to determine whether geometric consistency
reflects universal semantic properties or model-specific artifacts.

4 ROTOR-INVARIANT SHIFT ESTIMATION (RISE)

Modern sentence embeddings from multilingual encoders reside approximately on a unit hyper-
sphere in high-dimensional space when the training objective enforces or fixes the ¢3-norm con-
straints (Hirota et al., 2020), the embeddings are normalized to unit length (Reimers & Gurevych,
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2019), or the model is designed to produce isotropic embeddings (Li et al.| [2020; [Ethayarajhl [2019).
Local semantic transformations (e.g., negation, politeness, conditionality) can be understood as ro-
tational displacements on this sphere. The key insight is that these displacements can be interpreted
by aligning different contexts to a common geometric frame.

For any neutral sentence embedding n € S?~! and its semantically transformed variant v € S,
we can compute an orthogonal transformation (Clifford-algebraic rotor) R(n) that aligns n to a
canonical reference direction e;. By applying this same transformation to v, we express the semantic
change in a standardized coordinate system:

§ = R(n) log, (v), (D

where log,, (v) denotes the Riemannian logarithm that computes the tangent vector from n to v on
the hypersphere, and R(n) aligns the tangent vector to the canonical reference direction. Normalized
embeddings reside on a unit hypersphere, where geodesics define the shortest paths between points,
preserving the manifold’s intrinsic geometry rather than imposing Euclidean distance measures.
These geodesic paths represent the natural notion of “line” in the embedding space, as they define
the shortest distance between two points on the surface. By working with geodesics, we ensure our
semantic transformations are consistent with the manifold structure. To “flatten” out the curved arc
to a straight vector, the Riemannian logarithmic map log,, (v) produces the vector from 7 to v on a
tangent plane at n. By operating within the tangent space at n, geodesic differences can be treated
as ordinary vectors.

4.1 THE ROTOR ALIGNMENT ALGORITHM

RISE proceeds in three steps illustrated in Figure [T}

nneutral
@ sentence

transformed Prototype vt
\.._ sentence

semantic O
change

Semantic change Canonicalization Prototype Prediction

RISE applies the
learned prototype to a new
neutral sentence via the
exponential map to produce v*
(Eq. 3).

Semantic change appearsasa  RISE flattens local geometry and  RISE averages canonicalized
curved geodesic on the rotates the semantic change into  vectors across examples to form
embedding manifold a canonical tangent space a prototype transformation
(input pairs to Eq. 1). (Eq. 1). (Eq. 2).

Figure 1: RISE step-by-step illustration.

Canonicalization. For each neutral-transformed sentence pair (n;, v;), compute a rotor R(n;) that
maps n; to the reference direction e;. We interpret canonicalization as controlling for the semantics
present in the first elements of our pairs. By applying the canonical rotation to the second of the
two the idea is that we have isolated the key differences between the elements in a fixed frame of
reference.

Prototype Learning. Canonicalize all semantic changes into the reference frame and average all
the tangent vectors to calculate one Prototype p, where M is the total amount of sentence pair:
This is a similar technique to mean-centering (Jorgensen et al., [ 2024):

1 M
ﬁ: M ; R(nl) IOgni (UZ) ?

Prediction. To predict the semantic transformation for an unseen neutral embedding n*, the proto-
type 7 can be used to predict the transformation embedding v* by converting the prototype p with
the Riemannian exponential map and an application of the transpose of n*’s canonicalizing rotor:

'For small angular differences, first-order equivalent to simply averaging the points and re-normalizing after
the fact.
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v* = exp,- (R(n*)TP). 3)

R(n*)Tp rotates p into the tangent space at n* . Then the Riemannian exponential exp,, () takes
the tangent vector p’ and moves along the geodesic starting at n*. The vector direction is which
geodesic to follow and the length is how far along that arc to go (in radians).

4.2 DIFFERENTIATION FROM RELATED WORK

Our approach is related to recent advances in understanding linear representations in language mod-
els. Asdiscussed in Section 2.2, [Park et al.|(2025) use a “causal inner product” that respects semantic
structure in a function space using the Riesz isomorphism. However, RISE uses Riemannian geom-
etry to operate consistently on the curved manifolds. Both methods take advantage of geometric
properties, but the methods are distinctly different.

Crucially, RISE transformations exhibit commutativity: applying multiple semantic transformations
yields consistent results regardless of order (see Appendix[A). This commutativity property provides
strong evidence for the LRH, as it demonstrates that semantic transformations behave like vector
additions in the tangent space—geodesics serve as the curved-space generalization of straight lines.
The preservation of additive structure across semantic operations suggests that the geometric frame-
work captures fundamental algebraic properties of meaning composition. We discuss more about
the commutativity properties in Appendix

Furthermore, the analysis in [Park et al.| (2025)) focused on categorical relationships in the unem-
bedding space of language models; our work examines discourse-level transformations in sentence
embeddings across multiple languages. RISE effectively implements a non-Euclidean transforma-
tion that aligns with the natural curved manifold structure of the embedding space. This connection
to high-dimensional geometry provides theoretical grounding for why rotational operations can cap-
ture semantic transformations more effectively than simple vector additions, and extends the linear
subspace hypothesis to curved/geodesic subspaces.

5 EXPERIMENTAL DESIGN

5.1 DISCOURSE-LEVEL SEMANTIC-SYNTACTIC CHANGES & LANGUAGE SELECTION

We focus on three discourse-level semantic-syntactic transformations that vary in their context-
dependence:

Negation: The logical reversal of the propositional content of a statement; where the proposition is
”P” we take the negation to be not-P.” Moreso, we are negating the predicate. This transformation is
semantically precise and should exhibit high geometric consistency across contexts and languages.

Conditionality: Converting declarative statements into conditional constructions (“P” — “If P”).
This introduces modal semantics that may interact with contextual factors.

Politeness: Increasing the social formality or deference level of utterances. This is highly context-
dependent and culturally variable, making it a challenging test case for geometric consistency.

We selected seven morphologically diverse languages to ensure broad coverage of morphological,
syntactic phenomena, and resource levels: English, Spanish, Japanese, Tamil, Thai, Arabic, and
Zulu. This selection spans multiple language families (Indo-European, Sino-Tibetan, Dravidian,
Afroasiatic, Niger-Congo) and different morphological types (analytic, agglutinative, fusional). The
languages also represent different levels of language model availability and resources. The diversity
is crucial because different languages realize semantic transformations through distinct linguistic
mechanisms. For instance, negation might be expressed through: (1) Particles (i.e. English “not”);
(2) Affixes (i.e. Tamil verb-internal negation, Japanese “nai”); and (3) Auxiliary constructions (var-
ious languages). By testing across this range, we can determine whether geometric consistency
reflects universal semantic properties or is merely an artifact of particular linguistic structures.
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5.2 DATASETS, EMBEDDING MODELS, & LINEAR BASELINES

We use three datasets and three models for evaluation. We used two open-source, external datasets:
The Benchmark of Linguistic Minimal Pairs (BLiMP) (Warstadt et al., 2020) and Sentences
Involving Compositional Knowledge (SICK) (Marelli et al., 2014), and synthetically generated
one dataset, referred to as the Synthetic Multilingual dataset. For each language-transformation
combination in the Synthetic Multilingual dataset, we generated 1,000 neutral-transformed sentence
pairs using GPT-4.5 with carefully controlled prompts (see Appendix D). To ensure robust analysis,
we implemented several diversity controls (see Appendix [E).

