

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MAPPING SEMANTIC & SYNTACTIC RELATIONSHIPS WITH GEOMETRIC ROTATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Understanding how language and embedding models encode semantic relationships is fundamental to model interpretability. While early word embeddings exhibited intuitive vector arithmetic (“king” - “man” + “woman” = “queen”), modern high-dimensional text representations lack straightforward interpretable geometric properties. We introduce Rotor-Invariant Shift Estimation (RISE), a geometric approach that represents **semantic-syntactic** transformations as consistent rotational operations in embedding space, leveraging the manifold structure of modern language representations. RISE operations have the ability to operate across both languages and models with high transfer of performance, suggesting the existence of analogous cross-lingual geometric structure. **We compare and evaluate RISE using two baseline methods**, three embedding models, three datasets, and seven morphologically diverse languages in five major language groups. Our results demonstrate that RISE consistently maps discourse-level **semantic-syntactic** transformations with distinct grammatical features (e.g., negation and conditionality) across languages and models. This work provides the first systematic demonstration that discourse-level **semantic-syntactic** transformations correspond to consistent geometric operations in multilingual embedding spaces, empirically supporting the Linear Representation Hypothesis at the sentence level.

## 1 INTRODUCTION

Understanding how contemporary language models encode and manipulate semantic knowledge has become a central challenge in deep learning interpretability. The ability to interpret (probe) and control (steer) these internal representations is fundamental to developing trustworthy, safe AI systems. In word2vec (Mikolov et al., 2013a) and similar models, semantic relationships could be captured with simple vector arithmetic in the embedding space (i.e. the famous “king” - “man” + “woman” = “queen” analogy). This **linear** transparency offered both interpretability and controllability, enabling researchers to navigate semantic space through intuitive mathematical operations.

However, this clarity has largely disappeared in modern transformer-based language models. While large language models (LLMs) have achieved remarkable performance across diverse language tasks (Achiam et al., 2023; Touvron et al., 2023), their internal workings remain largely opaque (Elhage et al., 2022; Rogers et al., 2021), limiting our ability to understand, predict, and control their behavior in critical applications. Unlike the interpretable, **linear** directions found in static word embeddings, the geometry of modern text representations lacks the same straightforward correspondence to semantic operations. This opacity poses significant challenges for understanding how these models organize linguistic knowledge and limits our ability to **interpret** their behavior in principled ways.

The central challenge lies in identifying which geometric operations correspond to meaningful semantic transformations in these complex representation spaces. Current approaches often rely on task-specific *probes* (Rogers et al., 2021; Hewitt & Manning, 2019; Alain & Bengio, 2017) or *steering vectors* (Zou et al., 2023; Wang et al., 2023; Turner et al., 2023; Merullo et al., 2023; Trager et al., 2023), but lack generalizable frameworks for systematically mapping semantic relationships to geometric structure. Without such principled methods, we cannot determine whether the geometric regularities that made static word embeddings interpretable persist in modern language or embedding models, albeit in more complex forms.

We address this gap by introducing Rotor-Invariant Shift Estimation (RISE), a geometric approach that represents **semantic-syntactic** transformations as consistent rotational operations in embedding space, leveraging the manifold structure of modern language representations. RISE is a rotor-based alignment method that identifies cross-lingual and cross-model geometric transformations. Specifically, we demonstrate how RISE identifies three discourse-level semantic-syntactic changes (negation, conditionality, and politeness) across seven morphologically distinct languages and generalizes across three different embedding model architectures. **The goal of this study is to develop a framework for identifying discourse-level semantic-syntactic changes that correspond to consistent geometric transformations, and determine how well these transformations can be cross-lingually mapped across model architectures.** Our approach treats semantic-syntactic transformations as rotations on the unit hypersphere where sentence embeddings reside, enabling us to align different linguistic contexts into a common geometric framework. This paper presents evidence that certain **semantic-syntactic** transformations exhibit generalizable geometric structure while others vary based on context-dependence, extending the linear representation hypothesis to cross-lingual discourse. **We demonstrate this through empirical experiments across two baselines, three models, and seven languages – revealing that negation, conditionality, and politeness transformations can be captured as consistent rotational operations.**

## 2 RELATED WORK

### 2.1 LINEAR REPRESENTATION HYPOTHESIS

The linear representation hypothesis (LRH), or linear subspace hypothesis, has emerged as a promising theory for bridging the interpretability gap for embeddings (Mikolov et al., 2013b; Levy & Goldberg, 2014; Bolukbasi et al., 2016; Ethayarajh, 2019; Park et al., 2024; 2025). The LRH posits that semantic concepts are encoded as linear structures within embedding spaces, meaning linear algebraic operations can be used for interpretation and control (e.g., “king” - “man” + “woman” = “queen” presented by Mikolov et al. (2013b)). Park et al. (2024) formalized the LRH by unifying three distinct notions of linearity that had developed independently across the literature:

1. word2vec-like embedding differences (Arora et al., 2016; Mimno & Thompson, 2017; Ethayarajh et al., 2018; Reif et al., 2019; Li et al., 2020; Hewitt & Manning, 2019; Chen et al., 2021; Chang et al., 2022; Jiang et al., 2023; Mitchell & Lapata, 2008; Baroni & Zamparelli, 2010)
2. logistic probing (Alain & Bengio, 2017; Kim et al., 2018; nostalgebraist, 2020; Belinkov, 2022; Li et al., 2022; Geva et al., 2022; Nanda et al., 2023)
3. steering vectors (Wang et al., 2023; Turner et al., 2023; Merullo et al., 2023; Trager et al., 2023)

Park et al. (2024) theoretical framework addresses a critical gap by synthesizing the first formalization of what “linear representation” means. However, while the LRH has been validated primarily within individual languages, there remains a significant gap in understanding how **semantic-syntactic** transformations generalize across linguistic contexts. Most existing work examines static concept encodings (Park et al., 2025; 2024) rather than dynamic **semantic-syntactic** transformations that reflect real-world language use. **Our work is the first to extend the LRH to multilingual contexts and embedding models, though the linear representations we consider are not Euclidean lines but geodesic arcs.**

### 2.2 LINEAR & GEOMETRIC REPRESENTATION TECHNIQUES

The geometric foundations established by Park et al. (2024) are crucial for understanding when and why linear algebraic operations succeed in capturing semantic relationships. With traditional Euclidean geometry, it is hard to accept that arbitrary dot products or cosine similarities have semantic meaning. Moreover, Park et al. (2024) demonstrated that the choice of inner product fundamentally determines the interpretability of geometric operations, providing principled foundations for representation analysis. Our work builds directly on recent advances in understanding linear representations in language models (Park et al., 2024; Li et al., 2023). RISE implements a technique that respects semantic structure, similar to the geometric framework developed by Park et al. (2024).

108 While previous work focused primarily on categorical concepts and word-level transformations,  
 109 RISE extends our understanding to sentence-level, discourse-level transformations through cross-  
 110 lingual and cross-model analysis using seven morphologically diverse languages.  
 111

### 112 2.2.1 STEERING VECTORS & EMBEDDING MODELS 113

114 The practical applications of linear representation theory have been explored through steering vector  
 115 techniques. Turner et al. (2023), Liu et al. (2023), and Zou et al. (2023) demonstrated that targeted  
 116 modifications to internal, latent space representations can systematically alter model behavior with-  
 117 out parameter updates. The majority of steering vector research (Im & Li, 2025; Rimsky et al.,  
 118 2023; Zou et al., 2023; Li et al., 2023) is connected to activation steering, only investigating the im-  
 119 pact of steering vectors in the activation, hidden, and/or latent layer of an LLM. Recently, Pham &  
 120 Nguyen (2024) introduced Householder Pseudo-Rotation (HPR), which addresses activation norm  
 121 consistency issues in LLM behavioral modification through direction-magnitude decomposition and  
 122 pseudo-rotational transformations. **Building on the insight that geometric approaches outperform**  
 123 **additive methods, our work extends geometric reasoning to semantic transformations in embedding**  
 124 **space through Riemannian operations. To our knowledge, there is no work investigating the applica-**  
 125 **tion of steering vectors to embedding models – only completion models. This study extends steering**  
 126 **principles to embedding models on manifolds, not activation-level steering.**

### 127 2.3 CHALLENGES IN GENERALIZATION AND RELIABILITY 128

129 Current knowledge about the generalization properties of linear representations reveals significant  
 130 limitations. The taxonomy of generalization research in natural language processing (NLP) (Hup-  
 131 kes et al., 2023) provides a framework for evaluating robustness, but systematic applications to  
 132 representation-based techniques (i.e., steering, probing, or embedding manipulation) have been lim-  
 133 ited. Recent empirical studies have revealed that steering vector effectiveness varies substantially  
 134 across different inputs and contexts (Tan et al., 2024). Secondly, the relationship between local  
 135 and global linearity represents a particularly critical gap in current understanding. There have been  
 136 numerous demonstrations of local linear behavior within specific domains or prompt formats, but  
 137 achieving global linearity (generalizable to multiple model architectures with different pre-training)  
 138 as required by strong versions of the LRH, remains challenging. While many studies demonstrate  
 139 impressive results in controlled settings, they often fail to address the robustness needed in practi-  
 140 cal applications. This study contributes to the literature gap by presenting a robust framework for  
 141 geometrically identifying discourse-level **semantic-syntactic** changes across typologically diverse  
 142 languages and model architectures.

## 143 3 THEORETICAL MOTIVATION 144

145 The limitations identified **in the related literature** point toward a fundamental theoretical chal-  
 146 lenge: existing approaches operate in Euclidean/**linear** space while modern embeddings live on  
 147 curved manifolds (**spherical space**). This geometric mismatch may explain why steering vector  
 148 **research shows** inconsistent cross-context performance and why linear methods struggle with robust  
 149 generalization. We **hypothesize** that discourse-level **semantic-syntactic** transformations correspond  
 150 to intrinsic geometric operations on the embedding manifold, rather than fixed directions derived  
 151 from Euclidean computations. If semantic transformations can be characterized as consistent rota-  
 152 tional operations on the unit hypersphere where embeddings reside, **this would provide theoretical**  
 153 **support for the extension of the Linear Representation Hypothesis in curved spaces (through**  
 154 **geodesics) and cross-lingual interpretability.** Testing this hypothesis requires robust evaluation  
 155 across diverse languages and embedding architectures to determine whether geometric consistency  
 156 reflects universal semantic properties or model-specific artifacts.

## 157 4 ROTOR-INVARIANT SHIFT ESTIMATION (RISE) 158

160 Modern sentence embeddings from multilingual encoders reside approximately on a unit hyper-  
 161 sphere in high-dimensional space when the training objective enforces or fixes the  $\ell_2$ -norm con-  
 162 straints (Hirota et al., 2020), the embeddings are normalized to unit length (Reimers & Gurevych,

162 2019), or the model is designed to produce isotropic embeddings (Li et al., 2020; Ethayarajh, 2019).  
 163 Local semantic transformations (e.g., negation, politeness, conditionality) can be understood as ro-  
 164 tational displacements on this sphere. The key insight is that these displacements can be interpreted  
 165 by aligning different contexts to a common geometric frame.

166 For any neutral sentence embedding  $n \in \mathbb{S}^{d-1}$  and its semantically transformed variant  $v \in \mathbb{S}^{d-1}$ ,  
 167 we can compute an orthogonal transformation (Clifford-algebraic rotor)  $R(n)$  that aligns  $n$  to a  
 168 canonical reference direction  $e_1$ . By applying this same transformation to  $v$ , we express the semantic  
 169 change in a standardized coordinate system:

170

171

$$\xi = R(n) \log_n(v), \quad (1)$$

172

173

174 where  $\log_n(v)$  denotes the Riemannian logarithm that computes the tangent vector from  $n$  to  $v$  on  
 175 the hypersphere, and  $R(n)$  aligns the tangent vector to the canonical reference direction. Normalized  
 176 embeddings reside on a unit hypersphere, where geodesics define the shortest paths between points,  
 177 preserving the manifold’s intrinsic geometry rather than imposing Euclidean distance measures.  
 178 These geodesic paths represent the natural notion of “line” in the embedding space, as they define  
 179 the shortest distance between two points on the surface. By working with geodesics, we ensure our  
 180 semantic transformations are consistent with the manifold structure. To “flatten” out the curved arc  
 181 to a straight vector, the Riemannian logarithmic map  $\log_n(v)$  produces the vector from  $n$  to  $v$  on a  
 182 tangent plane at  $n$ . By operating within the tangent space at  $n$ , geodesic differences can be treated  
 183 as ordinary vectors.

184

185

#### 4.1 THE ROTOR ALIGNMENT ALGORITHM

186

RISE proceeds in three steps [illustrated in Figure 1](#):

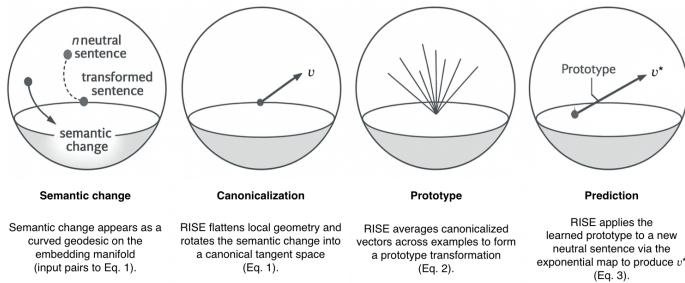


Figure 1: [RISE step-by-step illustration](#).

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

**Canonicalization.** For each neutral–transformed sentence pair  $(n_i, v_i)$ , compute a rotor  $R(n_i)$  that  
 maps  $n_i$  to the reference direction  $e_1$ . We interpret canonicalization as controlling for the semantics  
 present in the first elements of our pairs. By applying the canonical rotation to the second of the  
 two the idea is that we have isolated the key differences between the elements in a fixed frame of  
 reference.

