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ABSTRACT

Finding meaningful distances between high-dimensional data samples is an impor-
tant scientific task. To this end, we propose a new tree-Wasserstein distance (TWD)
for high-dimensional data with two key aspects. First, our TWD is specifically de-
signed for data with a latent feature hierarchy, i.e., the features lie in a hierarchical
space, in contrast to the usual focus on embedding samples in hyperbolic space.
Second, while the conventional use of TWD is to speed up the computation of the
Wasserstein distance, we use its inherent tree as a means to learn the latent feature
hierarchy. The key idea of our method is to embed the features into a multi-scale
hyperbolic space using diffusion geometry and then present a new tree decoding
method by establishing analogies between the hyperbolic embedding and trees. We
show that our TWD computed based on data observations provably recovers the
TWD defined with the latent feature hierarchy and that its computation is efficient
and scalable. We showcase the usefulness of the proposed TWD in applications
to word-document and single-cell RNA-sequencing datasets, demonstrating its
advantages over existing TWDs and methods based on pre-trained models.

1 INTRODUCTION

High-dimensional datasets with a latent feature hierarchy (Fefferman et al., 2016) are prevalent
across various applications, involving data, e.g., genomic sequences (Tanay & Regev, 2017), text
and images (Krishna et al., 2017), and movie user ratings (Bennett et al., 2007). In this setting, the
assumption is that there is an unknown underlying hierarchical structure to the data features, which
is not directly observable. For example, in word-document data, where samples are documents and
features are words, the hierarchy underlying features (words) is often assumed because words are
naturally organized as nodes in a tree, each connected to others through various hierarchical linguistic
relationships (Borge-Holthoefer & Arenas, 2010). A key component of meaningful analyses of such
data is finding distances between data samples that take into account the underlying hierarchical struc-
ture of features. As opposed to relying on generic metrics, e.g., the Euclidean or correlation distances,
such meaningful distances serve as a fundamental building block in a broad range of downstream
tasks, e.g., classification and clustering, often leading to significant performance improvement.

Recently, hyperbolic geometry (Ratcliffe et al., 1994) has gained prominence in hierarchical repre-
sentation learning (Chamberlain et al., 2017; Nickel & Kiela, 2017) because the lengths of geodesic
paths in hyperbolic spaces grow exponentially with the radius (Sarkar, 2011), a property that natu-
rally mirrors the exponential growth of the number of nodes in hierarchical structures as the depth
increases. Methods using hyperbolic geometry typically focus on finding a hyperbolic embedding of
the samples, relying on a (partially) known graph, whose nodes represent the samples (Sala et al.,
2018). However, considering such a known hierarchical structure of the samples is fundamentally
different than the problem we consider here, where we aim to find meaningful distances between data
samples that incorporate the latent hierarchical structure of the features.

In this paper, we introduce a new tree-Wasserstein distance (TWD) (Indyk & Thaper, 2003) for this
purpose, where we model samples as distributions supported on a latent hierarchical structure. We
propose a two-step approach. In the first step, we embed features into continuous hyperbolic spaces
(Bowditch, 2007) utilizing diffusion geometry (Coifman & Lafon, 2006) to approximate the hidden
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hierarchical metric underlying features. In the second step, we construct a tree that represents the
latent feature hierarchy in a bottom-up manner from the hyperbolic embedding. The tree construction
is based on a novel notion of a continuous analog of the lowest common ancestor (LCA) in trees
defined in hyperbolic spaces by associating shortest paths on trees with hyperbolic geodesic distances.
Utilizing the decoded feature tree, we introduce a new TWD for high-dimensional data with a latent
feature hierarchy, based on diffusion geometry and hyperbolic geometry. We remark that in Lin
et al. (2023), integrating hyperbolic and diffusion geometries was shown to be more effective in
recovering latent hierarchies than existing hyperbolic embedding methods (Nickel & Kiela, 2017)
(see App. E.3.4). However, the work in Lin et al. (2023) considers implicitly latent hierarchies of the
samples, whereas here, we explicitly reveal the latent hierarchical structure of the features through a
tree, which is then utilized for finding a meaningful TWD between the samples (see App. F.4). Using
a TWD entails two useful attributes. First, the Wasserstein distance (Monge, 1781; Kantorovich,
1942) enables us to integrate feature relations into a meaningful distance between samples. Second,
we use a tree to represent the latent feature hierarchy, learn this tree based on the data, and then,
naturally incorporate it in the proposed TWD. Notably, this use of a tree significantly differs from the
conventional use of trees in TWD for speeding up the computation of Wasserstein distance based on
the Euclidean ground metric.

From a theoretical standpoint, we show that our TWD provably recovers the Wasserstein distance
based on the ground metric induced by the latent feature hierarchy. From a practical standpoint,
we show that the proposed TWD is computationally efficient and scalable, making it suitable for
large datasets. We showcase the efficacy of our method on an illustrative synthetic example, word-
document datasets, and single-cell RNA-sequencing datasets. Specifically, we show that our TWD
leads to superior classification performance compared to existing TWD-based methods (Indyk &
Thaper, 2003; Backurs et al., 2020; Le et al., 2019; Yamada et al., 2022) and two application-specific
methods based on pre-trained models (WMD (Kusner et al., 2015) and GMD (Bellazzi et al., 2021)).

Our main contributions are as follows. (i) We present a new TWD for data with a hidden feature
hierarchy, which provably recovers the Wasserstein distance with the true latent feature tree and can
be efficiently computed. (ii) We present a novel data-driven tree decoding method based on a new
definition of the LCA counterpart in high-dimensional hyperbolic spaces. (iii) We demonstrate the
empirical advantages of our TWD over existing TWDs and pre-trained Wasserstein distance methods.

2 RELATED WORK

Wasserstein Distance. The Wasserstein distance (Villani, 2009) is a powerful tool for transforming
the relations between features into a distance between probability distributions (samples from the
probability simplex). It can be computed by solving the optimal transport (OT) problem (Monge,
1781; Kantorovich, 1942) with linear programming (Peyré et al., 2019) in cubic complexity. Various
approaches, such as adding entropic regularization (Cuturi, 2013), using wavelet functions (Shird-
honkar & Jacobs, 2008; Gavish et al., 2010), applying Kantorovich-Rubinstein dual (Leeb & Coifman,
2016; Arjovsky et al., 2017), and computing the average Wasserstein distance across one-dimensional
projections (Rabin et al., 2012), have been developed to reduce the computational complexity.

Tree-Wasserstein Distance. Another popular alternative to reduce the computational complexity of
the Wasserstein distance is the tree-Wasserstein distance (TWD) (Indyk & Thaper, 2003), which can
be computed in linear time, enabling efficient comparisons of large datasets. Existing TWD methods
(Leeb, 2018; Sato et al., 2020; Takezawa et al., 2021; Yamada et al., 2022) attempt to approximate
the Wasserstein distance based on the Euclidean ground metric with a tree metric by constructing
a tree using the standard metric in the Euclidean ambient space (see App. B for more details). Our
approach has a different goal. We assume that the features lie in a latent hierarchical space, infer a
tree that represents this space, and compute a TWD based on the inferred tree to define a meaningful
distance between the samples, incorporating the latent feature hierarchy.

Hyperbolic Representation Learning. While effective in computing embeddings and distances for
hierarchical data samples, current hyperbolic representation learning methods (Chamberlain et al.,
2017; Nickel & Kiela, 2017; 2018) are usually given a hierarchical graph, e.g., a tree, and do not
include decoding a tree from observational data. One exception is the work in Chami et al. (2020),
which introduces a method for decoding a tree in a two-dimensional Poincaré disk for hierarchical
clustering (Murtagh & Contreras, 2012), by minimizing the continuous Dasgupta’s cost (Dasgupta,
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2016). However, this approach does not approximate the TWD between samples with a latent feature
hierarchy because it does not recover the tree underlying the features.

3 PRELIMINARIES

Notation. For m ∈ N, we denote [m] = {1, . . . ,m}. Let X ∈ Rn×m be a data matrix with n rows
(samples) and m columns (features). We denote by Xi,: the i-th row (sample) and X:,j the j-th column
(feature). Let d ≃ d′ denote the bilipschitz equivalence between metrics d and d′ defined on the set
Y . That is, there exist constants c, C > 0 s.t. cd(y1, y2) ≤ d′(y1, y2) ≤ Cd(y1, y2) ∀y1, y2 ∈ Y .