We compare three multilingual embedding models: OpenAlI’s text-embedding-3-large (OpenAll
2024])), Beijing Academy of AI’s bge-m3 (Chen et al., [2024)), and Google’s mBERT (Devlin et al.,
2019). The text-embedding-3-large model produces 3072-dimensional vectors, bge-m3 produces
1024-dimensional vectors, and mBERT produces 768-dimensional vectors. All selected models
produce constant-length embeddings that reside on a hypersphere making them suitable for our
geometric analysis. This dimensional diversity allows us to test whether RISE effectiveness depends
on embedding dimensionality. We calculate a rotor alignment score where the scores represent
mean cosine similarity between predicted embedding vectors and the semantically transformed pair
on held-out test sets, with higher values indicating more consistent geometric structure. Table [I]
describes how the cosine similarity scores are interpreted.

We include Mean Difference Vectors (MDV), and Procrustes alignment as baseline comparisons be-
cause they represent standard linear approaches used to model transformations in embedding spaces.
MDYV test whether simple difference vectors can capture semantic or cross-lingual structure, while
Procrustes evaluates whether a single global rotation can align transformed embeddings. MDV is the
geometrically correct analogue of the Euclidean additive method for modern spherical embeddings,
providing a stronger and fairer baseline for RISE.

Cosine Similarity Range Interpretation Supporting Literature

> 0.80 Strong, consistent geometric structure Reimers & Gurevych|(2019)
0.65-0.80 Moderate, reliable structure Mikolov et al.[(2013b); |[Ethayarajh (2019)
0.50-0.65 Weak or variable structure Ethayarajh/ (2019); |Conneau et al.|(2018)
< 0.30 Inconsistent or failing transformation  |Artetxe et al.|(2018); |Conneau et al.| (2018)

Table 1: Interpretation of cosine similarity magnitudes used throughout this work. Higher values
indicate stronger geometric consistency between predicted and target embeddings. These thresholds
are stricter than prior work but remain consistent with the established interpretations in the literature.

6 RESULTS

6.1 CROSS-LANGUAGE TRANSFER COMPARISON

This section discusses the comparison of embedding models trained in one of the seven languages
and tested on all seven. The results of this section demonstrate RISE multilingual performance com-
puted by three embedding models. See Appendix [B]for comprehensive results across all phenomena
for each model.

Negation emerges as the most robust discourse-level, semantic-syntactic transformation, achieving
the highest mean rotor alignment score (0.788) across all model-language combinations with perfor-
mance ranging from 0.686 to 0.918. Figure 2] demonstrates RISE performance on negation for each
model. RISE transformations for negation are most geometrically consistent in text-embedding-
3-large. Negation’s strong performance indicates that generalizable discourse-level, semantic-
syntactic changes are captured by RISE and best applied cross-lingually in text-embedding-3-large.
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Figure 2: Embedding model heatmap cross-lingual transfer comparison on negation.

Conditionality demonstrates the highest stability and consistency across cross-language transfers,
with the lowest performance variability (0.038) and most stable individual measurements (see Ap-
pendix [B). With the second highest, mean performance (0.780), conditionality is particularly consis-
tent results across all combinations. The strong transfer seen in bge-m3 and text-embedding-3-large
suggests that conditional semantics are captured by stable geometric structure despite their modal
complexity.

Politeness exhibits the most variable geometric structure, ranking third in performance (0.762
mean) with the highest performance variability (0.060) across combinations. This variability aligns
with expectations, as politeness realizations depend heavily on cultural context and linguistic con-
ventions, making cross-language transfer inherently more challenging.

The contrast across phenomena performance reflects an interesting insight. In the results, negation
appears more robust, politeness is most variable, and conditionality sits between. This suggests em-
beddings encode logical semantic operators (negation and conditionality) with strong cross-lingual
consistency. However, pragmatic operators (politeness) are less reliable due to inherent language-
specific indicators and cultural conventions. Additionally, cross-language analysis revealed dimen-
sionality does not directly predict cross-lingual performance. Despite having lower dimensionality,
bge-m3 (1024-dim) demonstrated the least variance in cross-language performance for all phenom-
ena and languages. While text-embedding-3-large (3072-dim) showed highest cross-language per-
formance (Figure [3), mBERT (768-dim) showed strong monolingual performance, but exhibited
high variability, particularly for politeness in cross-language settings. These results highlight that
training methodology and architectural choices matter more than raw embedding dimensionality for
cross-language semantic transfer.

The cross-language analysis fully presented in Appendix [B|supports our hypothesis that discourse-
level semantic-syntactic transformations correspond to geometric operations on the embedding man-
ifold. The variation across models, preservation of linguistic relationships across languages, and
transformation patterns indicate that RISE successfully identifies semantic-syntactic transformation
on the embedding manifold. The limitations and future work are discussed further on.

RISE Cross-Language Transfer: Conditionality RISE Cross-Language Transfer: Negation RISE Cross-Language Transfer: Polite
‘text-em text. ‘text- e

t-embeddi -embedding-3-large

oss s  osm

Mean Cosine Simlarity
Mean Cosne Sty

s
Target Language Torget Language.

Figure 3: Cross-language transfer heatmaps for text-embedding-3-large showing RISE performance
across all language pairs for conditionality, negation, and politeness transformations. Darker colors
indicate higher cosine similarity between predicted and target embeddings.



Under review as a conference paper at ICLR 2026

6.2 CROSS-MODEL TRANSFER COMPARISON

To evaluate RISE prototypes’ robustness to transfer across different embedding architectures, we
conducted cross-model mapping experiments using the method developed by Morris et al.| (2020).
This approach learns statistical mappings between embedding spaces through principal component
analysis and distributional alignment, enabling transfer of learned RISE prototypes from one model
to another. We specifically examined transfer from text-embedding-3-large (3072-dimensional) to
bge-m3 (1024-dimensional), demonstrating cross-model semantic transfer across different dimen-
sionalities and training objectives. For each language pair and phenomenon, we learn RISE pro-
totypes in text-embedding-3-large using 80% of the data, map these prototypes and e; to bge-m3
space, and evaluate performance on native bge-m3 embeddings using the remaining 20%. Figure 4]
demonstrates comprehensive cross-model and cross-language transfer results.

Cross-model transfer from text-embedding-3-large to bge-m3 reveals strong language-dependent
performance. English achieves 0.80-0.82 similarity across all transformations, while other lan-
guages cluster around 0.70-0.75, and Zulu consistently scores 0.63-0.66. This 20% performance
gap persists across conditionality, negation, and politeness transformations. These results suggest
rotations can transfer between architecturally different models, but their effectiveness depends crit-
ically on source language, indicating that learned transformations are not architecture-independent.
The consistent English advantage across models suggests these embedding spaces share more robust
geometric structures for English, likely reflecting training data imbalances (Anglo-centric bias in the
composition of the model’s training data). The consistent language ranking across different seman-
tic transformations (conditionality, negation, politeness) suggests the bias is structural rather than
semantic. In conclusion, RISE successfully captures semantic patterns that perform consistently in
a cross-model comparison.