**Prototype Learning.** Canonicalize all semantic changes into the reference frame and average all  
 the tangent vectors to calculate one Prototype  $\vec{p}$ , where  $M$  is the total amount of sentence pairs<sup>1</sup>.  
 This is a similar technique to mean-centering (Jorgensen et al., 2024):

$$\vec{p} = \frac{1}{M} \sum_{i=1}^M R(n_i) \log_{n_i}(v_i). \quad (2)$$

**Prediction.** To predict the semantic transformation for an unseen neutral embedding  $n^*$ , the proto-  
 type  $\vec{p}$  can be used to predict the transformation embedding  $v^*$  by converting the prototype  $\vec{p}$  with  
 the Riemannian exponential map and an application of the transpose of  $n^*$ ’s canonicalizing rotor:

<sup>1</sup>For small angular differences, first-order equivalent to simply averaging the points and re-normalizing after the fact.

216

217

218 
$$v^* = \exp_{n^*}(R(n^*)^\top \vec{p}). \quad (3)$$

219

220  $R(n^*)^\top \vec{p}$  rotates  $\vec{p}$  into the tangent space at  $n^*$ . Then the Riemannian exponential  $\exp_{n^*}()$  takes  
221 the tangent vector  $\vec{p}$  and moves along the geodesic starting at  $n^*$ . The vector direction is which  
222 geodesic to follow and the length is how far along that arc to go (in radians).

223

## 224 4.2 DIFFERENTIATION FROM RELATED WORK

225

226 Our approach is related to recent advances in understanding linear representations in language  
227 models. As discussed in Section 2.2, Park et al. (2025) use a “causal inner product” that respects semantic  
228 structure in a function space using the Riesz isomorphism. However, RISE uses Riemannian geom-  
229 etry to operate consistently on the curved manifolds. Both methods take advantage of geometric  
230 properties, but the methods are distinctly different.

231

232 Crucially, RISE transformations exhibit commutativity: applying multiple semantic transformations  
233 yields consistent results regardless of order (see Appendix A). This commutativity property provides  
234 strong evidence for the LRH, as it demonstrates that semantic transformations behave like vector  
235 additions in the tangent space—geodesics serve as the curved-space generalization of straight lines.  
236 The preservation of additive structure across semantic operations suggests that the geometric frame-  
237 work captures fundamental algebraic properties of meaning composition. We discuss more about  
238 the commutativity properties in Appendix A.

239

240 Furthermore, the analysis in Park et al. (2025) focused on categorical relationships in the unem-  
241 bedding space of language models; our work examines discourse-level transformations in sentence  
242 embeddings across multiple languages. RISE effectively implements a non-Euclidean transforma-  
243 tion that aligns with the natural curved manifold structure of the embedding space. This connection  
244 to high-dimensional geometry provides theoretical grounding for why rotational operations can cap-  
245 ture semantic transformations more effectively than simple vector additions, and extends the linear  
246 subspace hypothesis to curved/geodesic subspaces.

247

248

## 5 EXPERIMENTAL DESIGN

249

## 250 5.1 DISCOURSE-LEVEL SEMANTIC-SYNTACTIC CHANGES &amp; LANGUAGE SELECTION

251

252 We focus on three discourse-level semantic-syntactic transformations that vary in their context-  
253 dependence:

254

255 **Negation:** The logical reversal of the propositional content of a statement; where the proposition is  
256 “P” we take the negation to be “not-P.” Moreso, we are negating the predicate. This transformation is  
257 semantically precise and should exhibit high geometric consistency across contexts and languages.

258

259 **Conditionality:** Converting declarative statements into conditional constructions (“P”  $\rightarrow$  “If P”).  
260 This introduces modal semantics that may interact with contextual factors.

261

262 **Politeness:** Increasing the social formality or deference level of utterances. This is highly context-  
263 dependent and culturally variable, making it a challenging test case for geometric consistency.

264

265 We selected seven morphologically diverse languages to ensure broad coverage of morphological,  
266 syntactic phenomena, and resource levels: English, Spanish, Japanese, Tamil, Thai, Arabic, and  
267 Zulu. This selection spans multiple language families (Indo-European, Sino-Tibetan, Dravidian,  
268 Afroasiatic, Niger-Congo) and different morphological types (analytic, agglutinative, fusional). The  
269 languages also represent different levels of language model availability and resources. The diversity  
reflects universal semantic properties or is merely an artifact of particular linguistic structures.

270 5.2 DATASETS, EMBEDDING MODELS, & LINEAR BASELINES  
271272 We use three datasets and three models for evaluation. We used two open-source, external datasets:  
273 **The Benchmark of Linguistic Minimal Pairs (BLiMP)** (Warstadt et al., 2020) and **Sentences**  
274 **Involving Compositional Knowledge (SICK)** (Marelli et al., 2014), and synthetically generated  
275 one dataset, referred to as the **Synthetic Multilingual** dataset. For each language-transformation  
276 combination in the Synthetic Multilingual dataset, we generated 1,000 neutral-transformed sentence  
277 pairs using GPT-4.5 with carefully controlled prompts (see Appendix D). To ensure robust analysis,  
278 we implemented several diversity controls (see Appendix E).279 We compare three multilingual embedding models: OpenAI’s **text-embedding-3-large** (OpenAI,  
280 2024), Beijing Academy of AI’s **bge-m3** (Chen et al., 2024), and Google’s **mBERT** (Devlin et al.,  
281 2019). The text-embedding-3-large model produces 3072-dimensional vectors, bge-m3 produces  
282 1024-dimensional vectors, and mBERT produces 768-dimensional vectors. All selected models  
283 produce constant-length embeddings that reside on a hypersphere making them suitable for our  
284 geometric analysis. This dimensional diversity allows us to test whether RISE effectiveness depends  
285 on embedding dimensionality. We calculate a *rotor alignment score* where the scores represent  
286 mean cosine similarity between predicted embedding vectors and the semantically transformed pair  
287 on held-out test sets, with higher values indicating more consistent geometric structure. **Table 1**  
288 describes how the cosine similarity scores are interpreted.289 We include Mean Difference Vectors (MDV), and Procrustes alignment as baseline comparisons be-  
290 cause they represent standard linear approaches used to model transformations in embedding spaces.  
291 MDV test whether simple difference vectors can capture semantic or cross-lingual structure, while  
292 Procrustes evaluates whether a single global rotation can align transformed embeddings. MDV is the  
293 geometrically correct analogue of the Euclidean additive method for modern spherical embeddings,  
294 providing a stronger and fairer baseline for RISE.

| Cosine Similarity Range | Interpretation                         | Supporting Literature                        |
|-------------------------|----------------------------------------|----------------------------------------------|
| $\geq 0.80$             | Strong, consistent geometric structure | Reimers & Gurevych (2019)                    |
| 0.65–0.80               | Moderate, reliable structure           | Mikolov et al. (2013b); Ethayarajh (2019)    |
| 0.50–0.65               | Weak or variable structure             | Ethayarajh (2019); Conneau et al. (2018)     |
| $< 0.30$                | Inconsistent or failing transformation | Artetxe et al. (2018); Conneau et al. (2018) |

302 Table 1: Interpretation of cosine similarity magnitudes used throughout this work. Higher values  
303 indicate stronger geometric consistency between predicted and target embeddings. These thresholds  
304 are stricter than prior work but remain consistent with the established interpretations in the literature.  
305306 6 RESULTS  
307308 312 6.1 CROSS-LANGUAGE TRANSFER COMPARISON  
309310 This section discusses the comparison of **embedding** models trained in one of the seven languages  
311 and tested on all seven. The results of this section demonstrate RISE multilingual performance com-  
312 puted by three embedding models. See Appendix B for comprehensive results across all phenomena  
313 for each model.314 **Negation** emerges as the most robust discourse-level, **semantic-syntactic** transformation, achieving  
315 the highest mean rotor alignment score (**0.788**) across all model-language combinations with per-  
316 formance ranging from 0.686 to 0.918. Figure 2 demonstrates RISE performance on negation for each  
317 model. RISE transformations for negation are most geometrically consistent in text-embedding-  
318 3-large. Negation’s strong performance indicates that generalizable discourse-level, **semantic-**  
319 **syntactic** changes are captured by RISE and best applied cross-lingually in text-embedding-3-large.

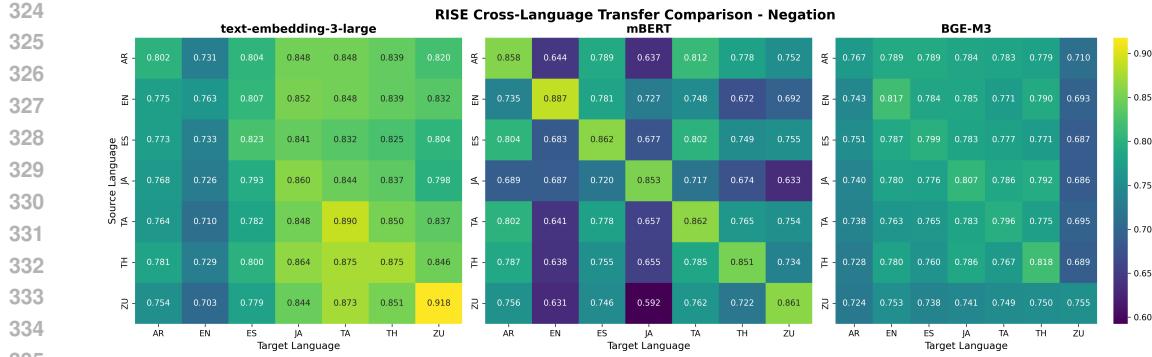


Figure 2: Embedding model heatmap cross-lingual transfer comparison on negation.

**Conditionality** demonstrates the highest stability and consistency across cross-language transfers, with the lowest performance variability (0.038) and most stable individual measurements (see Appendix B). With the second highest, mean performance (**0.780**), conditionality is particularly consistent results across all combinations. The strong transfer seen in bge-m3 and text-embedding-3-large suggests that conditional semantics are captured by stable geometric structure despite their modal complexity.

**Politeness** exhibits the most variable geometric structure, ranking third in performance (**0.762 mean**) with the highest performance variability (0.060) across combinations. This variability aligns with expectations, as politeness realizations depend heavily on cultural context and linguistic conventions, making cross-language transfer inherently more challenging.

The contrast across phenomena performance reflects an interesting insight. In the results, negation appears more robust, politeness is most variable, and conditionality sits between. This suggests embeddings encode logical semantic operators (negation and conditionality) with strong cross-lingual consistency. However, pragmatic operators (politeness) are less reliable due to inherent language-specific indicators and cultural conventions. Additionally, cross-language analysis revealed dimensionality does not directly predict cross-lingual performance. Despite having lower dimensionality, bge-m3 (1024-dim) demonstrated the least variance in cross-language performance for all phenomena and languages. While text-embedding-3-large (3072-dim) showed highest cross-language performance (Figure 3), mBERT (768-dim) showed strong monolingual performance, but exhibited high variability, particularly for politeness in cross-language settings. These results highlight that training methodology and architectural choices matter more than raw embedding dimensionality for cross-language semantic transfer.

The cross-language analysis fully presented in Appendix B supports our hypothesis that discourse-level semantic-syntactic transformations correspond to geometric operations on the embedding manifold. The variation across models, preservation of linguistic relationships across languages, and transformation patterns indicate that RISE successfully identifies semantic-syntactic transformation on the embedding manifold. The limitations and future work are discussed further on.

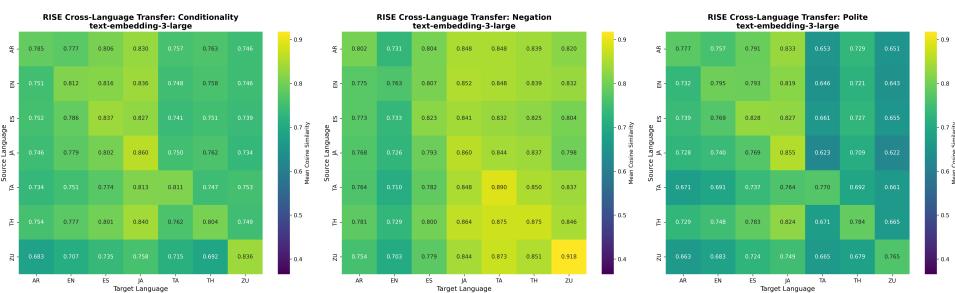


Figure 3: Cross-language transfer heatmaps for text-embedding-3-large showing RISE performance across all language pairs for conditionality, negation, and politeness transformations. Darker colors indicate higher cosine similarity between predicted and target embeddings.

378  
379

## 6.2 CROSS-MODEL TRANSFER COMPARISON

380  
381  
382  
383  
384  
385  
386  
387  
388  
389

To evaluate RISE prototypes’ robustness to transfer across different embedding architectures, we conducted cross-model mapping experiments using the method developed by Morris et al. (2020). This approach learns statistical mappings between embedding spaces through principal component analysis and distributional alignment, enabling transfer of learned RISE prototypes from one model to another. We specifically examined transfer from text-embedding-3-large (3072-dimensional) to bge-m3 (1024-dimensional), demonstrating cross-model semantic transfer across different dimensionalities and training objectives. For each language pair and phenomenon, we learn RISE prototypes in text-embedding-3-large using 80% of the data, map these prototypes and  $e_1$  to bge-m3 space, and evaluate performance on native bge-m3 embeddings using the remaining 20%. Figure 4 demonstrates comprehensive cross-model and cross-language transfer results.