Tree-Wasserstein Distance. Consider a tree T = (V,E,A) with m leaves rooted at node 1 w.l.o.g.,
where V is the vertex set, E is the edge set and A ∈ R|V |×|V | contains edge weights. The tree metric
dT between two nodes is the length of the shortest path on T . Let ΓT (v) be the set of nodes in the
subtree of T rooted at v ∈ V . For any u ∈ V , there exists a unique node v, which is the parent of
u. We denote by ωu = dT (u, v) the length of the edge between any node u and its parent v (see
App. A.4 for additional background on trees). The TWD (Indyk & Thaper, 2003; Evans & Matsen,
2012; Le et al., 2019) between two distributions µ1,µ2 ∈ Rm supported on the tree T is defined by

TW(µ1,µ2, T ) =
∑
v∈V

ωv

∣∣∣∣∣∣
∑

u∈ΓT (v)

(µ1(u)− µ2(u))

∣∣∣∣∣∣ . (1)

Diffusion Geometry. Consider a set of points {aj ∈ Rn}mj=1 assumed to lie on a manifold embedded
in Rn. Let Q ∈ Rm×m be an affinity matrix, given by Qjj′ = exp

(
−d2(j, j′)/ϵ

)
, where d(j, j′) is

some suitable distance between aj and aj′ , and ϵ > 0 is a scale parameter, often chosen as the median
pairwise distance among data points scaled by a constant factor (Ding & Wu, 2020) (see App. D for
hyperparameter tuning). Following Coifman & Lafon (2006), we consider the density-normalized
affinity matrix Q̂ = D−1QD−1 to address the effects of non-uniform data sampling, where D is
diagonal with entries Djj =

∑
j′ Qjj′ , and the diffusion operator P, defined by

P = Q̂D̂−1, where D̂jj =
∑

j′ Q̂jj′ . (2)

The matrix Q̂ can be viewed as edge weights of a graph G = ([m], E, Q̂). Since the diffusion
operator P is column-stochastic, it can be viewed as a transition probability matrix of a Markov
chain on the graph G. Therefore, P can propagate densities between nodes. Specifically, the vector
pt
j = Ptej ∈ Rm is the propagated density after diffusion time t ∈ R of a density concentrated at

node j, where ej ∈ Rm is the indicator vector of the j-th node, pt
j(i) ≥ 0 and

∥∥pt
j

∥∥
1
= 1.

Poincaré Half-Space Model of Hyperbolic Geometry. Hyperbolic geometry is a Riemannian
geometry with constant negative curvature −1 (Beardon, 2012). We utilize the m-dimensional
Poincaré half-space model Hm, defined by Hm = {x ∈ Rm|x(m) > 0} with the Riemannian metric
tensor ds2 = (dx2(1) + dx2(2) + . . . + dx2(m))/x2(m). The Riemannian distance for any two
hyperbolic point x,y ∈ Hm is defined by dHm(x,y) = 2 sinh−1(∥x− y∥2 /(2

√
x(m)y(m))).

Rooted Binary Tree. A rooted and balanced binary tree B with m leaves is a tree whose root node
has degree 2, m leaves have degree 1, and m− 2 internal nodes have degree 3. For any two leaves
j, j′, let j ∨ j′ and ΓB(j ∨ j′) denote their lowest common ancestor (LCA) and the set of leaves in
the subtree of B rooted at j ∨ j′, respectively. Given any three leaves j1, j2, j3, the LCA relation
[j2∨ j3 ∼ j1]B holds if ΓB(j2∨ j3) ⊂ ΓB(j1∨ j2∨ j3) (Wang & Wang, 2018), as shown in Fig. 1(a).
For binary trees, only one of [j1 ∨ j2 ∼ j3]B , [j1 ∨ j3 ∼ j2]B , or [j3 ∨ j2 ∼ j1]B can hold.

4 PROPOSED METHOD

4.1 PROBLEM FORMULATION

Consider a data matrix X ∈ Rn×m, whose n rows consist of samples and m columns consist of
features. Suppose the features {X:,1, . . . ,X:,m} ⊆ H ⊂ Rn lie on an underlying manifoldH, which
is a complete and simply connected Riemannian manifold with negative curvature embedded in a high-
dimensional ambient space Rn with geodesic distance dH. We view (H, dH) as a hidden hierarchical
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metric space and consider a weighted tree T = ([m], E,A,X⊤) as its discrete approximation in
the following sense. The tree node j ∈ [m] is associated with the j-th feature, E is the edge set,
and A ∈ Rm×m is the weight matrix of the tree edges, defined such that the tree distance dT (j, j

′)
between two nodes j and j′, i.e., the length of the shortest path on T , coincides with the geodesic
distance dH(j, j′) between the features j and j′. Therefore, we refer to the hidden tree distance
dT as the ground truth distance. Note that the assumption of an underlying manifold embedded in
an ambient space Rn is widely used in studies of data manifolds and manifold learning (Shnitzer
et al., 2022; Katz et al., 2020; Tong et al., 2021; Huguet et al., 2022; Kapuśniak et al., 2024), where
the manifold typically underlies samples and graphs are viewed as discretizations of the underlying
Riemannian manifold. In contrast, we consider the manifold underlying features. Specifically, we
focus on a specification of the manifold to a hierarchical space H of features, and accordingly, a
specification of the graph to a tree T . Our aim is to construct a tree B from the data X, such that
the TWD between samples using our learned tree B is (bilipschitz) equivalent to the Wasserstein
distance using the ground truth latent tree distance dT . To allow this construction of B, we assume
that local affinities between (node) features {X:,j}mj=1 that are close in Rn embody information on
the hidden hierarchical structure (see Sec. 4.4 for a formal description of this assumption).

Following a large body of work (Villani, 2009; Cuturi, 2013; Courty et al., 2017; Solomon et al.,
2015; Yurochkin et al., 2019; Alvarez-Melis & Jaakkola, 2018), we focus on samples Xi,: ∈ Rm

+
with positive entries that can be normalized into discrete histograms xi = Xi,:/∥Xi,:∥1, which is
natural when the distribution over features is more important than the total mass. However, we note
that our method is also applicable to data normalized into a histogram using other techniques.

4.2 HYPERBOLIC DIFFUSION EMBEDDING

In our approach, we first construct a hyperbolic representation following Lin et al. (2023). We briefly
describe the steps of this construction below. The feature diffusion operator P ∈ Rm×m is built
according to Eq. (2), where d(j, j′) is an initial distance between the features j and j′ embedded in
the ambient space Rn. In Sec. 5, we compute the initial distance using the cosine similarity in the
ambient space, i.e., d(j, j′) = 1− X:,j ·X:,j′

∥X:,j∥2∥X:,j′∥2
, where · is the dot product. We refer to App. D for

further discussion on the initial distance metric, the scale parameter ϵ, and the kernel type. Then,
we construct the multi-scale diffusion densities ϕk

j = P2−k

ej ∈ Rm for each feature j ∈ [m],
considering a series of diffusion time steps on a dyadic grid t = 2−k for k ∈ Z+

0 . These densities give
rise to a multi-scale view of the features on the dyadic grid. We then embed each feature j at the k-th
scale by (j, k) 7→ zkj = [(ψk

j )
⊤, 2k/2−2]⊤ ∈ Hm+1 based on the exponential growth of the Poincaré

half-space, where ψk
j =

√
ϕk

j ∈ Rm is the element-wise square root of the diffusion density ϕk
j .

The multi-scale embedding of the corresponding diffusion operators in hyperbolic space (Lin et al.,
2023) results in distances that are exponentially scaled. This scaling aligns with the structure of
a tree distance, effectively establishing a natural hierarchical relation between different diffusion
timescales. While it is well-established that diffusion geometry effectively recovers the underlying
manifold (Coifman & Lafon, 2006), recent research by Lin et al. (2023) builds on this by showing
that propagated densities, when applied with diffusion times on dyadic grids, can reveal hidden
hierarchical metric. This method effectively captures local information from exponentially expanding
neighborhoods around each point. We note that other hyperbolic embeddings (e.g., Chamberlain et al.
(2017); Nickel & Kiela (2017)) could potentially be considered. However, these methods usually
assume a (partially) known graph T instead of high-dimensional observational data X, and therefore,
we do not opt to use them (see App. E.3.4 for more details).

4.3 HYPERBOLIC DIFFUSION LCA

To reveal the latent hierarchy of the features based on the continuous hyperbolic embedding, we
first establish the analogy between geodesic paths in hyperbolic space Hm+1 and paths on trees. We
define the following hyperbolic lowest common ancestor (LCA).