Figure 4: Cross-Model Semantic Transfer: text-embedding-3-large — bge-m3. Each cell shows
transfer performance from source language prototype (text-embedding-3-large) to target language
test set (bge-m3). Diagonal elements represent pure cross-model transfer, while off-diagonal el-
ements show combined cross-model and cross-language transfer using Morris statistical mapping
(Morris et al.}, 2020).

6.3 ENGLISH TASK-BASED COMPARISON

Our main investigation is how well RISE peforms in in multi-lingual settings. However there are
limited external datasets for evaluating the performance discourse-level, semantic-syntactic trans-
formation tasks. Due to the limited resources, we had to select the most related datasets, BLIMP
and SICK. BLiMP is LLM evaluation paired sentence dataset for major grammatical phenomena
in English, and SICK is a dataset with paired sentences with entailment, contradiction, and neutral
labels.

Table 2 summarizes RISE performance across the three datasets. The results confirm that all models
achieve strong performance, with particular strengths varying by dataset: mBERT excels on gram-
matical tasks (BLiMP) and contradiction detection (SICK), while bge-m3 shows the most consistent
performance across synthetic multilingual data. The dramatic performance gap between BLIMP
(>0.92) and SICK (0.62-0.74) suggests that RISE rotations might be capturing something more
specific than general semantic transformations.
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The high BLIMP performance indicates RISE excels at preserving grammatical/syntactic structure,
while the moderate SICK performance suggests these same rotations don’t preserve semantic re-
latedness as well. These results show that benchmark choice dramatically affects relative model
ranking. Instead, robustness depends on whether the task prioritizes cross-lingual consistency (fa-
voring bge-m3) or raw performance on specific phenomena (favoring text-embedding-3-large for
negation, mBERT for grammatical tasks).

Table 2: RISE Validation: Performance Across Three Validation Datasets. The performance is
measured with the rotor alignment score between RISE-steered embeddings and target embeddings
where bold values indicate best performance per dataset.

Model Synthetic Multilingual BLiMP Benchmark SICK Dataset
OpenAl (3072d) 0.771 0.929 0.623
BGE-M3 (1024d) 0.782 0.956 0.631
mBERT (768d) 0.709 0.961 0.736
Average 0.754 0.949 0.663

6.4 LINEAR BASELINE COMPARISONS

The full results presented in Appendix [C]compare RISE against two standard baselines, Mean Dif-
ference Vectors (MDV) and orthogonal Procrustes alignment, across the same three datasets. MDV
is not Euclidean. MDYV preserves spherical structure and naturally resembles RISE more closely
than Procrustes. This distinction is directly reflected in the results: MDV and RISE transfers best
across languages where Procrustes fails.

The strongest performance appears in monolingual English evaluation (BLiMP), while performance
drops substantially for Procrustes on semantic relatedness (SICK) shown in Table [3] This shift in
performance reflects Procrustes’ inability to identify a generalizable semantic—syntactic relationship
as expected by method. Procrustes fits a single global rotation which is too rigid for the cross-
lingual and cross model analysis In contrast, RISE maintains stable cross-lingual and cross-model
performance (e.g., App.[B] Figures 5-7), indicating that geometric operations on the manifold better
capture discourse-level semantic structure than Euclidean differences.

The MDV vs. RISE vs. Procrustes results reinforce our earlier claim that methods operating on the
curved manifold (where sentence embeddings inherently reside) perform better than Euclidean/lin-
ear methods. Most steering and probing techniques operate in linear space, and we conjecture that
this geometric mismatch helps explain why linear methods struggle to generalize. In short, Pro-
crustes fits a single global rotation which is too rigid for the cross-lingual and cross model analysis.
Geometric transformations, like RISE and MDYV, are better suited for semantic-syntactic analysis
and cross-lingual stability.

Method Monolingual Syntactic = Monolingual Semantic Cross-Language Transfer
(BLiMP) (SICK) (All Phenomena)

RISE Strong (0.97) Strong (0.84) Moderate—Strong (0.74-0.89)

MDV Strong (0.97) Strong (0.83) Moderate—Strong (0.72-0.91)

Procrustes Strong (0.99) Moderate (0.67) Failing-Weak (0.25-0.62)

Table 3: Condensed summary of baseline comparisons from Appendix C using the cosine-similarity
interpretation scale from Table [} RISE and MDV show Strong monolingual and Moderate—Strong
cross-language structure, whereas Procrustes drops to Weak or Failing consistency outside syntactic,
same-language settings.

7 DISCUSSION & FUTURE WORK

Our findings demonstrate that meaningful semantic-syntactic operations can be recovered as ge-
ometric transformations in modern language model representations. RISE successfully identifies
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consistent geometric structure for discourse-level semantic-syntactic changes, primarily for text-
embedding-3-large and negation in multilingual settings. The results demonstrating spherical meth-
ods, RISE and MDYV, out perform linear methods, Procrustes alignment, provide positive results for
extending the LRH to spherical spaces.

Evaluation benchmarks (Table [2) reveal task-dependent effectiveness. RISE achieves near-perfect
performance on syntactic acceptability (BLIMP: 0.93-0.96) but only moderate performance on se-
mantic similarity (SICK: 0.62-0.74), suggesting better alignment with grammatical rather than se-
mantic transformations. Section 6.1 shows that negation and conditionality are the most generaliz-
able discourse-level, semantic-syntactic changes captured by RISE and best applied cross-lingually
in text-embedding-3-large. Our cross-model transfer experiments expose an English-centric bias,
with English achieving 20% higher transfer scores than languages like Zulu. This English-centric
bias persists across all semantic transformations, indicating that current multilingual models encode
geometric structures that prioritize English. Future work should focus on developing more equitable
multilingual representations and investigating which language-specific geometric structures are an
inherent feature of the models.

Together these results support that RISE is most successful at identifying semantic transformation
with distinct grammatical factors, but more work is needed to justify semantic transformations in
multilingual models are universal geometric operations. First, our analysis focuses on three specific
linguistic transformation types. Future work should expand to additional semantic and pragmatic
phenomena to test the generality of geometric consistency principles. Second, while our experiments
used three diverse embedding models (text-embedding-3-large, bge-m3, and mBERT), validation
across additional architectures would strengthen claims about the universality of geometric semantic
structure. Third, the reliance on GPT-4.5 for data generation may introduce subtle biases toward
English-centric conceptualizations of semantic phenomena. Future work should incorporate more
diverse data sources and validation by native speakers.

8 CONCLUSION

The ability to learn geometric transformations for discourse changes relates to work on text gener-
ation and steering vectors (Turner et al.l [2023; [Li et al., |2023)). Our rotor-based approach, RISE,
provides a geometric framework for understanding and improving interpretability in language mod-
els. This work investigated whether discourse-level semantic-syntactic transformations in multilin-
gual embedding spaces correspond to intrinsic geometric operations, specifically rotations identified
through the RISE method. Our comprehensive evaluation across multiple baselines, models, lan-
guages, and datasets reveals a more complex reality than initially hypothesized. This work demon-
strates that modern language model representations maintain interpretable geometric structure for
some semantic-syntactic transformations, extending the promise of geometric semantics from early
word embeddings to contemporary transformer models. We show that:

1. Semantic transformations with clear syntactic mapping demonstrate the most consistent
geometric structure.

2. RISE successfully identifies semantically meaningful geometric structure in high-
dimensional embedding spaces that generalizes cross-lingually and across model archi-
tecture.