390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400

Cross-model transfer from text-embedding-3-large to bge-m3 reveals strong language-dependent performance. English achieves 0.80-0.82 similarity across all transformations, while other languages cluster around 0.70-0.75, and Zulu consistently scores 0.63-0.66. This 20% performance gap persists across conditionality, negation, and politeness transformations. These results suggest rotations can transfer between architecturally different models, but their effectiveness depends critically on source language, indicating that learned transformations are not architecture-independent. The consistent English advantage across models suggests these embedding spaces share more robust geometric structures for English, likely reflecting training data imbalances (Anglo-centric bias in the composition of the model’s training data). The consistent language ranking across different semantic transformations (conditionality, negation, politeness) suggests the bias is structural rather than semantic. In conclusion, RISE successfully captures semantic patterns that perform consistently in a cross-model comparison.

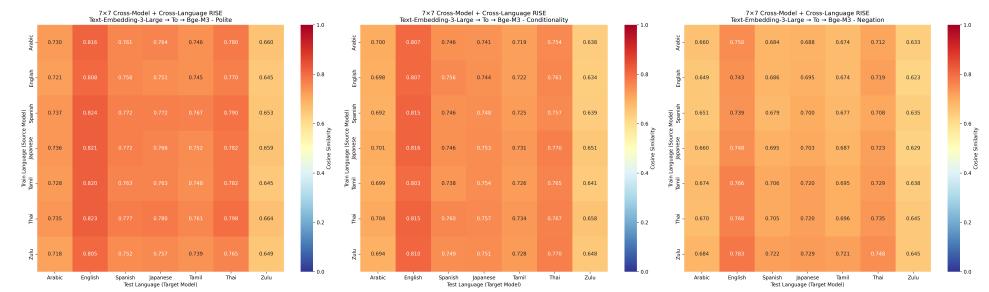
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411

Figure 4: Cross-Model Semantic Transfer: text-embedding-3-large  $\rightarrow$  bge-m3. Each cell shows transfer performance from source language prototype (text-embedding-3-large) to target language test set (bge-m3). Diagonal elements represent pure cross-model transfer, while off-diagonal elements show combined cross-model and cross-language transfer using Morris statistical mapping (Morris et al., 2020).

412  
413  
414  
415  
416

## 6.3 ENGLISH TASK-BASED COMPARISON

417  
418  
419  
420  
421  
422  
423  
424  
425  
426

Our main investigation is how well RISE performs in in multi-lingual settings. However there are limited external datasets for evaluating the performance discourse-level, semantic-syntactic transformation tasks. Due to the limited resources, we had to select the most related datasets, BLiMP and SICK. BLiMP is LLM evaluation paired sentence dataset for major grammatical phenomena in English, and SICK is a dataset with paired sentences with entailment, contradiction, and neutral labels.

427  
428  
429  
430  
431

Table 2 summarizes RISE performance across the three datasets. The results confirm that all models achieve strong performance, with particular strengths varying by dataset: mBERT excels on grammatical tasks (BLiMP) and contradiction detection (SICK), while bge-m3 shows the most consistent performance across synthetic multilingual data. The dramatic performance gap between BLiMP ( $>0.92$ ) and SICK (0.62-0.74) suggests that RISE rotations might be capturing something more specific than general semantic transformations.

The high BLIMP performance indicates RISE excels at preserving grammatical/syntactic structure, while the moderate SICK performance suggests these same rotations don’t preserve semantic relatedness as well. These results show that benchmark choice dramatically affects relative model ranking. Instead, robustness depends on whether the task prioritizes cross-lingual consistency (favoring bge-m3) or raw performance on specific phenomena (favoring text-embedding-3-large for negation, mBERT for grammatical tasks).

Table 2: RISE Validation: Performance Across Three Validation Datasets. The performance is measured with the rotor alignment score between RISE-steered embeddings and target embeddings where bold values indicate best performance per dataset.

| Model          | Synthetic Multilingual | BLiMP Benchmark | SICK Dataset |
|----------------|------------------------|-----------------|--------------|
| OpenAI (3072d) | 0.771                  | 0.929           | 0.623        |
| BGE-M3 (1024d) | <b>0.782</b>           | 0.956           | 0.631        |
| mBERT (768d)   | 0.709                  | <b>0.961</b>    | <b>0.736</b> |
| <b>Average</b> | 0.754                  | 0.949           | 0.663        |

#### 6.4 LINEAR BASELINE COMPARISONS

The full results presented in Appendix C compare RISE against two standard baselines, Mean Difference Vectors (MDV) and orthogonal Procrustes alignment, across the same three datasets. MDV is not Euclidean. MDV preserves spherical structure and naturally resembles RISE more closely than Procrustes. This distinction is directly reflected in the results: MDV and RISE transfers best across languages where Procrustes fails.

The strongest performance appears in monolingual English evaluation (BLiMP), while performance drops substantially for Procrustes on semantic relatedness (SICK) shown in Table 3. This shift in performance reflects Procrustes’ inability to identify a generalizable semantic–syntactic relationship as expected by method. Procrustes fits a single global rotation which is too rigid for the cross-lingual and cross model analysis. In contrast, RISE maintains stable cross-lingual and cross-model performance (e.g., App. B. Figures 5–7), indicating that geometric operations on the manifold better capture discourse-level semantic structure than Euclidean differences.

The MDV vs. RISE vs. Procrustes results reinforce our earlier claim that methods operating on the curved manifold (where sentence embeddings inherently reside) perform better than Euclidean/linear methods. Most steering and probing techniques operate in linear space, and we conjecture that this geometric mismatch helps explain why linear methods struggle to generalize. In short, Procrustes fits a single global rotation which is too rigid for the cross-lingual and cross model analysis. Geometric transformations, like RISE and MDV, are better suited for semantic-syntactic analysis and cross-lingual stability.

| Method     | Monolingual Syntactic<br>(BLiMP) | Monolingual Semantic<br>(SICK) | Cross-Language Transfer<br>(All Phenomena) |
|------------|----------------------------------|--------------------------------|--------------------------------------------|
| RISE       | <b>Strong</b> (0.97)             | <b>Strong</b> (0.84)           | <b>Moderate–Strong</b> (0.74–0.89)         |
| MDV        | <b>Strong</b> (0.97)             | <b>Strong</b> (0.83)           | <b>Moderate–Strong</b> (0.72–0.91)         |
| Procrustes | <b>Strong</b> (0.99)             | Moderate (0.67)                | <b>Failing–Weak</b> (0.25–0.62)            |

Table 3: Condensed summary of baseline comparisons from Appendix C using the cosine-similarity interpretation scale from Table 1. RISE and MDV show Strong monolingual and Moderate–Strong cross-language structure, whereas Procrustes drops to Weak or Failing consistency outside syntactic, same-language settings.

## 7 DISCUSSION & FUTURE WORK

Our findings demonstrate that meaningful semantic-syntactic operations can be recovered as geometric transformations in modern language model representations. RISE successfully identifies

486 consistent geometric structure for discourse-level semantic-syntactic changes, primarily for text-  
 487 embedding-3-large and negation in multilingual settings. The results demonstrating spherical meth-  
 488 ods, RISE and MDV, out perform linear methods, Procrustes alignment, provide positive results for  
 489 extending the LRH to spherical spaces.

490 Evaluation benchmarks (Table 2) reveal task-dependent effectiveness. RISE achieves near-perfect  
 491 performance on syntactic acceptability (BLIMP: 0.93-0.96) but only moderate performance on se-  
 492 mantic similarity (SICK: 0.62-0.74), suggesting better alignment with grammatical rather than se-  
 493 mantic transformations. Section 6.1 shows that negation and conditionality are the most generaliz-  
 494 able discourse-level, semantic-syntactic changes captured by RISE and best applied cross-lingually  
 495 in text-embedding-3-large. Our cross-model transfer experiments expose an English-centric bias,  
 496 with English achieving 20% higher transfer scores than languages like Zulu. This English-centric  
 497 bias persists across all semantic transformations, indicating that current multilingual models encode  
 498 geometric structures that prioritize English. Future work should focus on developing more equitable  
 499 multilingual representations and investigating which language-specific geometric structures are an  
 500 inherent feature of the models.

501 Together these results support that RISE is most successful at identifying semantic transformation  
 502 with distinct grammatical factors, but more work is needed to justify semantic transformations in  
 503 multilingual models are universal geometric operations. First, our analysis focuses on three specific  
 504 linguistic transformation types. Future work should expand to additional semantic and pragmatic  
 505 phenomena to test the generality of geometric consistency principles. Second, while our experiments  
 506 used three diverse embedding models (text-embedding-3-large, bge-m3, and mBERT), validation  
 507 across additional architectures would strengthen claims about the universality of geometric semantic  
 508 structure. Third, the reliance on GPT-4.5 for data generation may introduce subtle biases toward  
 509 English-centric conceptualizations of semantic phenomena. Future work should incorporate more  
 510 diverse data sources and validation by native speakers.

## 512 8 CONCLUSION

514 The ability to learn geometric transformations for discourse changes relates to work on text gener-  
 515 ation and steering vectors (Turner et al., 2023; Li et al., 2023). Our rotor-based approach, RISE,  
 516 provides a geometric framework for understanding and improving interpretability in language mod-  
 517 els. This work investigated whether discourse-level semantic-syntactic transformations in multilin-  
 518 gual embedding spaces correspond to intrinsic geometric operations, specifically rotations identified  
 519 through the RISE method. Our comprehensive evaluation across multiple baselines, models, lan-  
 520 guages, and datasets reveals a more complex reality than initially hypothesized. This work demon-  
 521 strates that modern language model representations maintain interpretable geometric structure for  
 522 some semantic-syntactic transformations, extending the promise of geometric semantics from early  
 523 word embeddings to contemporary transformer models. We show that:

- 525 1. Semantic transformations with clear syntactic mapping demonstrate the most consistent  
 526 geometric structure.
- 527 2. RISE successfully identifies semantically meaningful geometric structure in high-  
 528 dimensional embedding spaces that generalizes cross-lingually and across model archi-  
 529 tecture.

531 As language models continue to evolve, understanding these geometric foundations will be cru-  
 532 cial for developing more interpretable AI systems. By revealing transferable geometric structure  
 533 in semantic transformations (e.g. negation and conditionality), this work opens new possibilities  
 534 for understanding language model behavior through geometric interventions. Our work promotes  
 535 geometric methods as more appropriate approaches to cross-lingual semantic interpretation, achiev-  
 536 ing 77%-95% cross-language transfer effectiveness across typologically diverse languages. By de-  
 537 veloping RISE, we demonstrate that interpretable structure exists for some grammatically distinct  
 538 semantic transformations, providing a tools for understanding how these systems encode semantic  
 539 knowledge. While RISE remains valuable for analyzing model-specific semantic structures, claims  
 about universal geometric operations require substantial qualification.

## 540 REFERENCES

541  
 542 P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton  
 543 University Press, 2008.

544 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
 545 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
 546 report. *arXiv preprint arXiv:2303.08774*, 2023.

547 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classi-  
 548 fier probes. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=ryF7rTqgl>.

550  
 551 Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model  
 552 approach to pmi-based word embeddings. *Transactions of the Association for Computational  
 553 Linguistics*, 4:385–399, 2016.

554 Mikel Artetxe, Gorka Labaka, and Eneko Agirre. A robust self-learning method for fully unsuper-  
 555 vised cross-lingual mappings of word embeddings. In *Proceedings of the 56th Annual Meeting of  
 556 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 789–798, 2018.

557  
 558 Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices: Representing  
 559 adjective-noun constructions in semantic space. In Hang Li and Lluís Márquez (eds.), *Pro-  
 560 ceedings of the 2010 Conference on Empirical Methods in Natural Language Processing*, pp.  
 561 1183–1193, Cambridge, MA, October 2010. Association for Computational Linguistics. URL  
 562 <https://aclanthology.org/D10-1115/>.

563 Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. *Computational  
 564 Linguistics*, 48(1):207–219, 2022.

565 Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man is to  
 566 computer programmer as woman is to homemaker? debiasing word embeddings. In *Advances in  
 567 Neural Information Processing Systems*, 2016.

568  
 569 Tyler Chang, Zhuowen Tu, and Benjamin Bergen. The geometry of multilingual language model  
 570 representations. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-  
 571 guage Processing*, pp. 119–136, 2022.

572 Boli Chen, Yao Fu, Guangwei Xu, Pengjun Xie, Chuanqi Tan, Mosha Chen, and Liping Jing. Prob-  
 573 ing bert in hyperbolic spaces. *arXiv preprint arXiv:2104.03869*, 2021.

574  
 575 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:  
 576 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-  
 577 tillation. *arXiv preprint arXiv:2402.03216*, 2024. URL <https://arxiv.org/abs/2402.03216>.

578  
 579 Alexis Conneau, German Kruszewski, Guillaume Lample, Loïc Barrault, and Marco Baroni. What  
 580 you can cram into a single vector: Probing sentence embeddings for linguistic properties. In  
 581 *ACL 2018-56th Annual Meeting of the Association for Computational Linguistics*, volume 1, pp.  
 582 2126–2136. Association for Computational Linguistics, 2018.

583 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 584 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of  
 585 the North American Chapter of the Association for Computational Linguistics: Human Language  
 586 Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186. Association for Computational  
 587 Linguistics, 2019.

588  
 589 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,  
 590 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-  
 591 tion. *arXiv preprint arXiv:2209.10652*, 2022.

592 Kawin Ethayarajh. How contextual are contextualized word representations? comparing the ge-  
 593 ometry of bert, elmo, and gpt-2 embeddings. In *Proceedings of EMNLP-IJCNLP*, pp. 55–65,  
 594 2019.