Definition 1 (Hyperbolic LCA). The hyperbolic LCA of any two points zkj , z
k
j′ ∈ Hm+1

at the k-th scale is defined by their Fréchet mean (Fréchet, 1948) as zkj ∨ zkj′ :=

argmin
z∈Hm+1

(
d2Hm+1(z, zkj ) + d2Hm+1(z, zkj′)

)
.

4



Published as a conference paper at ICLR 2025

j1

j2 j3

j2 ∨ j3

j1 ∨ j2 ∨ j3

(a)

zk
j1 ∨ zk

j3

zk
j1 ∨ zk

j2

zk
j2 ∨ zk

j3

zk
j1 zk

j2 zk
j3

ℝm

ok
j1,j3 = [0⊤, 𝚙𝚛𝚘𝚓(zk

j1 ∨ zk
j3)]⊤

ok
j1,j2 = [0⊤, 𝚙𝚛𝚘𝚓(zk

j1 ∨ zk
j2)]⊤

ok
j2,j3 = [0⊤, 𝚙𝚛𝚘𝚓(zk

j2 ∨ zk
j3)]⊤

ℍm+1ℝ>0

2 k
2 −2

ℝm

ℍm+1

o2
j1,j2 = [0⊤, 𝚙𝚛𝚘𝚓(z2

j1 ∨ z2
j2)]⊤

o1
j1,j2 = [0⊤, 𝚙𝚛𝚘𝚓(z1

j1 ∨ z1
j2)]⊤

o0
j1,j2 = [0⊤, 𝚙𝚛𝚘𝚓(z0

j1 ∨ z0
j2)]⊤

ℝ>0

hj1,j2

(c)(b)

Figure 1: (a) The LCA relation of j1, j2, j3 on tree B. (b) The hyperbolic LCA relation [j2 ∨ j3 ∼
j1]

k
Hm+1 for zkj1 , z

k
j2
, zkj3 ∈ Hm+1 along with their geodesic paths (red semi-circles). Blue points

indicate the hyperbolic LCAs, and yellow points represent their orthogonal projections. The value
proj(·) signifies the parent-child relation. (c) The HD-LCA hj1,j2 defined as the Riemannian mean
of the orthogonal projections {ok

j1,j2
}Kc

k=0, incorporating the multi-scale hyperbolic LCAs.

Proposition 1. The hyperbolic LCA zkj ∨zkj′ in Def. 1 has a closed-form solution, given by zkj ∨zkj′ =[
1
2

(
ψk

j +ψk
j′

)⊤
, proj(zkj ∨ zkj′)

]⊤
, where proj(zkj ∨ zkj′) =

∥∥∥∥[ 12 (ψk
j −ψk

j′

)⊤
, 2k/2−2

]⊤∥∥∥∥
2

.

The proof of Prop. 1 is in App. C. Note that proj(zkj ∨ zkj′) is the orthogonal projection of the
hyperbolic LCA onto the (m+1)-axis R>0 in Hm+1, which is the “radius” of the geodesic connecting
zkj and zkj′ , as depicted in Fig. 1(b). We assert that this orthogonal projection can be used to identify
the hierarchical relation at the k-th scale. This argument is made formal in the following.

Definition 2 (Hyperbolic LCA Relation). Given any three points zkj1 , z
k
j2
, zkj3 ∈ Hm+1 at the k-th

scale, the relation [j2 ∨ j3 ∼ j1]
k
Hm+1 holds if proj(zkj2 ∨ z

k
j3
) = min{proj(zkj1 ∨ z

k
j2
), proj(zkj1 ∨

zkj3), proj(z
k
j2
∨ zkj3)}.

Proposition 2. For any k1 ≤ k2, 2−(k2−k1) ≃ dHm+1(zk2
j ∨ zk2

j′ , z
k2
j )/dHm+1(zk1

j ∨ zk1

j′ , z
k1
j ).

The proof of Prop. 2 is in App. C. Prop. 2 implies that the hyperbolic LCAs at different scales exhibit
exponential growths, which is analogous to the exponential growth of the distance between parent
and child nodes in trees.

We now define the Hyperbolic Diffusion LCA (HD-LCA) that incorporates the multi-scale hyperbolic
LCAs by jointly considering the dyadic diffusion times {2−k}Kc

k=0, where Kc ∈ Z+
0 .

Definition 3 (HD-LCA). The HD-LCA of features j, j′ ∈ [m] with Kc scales is defined by the Fréchet
mean hj,j′ := argmin

h∈Hm+1

∑Kc

k=0 d2Hm+1(h,ok
j,j′), where ok

j,j′ = [0⊤, proj(zkj ∨ zkj′)]
⊤ ∈ Hm+1.

Proposition 3. The HD-LCA hj,j′ in Def. 3 has a closed-form solution, given by hj,j′ =

[0, . . . , 0, aj,j′ ]
⊤, where aj,j′ =

(Kc+1)
√
proj(z0j ∨ z0j′) · · · proj(z

Kc
j ∨ zKc

j′ ).

The proof of Prop. 3 is in App. C. Note that the HD-LCA in Def. 3 involves two applications of
the geodesic paths in Hm+1: (i) to establish the hyperbolic LCA at each scale k by connecting two
points on the same plane in Rm+1, and (ii) to merge these LCAs across multiple levels along the
(m+ 1)-axis R>0 in Hm+1, as in Fig. 1(c).

Incorporating the multi-scale of the hyperbolic LCAs arranged on a dyadic grid via the HD-LCA
facilitates the recovery of the underlying tree relations. A similar approach was presented in Lin et al.
(2023), where it was shown that the distance between the embedding j 7→ [(z0j )

⊤, . . . , (zKc
j )⊤]⊤ ∈

M = Hm+1 × . . . × Hm+1 in a product manifold of Poincaré half-spaces, given by dM(j, j′) =∑Kc

k=0 2 sinh−1(2−k/2+1
∥∥zkj − zkj′

∥∥
2
), recovers dT (j, j′). However, (Lin et al., 2023) considers a

latent hierarchical structure of the samples. It is fundamentally different than the problem we consider
in Sec. 4.1, as it does not learn the latent hierarchy of the features explicitly by constructing a tree, and
then incorporate it in a meaningful distance between the samples as we do here (see App. F.4 for more
details). As shown in App. F.4, this distance is less effective for document and cell classifications.
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Note that the closed-form value aj,j′ in Prop. 3 can be interpreted as the Riemannian average of the
multi-scale hyperbolic LCA relations in Def. 1, resulting in the following HD-LCA relation.
Definition 4 (HD-LCA Relation). Given any three features j1, j2, j3 ∈ [m], the relation [j2 ∨ j3 ∼
j1]M holds if aj2,j3 = min{aj1,j2 , aj1,j3 , aj2,j3}.

Algorithm 1 HD Binary Tree Decoding

Input: Embedding {{zk1}, . . . , {zkm}}
Kc

k=0

Output: B = (Ṽ , Ẽ, Ã) with m leaf nodes

function HD_BT({{zk1}, . . . , {zkm}}
Kc

k=0)
B ← leaves({j} : j ∈ [m])
for j, j′ ∈ [m] do

for k ∈ {0, 1, . . . ,Kc} do
ok
j,j′ ← [0⊤, proj(zkj , z

k
j′)]

⊤

hj,j′ ← argmin
h∈Hm+1

∑Kc

k=0 d2Hm+1(h,ok
j,j′)

S = {(j, j′)| sorted by hj,j′(m+ 1)}
for (j, j′) ∈ S do

if j and j′ are not in the same subtree
Ij ← internal node for node j
Ij′ ← internal node for node j′

add an internal node for Ij and Ij′
assign the geodesic edge weight

return B

Algorithm 2 TWD with a latent feature hierarchy

Input: Data matrix X ∈ Rn×m, feature diffu-
sion operator P, and maximal scale Kc

Output: TWD W ∈ Rn×n

function TWD_latent_HieFeature(X,Kc)

UΛV⊤ = eig (P)
for k ∈ {0, 1, . . . ,Kc} do
ρk ← Λ2−k

for j ∈ [m] do

zkj ←
[√

(UρkV⊤)ej , 2
k/2−2

]⊤
B ← HD_BT({{zk1}, . . . , {zkm}}

Kc

k=0)
for i, i′ ∈ [n] do

Wii′←
∑
v∈Ṽ

αv

∣∣∣∣∣∣
∑

u∈ΓB(v)

(xi(u)−xi′(u))

∣∣∣∣∣∣
return W

4.4 BINARY TREE CONSTRUCTION

Equipped with the definitions and properties above, we now present the proposed tree construction
in hyperbolic spaces. As any tree can be transformed into a binary tree (Bowditch, 2007; Cormen
et al., 2022), we suggest to construct a rooted binary tree B through an iterative merging process. We
begin by assigning the features to the leaf nodes because it was shown that the leaves alone contain
adequate information to fully reconstruct the tree (Sarkar, 2011) (see App. F.2 for more details). This
is not only efficient but also aligns with established TWD (Indyk & Thaper, 2003; Backurs et al.,
2020; Le et al., 2019). Then, pairs of features are merged iteratively by their HD-LCA (Def. 3).
Specifically, the pair of features that exhibits the highest similarity in the HD-LCA (i.e., the smallest
value of aj,j′ in Prop. 3) is merged. Note that only one of the HD-LCA relations [j2 ∨ j3 ∼ j1]M,
[j1 ∨ j3 ∼ j2]M, or [j1 ∨ j2 ∼ j3]M holds in B. Once the nodes are merged, the weight of the edge
is assigned with the induced ℓ1 distance between the respective embeddings. This iterative process
constructs the binary tree B in a bottom-up manner, similar to single linkage clustering (Gower &
Ross, 1969), with the measure of similarity determined by their HD-LCAs and edge weights assigned
with the geodesic distance. We summarize the proposed HD binary tree decoding in Alg. 1.