As language models continue to evolve, understanding these geometric foundations will be cru-
cial for developing more interpretable Al systems. By revealing transferable geometric structure
in semantic transformations (e.g. negation and conditionality), this work opens new possibilities
for understanding language model behavior through geometric interventions. Our work promotes
geometric methods as more appropriate approaches to cross-lingual semantic interpretation, achiev-
ing 77%-95% cross-language transfer effectiveness across typologically diverse languages. By de-
veloping RISE, we demonstrate that interpretable structure exists for some grammatically distinct
semantic transformations, providing a tools for understanding how these systems encode semantic
knowledge. While RISE remains valuable for analyzing model-specific semantic structures, claims
about universal geometric operations require substantial qualification.

10
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A MATHEMATICAL PROPERTIES OF RISE

Roadmap. This appendix has two parts. First, we state geometry preliminaries on the unit sphere,
including explicit exponential and logarithmic map formulas (Lemma [I). Second, we analyze se-
quential RISE edits: Theorem [A.T] proves that RISE transformations commute up to second order
in prototype magnitudes, and Proposition shows that each RISE update scales linearly in the
embedding dimension d. Together these results provide a rigorous foundation for RISE’s geometric
behavior and computational efficiency.

Relevance. These mathematical results support our main claims in the paper. Lemma I] provides
the explicit exponential and logarithmic map formulas that underlie RISE’s use of geodesics on the
unit hypersphere. Theorem [A.T|formalizes that sequential RISE edits commute up to second order,
showing that different discourse-level transformations can be applied in any order without signif-
icant distortion. This result highlights the local geometric consistency of RISE transformations,
rather than implying global additive steering. Proposition [A.T] shows that each RISE transforma-
tion can be applied in O(d) time and memory, demonstrating the method’s scalability to modern
high-dimensional embeddings. Together, these results provide theoretical grounding for both the
geometric consistency and the practical efficiency reported in the main text.

A.1 GEOMETRY PRELIMINARIES ON THE SPHERE

We work on the unit sphere S¥~1 € R? with the standard round metric. For n € S, the tangent
space is T},S?~! = {z € R : (z,n) = 0}. The exponential map exp,, : T,,S?~! — S%~1 is defined
for all tangent vectors, while the logarithmic map log,, is well-defined for all v € S?~! except
the antipode v = —n. For each n, fix an orthogonal map R(n) € O(d) such that R(n)n = ey,
where e; = (1,0,...,0)". When analyzing local behavior (e.g., Theorem , we take R(-) to
be any C'! (continuously differentiable) choice on a neighborhood of the geodesic segment(s) under
consideration; such a local choice always exists.

Lemma 1 (Exponential and logarithmic maps on the unit sphere). For n € S%~!, tangent vector
¢ € T,S* 1, and point v € S4=1\ {—n},

exp,, () = cos([[¢]]) n + sin([[]) HEH log,, (v) = arccos((n,v))

v—(n,v)n
[lv = (n, v)n||
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Proof. These formulas follow from the fact that geodesics on S¢~! are great circles in R¢ (unit-
radius sphere). See, e.g.,|/Absil et al.[ (2008, Sec. 5.4). O

A.2 ROTOR CONSTRUCTION AND IMPLEMENTATION

In Clifford algebra terms, a rotor is an element of Spin(d) that rotates vectors by the sandwich
product x — rz7, where 7 denotes reversion. For our purposes, we only require an orthogonal
operator R(n) € O(d) with R(n)n = e; that depends smoothly on n. One closed-form rotor
mapping n — e; (valid when n # —ey) is
1+en
rn) = —mm——,
2(1+ (e1,n))

In practice we realize this as a standard linear operator without explicit Clifford algebra structures.
Two efficient O(d) realizations are:

r(n)n7(n) = e;.

* Householder reflection: H(n) = I — % with w = n—ey, which satisfies H(n)n = e;
(determinant —1).

* Givens rotation: a 2 X 2 rotation in the plane spanned by {n, e; }, extended by the identity
elsewhere, with determinant +1.

Both satisfy the required conditions R(n)n = e; and local C'' smoothness, and are numerically
stable away from n ~ —e;. In the antipodal case (n ~ —e;) we use a two-step construction: map
n to an auxiliary orthogonal vector u L ej, then u to e;. In all cases, applying R(n) or R(n)" to a
vector costs O(d) operations.

A.3 COMMUTATIVITY PROPERTIES OF SEQUENTIAL RISE OPERATIONS

A.3.1 THE RISE SEQUENTIAL PROCEDURE

Given ng € S?~! and prototypes pa, pp € T, S

Apply A: &4 = R(no) "fa, n1 = exp,,(€a),  ApplyB: &p = R(n1) 0, na = exp,,, (€p).
A.3.2 FIRST-ORDER COMMUTATIVITY ANALYSIS

Theorem A.1 (RISE commutativity to first order). For small prototype magnitudes ||pa||, ||PB] <
I8
d(result of Ao B, result of Bo A) = O(||pall - |1PBI])-

Proof. Using Lemma expand exp,, (£4) = no+£4+0([|€a]|?). Let na = 4. Canonicalization
atny = ng + na + O(||nal/?) differs from that at ng by O(||nall).

Let Pp,—n, - TnlSd_1 — TnOSd_1 denote parallel transport along the short geodesic from n; to
ng. On the unit sphere, || Py, —n, — I|| = O(|jn1 — nol|) = O(||nall), where I denotes the identity
operator on the tangent space. With a C'* choice of R(-), |[R(n1) " — R(ng) " || = O(||n1 — nol|) =
O(||nall). Therefore,

Poyosng R(n1) 95 = R(no) 55 + O(Inal 155D
Now expand the second step:

ng = no + R(no) " (Fa +05) + O([BalllFs ) + Opall® + 155]%).
Swapping roles of A and B gives the same expansion with g4, pp reversed. Subtracting yields a
difference of order ||pal|||PB]|-

Geometric interpretation. Re-canonicalization is equivalent (to first order) to parallel-
transporting the next step’s vector back to the initial tangent space. On S~! with constant curvature,
order effects are second order.
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A.4 COMPUTATIONAL COMPLEXITY

Proposition A.1 (Per-transformation complexity). Each RISE transformation can be implemented
in O(d) time and O(d) memory:

1. Canonicalization: applying R(n) or R(n)" costs O(d).
2. Logarithmic map log,,(v): O(d) using Lemma([l]
3. Exponential map exp,,(§): O(d) using Lemmall]

4. Storage: prototype p € T.,S% 1 costs O(d).

Comparison with matrix methods. Dense d x d rotations require O(d?) time and memory. RISE
achieves equivalent updates in O(d).

Implementation note (Householder). A practical canonicalization is the Householder reflection

.
ww
Hn)=1-2——-, w=n—ey,
[[w]|?
which maps n — e in O(d). Since H (n) is areflection (det = —1), it suffices for canonicalization.