594 Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word analogies. *arXiv preprint arXiv:1810.04882*, 2018.

595

596

597 Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build

598 predictions by promoting concepts in the vocabulary space. In *Proceedings of the Conference on*

599 *Empirical Methods in Natural Language Processing*, pp. 30–45, 2022.

600 John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representa-

601 tions. In *Proceedings of the 2019 Conference of the North American Chapter of the Association*

602 *for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-*

603 *pers)*, pp. 4129–4138, 2019.

604 Wataru Hirota, Masahiro Tanaka, Sho Takase, Naoaki Okazaki, and Kentaro Inui. Emu: Enhancing

605 multilingual sentence embeddings with l2 constrained softmax loss. In *Proceedings of the AAAI*

606 *Conference on Artificial Intelligence*, volume 34, pp. 7904–7911, 2020. doi: 10.1609/aaai.v34i05.

607 6301.

608

609 Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, Mikel Artetxe, Yanai Elazar, Tiago Pimentel,

610 Christos Christodoulopoulos, Karim Lasri, Naomi Saphra, Arabella Sinclair, et al. A taxonomy

611 and review of generalization research in nlp. *Nature Machine Intelligence*, 5(10):1161–1174,

612 2023.

613 Shawn Im and Yixuan Li. A unified understanding and evaluation of steering methods. *arXiv*

614 *preprint arXiv:2502.02716*, 2025.

615 Rishi Jha, Collin Zhang, Vitaly Shmatikov, and John X. Morris. Harnessing the universal geometry

616 of embeddings. *arXiv preprint arXiv:2505.12540*, 2025. URL <https://arxiv.org/abs/2505.12540>.

617

618 Yibo Jiang, Bryon Aragam, and Victor Veitch. Uncovering meanings of embeddings via partial

619 orthogonality. *arXiv preprint arXiv:2310.17611*, 2023.

620

621 Ole Jorgensen, Dylan Cope, Nandi Schoots, and Murray Shanahan. Improving activation steering

622 in language models with mean-centring. In *Responsible Language Models Workshop at AAAI-24*,

623 2024.

624

625 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.

626 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors

627 (tcav). In *International Conference on Machine Learning*, pp. 2668–2677. PMLR, 2018.

628

629 Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representations.

630 In *Proceedings of CoNLL*, pp. 171–180, 2014.

631

632 Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. On the sentence em-

633 beddings from pre-trained language models. In *Proceedings of the 2020 Conference on Empirical*

634 *Methods in Natural Language Processing (EMNLP)*, pp. 9119–9130, 2020.

635

636 Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-

637 berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.

638 *arXiv preprint arXiv:2210.13382*, 2022.

639

640 Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time

641 intervention: Eliciting truthful answers from a language model. *Advances in Neural Information*

642 *Processing Systems*, 36:41451–41530, 2023.

643

644 Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning

645 more effective and controllable through latent space steering. *arXiv preprint arXiv:2311.06668*,

646 2023.

647

648 Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto

649 Zamparelli. A sick cure for the evaluation of compositional distributional semantic models.

650 In *Proceedings of the Ninth International Conference on Language Resources and Evaluation*

651 (*LREC’14*), pp. 216–223, Reykjavik, Iceland, 2014. European Language Resources Association

652 (ELRA).

648 Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-  
 649 style vector arithmetic. *arXiv preprint arXiv:2305.16130*, 2023.  
 650

651 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-  
 652 tations in vector space. In *Proceedings of Workshop at ICLR*, 2013a.  
 653

654 Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space  
 655 word representations. In *Proceedings of the 2013 Conference of the North American Chapter  
 656 of the Association for Computational Linguistics: Human Language Technologies*, pp. 746–751,  
 657 2013b.  
 658

659 David Mimno and Laure Thompson. The strange geometry of skip-gram with negative sampling. In  
 660 *Conference on Empirical Methods in Natural Language Processing*, 2017.  
 661

662 Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition. In Johanna D.  
 663 Moore, Simone Teufel, James Allan, and Sadaoki Furui (eds.), *Proceedings of ACL-08: HLT*,  
 664 pp. 236–244, Columbus, Ohio, June 2008. Association for Computational Linguistics. URL  
 665 <https://aclanthology.org/P08-1028/>.  
 666

667 John X Morris, Rishi Bommasani, Aakanksha Naik, and Alexander M Rush. The linearity of cross-  
 668 lingual word embeddings: A geometric analysis. In *Proceedings of the 2020 Conference on  
 669 Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7955–7964. Association for  
 670 Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.641.  
 671

672 Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models  
 673 of self-supervised sequence models. *arXiv preprint arXiv:2309.00941*, 2023.  
 674

675 nostalgebraist. Interpreting gpt: the logit lens, 2020. URL <https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>.  
 676

677 OpenAI. text-embedding-3-large. OpenAI API models announcement, 2024. announced January 25,  
 678 2024; 3072 dimensions, improved performance on MIRACL and MTEB benchmarks. Available  
 679 from OpenAI API documentation.  
 680

681 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry  
 682 of large language models. In *International Conference on Machine Learning*, 2024.  
 683

684 Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and hi-  
 685 erarchical concepts in large language models. In *The Thirteenth International Conference on  
 686 Learning Representations*, 2025.  
 687

688 Van-Cuong Pham and Thien Nguyen. Householder pseudo-rotation: A novel approach to activation  
 689 editing in llms with direction-magnitude perspective. In *Proceedings of the 2024 Conference on  
 690 Empirical Methods in Natural Language Processing*, pp. 13737–13751, 2024.  
 691

692 Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam Pearce, and  
 693 Been Kim. Visualizing and measuring the geometry of bert. In *Advances in Neural Information  
 694 Processing Systems*, volume 32, 2019.  
 695

696 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-  
 697 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language  
 698 Processing (EMNLP)*, pp. 3980–3990, 2019. doi: 10.18653/v1/D19-1410.  
 699

700 Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt Turner.  
 701 Steering llama 2 via contrastive activation addition. *arXiv preprint arXiv:2312.06681*, 2023.  
 702

703 Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about  
 704 how bert works. *Transactions of the association for computational linguistics*, 8:842–866, 2021.  
 705

706 Daniel Tan, David Chanin, Aengus Lynch, Brooks Paige, Dimitrios Kanoulas, Adrià Garriga-  
 707 Alonso, and Robert Kirk. Analysing the generalisation and reliability of steering vectors. *Ad-  
 708 vances in Neural Information Processing Systems*, 37:139179–139212, 2024.  
 709

702 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 703 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 704 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

705 Matthew Trager, Pramuditha Perera, Luca Zancato, Alessandro Achille, Parminder Bhatia, and Ste-  
 706 fano Soatto. Linear spaces of meanings: compositional structures in vision-language models. In  
 707 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15395–15404,  
 708 2023.

710 Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte Mac-  
 711 Diarmid. Activation addition: Steering language models without optimization. *arXiv preprint*  
 712 *arXiv:2308.10248*, 2023.

713 Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch. Concept algebra for (score-based) text-  
 714 controlled generative models. In *Advances in Neural Information Processing Systems*, volume 36,  
 715 pp. 35331–35349, 2023.

717 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and  
 718 Samuel R. Bowman. Blimp: The benchmark of linguistic minimal pairs for english. *Transactions*  
 719 *of the Association for Computational Linguistics*, 8:377–392, 2020. doi: 10.1162/tacl\_a\_00321.  
 720 URL [https://doi.org/10.1162/tacl\\_a\\_00321](https://doi.org/10.1162/tacl_a_00321).

721 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,  
 722 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A  
 723 top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

## 725 A MATHEMATICAL PROPERTIES OF RISE

728 **Roadmap.** This appendix has two parts. First, we state geometry preliminaries on the unit sphere,  
 729 including explicit exponential and logarithmic map formulas (Lemma 1). Second, we analyze se-  
 730 quential RISE edits: Theorem A.1 proves that RISE transformations commute up to second order  
 731 in prototype magnitudes, and Proposition A.1 shows that each RISE update scales linearly in the  
 732 embedding dimension  $d$ . Together these results provide a rigorous foundation for RISE’s geometric  
 733 behavior and computational efficiency.

734 **Relevance.** These mathematical results support our main claims in the paper. Lemma 1 provides  
 735 the explicit exponential and logarithmic map formulas that underlie RISE’s use of geodesics on the  
 736 unit hypersphere. Theorem A.1 formalizes that sequential RISE edits commute up to second order,  
 737 showing that different discourse-level transformations can be applied in any order without signif-  
 738 icant distortion. This result highlights the local geometric consistency of RISE transformations,  
 739 rather than implying global additive steering. Proposition A.1 shows that each RISE transforma-  
 740 tion can be applied in  $O(d)$  time and memory, demonstrating the method’s scalability to modern  
 741 high-dimensional embeddings. Together, these results provide theoretical grounding for both the  
 742 geometric consistency and the practical efficiency reported in the main text.

### 743 A.1 GEOMETRY PRELIMINARIES ON THE SPHERE

746 We work on the unit sphere  $\mathbb{S}^{d-1} \subset \mathbb{R}^d$  with the standard round metric. For  $n \in \mathbb{S}^{d-1}$ , the tangent  
 747 space is  $T_n \mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : \langle x, n \rangle = 0\}$ . The exponential map  $\exp_n : T_n \mathbb{S}^{d-1} \rightarrow \mathbb{S}^{d-1}$  is defined  
 748 for all tangent vectors, while the logarithmic map  $\log_n$  is well-defined for all  $v \in \mathbb{S}^{d-1}$  except  
 749 the antipode  $v = -n$ . For each  $n$ , fix an orthogonal map  $R(n) \in O(d)$  such that  $R(n)n = e_1$ ,  
 750 where  $e_1 = (1, 0, \dots, 0)^\top$ . When analyzing local behavior (e.g., Theorem A.1), we take  $R(\cdot)$  to  
 751 be any  $C^1$  (continuously differentiable) choice on a neighborhood of the geodesic segment(s) under  
 752 consideration; such a local choice always exists.

753 **Lemma 1** (Exponential and logarithmic maps on the unit sphere). *For  $n \in \mathbb{S}^{d-1}$ , tangent vector  
 754  $\xi \in T_n \mathbb{S}^{d-1}$ , and point  $v \in \mathbb{S}^{d-1} \setminus \{-n\}$ ,*

$$755 \exp_n(\xi) = \cos(\|\xi\|) n + \sin(\|\xi\|) \frac{\xi}{\|\xi\|}, \quad \log_n(v) = \arccos(\langle n, v \rangle) \frac{v - \langle n, v \rangle n}{\|v - \langle n, v \rangle n\|}.$$

756 *Proof.* These formulas follow from the fact that geodesics on  $\mathbb{S}^{d-1}$  are great circles in  $\mathbb{R}^d$  (unit-  
 757 radius sphere). See, e.g., Absil et al. (2008, Sec. 5.4).  $\square$   
 758

759 A.2 ROTOR CONSTRUCTION AND IMPLEMENTATION  
 760

761 In Clifford algebra terms, a *rotor* is an element of  $\text{Spin}(d)$  that rotates vectors by the sandwich  
 762 product  $x \mapsto rx\tilde{r}$ , where  $\tilde{r}$  denotes reversion. For our purposes, we only require an orthogonal  
 763 operator  $R(n) \in O(d)$  with  $R(n)n = e_1$  that depends smoothly on  $n$ . One closed-form rotor  
 764 mapping  $n \mapsto e_1$  (valid when  $n \neq -e_1$ ) is

$$765 \quad r(n) = \frac{1 + e_1 n}{\sqrt{2(1 + \langle e_1, n \rangle)}}, \quad r(n) n \tilde{r}(n) = e_1.$$

766

767 In practice we realize this as a standard linear operator without explicit Clifford algebra structures.  
 768 Two efficient  $O(d)$  realizations are:

769

- 770 • **Householder reflection:**  $H(n) = I - 2 \frac{ww^\top}{\|w\|^2}$  with  $w = n - e_1$ , which satisfies  $H(n)n = e_1$   
 771 (determinant  $-1$ ).
- 772 • **Givens rotation:** a  $2 \times 2$  rotation in the plane spanned by  $\{n, e_1\}$ , extended by the identity  
 773 elsewhere, with determinant  $+1$ .

774

775 Both satisfy the required conditions  $R(n)n = e_1$  and local  $C^1$  smoothness, and are numerically  
 776 stable away from  $n \approx -e_1$ . In the antipodal case ( $n \approx -e_1$ ) we use a two-step construction: map  
 777  $n$  to an auxiliary orthogonal vector  $u \perp e_1$ , then  $u$  to  $e_1$ . In all cases, applying  $R(n)$  or  $R(n)^\top$  to a  
 778 vector costs  $O(d)$  operations.

780 A.3 COMMUTATIVITY PROPERTIES OF SEQUENTIAL RISE OPERATIONS  
 781

782 A.3.1 THE RISE SEQUENTIAL PROCEDURE  
 783

784 Given  $n_0 \in \mathbb{S}^{d-1}$  and prototypes  $\vec{p}_A, \vec{p}_B \in T_{e_1} \mathbb{S}^{d-1}$ :

785 **Apply A:**  $\xi_A = R(n_0)^\top \vec{p}_A$ ,  $n_1 = \exp_{n_0}(\xi_A)$ , **Apply B:**  $\xi_B = R(n_1)^\top \vec{p}_B$ ,  $n_2 = \exp_{n_1}(\xi_B)$ .