We note that the distance in the embedding (Lin et al., 2023) could be used in existing graph-based
algorithms (Alon et al., 1995) or linkage methods (Murtagh & Contreras, 2012) instead of the HD-
LCA in the binary tree decoding (Alg. 1). However, these generic algorithms, while providing upper
bounds on the distortion of the constructed tree distances, do not build a geometrically meaningful
tree when given a tree metric (Sonthalia & Gilbert, 2020), because they do not exploit the hyperbolic
geometry of the embedded space. Indeed, as empirically shown in App. E, constructing a feature tree
using existing TWDs, graph-based, or linkage approaches with embedding distance is less effective.
This may suggest that the information encoded in the multi-scale hyperbolic LCAs is critical for
revealing the latent feature tree. In addition, we argue that having a closed-form solution to the basic
element of the tree construction HD-LCA in Prop. 3 is an important advantage because it directly
enables us to present an effective and interpretable algorithm (Alg. 1) for recovering the underlying
tree relationships from the learned hyperbolic embedding.
Proposition 4. Let r be the root node of B obtained in Alg. 1 and zr be the corresponding embedding
inM. The HD-LCA depth is equivalent to the Gromov product (Gromov, 1987), i.e., dM(zr,hj,j′) ≃
⟨j, j′⟩r, where ⟨j, j′⟩r = 1

2 (dB(j, r) + dB(j
′, r)− dB(j, j

′)).
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The proof of Prop. 4 is in App. C. Prop. 4 shows that the HD-LCA depth in the continuous embedding
space is the tree depth in the decoded tree B.

Theorem 1. For sufficiently large Kc and m, there exist some constants C1, C2 > 0 such that
C1dT (j1, j2) ≤ dB(j1, j2) ≤ C2dT (j1, j2) for j1, j2 ∈ [m], where dB is the decoded tree metric
dB in Alg. 1, T is the ground truth latent tree assumed from Sec. 4.1, and dT is the hidden tree metric
between features defined as the length of the shortest path on T (i.e., the geodesic distances).

The proof of Thm. 1 is in App. C. The validity of Thm. 1 relies on the assumption that the local
Gaussian affinities between features allow us to reveal the hidden hierarchy. Formally, in the proof of
Thm. 1, we assume that the discrete diffusion operator P constructed based on the local Gaussian
affinities between features in the ambient space Rn, in the limit of m→∞ and ϵ→ 0, converges
pointwise to the heat kernel of the underlying hierarchical metric space (H, dH). While T is hidden,
the diffusion operator P is accessible and used to construct another tree, B, such that, the tree
distances of the inferred tree dB and the hidden tree dT are equivalent. This result is stated in Thm. 1.
In addition, our HD-LCA is a continuous LCA in the product manifold of (m + 1)-dimensional
Poincaré half-spaces that recovers hidden tree relations. It is closely related to the hyperbolic LCA
in Chami et al. (2020), where a continuous LCA in a single 2D Poincaré disk was proposed for
hierarchical clustering, and a tree was constructed by minimizing the Dasgupta’s cost (Dasgupta,
2016). However, their method does not recover the latent feature hierarchy, as shown in Sec. 5.

4.5 TREE-WASSERSTEIN DISTANCE FOR HIGH-DIMENSIONAL DATA WITH A LATENT
FEATURE HIERARCHY

Finally, with the decoded tree B at hand, we define a new TWD between high-dimensional samples
with a latent feature hierarchy as follows.

Definition 5 (TWD for High-Dimensional Data with a Latent Feature Hierarchy.). The TWD for
high-dimensional samples with a latent feature hierarchy is defined as

TW(xi,xi′ , B) :=
∑
v∈Ṽ

αv

∣∣∣∣∣∣
∑

u∈ΓB(v)

(xi(u)− xi′(u))

∣∣∣∣∣∣ , (3)

where B is the decoded tree in Alg. 1, αv = dB(v, v
′), and node v′ is the parent of node v.

Theorem 2. For sufficiently large Kc and m, there exist some constant C̃1, C̃2 > 0 such that
C̃1TW(xi,xi′ , T ) ≤ TW(xi,xi′ , B) ≤ C̃2TW(xi,xi′ , T ) for all samples i, i′ ∈ [n].

The proof of Thm. 2 is in App. C. Thm. 2 shows that our TWD in Eq. (3) recovers the TWD
associated with the latent feature tree T without access to T . This could be viewed as an unsupervised
Wasserstein metric learning between data samples with the latent feature hierarchy. In addition, our
intermediate result in Thm. 1 is noteworthy, as it represents a form of unsupervised ground metric
learning (Cuturi & Avis, 2014) derived from the latent tree underlying the features.

We summarize the computation of our method. Notably, the input to the algorithm is the observational
data matrix X alone (i.e., the tree node attributes), and no prior knowledge about the latent feature
tree graph T is given. First, we build the feature diffusion operator P by Eq. (2). Then, for each scale
k, we embed the features into Hm+1 using the k-th diffusion densities. Collecting the embedding
of all the features from all the scales, we decode a binary tree by Alg. 1, based on the HD-LCA in
Def. 3. Finally, we compute the proposed TWD as in Eq. (3). We present the pseudo-code in Alg. 2.

Seemingly, the need to build a distance matrix and apply the eigendecomposition to the resulting
kernel limits the applicability to a small number of features. However, using (Shen & Wu, 2022), the
proposed TWD can be computed in O(m1.2) compared to the naïve implementation that requires
O(mn3+m3 logm) (see App. D). Indeed, in Sec. 5, we show applications with thousands of features.

One limitation of our TWD in Eq. (3) is the restriction to samples from the probability simplex.
This requirement, which stems from the definitions of OT framework (Monge, 1781; Kantorovich,
1942) and the Wasserstein and TWDs (Villani, 2009; Cuturi, 2013; Indyk & Thaper, 2003; Backurs
et al., 2020; Le et al., 2019; Takezawa et al., 2021; Yamada et al., 2022), restricts its applicability.
However, a large body of work (Villani, 2009; Cuturi, 2013; Courty et al., 2017; Solomon et al., 2015;
Yurochkin et al., 2019; Alvarez-Melis & Jaakkola, 2018) illustrates that this setting is relevant in a
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broad range of applications. In addition, this limitation does not affect the tree decoding in Alg. 1, as
it can recover the latent feature hierarchy from Rn, which is in line with existing tree construction
methods (Alon et al., 1995; Murtagh & Contreras, 2012). Note that the problem of finding distances
between samples with feature hierarchy and possibly with negative entries has been addressed in
Gavish et al. (2010); Ankenman (2014); Mishne et al. (2016; 2017) using different approaches.

A notable property of our TWD in Eq. (3) is that it can be interpreted using the tree-sliced Wasserstein
distance (TSWD) (Le et al., 2019). Computing the TSWD consists of constructing multiple random
trees of different depths from X. Then, the TSWD is given by the average of the TWDs corresponding
to these trees. Here, considering only a single scale k in Alg. 1 (as detailed in App. F.1) yields the
decoded tree Bk. Similarly to the TSWD, we show that our TWD can be recast as the sum of the
TWDs corresponding to Bk at multiple scales k = 0, . . . ,Kc.