Near n = e1, one may switch to a numerically stable alternative.

B CROSS-LANGUAGE TRANSFER ANALYSIS AND RESULTS

To test whether geometric transformations generalize across languages, we conducted comprehen-
sive cross-language transfer experiments. This section reports detailed results across 3 models and 3
semantic phenomena, analyzing both quantitative performance and geometric properties of learned
transformations.

RISE Cross-Language Transfer: Conditionality RISE Cross-Language Transfer: Negation
BGE-M3 BGE-M3

RISE Cross-Language Transfer: Polite
BGE-M3

o E Y e ) Y

s ” ) 5 n ™ s n ™
Target Language Target Language ‘Target Language

Figure 5: Cross-language transfer heatmaps for bge-m3 model showing RISE performance across all
language pairs for conditionality, negation, and politeness transformations. Darker colors indicate
higher cosine similarity between predicted and target embeddings.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

RISE Cross-Language Transfer: Conditionality
‘text-embedding-3-large

RISE Cross-Language Transfer: Negation RISE Cross-Language Transfer: Polite
I 3.

s
text-embedding-3-large text-embedding-3-large

& » E & »
Target Language Torget Language

Figure 6: Cross-language transfer heatmaps for text-embedding-3-large model showing RISE per-
formance across all language pairs for conditionality, negation, and politeness transformations.
Darker colors indicate higher cosine similarity between predicted and target embeddings.

RISE Cross-Language Transfer: Conditionality RISE Cross-Language Transfer: Negation RISE Cross-Language Transfer: Polite
mBERT mBERT mBERT

Figure 7: Cross-language transfer heatmaps for mBERT model showing RISE performance across
all language pairs for conditionality, negation, and politeness transformations. Darker colors indicate
higher cosine similarity between predicted and target embeddings.

B.1 CROSS-LANGUAGE TRANSFER PERFORMANCE

The above heatmaps demonstrate comprehensive cross-language transfer results across our three
models. Training rotor prototypes on one language and evaluating on others reveals remarkable
cross-linguistic performance, particularly for negation and conditionality. Most language pairs show
transfer scores above 0.70, with negation achieving particularly strong off-diagonal performance
(most scores > 0.80).

Negation emerges as the most performant transformation, achieving the highest mean cross-
language transfer scores (0.788 across all model-language combinations) with performance ranging
from 0.686 to 0.918.

Conditionality demonstrates the highest stability and consistency across cross-language transfers,
with the lowest performance variability (0.038) and most stable individual measurements (0.056
average std deviation). Mean performance of 0.780 places it second overall.

Politeness shows more variation but still achieves substantial cross-linguistic success (most scores
> 0.70).

B.2 GEOMETRIC ANALYSIS OF CROSS-LANGUAGE CENTROIDS

Analysis of the learned centroids reveals additional insights into the geometric structure of semantic
transformations. For each phenomenon, we computed “ideal” transformation vectors by averaging
canonicalized transformed embeddings across languages.

For negation, the centroids show high similarity across languages (pairwise cosines > 0.95).

Conditionality centroids maintain high geometric consistency, supporting the observed stability in
transfer performance across all model-language combinations.
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Politeness centroids cluster more loosely but still maintain substantial similarity (pairwise cosines
> 0.87).

B.3 QUANTITATIVE CROSS-LANGUAGE ANALYSIS

Table 4: Complete Cross-Language Transfer Matrix: Statistical Summary

Model Phenomenon All Transfers Monolingual Cross-Lang Ratio
Conditionality 13.6x + 0.7 14.5x 13.5x 0.93

OpenAl (3072d) Negation 19.7x £ 1.2 20.6x 19.6x 0.95
Politeness 23.1x+1.9 25.3x 22.8% 0.90

Conditionality 13.9x £ 0.6 14.5x 13.8% 0.95

BGE-M3 (1024d) Negation 18.5x £ 0.8 19.3x 18.4% 0.95
Politeness 252x £ 1.2 26.4x% 25.1x% 0.95

Conditionality 12.8x £ 1.3 15.0x 12.5x 0.83

mBERT (768d) Negation 18.0x + 1.8 20.9% 17.5% 0.84
Politeness 20.8x +3.9 26.1x 20.0x 0.77

Statistics computed across complete 7x7 language transfer matrix (49 language pairs per phenomenon).
Values show advantage ratios + standard deviation across all language pairs.

Ratio indicates relative cross-language transfer effectiveness (Cross-Lang/Monolingual).

All models maintain strong cross-language performance (77%—-95% of monolingual performance).

Table 5: Model Architecture and Overall RISE Performance Summary

Model Dims Validation Avg Cross-Lang Avg Random Adv
OpenAl text-embedding-3-large 3072 0.774 19.0x 6.3x
BGE-M3 1024 0.790 19.8x 11.7x
mBERT 768 0.802 16.9x 11.9x

Validation Avg: Mean performance across Synthetic Multilingual, BLIMP, and SICK datasets.
Cross-Lang Avg: Mean advantage ratio across English—Spanish and Japanese—English transfers.
Random Adv: Mean advantage ratio over random baselines in monolingual English scenarios.
Bold values indicate best performance in each category.

Tables 4] and [5] provide comprehensive quantitative analysis of cross-language transfer performance.
Notably, all models maintain strong cross-language performance (77%-95% of monolingual perfor-
mance), with bge-m3 showing the most consistent cross-language effectiveness across all phenom-
ena.
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C LINEAR BASELINES COMPARISONS

This appendix reports the full results for the linear baseline comparisons requested by the reviewers.
We thank the reviewers for this valuable suggestion as these results did strengthen our paper. We
implemented two baselines: orthogonal Procrustes alignment and Mean Difference Vectors (MDV).
MDYV is not truly Euclidean: it computes mean displacements using the manifold’s geometry (via
log/exp maps), preserving spherical structure. Thus MDYV functions naturally resembles RISE more
closely than Procrustes. We evaluated them alongside RISE on three datasets: BLiMP, SICK, and
our multilingual synthetic dataset.

The strongest performance appears in monolingual English evaluation (BLiMP), while performance
drops substantially for Procrustes on semantic relatedness (SICK) shown in Table [3] This shift in
performance reflects Procrustes’ inability to identify a generalizable semantic—syntactic relationship
as expected by method. Procrustes fits a single global rotation which is too rigid for the cross-
lingual and cross model analysis In contrast, RISE maintains stable cross-lingual and cross-model
performance (e.g., App.[B] Figures 5-7), indicating that geometric operations on the manifold better
capture discourse-level semantic structure than Euclidean differences.

The MDV vs. RISE vs. Procrustes results reinforce our earlier claim that methods operating on the
curved manifold (where sentence embeddings inherently reside) perform better than Euclidean/lin-
ear methods. Most steering and probing techniques operate in linear space, and we conjecture that
this geometric mismatch helps explain why linear methods struggle to generalize.

In short, Procrustes fits a single global rotation which is too rigid for the cross-lingual and cross
model analysis. Geometric transformations, like RISE and MDYV, are better suited for semantic-
syntactic analysis and cross-lingual stability.