786 A.3.2 FIRST-ORDER COMMUTATIVITY ANALYSIS  
 787

788 **Theorem A.1** (RISE commutativity to first order). *For small prototype magnitudes  $\|\vec{p}_A\|, \|\vec{p}_B\| \ll 1$ ,*

$$789 \quad d(\text{result of } A \circ B, \text{ result of } B \circ A) = O(\|\vec{p}_A\| \cdot \|\vec{p}_B\|).$$

790

791 *Proof.* Using Lemma 1, expand  $\exp_{n_0}(\xi_A) = n_0 + \xi_A + O(\|\xi_A\|^2)$ . Let  $\eta_A = \xi_A$ . Canonicalization  
 792 at  $n_1 = n_0 + \eta_A + O(\|\eta_A\|^2)$  differs from that at  $n_0$  by  $O(\|\eta_A\|)$ .

793 Let  $P_{n_1 \rightarrow n_0} : T_{n_1} \mathbb{S}^{d-1} \rightarrow T_{n_0} \mathbb{S}^{d-1}$  denote parallel transport along the short geodesic from  $n_1$  to  
 794  $n_0$ . On the unit sphere,  $\|P_{n_1 \rightarrow n_0} - I\| = O(\|n_1 - n_0\|) = O(\|\eta_A\|)$ , where  $I$  denotes the identity  
 795 operator on the tangent space. With a  $C^1$  choice of  $R(\cdot)$ ,  $\|R(n_1)^\top - R(n_0)^\top\| = O(\|n_1 - n_0\|) =$   
 796  $O(\|\eta_A\|)$ . Therefore,

$$797 \quad P_{n_1 \rightarrow n_0} R(n_1)^\top \vec{p}_B = R(n_0)^\top \vec{p}_B + O(\|\eta_A\| \|\vec{p}_B\|).$$

798

800 Now expand the second step:  
 801

$$802 \quad n_2 = n_0 + R(n_0)^\top (\vec{p}_A + \vec{p}_B) + O(\|\vec{p}_A\| \|\vec{p}_B\|) + O(\|\vec{p}_A\|^2 + \|\vec{p}_B\|^2).$$

803

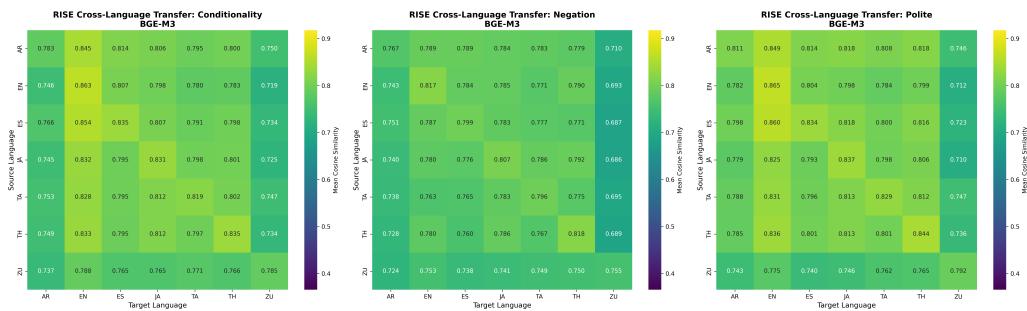
804 Swapping roles of  $A$  and  $B$  gives the same expansion with  $\vec{p}_A, \vec{p}_B$  reversed. Subtracting yields a  
 805 difference of order  $\|\vec{p}_A\| \|\vec{p}_B\|$ .  $\square$   
 806

807 **Geometric interpretation.** Re-canonicalization is equivalent (to first order) to parallel-  
 808 transporting the next step’s vector back to the initial tangent space. On  $\mathbb{S}^{d-1}$  with constant curvature,  
 809 order effects are second order.

810 A.4 COMPUTATIONAL COMPLEXITY  
811812 **Proposition A.1** (Per-transformation complexity). *Each RISE transformation can be implemented  
813 in  $O(d)$  time and  $O(d)$  memory:*  
814815 

- 816 1. *Canonicalization: applying  $R(n)$  or  $R(n)^\top$  costs  $O(d)$ .*
  
817 2. *Logarithmic map  $\log_n(v)$ :  $O(d)$  using Lemma 1.*  
818 3. *Exponential map  $\exp_n(\xi)$ :  $O(d)$  using Lemma 1.*  
819 4. *Storage: prototype  $\hat{p} \in T_{e_1} \mathbb{S}^{d-1}$  costs  $O(d)$ .*
  
820  
821  
822  
823  
824  
825826 **Comparison with matrix methods.** Dense  $d \times d$  rotations require  $O(d^2)$  time and memory. RISE  
827 achieves equivalent updates in  $O(d)$ .  
828829 **Implementation note (Householder).** A practical canonicalization is the Householder reflection  
830

831 
$$H(n) = I - 2 \frac{ww^\top}{\|w\|^2}, \quad w = n - e_1,$$
  
832  
833

834 which maps  $n \mapsto e_1$  in  $O(d)$ . Since  $H(n)$  is a reflection ( $\det = -1$ ), it suffices for canonicalization.  
835 Near  $n \approx e_1$ , one may switch to a numerically stable alternative.  
836837 B CROSS-LANGUAGE TRANSFER ANALYSIS AND RESULTS  
838839 To test whether geometric transformations generalize across languages, we conducted comprehensive  
840 cross-language transfer experiments. This section reports detailed results across 3 models and 3  
841 semantic phenomena, analyzing both quantitative performance and geometric properties of learned  
842 transformations.  
843844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
Figure 5: Cross-language transfer heatmaps for bge-m3 model showing RISE performance across all language pairs for conditionality, negation, and politeness transformations. Darker colors indicate higher cosine similarity between predicted and target embeddings.

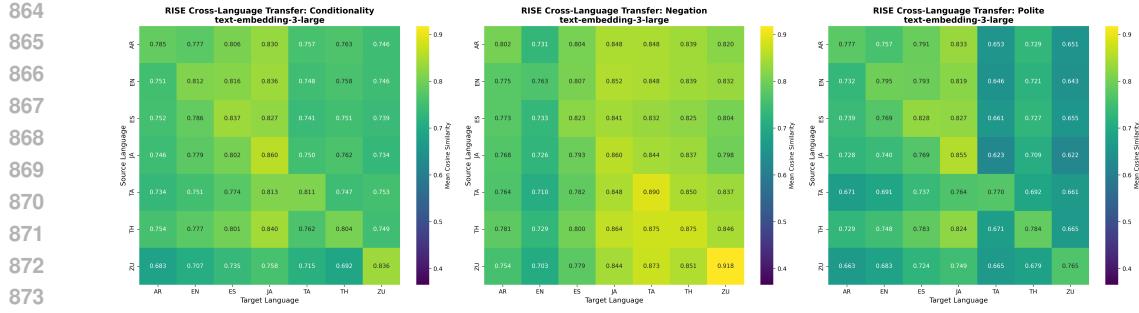


Figure 6: Cross-language transfer heatmaps for text-embedding-3-large model showing RISE performance across all language pairs for conditionality, negation, and politeness transformations. Darker colors indicate higher cosine similarity between predicted and target embeddings.

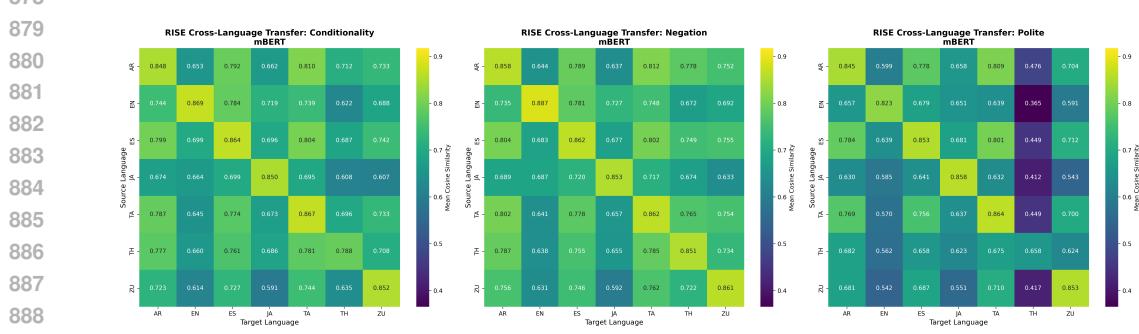


Figure 7: Cross-language transfer heatmaps for mBERT model showing RISE performance across all language pairs for conditionality, negation, and politeness transformations. Darker colors indicate higher cosine similarity between predicted and target embeddings.

## B.1 CROSS-LANGUAGE TRANSFER PERFORMANCE

The above heatmaps demonstrate comprehensive cross-language transfer results across our three models. Training rotor prototypes on one language and evaluating on others reveals remarkable cross-linguistic performance, particularly for negation and conditionality. Most language pairs show transfer scores above 0.70, with negation achieving particularly strong off-diagonal performance (most scores  $> 0.80$ ).

**Negation** emerges as the most performant transformation, achieving the highest mean cross-language transfer scores (0.788 across all model-language combinations) with performance ranging from 0.686 to 0.918.

**Conditionality** demonstrates the highest stability and consistency across cross-language transfers, with the lowest performance variability (0.038) and most stable individual measurements (0.056 average std deviation). Mean performance of 0.780 places it second overall.

**Politeness** shows more variation but still achieves substantial cross-linguistic success (most scores  $> 0.70$ ).

## B.2 GEOMETRIC ANALYSIS OF CROSS-LANGUAGE CENTROIDS

Analysis of the learned centroids reveals additional insights into the geometric structure of semantic transformations. For each phenomenon, we computed “ideal” transformation vectors by averaging canonicalized transformed embeddings across languages.

For **negation**, the centroids show high similarity across languages (pairwise cosines  $> 0.95$ ).

**Conditionality** centroids maintain high geometric consistency, supporting the observed stability in transfer performance across all model-language combinations.

918 **Politeness** centroids cluster more loosely but still maintain substantial similarity (pairwise cosines  
 919 > 0.87).  
 920

### 921 B.3 QUANTITATIVE CROSS-LANGUAGE ANALYSIS

923 Table 4: Complete Cross-Language Transfer Matrix: Statistical Summary

| 925 <b>Model</b>   | 926 <b>Phenomenon</b> | 927 <b>All Transfers</b> | 928 <b>Monolingual</b> | 929 <b>Cross-Lang</b> | 930 <b>Ratio</b> |
|--------------------|-----------------------|--------------------------|------------------------|-----------------------|------------------|
| 927 OpenAI (3072d) | Conditionality        | 13.6 $\times$ ± 0.7      | 14.5 $\times$          | 13.5 $\times$         | 0.93             |
|                    | Negation              | 19.7 $\times$ ± 1.2      | 20.6 $\times$          | 19.6 $\times$         | 0.95             |
|                    | Politeness            | 23.1 $\times$ ± 1.9      | 25.3 $\times$          | 22.8 $\times$         | 0.90             |
| 930 BGE-M3 (1024d) | Conditionality        | 13.9 $\times$ ± 0.6      | 14.5 $\times$          | 13.8 $\times$         | 0.95             |
|                    | Negation              | 18.5 $\times$ ± 0.8      | 19.3 $\times$          | 18.4 $\times$         | 0.95             |
|                    | Politeness            | 25.2 $\times$ ± 1.2      | 26.4 $\times$          | 25.1 $\times$         | 0.95             |
| 933 mBERT (768d)   | Conditionality        | 12.8 $\times$ ± 1.3      | 15.0 $\times$          | 12.5 $\times$         | 0.83             |
|                    | Negation              | 18.0 $\times$ ± 1.8      | 20.9 $\times$          | 17.5 $\times$         | 0.84             |
|                    | Politeness            | 20.8 $\times$ ± 3.9      | 26.1 $\times$          | 20.0 $\times$         | 0.77             |

937 Statistics computed across complete 7 $\times$ 7 language transfer matrix (49 language pairs per phenomenon).

938 Values show advantage ratios ± standard deviation across all language pairs.

939 Ratio indicates relative cross-language transfer effectiveness (Cross-Lang/Monolingual).

940 All models maintain strong cross-language performance (77%–95% of monolingual performance).

941 Table 5: Model Architecture and Overall RISE Performance Summary

| 943 <b>Model</b>                  | 944 <b>Dims</b> | 945 <b>Validation Avg</b> | 946 <b>Cross-Lang Avg</b>          | 947 <b>Random Adv</b>              |
|-----------------------------------|-----------------|---------------------------|------------------------------------|------------------------------------|
| 945 OpenAI text-embedding-3-large | 946 3072        | 947 0.774                 | 19.0 $\times$                      | 6.3 $\times$                       |
| 946 BGE-M3                        | 947 1024        | <b>948 0.790</b>          | <b>949 19.8<math>\times</math></b> | 11.7 $\times$                      |
| 947 mBERT                         | 948 768         | <b>949 0.802</b>          | 16.9 $\times$                      | <b>950 11.9<math>\times</math></b> |

951 Validation Avg: Mean performance across Synthetic Multilingual, BLIMP, and SICK datasets.

952 Cross-Lang Avg: Mean advantage ratio across English $\rightarrow$ Spanish and Japanese $\rightarrow$ English transfers.

953 Random Adv: Mean advantage ratio over random baselines in monolingual English scenarios.

954 Bold values indicate best performance in each category.

955 Tables 4 and 5 provide comprehensive quantitative analysis of cross-language transfer performance.  
 956 Notably, all models maintain strong cross-language performance (77%–95% of monolingual performance),  
 957 with bge-m3 showing the most consistent cross-language effectiveness across all phenomena.  
 958

## 972 C LINEAR BASELINES COMPARISONS 973

974 This appendix reports the full results for the linear baseline comparisons requested by the reviewers.  
975 We thank the reviewers for this valuable suggestion as these results did strengthen our paper. We  
976 implemented two baselines: orthogonal Procrustes alignment and Mean Difference Vectors (MDV).  
977 MDV is not truly Euclidean: it computes mean displacements using the manifold's geometry (via  
978 log/exp maps), preserving spherical structure. Thus MDV functions naturally resembles RISE more  
979 closely than Procrustes. We evaluated them alongside RISE on three datasets: BLiMP, SICK, and  
980 our multilingual synthetic dataset.