Proposition 5. The TWD in Eq. (3) is bilipschitz equivalent to the sum of the multi-scale hyperbolic
TWDs TW(xi,xi′ , B

k) for k = 0, 1, . . . ,Kc, i.e., TW(xi,xi′ , B) ≃
∑Kc

k=0 TW(xi,xi′ , B
k).

The proof of Prop. 5 is in App. C. Prop. 5 implies that our TWD captures the (tree-sliced) information
in the multi-scale trees Bk efficiently as it circumvents their explicit construction.

We conclude with a few remarks. First, it is important to note that our primary objective is not to
recover the exact hidden T , but to effectively approximate the TWD TW(xi,xi′ , T ) from the data
matrix X (i.e., the node attributes from the hidden T ), which we achieve by the proposed TWD
TW(xi,xi′ , B) in Eq. (3) as stated in Thm. 2. Second, our TWD can also be used to approximate the
OT distance in linear time. For example, suppose we are interested in computing the OT distance
based on a given ground tree metric between the features. While the complexity of this computation
is typically O(m3 logm) (Pele & Werman, 2009; Bonneel et al., 2011), we can approximate it by
the proposed TWD in linear time, as we demonstrate in the runtime analysis in App. E. Third, our
method applies to general applications with or without latent hierarchical structure (see App. E.4).
Finally, our TWD is differentiable, as detailed in App. F.3, in contrast to existing TWD methods. This
differentiability equips the proposed TWD with a continuous gradient, significantly enhancing its
applicability in gradient-based optimization, a feature that is not typically found in TWD baselines.

5 EXPERIMENTAL RESULTS

We apply the proposed method to a synthetic example and to word-document and single-cell RNA-
sequencing (scRNA-seq) data. We use Word2vec (Mikolov et al., 2013) as word embedding vectors
for the word-document data and Gene2vec (Du et al., 2019) as gene embedding vectors in scRNA-seq
experiments. The implementation details are in App. D Additional experiments are in App. E.

5.1 SYNTHETIC WORD-DOCUMENT DATA EXAMPLE

We generate a synthetic dataset with a latent feature hierarchy as follows. The generated dataset is
designed to resemble a word-document data matrix X, whose rows (samples) represent documents
and columns (features) represent word presence. Our dataset consists of 100 documents and eight
words of produce items: apple, orange, banana, carrot, beetroot, kale, spinach, and lettuce. These
items are divided into categories and sub-categories as depicted in Fig. 2(a), giving rise to the latent
feature hierarchy. The 100 documents are realizations of a random binary vector created according to
the probabilistic hierarchical model in Fig. 2(a). For details of the data generation, see App. D.

We compare the proposed TWD with existing TWDs, including (i) Quadtree (Indyk & Thaper, 2003)
that constructs a random tree by a recursive division of hypercubes, (ii) Flowtree (Backurs et al.,
2020) that computes the optimal flow of Quadtree, (iii) tree-sliced Wasserstein distance (TSWD) (Le
et al., 2019) that computes an average of TWDs by random sampling trees, where the numbers of
sampling are set to 1, 5, and 10, (iv) UltraTree (Chen et al., 2024) that constructs an ultrametric tree
(Johnson, 1967) by minimizing OT regression cost, (v) weighted cluster TWD (WCTWD) (Yamada
et al., 2022), (vi) weighted Quadtree TWD (WQTWD) (Yamada et al., 2022), and their sliced variants
(vii) SWCTWD and (viii) SWQTWD (Yamada et al., 2022). We also compare to TWDs where the
trees are constructed by (i) MST (Prim, 1957), (ii) Tree Representation (TR) (Sonthalia & Gilbert,
2020) through a divide-and-conquer approach, (iii) gradient-based hierarchical clustering (HC) in
hyperbolic space (gHHC) (Monath et al., 2019), (iv) gradient-based Ultrametric Fitting (UltraFit)
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Figure 2: (a) Illustration of the probabilistic hierarchical model for generating synthetic samples
consisting of 8 binary elements. The orange nodes represent (sub)categories, and the black nodes
present produce items. The edge weights represent the probabilities. (b) Feature trees constructed
by our TWD and competing baselines. Nodes corresponding to fruits are colored in blue, those
representing vegetables are in red, and the internal nodes are in green.

(Chierchia & Perret, 2019), and (v) HC by hyperbolic Dasgupta’s cost (HHC) (Chami et al., 2020).
We refer to App. B for a detailed description of baselines and highlight the novel aspects of our TWD.

Fig. 2(b) presents the trees constructed using different methods. Our TWD constructs a binary tree
that accurately represents the latent feature hierarchy, demonstrating a clear advantage over the
trees obtained by the baselines. Further evaluation through a binary document classification task
using k-nearest neighbors (kNN), where the documents are labeled by the presence of fruits (with
probability 0.5, creating two balanced classes), is presented in Tab. 1. The depicted classification
accuracy is obtained by averaging over five runs, where in each run, the dataset is randomly split into
70% training and 30% testing sets. The same random splits are used across all comparisons. We see
that our TWD demonstrates a significant improvement over the competing TWDs.

5.2 REAL-WORLD WORD-DOCUMENT DATA ANALYSIS

We demonstrate the power of the proposed TWD in real-world document classification tasks. The
latent hierarchical structure of words (features) can be viewed as a node branching into related terms
(Gollapalli & Caragea, 2014; Yurochkin et al., 2019; Chang & Blei, 2010), allowing for meaningful
comparison between documents in OT distance (Kusner et al., 2015), as it measures how words and
their associated meanings are transported from one document to another.

We test four word-document benchmarks in Kusner et al. (2015), including BBCSPORT, TWITTER,
CLASSIC, and AMAZON. Detailed descriptions of these datasets are reported in App. D. We
compare the proposed TWD to the same competing methods as in Sec. 5.1. In addition, we include
the Word Mover’s Distance (WMD) (Kusner et al., 2015) that computes the OT distance between
documents using Word2Vec (Mikolov et al., 2013). A dissimilarity classification based on our TWD
and the baselines using the kNN classifier is applied. We use cross-validation with five trials, where
the dataset is randomly divided into 70% training set and 30% testing set, following previous work in
word-document data analysis (Kusner et al., 2015; Huang et al., 2016).

Tab. 1 presents the document classification accuracy. The results of Quadtree, Flowtree, TSWD, and
WMD are taken from Huang et al. (2016); Takezawa et al. (2021). Our method outperforms all the
competing baselines on BBCSPORT, TWITTER, and AMAZON datasets, including the pre-trained
WMD that is specifically designed for word-document data. On CLASSIC dataset, our proposed
TWD yields the second-best classification accuracy and is competitive with WMD.

5.3 SINGLE-CELL GENE EXPRESSION DATA ANALYSIS

We further demonstrate the advantages of our TWD in cell classification tasks on scRNA-seq data.
The hierarchical structure of genes in scRNA-seq data (Tanay & Regev, 2017) are essential for
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Table 1: Document and cell classification accuracy (the highest in bold and the second highest
underlined). Results marked with ∗ are taken from Huang et al. (2016); Takezawa et al. (2021).
The empirical comparisons to TWD methods demonstrate the advantages of our proposed approach,
which effectively incorporates the latent feature hierarchy, leading to improved performance.