C.1 CROSS-LANGUAGE TRANSFER HEATMAPS

Figures [BHIO0| show cross-language cosine similarity for the three semantic transformations (Con-
ditionality, Negation, Politeness) under Mean Difference Vectors (MDV), Orthogonal Procrustes
alignment, and RISE.
MDV - Conditionality Procrustes - Conditionality RISE - Conditionality
Cross-Language Transfer Cross-Language Transfer Cross-Language Transfer
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Figure 8: Cross-language transfer for Conditionality across seven languages.

C.2 NATURAL-LANGUAGE VALIDATION: BLIMP AND SICK

Figure [TT] reports mean cosine similarity on BLIMP (syntactic) and SICK (semantic) for the three
methods.

D PROMPT TEMPLATES

We provide the exact prompt templates used to generate neutral sentences and their semantic vari-
ants. Each template is shown in monospace using the 1st1isting environment for clarity and
reproducibility.
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D.1 NEUTRAL SENTENCE GENERATION

You are a linguistics assistant. Generate ONE terse, blunt English
sentence that is politeness-neutral: it must be neither explicitly
polite nor impolite. Keep it concise (8 to 12 words), direct, and
free of polite markers such as "please", honorifics, hedging,

or apologies, yet ensure it is not rude. If the situation contains
a placeholder (e.g., "a favor", "a cultural practice"), replace

it with a concrete, plausible example.

Context category: {category}
Detailed situation: {example}

Respond with ONLY the single sentence (no explanations, no quotation
marks) .

D.2 POLITENESS REPHRASING

You are an expert translator and pragmatics specialist. Rewrite the
following sentence in {language_name} to make it more POLITE while
preserving its original meaning. Incorporate the given politeness
features.

Sentence: "{sentence}l"
Politeness features (JSON): {features_json}
Respond ONLY with a JSON object in the exact format:

{"polite": "<rewritten sentence>"}
Do NOT add any other keys, explanations, or markdown.

D.3 NEGATION

You are an expert translator and semantics specialist. Rewrite the
following sentence in {language_name} so that it expresses the
NEGATION of its original meaning while remaining natural and fluent.
Incorporate the given negation features.

Sentence: "{sentence}"
Negation features (JSON): {features_json}
Respond ONLY with a JSON object in the exact format:

{"negation": "<rewritten sentence>"}
Do NOT add any other keys, explanations, or markdown.

D.4 CONDITIONALITY

You are an expert translator and syntax/pragmatics expert. Rewrite
the following sentence in {language_name} so that the statement
becomes CONDITIONAL (i.e., it only holds under a certain condition)
while preserving overall meaning and sounding natural. Incorporate
the provided conditionality features.

Sentence: "{sentence}l"
Conditionality features (JSON): {features_json}
Respond ONLY with a JSON object in the exact format:

{"conditionality": "<rewritten sentence>"}
Do NOT add any other keys, explanations, or markdown.
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Language Strategy Type Grammatical/Lexical Devices
English Negative politeness Modal conditional, hedging,
idiomatic/proverbial, taboo
avoidance
Spanish Positive politeness Modal conditional, morpholog-
ical politeness, hedging, id-
iomatic/proverbial
Tamil Relational/Kinship po-  Morphological politeness
liteness
Thai Positive politeness; Re-  Morphological politeness,
lational/Kinship modal conditional
Arabic Positive politeness; Re- Modal conditional, morpho-
lational/Kinship logical politeness, idiomat-
ic/proverbial
Japanese Relational/Kinship po- Morphological politeness,
liteness modal conditional, hedging
Zulu Relational/Kinship po- Morphological politeness
liteness

Table 6: Typological features sampled uniformly for politeness transformations.

E DATA GENERATION METHODOLOGY

E.1 DIVERSITY CONTROLS

To guard against artefacts that might arise from narrow lexical or topical coverage we apply sev-
eral sampling diversifiers. (i) Each neutral sentence prompt draws its situation description from a
randomly chosen context category and exemplar, yielding a wide topical spread before any trans-
formation is applied. (ii) Within every language we shuffle sentence—feature assignments so that no
specific lexical field correlates with a particular transformation subtype. (iii) For each transformation
we uniformly sample property values (e.g., negation particle, politeness strategy) per language and
sentence, guaranteeing that every combination of language and subtype appears the same number
of times. (iv) After generation we remove near-duplicates and enforce a 5-25 token length window,
which empirically yields a near-uniform length distribution. Together these steps ensure that our
corpus varies in topic, syntax, and lexical choice while remaining balanced across languages and
transformation subtypes. These controls ensure that observed geometric patterns reflect semantic
properties rather than artifacts of lexical choice or sentence structure.

1. Topical Diversity: Neutral sentences were drawn from varied context categories (social
interactions, factual statements, requests, etc.)

2. Feature Balance: Transformation features (e.g., negation particles, politeness strategies)
were uniformly sampled to prevent correlation with specific lexical fields.

3. Length Normalization: Sentences were filtered to 5-25 tokens to ensure comparable em-
bedding properties.

4. Deduplication: Near-duplicate outputs were removed to prevent repeated data.

E.2 FEATURE-BASED TRANSFORMATION METHODOLOGY

We generated sentence pairs systematically by first sampling neutral sentences in seven typologically
diverse languages (English, Spanish, Tamil, Thai, Arabic, Japanese, and Zulu), and subsequently
transforming each sentence using feature-controlled prompts. Each transformation was guided by
uniformly sampling linguistic features from a predefined typological metadata set (illustrated be-
low).

The full inventories of typological properties for politeness, negation, and conditionality are pro-
vided in Tables[6Hg|
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Language Marker Position = Morphological Realization

English Clause-medial Negative particle;  negative
aux/modal; negative affix
Spanish Clause-medial; Negative particle
concord
Tamil Clause-final Negative particle; verb-internal
negation
Thai Clause-medial Negative particle
Arabic Clause-initial /  Negative particle; negative affix
medial
Japanese Clause-final Verb-internal negation
Zulu Clause-medial Negative particle

Table 7: Typological features sampled uniformly for negation transformations.

Language Clause Struc- Morphological Marking

ture
English Initial; final; em-  Explicit marker; conditional
bedded tense/aspect
Spanish Initial; final; em- Conditional mood; explicit
bedded marker
Tamil Final Explicit marker; conditional
mood
Thai Initial Explicit marker
Arabic Initial; final Conditional mood; explicit
marker
Japanese Final; embedded  Conditional mood; explicit
marker
Zulu Initial Conditional mood; explicit
marker

Table 8: Typological features sampled uniformly for conditionality transformations.

E.2.1 TRANSFORMATION PROCEDURE

For each neutral sentence, we uniformly sampled exactly one set of feature values from the typologi-
cal metadata and prompted the language model (GPT-4.5) to generate the transformed variant adher-
ing to these specifications. By uniformly sampling across multiple typological dimensions—strategy
types, morphological realizations, and pragmatic contexts—we ensured comprehensive coverage of
each language’s linguistic variability. This methodology supports cross-linguistic embedding anal-
ysis and ensures that observed embedding-space transformations reflect typological distinctions ac-
curately.