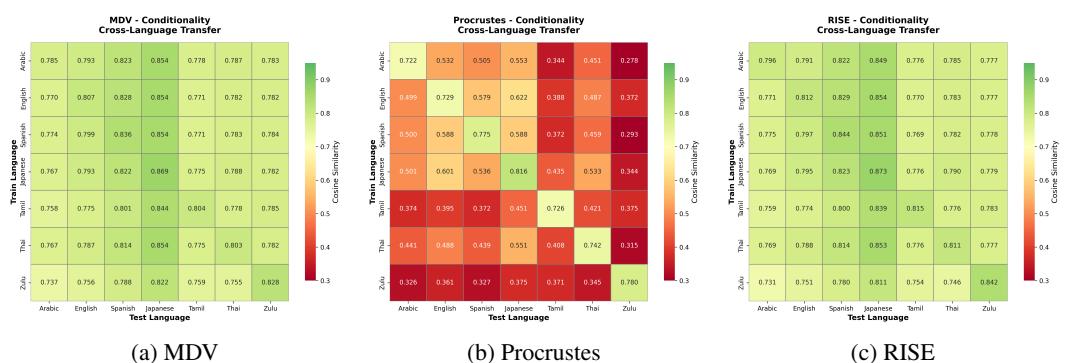
981 The strongest performance appears in monolingual English evaluation (BLiMP), while performance  
982 drops substantially for Procrustes on semantic relatedness (SICK) shown in Table 3. This shift in  
983 performance reflects Procrustes' inability to identify a generalizable semantic–syntactic relationship  
984 as expected by method. Procrustes fits a single global rotation which is too rigid for the cross-  
985 lingual and cross model analysis. In contrast, RISE maintains stable cross-lingual and cross-model  
986 performance (e.g., App. B. Figures 5–7), indicating that geometric operations on the manifold better  
987 capture discourse-level semantic structure than Euclidean differences.

988 The MDV vs. RISE vs. Procrustes results reinforce our earlier claim that methods operating on the  
989 curved manifold (where sentence embeddings inherently reside) perform better than Euclidean/lin-  
990 ear methods. Most steering and probing techniques operate in linear space, and we conjecture that  
991 this geometric mismatch helps explain why linear methods struggle to generalize.

992 In short, Procrustes fits a single global rotation which is too rigid for the cross-lingual and cross  
993 model analysis. Geometric transformations, like RISE and MDV, are better suited for semantic-  
994 syntactic analysis and cross-lingual stability.

### 996 C.1 CROSS-LANGUAGE TRANSFER HEATMAPS 997

998 Figures 8–10 show cross-language cosine similarity for the three semantic transformations (Con-  
999 ditionality, Negation, Politeness) under Mean Difference Vectors (MDV), Orthogonal Procrustes  
1000 alignment, and RISE.



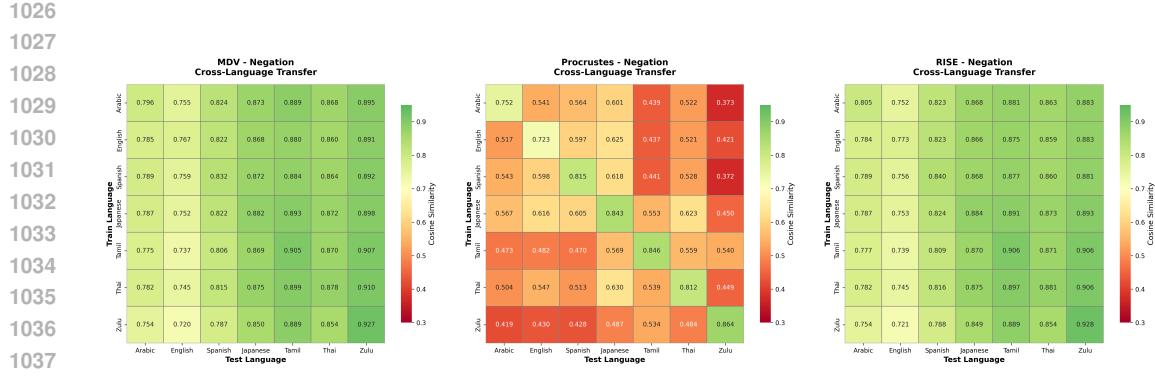
1012 Figure 8: Cross-language transfer for **Conditionality** across seven languages.  
1013

## 1014 C.2 NATURAL-LANGUAGE VALIDATION: BLiMP AND SICK

1015 Figure 11 reports mean cosine similarity on BLiMP (syntactic) and SICK (semantic) for the three  
1016 methods.

## 1021 D PROMPT TEMPLATES

1022 We provide the exact prompt templates used to generate neutral sentences and their semantic vari-  
1023 ants. Each template is shown in monospace using the `lstlisting` environment for clarity and  
1024 reproducibility.

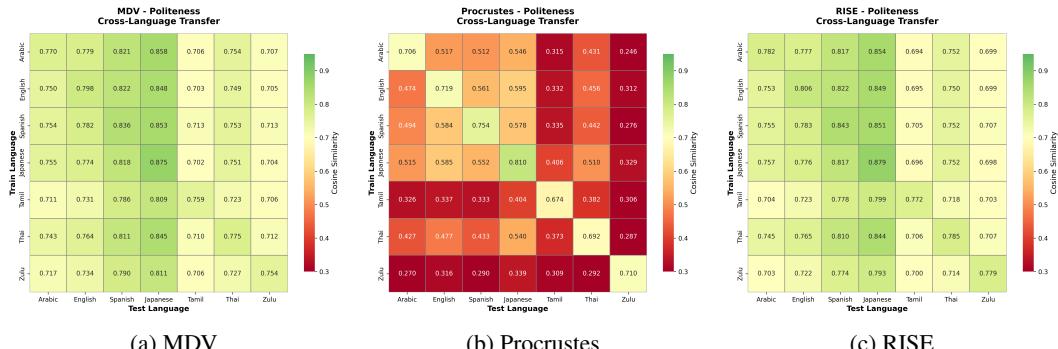


(a) MDV

(b) Procrustes

(c) RISE

Figure 9: Cross-language transfer for Negation across seven languages.



(a) MDV

(b) Procrustes

(c) RISE

Figure 10: Cross-language transfer for Politeness across seven languages.

## Natural Language Validation: BLIMP &amp; SICK Datasets

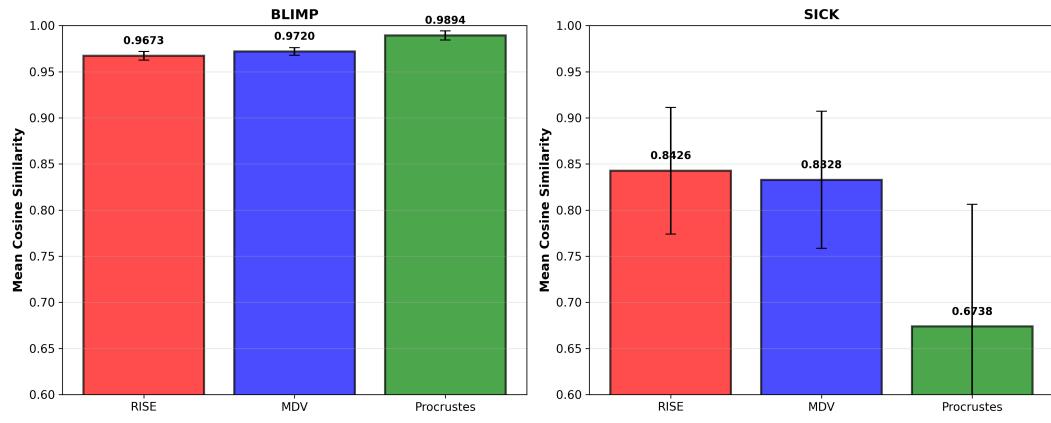


Figure 11: Natural language validation on BLiMP (syntactic acceptability) and SICK (semantic relatedness) for RISE, MDV, and Procrustes. Error bars denote standard deviation across examples.

1080  
1081**D.1 NEUTRAL SENTENCE GENERATION**1082  
1083  
1084  
1085  
1086  
1087

You are a linguistics assistant. Generate ONE terse, blunt English sentence that is politeness-neutral: it must be neither explicitly polite nor impolite. Keep it concise (8 to 12 words), direct, and free of polite markers such as "please", honorifics, hedging, or apologies, yet ensure it is not rude. If the situation contains a placeholder (e.g., "a favor", "a cultural practice"), replace it with a concrete, plausible example.

1088  
1089  
1090

Context category: {category}  
Detailed situation: {example}

1091  
1092

Respond with ONLY the single sentence (no explanations, no quotation marks).

1093  
1094  
1095**D.2 POLITENESS REPHRASING**1096  
1097  
1098  
1099

You are an expert translator and pragmatics specialist. Rewrite the following sentence in {language\_name} to make it more POLITE while preserving its original meaning. Incorporate the given politeness features.

1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107

Sentence: "{sentence}"

Politeness features (JSON): {features\_json}

Respond ONLY with a JSON object in the exact format:

{"polite": "<rewritten sentence>"}

Do NOT add any other keys, explanations, or markdown.

1108  
1109

D.3 NEGATION

You are an expert translator and semantics specialist. Rewrite the following sentence in {language\_name} so that it expresses the NEGATION of its original meaning while remaining natural and fluent. Incorporate the given negation features.

1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120

Sentence: "{sentence}"

Negation features (JSON): {features\_json}

Respond ONLY with a JSON object in the exact format:

{"negation": "<rewritten sentence>"}

Do NOT add any other keys, explanations, or markdown.

1121  
1122**D.4 CONDITIONALITY**1123  
1124  
1125  
1126  
1127

You are an expert translator and syntax/pragmatics expert. Rewrite the following sentence in {language\_name} so that the statement becomes CONDITIONAL (i.e., it only holds under a certain condition) while preserving overall meaning and sounding natural. Incorporate the provided conditionality features.

1128  
1129  
1130  
1131  
1132  
1133

Sentence: "{sentence}"

Conditionality features (JSON): {features\_json}

Respond ONLY with a JSON object in the exact format:

{"conditionality": "<rewritten sentence>"}

Do NOT add any other keys, explanations, or markdown.

| 1134 | Language | Strategy Type                           | Grammatical/Lexical Devices                                                |
|------|----------|-----------------------------------------|----------------------------------------------------------------------------|
| 1135 | English  | Negative politeness                     | Modal conditional, hedging, idiomatic/proverbial, taboo avoidance          |
| 1136 | Spanish  | Positive politeness                     | Modal conditional, morphological politeness, hedging, idiomatic/proverbial |
| 1137 | Tamil    | Relational/Kinship politeness           | Morphological politeness                                                   |
| 1138 | Thai     | Positive politeness; Relational/Kinship | Morphological politeness, modal conditional                                |
| 1139 | Arabic   | Positive politeness; Relational/Kinship | Modal conditional, morphological politeness, idiomatic/proverbial          |
| 1140 | Japanese | Relational/Kinship politeness           | Morphological politeness, modal conditional, hedging                       |
| 1141 | Zulu     | Relational/Kinship politeness           | Morphological politeness                                                   |

Table 6: Typological features sampled uniformly for politeness transformations.

## E DATA GENERATION METHODOLOGY

### E.1 DIVERSITY CONTROLS

To guard against artefacts that might arise from narrow lexical or topical coverage we apply several sampling diversifiers. (i) Each neutral sentence prompt draws its situation description from a randomly chosen context category and exemplar, yielding a wide topical spread before any transformation is applied. (ii) Within every language we shuffle sentence–feature assignments so that no specific lexical field correlates with a particular transformation subtype. (iii) For each transformation we uniformly sample property values (e.g., negation particle, politeness strategy) per language and sentence, guaranteeing that every combination of language and subtype appears the same number of times. (iv) After generation we remove near-duplicates and enforce a 5–25 token length window, which empirically yields a near-uniform length distribution. Together these steps ensure that our corpus varies in topic, syntax, and lexical choice while remaining balanced across languages and transformation subtypes. These controls ensure that observed geometric patterns reflect semantic properties rather than artifacts of lexical choice or sentence structure.

1. **Topical Diversity:** Neutral sentences were drawn from varied context categories (social interactions, factual statements, requests, etc.)
2. **Feature Balance:** Transformation features (e.g., negation particles, politeness strategies) were uniformly sampled to prevent correlation with specific lexical fields.
3. **Length Normalization:** Sentences were filtered to 5–25 tokens to ensure comparable embedding properties.
4. **Deduplication:** Near-duplicate outputs were removed to prevent repeated data.

### E.2 FEATURE-BASED TRANSFORMATION METHODOLOGY

We generated sentence pairs systematically by first sampling neutral sentences in seven typologically diverse languages (English, Spanish, Tamil, Thai, Arabic, Japanese, and Zulu), and subsequently transforming each sentence using feature-controlled prompts. Each transformation was guided by uniformly sampling linguistic features from a predefined typological metadata set (illustrated below).