Synthetic Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

Quadtree 98.2±1.2 95.5±0.5∗ 69.6±0.8∗ 95.9±0.4∗ 89.3±0.3∗ 80.1±1.2 80.6±0.6

Flowtree 97.3±0.9 95.3±1.1∗ 70.2±0.9∗ 94.4±0.6∗ 90.1±0.3∗ 81.7±0.9 81.8±0.9

WCTWD 91.4±1.2 92.6±2.1 69.1±2.6 93.7±2.9 88.2±1.4 81.3±4.9 78.4±3.3

WQTWD 92.8±1.8 94.3±1.7 69.4±2.4 94.6±3.2 87.4±1.8 80.9±3.5 79.1±3.0

UltraTree 93.2±3.1 93.1±1.5 68.1±3.2 92.3±1.9 86.2±3.1 83.9±1.6 82.3±2.6

TSWD-1 90.9±1.3 87.6±1.9∗ 69.8±1.3∗ 94.5±0.5∗ 85.5±0.6∗ 79.6±1.8 72.6±1.8

TSWD-5 92.4±1.1 88.1±1.3∗ 70.5±1.1∗ 95.9±0.4∗ 90.8±0.1∗ 81.3±1.4 74.9±1.1

TSWD-10 94.2±0.9 88.6±0.9∗ 70.7±1.3∗ 95.9±0.6∗ 91.1±0.5∗ 83.2±0.8 76.5±0.7

SWCTWD 94.9±2.3 92.8±1.2 70.2±1.2 94.1±1.8 90.2±1.2 81.9±3.1 78.3±1.7

SWQTWD 95.1±1.8 94.5±1.0 70.6±1.9 95.4±2.0 89.8±1.1 80.7±2.5 79.8±2.5

MST-TWD 88.1±2.7 88.4±1.9 68.2±1.9 90.0±3.1 86.4±1.2 80.1±3.1 76.2±2.5

TR-TWD 93.9±0.7 89.2±0.9 70.2±0.7 92.9±0.8 88.7±1.1 80.3±0.7 78.4±1.2

HHC-TWD 94.1±1.7 85.3±1.8 70.4±0.4 93.4±0.8 88.5±0.7 82.3±0.7 77.3±1.1

gHHC-TWD 93.5±1.9 83.2±2.4 69.9±1.8 90.3±2.2 86.9±2.0 79.4±1.9 73.6±1.6

UltraFit-TWD 94.3±1.2 84.9±1.4 69.5±1.2 91.6±0.9 87.4±1.6 81.9±3.3 77.8±1.2

WMD - 95.4±0.7∗ 71.3±0.6∗ 97.2±0.1∗ 92.6±0.3∗ - -
GMD - - - - - 84.2±0.7 81.4±0.7

Ours 99.8±0.1 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

analyzing complex cellular processes (Ding & Regev, 2021), especially for computing OT distance
(Bellazzi et al., 2021; Tran et al., 2021; Bunne et al., 2023). For instance, in developmental biology,
genes associated with stem cell differentiation follow a hierarchical pattern (Kang et al., 2012).
Revealing the latent gene hierarchy is essential for accurately computing the TWD between cells, as
it captures the underlying biological relationships and functional similarities.

We test two scRNA-seq datasets in Dumitrascu et al. (2021), including the Zeisel and CBMC. Detailed
descriptions of the datasets are reported in App. D. We compare the proposed TWD to the same
baselines as in Sec. 5.2. Instead of WMD, we include the Gene Mover’s Distance (GMD) (Bellazzi
et al., 2021), a gene-based OT distance using Gene2Vec (Du et al., 2019). The cell classification tasks
are performed in the same way as in Sec. 5.1 and Sec. 5.2. Tab. 1 shows the mean and the standard
deviation of the cell classification accuracy. Our TWD outperforms the competing methods by a large
margin. This suggests that the proposed TWD effectively transforms the latent tree-like relationships
in gene space, improving the cell classification accuracy compared to random sampling trees and
trees constructed by graph-based and HC methods. Notably, our TWD differentiates the cell types
better than pre-trained GMD, which uses gene proximity, while ours is geometrically intrinsic.

6 CONCLUSIONS

We presented a novel distance between samples with a latent feature hierarchy. The computation of
the distance is efficient and can accommodate comparisons of large datasets. We show experimental
results on various applications, where our method outperforms competing baselines. Theoretically, the
proposed TWD provably recovers the TWD for data samples with a latent feature hierarchy without
prior knowledge about the hidden feature hierarchy and based solely on the observational data matrix.
We note that the construction of the proposed distance consists of a new algorithm for decoding a
binary tree based on hyperbolic embeddings, relying on the analogy between the exponential growth
of the metric in high-dimensional hyperbolic spaces and the exponential expansion of trees. This tree
decoding is general and can be used for decoding trees in broader contexts.

Our work is conceptually different from existing TWD works in two main aspects. First, we present
an unconventional use of the TWD. In addition to speeding up the computation of the Wasserstein
distance, we also use the tree to represent the feature hierarchy. Second, we consider and recover the
latent feature hierarchy by a novel hyperbolic tree decoding algorithm, which differs from existing
hierarchical (continuous) representation learning methods that consider (known) sample hierarchy.
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A ADDITIONAL BACKGROUND

While we have covered the most relevant background in the main paper, here we present additional
background on the Wasserstein distance, diffusion geometry, hyperbolic geometry, and trees.

A.1 WASSERSTEIN DISTANCE

The application of the Wasserstein distance spans various fields, including enhancing generative
models in machine learning (Arjovsky et al., 2017; Kolouri et al., 2018), aligning and comparing
color distributions in computer graphics (Solomon et al., 2015; Lavenant et al., 2018), and serving as
a robust similarity metric in data analysis (Bellazzi et al., 2021; Kusner et al., 2015; Yair et al., 2017).

Let µ1 and µ2 be two probability distributions on a measurable space Ω with a ground metric d,
Π(µ1, µ2) be the set of couplings π on the product space Ω×Ω such that π(B1 ×Ω) = µ1(B1) and
π(Ω×B2) = µ2(B2) for any sets B1, B2 ⊂ Ω. The Wasserstein distance (Villani, 2009) between
µ1 and µ2 is defined by

OT(µ1, µ2, d) := inf
π∈Π(µ1,µ2)

∫
Ω×Ω

d(x, y)dπ(x, y). (4)

When replacing the inf in Eq. (4) with the argmin, the obtained solution π is referred to as the
Optimal Transport (OT) plan (Monge, 1781; Kantorovich, 1942). When computing the Wasserstein
distance in Eq. (4) between two discrete probabilities with m points, given by

OT(µ1,µ2,C) := min
Φ∈Rm×m

⟨Φ,C⟩ s.t.
{
Φ1m = µ1,

Φ⊤1m = µ2,
(5)

where C ∈ Rm×m is the ground pairwise distance matrix between the coordinates of the discrete
probabilities, it can be computed in O(m3 logm) (Peyré et al., 2019), preventing its use of OT for
large-scale datasets (Bonneel et al., 2011). Therefore, existing works have been proposed to reduce
this complexity. Among them, a notable work is the Sinkhorn algorithm (Cuturi, 2013; Chizat et al.,
2020), which approximates the OT in quadratic time.

A.2 DIFFUSION GEOMETRY

Diffusion geometry (Coifman & Lafon, 2006) is a mathematical framework designed to analyze
high-dimensional data points {aj ∈ Rn}mj=1 by effectively capturing their underlying geometric
structures (Belkin & Niyogi, 2008). It focuses on analyzing the similarity between data points through
the process of diffusion propagation. Specifically, the constructed diffusion operator P ∈ Rm×m

derived from the observational data is associated with the heat kernel and the Laplacian of the
underlying manifold (Belkin & Niyogi, 2008). Let Q(j, j′) = exp

(
−d2(j, j′)/ϵ

)
be the (j, j′)th

element of the pairwise affinity matrix between the data points. In the limit m → ∞ and ϵ → 0,
the diffusion operator P converges to the heat kernel exp(−∆), where ∆ is the Laplace–Beltrami
operator on the manifold (Coifman & Lafon, 2006). By applying eigendecomposition to the diffusion
operator P, we obtain a sequence of eigenpairs {νj ,φj}mj=1 with positive decreasing eigenvalues
1 = ν1 ≥ ν2 ≥ . . . ≥ νm > 0. The diffusion maps (DM) in m′ << m dimensions at the diffusion
time t embeds a point aj into Rm′

by

Ψm′ : aj 7→ [νt2φ2, ν
t
3φ3, . . . , ν

t
m′+1φm′+1]

⊤. (6)
It is shown that the Euclidean distances defined in DM between any two points
∥Ψm′(yj)−Ψm′(yj′)∥2 approximate the following diffusion distances

dDM,t(j, j
′) =

∥∥Ptej −Ptej′
∥∥
2

(7)
at the diffusion time t.

The diffusion operator has been shown to exhibit favorable convergence properties (Coifman &
Lafon, 2006). In the limits, as the number of features m increases toward infinity, the scaling
parameter ϵ approaches zero, and the operator Pt/ϵ converges pointwise to the Neumann heat kernel
Ht = exp(−t∆), associated with the underlying manifold, where ∆ is the Laplace–Beltrami operator
on the manifold. That is, the diffusion operator serves as a discrete approximation of the continuous
heat kernel, thereby capturing the geometric structure of the manifold within a finite-dimensional
framework (Coifman & Lafon, 2006; Singer, 2006; Belkin & Niyogi, 2008).
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Note that the density-normalized affinity matrix was considered to mitigate the effect of non-uniform
data sampling, which was proposed and shown theoretically in Coifman & Lafon (2006). In Section
3.1 in Coifman & Lafon (2006), the construction of a family of diffusion operators is introduced with
a parameter α ∈ R and the density q. In Section 3.4 in Coifman & Lafon (2006), it is shown that
when α = 1 (in our case Q̂ = D−1QD−1), the diffusion operator approximates the heat kernel, and
this approximation is independent of the density q. This technique has been further explored and
utilized in (Mishne et al., 2019; Katz et al., 2020; Shnitzer et al., 2022; 2024; Lin et al., 2025).