E.3 FEATURE-CONTROLLED PROMPTING

To generate each transformation in a systematic and reproducible manner, we employ a feature-
controlled prompting strategy with a large language model (LLM). Each prompt is carefully tem-
plated to specify the source language, the desired transformation type, and a set of fine-grained
feature tags that guide the model’s output. For example, a prompt might indicate the language code
(’[TA]” for Tamil), the transformation ("Politeness Rephrase”), and a particular strategy or keyword
(such as ”add honorific”) relevant to that transformation. By explicitly encoding these features, we
ensure that the LLM produces the intended variation—whether a more polite rephrasing, a negated
statement, or a conditional construction—in a consistent and transparent way.

To further guarantee balanced coverage, we maintain a metadata table that enumerates all possible
sub-types or strategies for each transformation. This enables us to stratify the sampling of transfor-
mation features across languages and sentences, ensuring that every variant type is equally repre-
sented. For instance, multiple politeness strategies (e.g., adding honorifics, using indirect language)
or different negation words ("no” vs. ’not”) are distributed uniformly across the dataset. This con-
trolled coverage is critical for fair comparisons: it prevents any language from being overrepresented
by a particular style of rephrasing or negation, and minimizes inadvertent correlations between lan-
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guage and transformation realization. Our stratified sampling approach follows established princi-
ples of controlled experimental design, providing a robust foundation for cross-lingual embedding
analysis.

All transformed sentences are generated using a single, consistent LLM—specifically, GPT-
4.5—with a temperature of 1.0 and a maximum token limit of 128 per prompt. The relatively high
temperature encourages diversity in phrasing, while the one-shot generation policy (taking the first
model output without retries or manual curation) avoids selection bias. With carefully constructed
prompts, the model reliably produces valid transformations on the first attempt, and all outputs re-
main in the target language specified by the prompt. This procedure ensures that our dataset is both
systematically varied and reproducible, supporting rigorous downstream analysis.

E.4 QUALITY CONTROL AND DEDUPLICATION

To ensure the integrity and uniqueness of our dataset, we implemented a rigorous two-level dedu-
plication process. At the first level, we removed any transformed sentence that was exactly identical
to another within the same category and language. This step addresses the possibility that the LLM
might produce identical outputs for different inputs, especially for short or formulaic sentences. At
the second level, we ensured that each (neutral, variant) pair was unique across the entire dataset. In
rare cases where two different source sentences yielded the same transformed output, we treated this
as a collision and regenerated a new variant using a slightly altered prompt. Through this process,
every neutral sentence in our dataset is paired one-to-one with three distinct transformed sentences
(one per transformation type), with no overlaps. The result is a clean set of sentence pairs, each
exhibiting a unique, transformation-driven difference.

Beyond deduplication, we applied a suite of diversity controls to guard against artefacts arising from
narrow lexical or topical coverage. Each neutral sentence prompt was drawn from a wide range of
context categories and exemplars, ensuring topical breadth before any transformation was applied.
Within each language, we shuffled sentence—feature assignments so that no specific lexical field cor-
related with a particular transformation subtype. For each transformation, we uniformly sampled
property values (such as negation particles or politeness strategies) per language and sentence, guar-
anteeing that every combination of language and subtype appeared the same number of times. After
generation, we removed near-duplicates and enforced a 5-25 token length window, which empiri-
cally yielded a near-uniform length distribution. Together, these steps ensure that our corpus varies
in topic, syntax, and lexical choice while remaining balanced across languages and transformation
subtypes, providing a robust foundation for subsequent embedding analysis.

E.5 EMBEDDING GENERATION

With our dataset of neutral and transformed sentences in hand, we next obtain high-dimensional vec-
tor representations using a state-of-the-art multilingual sentence encoder. Specifically, we employ
OpenATl’s text-embedding—-3-large model, which produces 3072-dimensional embeddings
aligned semantically across more than 90 languagesE] All embeddings are generated in a frozen
(non-fine-tuned) setting, with a single API call per sentence. According to the model card, each
sentence embedding is computed by mean-pooling the token-level hidden states, followed by layer
normalization. This means that every token—including short functional items like negation parti-
cles—contributes proportionally to the final vector.

Our approach assumes that all sentence embeddings reside in a shared semantic space where linear
structure is meaningful. We adopt the perspective that this space forms a latent manifold encoding
universal semantic features, as hypothesized by [Jha et al.| (2025). In this framework, certain direc-
tions in the embedding space correspond to specific attributes, such as politeness or negation. If
sentence transformations truly correspond to adding or subtracting a semantic attribute, we expect
the difference vector (variant minus source) to be relatively consistent across examples. This aligns
with the “universal geometry for embeddings” framework, in which multilingual embeddings from
different models or languages can be brought to a common representation where semantic differ-
ences are captured by geometric translations. While our work stays within a single encoder’s space,
we leverage a similar idea: analyzing whether the transformation “rotors” (difference vectors) clus-

https://platform.openai.com/docs/guides/embeddings
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ter for similar transformations across languages. This methodology sets the stage for validating
whether these quasi-linear transformations indeed behave like translations in a Riemannian seman-
tic space (Jha et al.| 2025), which we explore in the next section via rotor-based analysis of the
embedding differences.

It is important to note that applying a single global rotation or principal component analysis (PCA)
can distort other dimensions and is not adaptive to individual vectors. Because the base embedding
is already a mean across tokens, edits that insert or replace a handful of tokens translate to small but
coherent rotations of the global vector—precisely the kind of local, content-independent shift that
our rotor method is designed to capture.

E.6 FINAL DATASET STATISTICS

The resulting corpus comprises 1,000 neutral sentences in each of the seven languages, totaling
7,000 examples. For English neutral sentences, the mean token length is 9.1 tokens (with a median
of 9.0 tokens), with token counts ranging from 3 to 12 tokens and an average character length of
54.4 characters. This distribution confirms that our generation process produced concise, natural
sentences suitable for semantic transformation analysis across languages and transformation types.

To further validate the diversity and balance of our dataset, we analyzed the distribution of sentence
lengths per language, which reveals broadly similar profiles with a peak around 10-15 tokens. Addi-
tionally, we examined the distribution of word frequencies, confirming a typical long-tail distribution
in each language. These statistics affirm that our corpus is both balanced and rich in content, pro-
viding a solid empirical foundation for the cross-lingual transformation analysis in the subsequent
sections.

F DOWNSTREAM TASK ANALYSIS

As requested by reviewers, we completed a downstream classification analysis. Due to time con-
straints, we focused on a single well-defined task: detecting negation in the English subset of the
Synthetic Multilingual dataset. We evaluated how well a classifier trained on MDV-transformed
and RISE-transformed sentences performed on a held-out test set of 1919 unpaired sentences (961
with negation, 958 without). The test set was generated with the same specifications described in

Appendix [D] & [E]

Now, both methods perform well on this task. MDV achieves strong recall (92.1%) and overall
accuracy (87.2%), showing that even a simple mean displacement vector captures meaningful geo-
metric regularities in the transformation. Yet, RISE yields a stronger downstream performance and
outperforms MDV across all metrics (93.0% accuracy, 92.1% precision, 94.0% recall, and 93.0%
F1). The positive results of both methods reinforces the broader claim that spherical, non-linear
techniques are effective tools for capturing semantic-syntactic transformations in high-dimensional
embedding spaces.