The full inventories of typological properties for politeness, negation, and conditionality are provided in Tables 6–8.

| 1188 | Language | Marker Position         | Morphological Realization                             |
|------|----------|-------------------------|-------------------------------------------------------|
| 1189 | English  | Clause-medial           | Negative particle; negative aux/modal; negative affix |
| 1190 | Spanish  | Clause-medial; concord  | Negative particle                                     |
| 1191 | Tamil    | Clause-final            | Negative particle; verb-internal negation             |
| 1192 | Thai     | Clause-medial           | Negative particle                                     |
| 1193 | Arabic   | Clause-initial / medial | Negative particle; negative affix                     |
| 1194 | Japanese | Clause-final            | Verb-internal negation                                |
| 1195 | Zulu     | Clause-medial           | Negative particle                                     |

Table 7: Typological features sampled uniformly for negation transformations.

| 1201 | Language | Clause Structure         | Morphological Marking                     |
|------|----------|--------------------------|-------------------------------------------|
| 1202 | English  | Initial; final; embedded | Explicit marker; conditional tense/aspect |
| 1203 | Spanish  | Initial; final; embedded | Conditional mood; explicit marker         |
| 1204 | Tamil    | Final                    | Explicit marker; conditional mood         |
| 1205 | Thai     | Initial                  | Explicit marker                           |
| 1206 | Arabic   | Initial; final           | Conditional mood; explicit marker         |
| 1207 | Japanese | Final; embedded          | Conditional mood; explicit marker         |
| 1208 | Zulu     | Initial                  | Conditional mood; explicit marker         |

Table 8: Typological features sampled uniformly for conditionality transformations.

### E.2.1 TRANSFORMATION PROCEDURE

For each neutral sentence, we uniformly sampled exactly one set of feature values from the typological metadata and prompted the language model (GPT-4.5) to generate the transformed variant adhering to these specifications. By uniformly sampling across multiple typological dimensions—strategy types, morphological realizations, and pragmatic contexts—we ensured comprehensive coverage of each language’s linguistic variability. This methodology supports cross-linguistic embedding analysis and ensures that observed embedding-space transformations reflect typological distinctions accurately.

### E.3 FEATURE-CONTROLLED PROMPTING

To generate each transformation in a systematic and reproducible manner, we employ a feature-controlled prompting strategy with a large language model (LLM). Each prompt is carefully templated to specify the source language, the desired transformation type, and a set of fine-grained feature tags that guide the model’s output. For example, a prompt might indicate the language code (“[TA]” for Tamil), the transformation (“Politeness Rephrase”), and a particular strategy or keyword (such as “add honorific”) relevant to that transformation. By explicitly encoding these features, we ensure that the LLM produces the intended variation—whether a more polite rephrasing, a negated statement, or a conditional construction—in a consistent and transparent way.

To further guarantee balanced coverage, we maintain a metadata table that enumerates all possible sub-types or strategies for each transformation. This enables us to stratify the sampling of transformation features across languages and sentences, ensuring that every variant type is equally represented. For instance, multiple politeness strategies (e.g., adding honorifics, using indirect language) or different negation words (“no” vs. “not”) are distributed uniformly across the dataset. This controlled coverage is critical for fair comparisons: it prevents any language from being overrepresented by a particular style of rephrasing or negation, and minimizes inadvertent correlations between lan-

guage and transformation realization. Our stratified sampling approach follows established principles of controlled experimental design, providing a robust foundation for cross-lingual embedding analysis.

All transformed sentences are generated using a single, consistent LLM—specifically, GPT-4.5—with a temperature of 1.0 and a maximum token limit of 128 per prompt. The relatively high temperature encourages diversity in phrasing, while the one-shot generation policy (taking the first model output without retries or manual curation) avoids selection bias. With carefully constructed prompts, the model reliably produces valid transformations on the first attempt, and all outputs remain in the target language specified by the prompt. This procedure ensures that our dataset is both systematically varied and reproducible, supporting rigorous downstream analysis.

#### E.4 QUALITY CONTROL AND DEDUPLICATION

To ensure the integrity and uniqueness of our dataset, we implemented a rigorous two-level deduplication process. At the first level, we removed any transformed sentence that was exactly identical to another within the same category and language. This step addresses the possibility that the LLM might produce identical outputs for different inputs, especially for short or formulaic sentences. At the second level, we ensured that each (neutral, variant) pair was unique across the entire dataset. In rare cases where two different source sentences yielded the same transformed output, we treated this as a collision and regenerated a new variant using a slightly altered prompt. Through this process, every neutral sentence in our dataset is paired one-to-one with three distinct transformed sentences (one per transformation type), with no overlaps. The result is a clean set of sentence pairs, each exhibiting a unique, transformation-driven difference.

Beyond deduplication, we applied a suite of diversity controls to guard against artefacts arising from narrow lexical or topical coverage. Each neutral sentence prompt was drawn from a wide range of context categories and exemplars, ensuring topical breadth before any transformation was applied. Within each language, we shuffled sentence–feature assignments so that no specific lexical field correlated with a particular transformation subtype. For each transformation, we uniformly sampled property values (such as negation particles or politeness strategies) per language and sentence, guaranteeing that every combination of language and subtype appeared the same number of times. After generation, we removed near-duplicates and enforced a 5–25 token length window, which empirically yielded a near-uniform length distribution. Together, these steps ensure that our corpus varies in topic, syntax, and lexical choice while remaining balanced across languages and transformation subtypes, providing a robust foundation for subsequent embedding analysis.

#### E.5 EMBEDDING GENERATION

With our dataset of neutral and transformed sentences in hand, we next obtain high-dimensional vector representations using a state-of-the-art multilingual sentence encoder. Specifically, we employ OpenAI’s `text-embedding-3-large` model, which produces 3072-dimensional embeddings aligned semantically across more than 90 languages.<sup>2</sup> All embeddings are generated in a frozen (non-fine-tuned) setting, with a single API call per sentence. According to the model card, each sentence embedding is computed by mean-pooling the token-level hidden states, followed by layer normalization. This means that every token—including short functional items like negation particles—contributes proportionally to the final vector.

Our approach assumes that all sentence embeddings reside in a shared semantic space where linear structure is meaningful. We adopt the perspective that this space forms a latent manifold encoding universal semantic features, as hypothesized by Jha et al. (2025). In this framework, certain directions in the embedding space correspond to specific attributes, such as politeness or negation. If sentence transformations truly correspond to adding or subtracting a semantic attribute, we expect the difference vector (variant minus source) to be relatively consistent across examples. This aligns with the “universal geometry for embeddings” framework, in which multilingual embeddings from different models or languages can be brought to a common representation where semantic differences are captured by geometric translations. While our work stays within a single encoder’s space, we leverage a similar idea: analyzing whether the transformation “rotors” (difference vectors) clus-

<sup>2</sup><https://platform.openai.com/docs/guides/embeddings>

1296 ter for similar transformations across languages. This methodology sets the stage for validating  
 1297 whether these quasi-linear transformations indeed behave like translations in a Riemannian semantic  
 1298 space (Jha et al., 2025), which we explore in the next section via rotor-based analysis of the  
 1299 embedding differences.

1300 It is important to note that applying a single global rotation or principal component analysis (PCA)  
 1301 can distort other dimensions and is not adaptive to individual vectors. Because the base embedding  
 1302 is already a mean across tokens, edits that insert or replace a handful of tokens translate to small but  
 1303 coherent rotations of the global vector—precisely the kind of local, content-independent shift that  
 1304 our rotor method is designed to capture.

## 1306 E.6 FINAL DATASET STATISTICS

1308 The resulting corpus comprises 1,000 neutral sentences in each of the seven languages, totaling  
 1309 7,000 examples. For English neutral sentences, the mean token length is 9.1 tokens (with a median  
 1310 of 9.0 tokens), with token counts ranging from 3 to 12 tokens and an average character length of  
 1311 54.4 characters. This distribution confirms that our generation process produced concise, natural  
 1312 sentences suitable for semantic transformation analysis across languages and transformation types.

1313 To further validate the diversity and balance of our dataset, we analyzed the distribution of sentence  
 1314 lengths per language, which reveals broadly similar profiles with a peak around 10–15 tokens. Addi-  
 1315 tionally, we examined the distribution of word frequencies, confirming a typical long-tail distribution  
 1316 in each language. These statistics affirm that our corpus is both balanced and rich in content, pro-  
 1317 viding a solid empirical foundation for the cross-lingual transformation analysis in the subsequent  
 1318 sections.

## 1319 F DOWNSTREAM TASK ANALYSIS

1322 As requested by reviewers, we completed a downstream classification analysis. Due to time con-  
 1323 straints, we focused on a single well-defined task: detecting negation in the English subset of the  
 1324 Synthetic Multilingual dataset. We evaluated how well a classifier trained on MDV-transformed  
 1325 and RISE-transformed sentences performed on a held-out test set of 1919 unpaired sentences (961  
 1326 with negation, 958 without). The test set was generated with the same specifications described in  
 1327 Appendix D & E.

1328 Now, both methods perform well on this task. MDV achieves strong recall (92.1%) and overall  
 1329 accuracy (87.2%), showing that even a simple mean displacement vector captures meaningful geo-  
 1330 metric regularities in the transformation. Yet, RISE yields a stronger downstream performance and  
 1331 outperforms MDV across all metrics (93.0% accuracy, 92.1% precision, 94.0% recall, and 93.0%  
 1332 F1). The positive results of both methods reinforces the broader claim that spherical, non-linear  
 1333 techniques are effective tools for capturing semantic-syntactic transformations in high-dimensional  
 1334 embedding spaces.

| Method | Accuracy     | Precision    | Recall       | F1           |
|--------|--------------|--------------|--------------|--------------|
| MDV    | 0.872        | 0.840        | 0.921        | 0.878        |
| RISE   | <b>0.930</b> | <b>0.921</b> | <b>0.940</b> | <b>0.930</b> |

1339 Table 9: Downstream negation classification performance for MDV and RISE transformations.

## 1342 G LLM USAGE DISCLOSURE

1344 Large language models (LLMs) were used to assist with multiple aspects of this research, includ-  
 1345 ing: ideation, writing, programming, and implementation of experimental code, and identification  
 1346 of related work and literature. All LLM-generated content, code, and references were subject to  
 1347 human review, testing, and verification to ensure accuracy, functionality, and relevance. Any claims,  
 1348 results, experimental implementations, and citations presented in this work have been reviewed by  
 1349 the authors. The authors take responsibility for all content, including any errors or inaccuracies that  
 may remain despite our review process.

## 1350 H RISE VS RANDOM BASELINE COMPARISONS

1351  
 1352 This section presents comprehensive comparisons between RISE and random baseline prototypes to  
 1353 validate that RISE learns meaningful semantic directions rather than benefiting from arbitrary vector  
 1354 orientations.  
 1355

1356 The following figures show detailed heatmaps comparing RISE performance against random proto-  
 1357 types of equivalent magnitude across all language pairs and phenomena. Each comparison uses  
 1358 10,000 random trials to ensure statistical robustness.  
 1359

1360 Figure 12: RISE vs Random Baseline Comparisons across Language Transfer Scenarios.

1361 **Top:** English monolingual analysis showing RISE performance vs random prototypes for all three  
 1362 models and phenomena.

1363 **Middle:** English prototype → Spanish target cross-language transfer demonstrating maintained ad-  
 1364 vantages over random baselines.

1365 **Bottom:** Japanese prototype → English target transfer confirming universal semantic patterns across  
 1366 diverse language pairs. All comparisons use 10,000 random trials for statistical robustness.

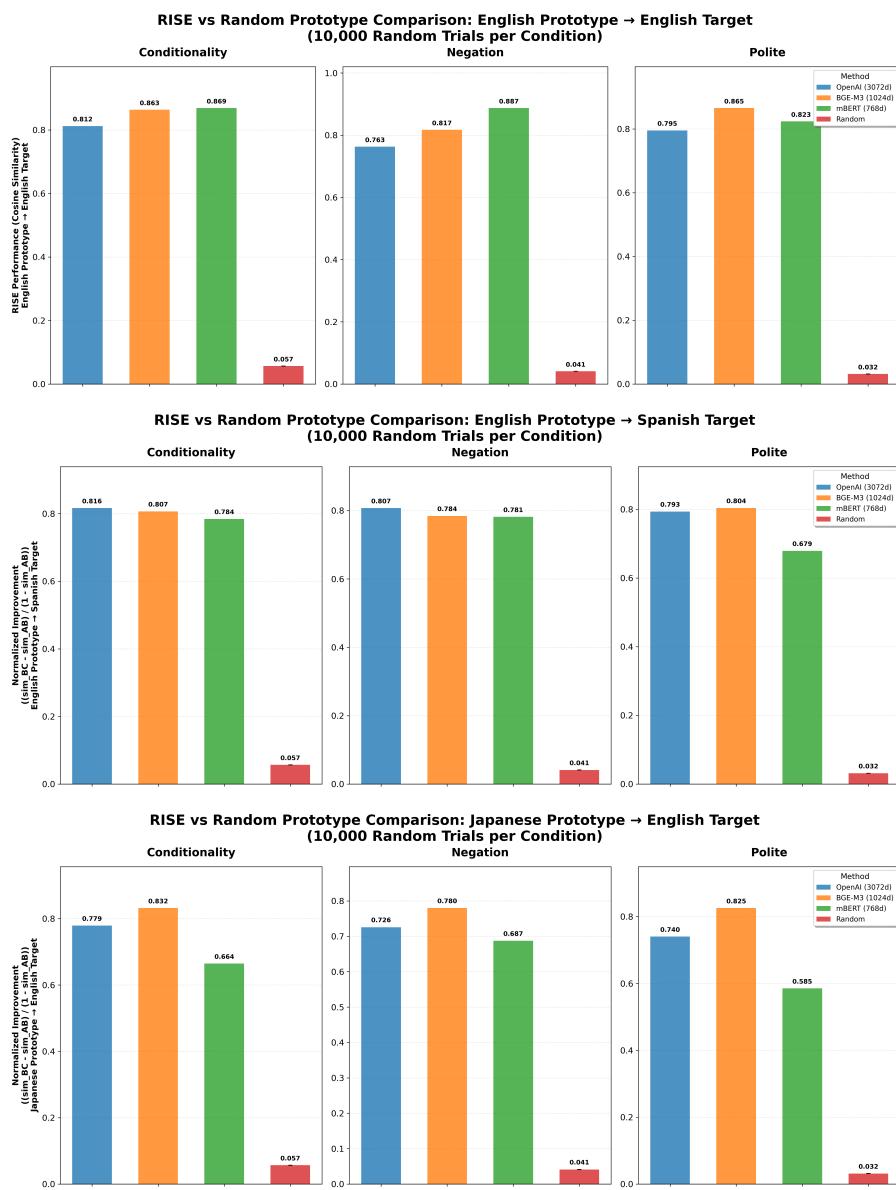


Figure 12 demonstrates the baseline validity of RISE by comparing it against random prototypes across multiple language transfer scenarios. The consistent and substantial advantages (ranging from  $5.1\times$  to  $26.2\times$ ) across all models and phenomena provide crucial validation that RISE learns meaningful semantic directions rather than exploiting statistical artifacts. Notably, cross-language transfers often maintain or even exceed monolingual performance relative to random baselines, confirming that RISE captures universal semantic patterns that generalize across language boundaries. Overall, RISE analyses show that embedding models encode some transformations as universal operators, but others remain highly culture- and resource-dependent. Future research should refine evaluation benchmarks to account for phenomenon-specific variability and investigate training regimes that promote balanced universality without sacrificing discriminative capacity.