Diffusion geometry has mainly been utilized in manifold learning, leading to the development of multi-
scale, low-dimensional representations and informative distances (Nadler et al., 2005; Coifman &
Maggioni, 2006). Its utility has been demonstrated across various applications spanning various fields,
including nonlinear stochastic dynamical systems (Shnitzer et al., 2020), multi-view dimensionality
reduction (Lindenbaum et al., 2020b), shape recognition (Bronstein et al., 2010), wavelet analysis
(Coifman & Maggioni, 2006), internal state values of long short-term memory (Kemeth et al., 2021),
and supervised and semi-supervised learning tools (Mendelman & Talmon, 2025).

A.3 HYPERBOLIC GEOMETRY

Hyperbolic geometry is a Riemannian manifold of a constant negative curvature (Lee, 2006). There
are four commonly used models for hyperbolic space: the Poincaré disk model, the Lorentz model,
the Poincaré half-space model, and the Beltrami-Klein model. These models are equivalent and
isometric, representing the same geometry, and distances can be translated without distortion (Ratcliffe
et al., 1994). In this work, we used the Poincaré half-space model to represent the continuous tree
structure underlying the data because the exponential growth of the metric serves as a natural
representation of the exponential propagation of the diffusion densities on a dyadic grid. Formally,
the n-dimensional Poincaré half-space model Hn with constant negative curvature −1 is defined
by Hn = {x ∈ Rn

∣∣x(n) > 0} with the Riemannian metric tensor ds2 = (dx2(1) + dx2(2) +

. . . + dx2(n))/x2(n). The Riemannian distance for any x,y ∈ Hn is defined by dHn(x,y) =

2 sinh−1(∥x− y∥2 /(2
√

x(n)y(n))). The distance function dHn(·, ·) in the hyperbolic space Hn

gives rise to two distinct types of geodesic paths (Ratcliffe et al., 1994): straight lines that are parallel
to the n-th axis, and semi-circles that are perpendicular to the boundary of the plane Rn−1.

The Gromov product (Gromov, 1987) is used to define δ-hyperbolic spaces in hyperbolic geometry.

Definition A.1 (δ-Hyperbolic Space). A metric space (X , dX ) is δ-hyperbolic space (Gromov, 1987)
if there exists δ ≥ 0 such that for any four points x1, x2, x3, x4 ∈ X , we have
dX (x4, x1) + dX (x2, x3) ≤ max{dX (x1, x2) + dX (x3, x4), dX (x1, x3) + dX (x2, x4)}+ 2δ.

(8)

Definition A.2 (Gromov Product (Gromov, 1987)). Let (X , dX ) be a metric space. The Gromov
product (Gromov, 1987) of any two points x1, x2 ∈ X w.r.t a reference point x3 ∈ X is defined by

⟨x1, x2⟩x3
=

1

2
(dX (x1, x3) + dX (x2, x3)− dX (x1, x2)) . (9)

A.4 PRELIMINARIES ON TREES

Definition A.3. Consider an undirected weighted graph G = (V,E,A), where V = {1, 2, . . . ,m}
is the node set, E is the edge set, and A ∈ Rm×m is the non-negative edge weight matrix. The
shortest path metric dG(j, j

′) of any two nodes j, j′ ∈ V is defined by the length of the shortest path
on the graph G from node j to node j′.

Lemma A.1. The tree metric is 0-hyperbolic.

Definition A.4. A metric d : V ×V → R is a tree metric if there exists a weighted tree T = (V,E,A)
such that for every j, j′ ∈ V , the metric d(j, j′) is equal to the shortest path metric dT (j, j

′).

Definition A.5. A balanced binary tree is a tree where each node has a degree of either 1, making it
a leaf node, or 3, making it an internal node. This tree structure can be either empty or consist of
a root node linked to two disjoint binary trees, the left and right subtrees. In a binary tree with m
leaves, there are exactly m− 1 internal nodes.
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Definition A.6. A rooted and balanced binary tree is a specific type of binary tree in which one
internal node, designated as the root, has a degree of exactly 2, while the other internal nodes have a
degree of 3. The remaining nodes are leaf nodes with a degree of 1.

Definition A.7 (Ultrametric). A metric du : V × V → R is ultrametric if the triangle inequality
for any three points j1, j2, j3 ∈ V is strengthened by the ultrametric inequality du(j1, j2) ≤
max{du(j1, j3), du(j2, j3)}.
Remark A.1. If a tree is ultrametric, the distances of all the leaves to the root are identical.

Definition A.8 (LCA Relation (Wang & Wang, 2018).). Given a tree T , we say that the LCA relation
[j2 ∨ j3 ∼ j1]T holds in T , if the LCA of j2 and j3, denoted as j2 ∨ j3, is a proper descendant of the
LCA of j2, j3 and j1, denoted as j2 ∨ j3 ∨ j1.

Remark A.2. While very small or specific types (e.g., star-shaped) of trees may be isometrically
embedded in Euclidean space, general trees or hierarchical structures cannot, and embedding them
into Euclidean spaces results in larger distortion. For larger or more complex trees, hyperbolic
space often serves as a more natural embedding space, preserving their hierarchical structure and
distances.

B ADDITIONAL RELATED WORK

Here, we provide more details about related methods and objectives.

Wasserstein Distance on Hyperbolic Manifold. Wasserstein distance learning in hyperbolic spaces
builds upon adapting the Wasserstein distance (Villani, 2009) to the structure of hyperbolic geometry
(Lee, 2006). This adaptation involves redefining the cost function in the optimization problem to
incorporate the geodesic distance within the hyperbolic manifold. The resulting Wasserstein metric
maintains its intuitive interpretation as a measure of the “effort” required to transform one distribution
into another while under the manifold constraints of hyperbolic structure. It has proven valuable in
various fields, for example, in shape analysis (Shi et al., 2016) and hierarchy matching (Alvarez-Melis
et al., 2020; Hoyos-Idrobo, 2020). Recently, the work in Bonet et al. (2023) proposed extending
the sliced-Wasserstein distance (Rabin et al., 2012) to hyperbolic representation, enabling efficient
computation of the Wasserstein distance. Our work, however, diverges fundamentally from these
approaches. We focus on observational data that inherently possess a hierarchy rather than probability
distributions defined on hyperbolic spaces. Additionally, our focus is on the TWD, aiming for efficient
computation while addressing the specific challenges posed by the hidden feature hierarchy.

Existing TWDs. The TWD is a popular method to reduce the computational complexity associated
with calculating the Wasserstein distance on the Euclidean metric. This approach approximates the
original Euclidean metric using a tree metric, as described in several studies (Indyk & Thaper, 2003;
Le et al., 2019; Evans & Matsen, 2012; Leeb, 2018; Takezawa et al., 2021; Yamada et al., 2022).
The resulting methods provide a coarser approximation of OT in an Euclidean space, facilitating
more efficient computations from cubic complexity to linear complexity. One notable method is the
Quadtree (Indyk & Thaper, 2003), which creates a random tree by recursively dividing hypercubes.
This tree is then used to compute the TWD. Flowtree (Backurs et al., 2020) modifies the Quadtree
method by focusing on the optimal flow and evaluating the cost of this flow within the ground metric.
The Tree-Sliced Wasserstein Distance (TSWD) (Le et al., 2019) represents another TWD technique.
It computes the average of TWDs by randomly sampling trees. The number of sampling trees is
a hyperparameter, commonly set to one, five, or ten, resulting in the variants TSWD-1, TSWD-
5, and TSWD-10. Further advancements are presented in Yamada et al. (2022), which introduce
WQTWD and WCTWD. These methods employ a Quadtree or clustering-based tree to approximate
the Wasserstein distances by optimizing the weights on the tree. Lastly, UltraTree (Chen et al., 2024)
constructs an ultrametric tree (Johnson, 1967) by minimizing the OT regression cost, aiming to
approximate the Wasserstein distance within the original metric space.

Our approach, however, departs significantly from these existing methods. While we also aim to
accelerate the computation of the Wasserstein distance using a tree, we leverage the tree structure to
introduce and recover the latent feature hierarchy. Specifically, our novel hyperbolic tree decoding
algorithm is designed to recover hidden feature hierarchies. Our TWD approximates the Wasserstein
distance incorporating the latent feature hierarchy, rather than relying on the original metric in
Euclidean space.