Method Accuracy Precision Recall F1

MDV 0.872 0.840 0921 0.878
RISE 0.930 0.921 0.940  0.930

Table 9: Downstream negation classification performance for MDV and RISE transformations.

G LLM USAGE DISCLOSURE

Large language models (LLMs) were used to assist with multiple aspects of this research, includ-
ing: ideation, writing, programming, and implementation of experimental code, and identification
of related work and literature. All LLM-generated content, code, and references were subject to
human review, testing, and verification to ensure accuracy, functionality, and relevance. Any claims,
results, experimental implementations, and citations presented in this work have been reviewed by
the authors. The authors take responsibility for all content, including any errors or inaccuracies that
may remain despite our review process.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

H RISE vs RANDOM BASELINE COMPARISONS

This section presents comprehensive comparisons between RISE and random baseline prototypes to
validate that RISE learns meaningful semantic directions rather than benefiting from arbitrary vector
orientations.

The following figures show detailed heatmaps comparing RISE performance against random pro-
totypes of equivalent magnitude across all language pairs and phenomena. Each comparison uses
10,000 random trials to ensure statistical robustness.

Figure 12: RISE vs Random Baseline Comparisons across Language Transfer Scenarios.

Top: English monolingual analysis showing RISE performance vs random prototypes for all three
models and phenomena.

Middle: English prototype — Spanish target cross-language transfer demonstrating maintained ad-
vantages over random baselines.

Bottom: Japanese prototype — English target transfer confirming universal semantic patterns across
diverse language pairs. All comparisons use 10,000 random trials for statistical robustness.
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Figure [12] demonstrates the baseline validity of RISE by comparing it against random prototypes
across multiple language transfer scenarios. The consistent and substantial advantages (ranging
from 5.1x to 26.2x) across all models and phenomena provide crucial validation that RISE learns
meaningful semantic directions rather than exploiting statistical artifacts. Notably, cross-language
transfers often maintain or even exceed monolingual performance relative to random baselines, con-
firming that RISE captures universal semantic patterns that generalize across language boundaries.
Overall, RISE analyses show that embedding models encode some transformations as universal
operators, but others remain highly culture- and resource-dependent. Future research should re-
fine evaluation benchmarks to account for phenomenon-specific variability and investigate training
regimes that promote balanced universality without sacrificing discriminative capacity.

Figure 13: RISE vs Random Baseline Comparison for text-embedding-3-large. Top row shows
RISE performance, bottom row shows random baseline performance (averaged over 10,000 trials).
The dramatic performance gap demonstrates that RISE learns meaningful semantic directions rather
than benefiting from arbitrary vector orientations.
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Figure 14: RISE vs Random Baseline Comparison for bge-m3. Top row shows RISE performance,
bottom row shows random baseline performance (averaged over 10,000 trials). bge-m3 shows re-
markably consistent RISE performance across all phenomena and language pairs, with random base-
lines consistently near zero.
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H.1 PHENOMENON-SPECIFIC PERFORMANCE VS RANDOM BASELINES
These baseline comparisons provide crucial validation that RISE’s strong performance stems from

learning meaningful semantic transformations rather than exploiting statistical artifacts or benefiting
from arbitrary vector orientations in high-dimensional spaces.
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Figure 15: RISE vs Random Baseline Comparison for mBERT. Top row shows RISE performance,
bottom row shows random baseline performance (averaged over 10,000 trials). mBERT demon-
strates strong RISE performance for specific phenomena with clear superiority over random base-
lines across all conditions.
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Figure 16: Phenomenon-specific RISE performance vs random baselines across all three models.
Shows mean normalized improvement scores for conditionality, negation, and politeness compared
to random prototype baselines. Error bars represent standard error of random baseline (10,000
trials). All RISE performance significantly exceeds random baselines, with advantage ratios ranging
from 5.1x to 15.2x%.
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Table 10: RISE vs Random Prototype Performance: English Monolingual Analysis

Model Phenomenon RISE Perf Random Baseline Adyv Ratio
Conditionality 0.463 0.057 £ 0.0003 8.1x
OpenAl (3072d) Negation 0.210 0.041 £ 0.0002 5.1%
Politeness 0.181 0.031 + 0.0002 5.8x
Conditionality 0.610 0.057 £ 0.0003 10.7x
BGE-M3 (1024d) Negation 0.391 0.041 £+ 0.0002 9.5%
Politeness 0.461 0.031 £ 0.0002 14.9x
Conditionality 0.625 0.057 £ 0.0003 11.0x
mBERT (768d) Negation 0.624 0.041 £ 0.0002 15.2x
Politeness 0.294 0.031 + 0.0002 9.5x%

Random baseline computed from 10,000 random prototypes of equivalent magnitude.
Standard errors shown for random baselines (+SEM).

Adv Ratio = RISE Performance / Random Baseline.

All models show significant advantages over random baselines (5.1x—15.2x).

Table 11: Cross-Language Transfer Performance: RISE vs Random Baselines

Transfer Scenario OpenAl (3072d) BGE-M3 (1024d) mBERT (768d)
English Prototype — Spanish Target

Conditionality 14.4x 14.2x 13.8%

Negation 19.6x 19.0x 19.0x

Politeness 25.2x 25.5% 21.6x
Japanese Prototype — English Target

Conditionality 13.7x 14.7x 11.7x

Negation 17.6x 18.9x 16.7x

Politeness 23.5% 26.2x 18.6x

Cross-Language Average 19.0x 19.8x 16.9x

Monolingual Average 6.3x 11.7x 11.9%

Values show advantage ratios (RISE Performance / Random Baseline).

Cross-language transfer often outperforms monolingual scenarios.

Demonstrates universal semantic patterns learned by RISE across language boundaries.
Random baselines consistent across all language pairs (language-agnostic).

Table 12: Statistical Robustness: Random Baseline Validation

Phenomenon Random Mean Standard Error 95% Confidence Interval

Conditionality 0.0567 0.000276 [0.0562, 0.0572]
Negation 0.0412 0.000200 [0.0408, 0.0416]
Politeness 0.0315 0.000154 [0.0312, 0.0318]

Random baselines computed from 10,000 independent trials per phenomenon.
Ultra-precise standard errors (4—6 decimal places) ensure statistical robustness.
Confidence intervals demonstrate consistent, language-agnostic random performance.
All RISE advantages are statistically significant (p < 0.001).
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Table 13: Phenomenon-Specific RISE Performance Analysis

Phenomenon Complexity Avg Performance Consistency
Politeness High 0.312 High (0 =0.134)
Conditionality Medium 0.566 Very High (o = 0.081)
Negation Low 0.408 High (0 =0.207)

Complexity based on linguistic theory and cross-language variation.

Avg Performance computed across all models and language pairs.

Consistency measured by standard deviation across models (lower = more consistent).
Conditionality shows highest consistency, suggesting universal semantic patterns.

H.2 DETAILED BASELINE COMPARISON ANALYSIS
Tables [IOHI3] demonstrate the statistical robustness of our findings. All RISE advantages are sta-
tistically significant (p < 0.001) with ultra-precise standard errors from 10,000 independent trials.

Cross-language transfer often outperforms monolingual scenarios, demonstrating universal semantic
patterns learned by RISE across language boundaries.
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