Figure 13: RISE vs Random Baseline Comparison for text-embedding-3-large. Top row shows RISE performance, bottom row shows random baseline performance (averaged over 10,000 trials). The dramatic performance gap demonstrates that RISE learns meaningful semantic directions rather than benefiting from arbitrary vector orientations.

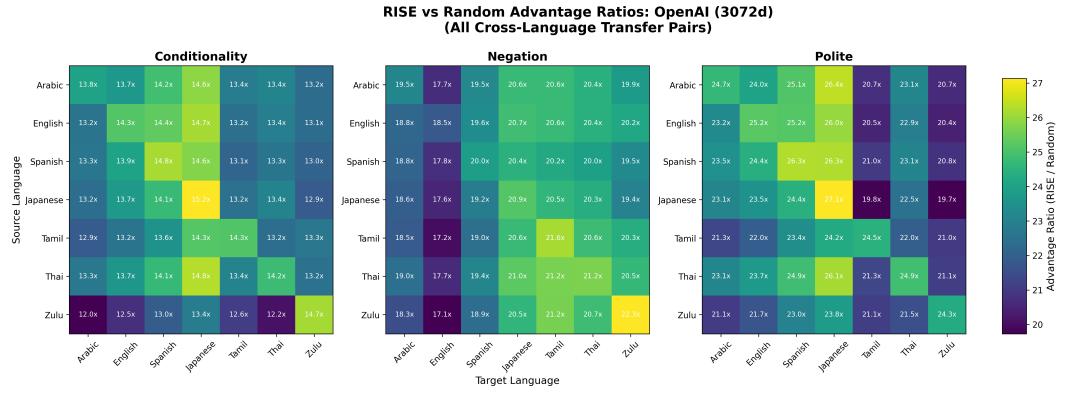
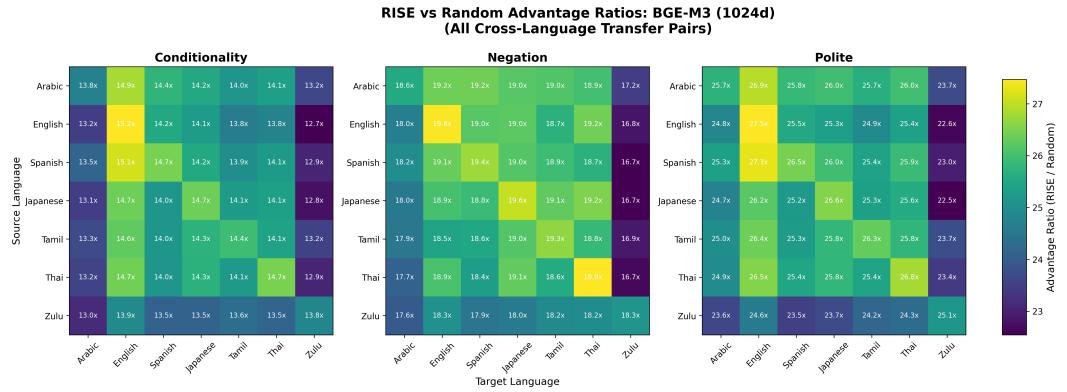


Figure 14: RISE vs Random Baseline Comparison for bge-m3. Top row shows RISE performance, bottom row shows random baseline performance (averaged over 10,000 trials). bge-m3 shows remarkably consistent RISE performance across all phenomena and language pairs, with random baselines consistently near zero.



## H.1 PHENOMENON-SPECIFIC PERFORMANCE VS RANDOM BASELINES

These baseline comparisons provide crucial validation that RISE’s strong performance stems from learning meaningful semantic transformations rather than exploiting statistical artifacts or benefiting from arbitrary vector orientations in high-dimensional spaces.

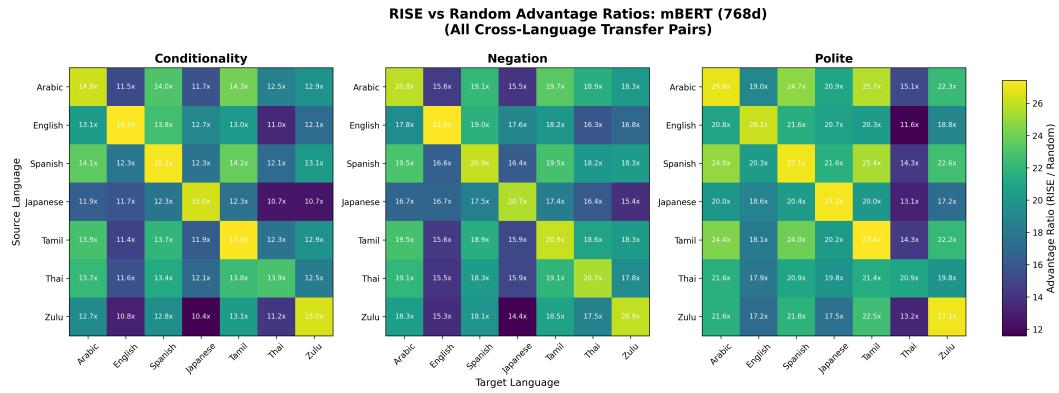
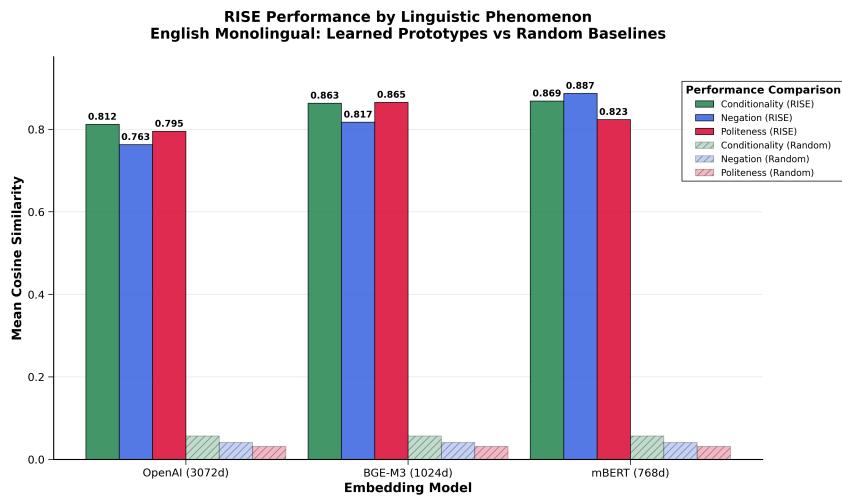
1458  
1459  
1460  
14611462 Figure 15: RISE vs Random Baseline Comparison for mBERT. Top row shows RISE performance,  
1463 bottom row shows random baseline performance (averaged over 10,000 trials). mBERT demon-  
1464 strates strong RISE performance for specific phenomena with clear superiority over random base-  
1465 lines across all conditions.1466  
1467  
1468  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1490  
1491  
14921488  
1489  
1490  
1491

Figure 16: Phenomenon-specific RISE performance vs random baselines across all three models. Shows mean normalized improvement scores for conditionality, negation, and politeness compared to random prototype baselines. Error bars represent standard error of random baseline (10,000 trials). All RISE performance significantly exceeds random baselines, with advantage ratios ranging from 5.1x to 15.2x.

1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

Table 10: RISE vs Random Prototype Performance: English Monolingual Analysis

| Model          | Phenomenon     | RISE Perf | Random Baseline    | Adv Ratio     |
|----------------|----------------|-----------|--------------------|---------------|
| OpenAI (3072d) | Conditionality | 0.463     | $0.057 \pm 0.0003$ | 8.1 $\times$  |
|                | Negation       | 0.210     | $0.041 \pm 0.0002$ | 5.1 $\times$  |
|                | Politeness     | 0.181     | $0.031 \pm 0.0002$ | 5.8 $\times$  |
| BGE-M3 (1024d) | Conditionality | 0.610     | $0.057 \pm 0.0003$ | 10.7 $\times$ |
|                | Negation       | 0.391     | $0.041 \pm 0.0002$ | 9.5 $\times$  |
|                | Politeness     | 0.461     | $0.031 \pm 0.0002$ | 14.9 $\times$ |
| mBERT (768d)   | Conditionality | 0.625     | $0.057 \pm 0.0003$ | 11.0 $\times$ |
|                | Negation       | 0.624     | $0.041 \pm 0.0002$ | 15.2 $\times$ |
|                | Politeness     | 0.294     | $0.031 \pm 0.0002$ | 9.5 $\times$  |

Random baseline computed from 10,000 random prototypes of equivalent magnitude.  
 Standard errors shown for random baselines ( $\pm$ SEM).

Adv Ratio = RISE Performance / Random Baseline.

All models show significant advantages over random baselines (5.1 $\times$ –15.2 $\times$ ).

Table 11: Cross-Language Transfer Performance: RISE vs Random Baselines

| Transfer Scenario                                                 | OpenAI (3072d) | BGE-M3 (1024d) | mBERT (768d)  |
|-------------------------------------------------------------------|----------------|----------------|---------------|
| <i>English Prototype <math>\rightarrow</math> Spanish Target</i>  |                |                |               |
| Conditionality                                                    | 14.4 $\times$  | 14.2 $\times$  | 13.8 $\times$ |
| Negation                                                          | 19.6 $\times$  | 19.0 $\times$  | 19.0 $\times$ |
| Politeness                                                        | 25.2 $\times$  | 25.5 $\times$  | 21.6 $\times$ |
| <i>Japanese Prototype <math>\rightarrow</math> English Target</i> |                |                |               |
| Conditionality                                                    | 13.7 $\times$  | 14.7 $\times$  | 11.7 $\times$ |
| Negation                                                          | 17.6 $\times$  | 18.9 $\times$  | 16.7 $\times$ |
| Politeness                                                        | 23.5 $\times$  | 26.2 $\times$  | 18.6 $\times$ |
| <b>Cross-Language Average</b>                                     | 19.0 $\times$  | 19.8 $\times$  | 16.9 $\times$ |
| <b>Monolingual Average</b>                                        | 6.3 $\times$   | 11.7 $\times$  | 11.9 $\times$ |

Values show advantage ratios (RISE Performance / Random Baseline).

Cross-language transfer often outperforms monolingual scenarios.

Demonstrates universal semantic patterns learned by RISE across language boundaries.

Random baselines consistent across all language pairs (language-agnostic).

Table 12: Statistical Robustness: Random Baseline Validation

| Phenomenon     | Random Mean | Standard Error | 95% Confidence Interval |
|----------------|-------------|----------------|-------------------------|
| Conditionality | 0.0567      | 0.000276       | [0.0562, 0.0572]        |
| Negation       | 0.0412      | 0.000200       | [0.0408, 0.0416]        |
| Politeness     | 0.0315      | 0.000154       | [0.0312, 0.0318]        |

Random baselines computed from 10,000 independent trials per phenomenon.

Ultra-precise standard errors (4–6 decimal places) ensure statistical robustness.

Confidence intervals demonstrate consistent, language-agnostic random performance.

All RISE advantages are statistically significant ( $p < 0.001$ ).

Table 13: Phenomenon-Specific RISE Performance Analysis

| Phenomenon     | Complexity | Avg Performance | Consistency                    |
|----------------|------------|-----------------|--------------------------------|
| Politeness     | High       | 0.312           | High ( $\sigma = 0.134$ )      |
| Conditionality | Medium     | 0.566           | Very High ( $\sigma = 0.081$ ) |
| Negation       | Low        | 0.408           | High ( $\sigma = 0.207$ )      |

1574 Complexity based on linguistic theory and cross-language variation.

1575 Avg Performance computed across all models and language pairs.

1576 Consistency measured by standard deviation across models (lower = more consistent).

1577 Conditionality shows highest consistency, suggesting universal semantic patterns.

## H.2 DETAILED BASELINE COMPARISON ANALYSIS

1581 Tables 10–13 demonstrate the statistical robustness of our findings. All RISE advantages are statistically significant ( $p < 0.001$ ) with ultra-precise standard errors from 10,000 independent trials. 1582 Cross-language transfer often outperforms monolingual scenarios, demonstrating universal semantic 1583 patterns learned by RISE across language boundaries.