20



Published as a conference paper at ICLR 2025

Tree Construction by Graph-Based and HC Methods. Another line of related work involves
constructing trees using existing graph-based algorithms, such as Minimum Spanning Tree (MST)
(Alon et al., 1995), or hierarchical clustering (HC) methods, particularly those that leverage hyperbolic
geometry. Generic graph-based algorithms, like those used in existing TWDs, aim to approximate
the original metric with a tree metric. In the context of hierarchical clustering, various methods
have been proposed. UltraFit (Chierchia & Perret, 2019) addresses an “ultrametric fitting” problem
using Euclidean embeddings. gHHC (Monath et al., 2019) operates under the assumption that partial
information about the optimal clustering, specifically the hyperbolic embeddings of the leaves, is
known. HHC (Chami et al., 2020) decodes a tree from a two-dimensional hyperbolic embedding
for hierarchical clustering by optimizing the continuous Dasgupta’s cost (Dasgupta, 2016). While
these methods may offer theoretical guarantees regarding clustering quality, they do not provide a
theoretical guarantee for recovering the latent hierarchy underlying high-dimensional features, as our
method does. Our approach uniquely focuses on revealing the latent feature hierarchy, ensuring a
more accurate representation of the latent hierarchical structure underlying high-dimensional features.

Fréchet Mean on Manifolds. The Fréchet mean (Fréchet, 1948) is a powerful tool for data analysis
on Riemannian manifolds (Lee, 2006), including hyperbolic, spherical, and various matrix manifolds.
Its application extends across a diverse range of fields, including batch normalization (Brooks et al.,
2019; Lou et al., 2020), batch effect removal (Lin et al., 2021; 2024), domain adaptation (Yair et al.,
2019), shape analysis and object recognition (McLeod et al., 2012), to name but a few. In our work,
we follow this line of work, using the Fréchet mean for constructing the HD-LCA in a product
manifold of hyperbolic spaces (see Def. 1 and Def. 3). Then, this HD-LCA serves as a primary
building block in our binary tree decoding (Alg. 1), which in turn, is used in the computation of the
proposed TWD (Alg. 2).

C THEORETICAL ANALYSIS AND PROOFS

We note that the numbering of the statements corresponds to the numbering used in the paper, and we
have also included several separately numbered propositions and lemmas that are used in supporting
the proofs presented. We restate the claim of each statement for convenience.

C.1 PROOF OF PROPOSITION 1

Proposition 1. The hyperbolic LCA zkj∨zkj′ in Def. 1 has a closed-form solution, given by zkj∨zkj′ =[
1
2

(
ψk

j +ψk
j′

)⊤
, proj(zkj ∨ zkj′)

]⊤
, where proj(zkj ∨ zkj′) =

∥∥∥∥[ 12 (ψk
j −ψk

j′

)⊤
, 2k/2−2

]⊤∥∥∥∥
2

.

Proof. Let γzk
j⇝zk

j′
(t) be the unique geodesic path from zkj to zkj′ such that γzk

j⇝zk
j′
(0) = zkj and

γzk
j⇝zk

j′
(1) = zkj′ . Note that the geodesic path γzk

j⇝zk
j′

is a semi-circle, and the last coordinate of

the points zkj and zkj′ are the same, i.e., zkj (m+ 1) = zkj′(m+ 1) = 2k/2−2. Therefore, the center

point of the semi-circle projected on the plane Rm is czk
j⇝zk

j′
=
[
1
2

(
ψk

j +ψk
j′

)⊤
, 0
]⊤

. Moreover,
the radius of the geodesic path is given by

proj(zkj ∨ zkj′) =
∥∥∥czk

j⇝zk
j′
− zkj

∥∥∥
2

=
∥∥∥czk

j⇝zk
j′
− zkj′

∥∥∥
2

=

∥∥∥∥∥
[
1

2

(
ψk

j −ψk
j′
)⊤

, 2k/2−2

]⊤∥∥∥∥∥
2

.

The Riemannian mean defined using the Fréchet mean (Fréchet, 1948) has a closed-form expression,
and is located at the midpoint of the geodesic curve

zkj ∨ zkj′ =

[
1

2

(
ψk

j +ψk
j′
)⊤

, proj(zkj ∨ zkj′)

]⊤
.
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Lemma C.1. The radius proj(zkj ∨ zkj′) is lower-bounded by the diffusion distance at the diffusion
time 2−k, given by

dDM,2−k(j, j′) ≤ proj(zkj ∨ zkj′). (10)

C.2 PROOF OF PROPOSITION 2

Proposition 2. For any k1 ≤ k2, 2−(k2−k1) ≃ dHm+1(zk2
j ∨ zk2

j′ , z
k2
j )/dHm+1(zk1

j ∨ zk1

j′ , z
k1
j ).

Proof. By Prop. 1, we have zk1
j ∨ zk1

j′ =

[
1
2

(
ψk1

j +ψk1

j′

)⊤
, proj(zk2

j ∨ zk1

j′ )

]⊤
and zk2

j ∨ zk2

j′ =[
1
2

(
ψk2

j +ψk2

j′

)⊤
, proj(zk2

j ∨ zk2

j′ )

]⊤
, respectively. At the k1-th level, the Riemannian distance

between the k1-th hyperbolic LCA zk1
j ∨ zk1

j′ and zk1
j at the k1-th level is given by

dHm+1(zk1
j ∨z

k1

j′ , z
k1
j ) = 2 sinh−1

(∥∥∥zk1
j ∨ zk1

j′ − zk1
j

∥∥∥
2

/(
2
√
zk1
j ∨ zk1

j′ (m+ 1)zk1
j (m+ 1)

))
.

Note that zk1
j (m+1) = 2k1/2−2 and by Prop. 1, we have zk1

j ∨ z
k1

j′ (m+1) = proj(zk1
j ∨ z

k1

j′ ). We
have the same relation at the k2 level. Therefore, for any k1 ≤ k2, we have

dHm+1(zk2
j ∨ zk2

j′ , z
k2
j )/dHm+1(zk1

j ∨ zk1

j′ , z
k1
j )

=
sinh−1

(∥∥∥zk2
j ∨ zk2

j′ − zk2
j

∥∥∥
2

/(
2
√
zk2
j ∨ zk2

j′ (m+ 1)zk2
j (m+ 1)

))
sinh−1

(∥∥∥zk1
j ∨ zk1

j′ − zk1
j

∥∥∥
2

/(
2
√
zk1
j ∨ zk1

j′ (m+ 1)zk1
j (m+ 1)

))
=sinh−1

(
2−k2/2+1

∥∥∥ψk2
j −ψ

k2

j′

∥∥∥
2

)/
sinh−1

(
2−k1/2+1

∥∥∥ψk1
j −ψ

k1

j′

∥∥∥
2

)
(1)

≥ sinh−1
(
2−k2/2+1

∥∥∥ψk2
j −ψ

k2

j′

∥∥∥
2

)/
sinh−1

(
2−k1/2+1

∥∥∥ψk2
j −ψ

k2

j′

∥∥∥
2

)
=2−(k2−k1),

where the transition (1) is due to
∥∥∥ψk1

j −ψ
k1

j′

∥∥∥
2
≤
∥∥∥ψk2

j −ψ
k2

j′

∥∥∥
2

for any k1 ≤ k2. Similarly, we
have

dHm+1(zk2
j ∨ zk2

j′ , z
k2
j )/dHm+1(zk1

j ∨ zk1

j′ , z
k1
j )

=
sinh−1

(∥∥∥zk2
j ∨ zk2

j′ − zk2
j

∥∥∥
2

/(
2
√
zk2
j ∨ zk2

j′ (m+ 1)zk2
j (m+ 1)

))
sinh−1

(∥∥∥zk1
j ∨ zk1

j′ − zk1
j

∥∥∥
2

/(
2
√
zk1
j ∨ zk1

j′ (m+ 1)zk1
j (m+ 1)

))
=sinh−1

(
2−k2/2+1

∥∥∥ψk2
j −ψ

k2

j′

∥∥∥
2

)/
sinh−1

(
2−k1/2+1

∥∥∥ψk1
j −ψ

k1

j′

∥∥∥
2

)
(1)

≤2 · 2−k1/2+1
/η

2
· 2−k1/2+1

where the transition (1) is because there is a lower bound η of any Hellinger distance for j ̸= j′.
Therefore, we show that 2−(k2−k1) ≃ dHm+1(zk2

j ∨ zk2

j′ , z
k2
j )/dHm+1(zk1

j ∨ zk1

j′ , z
k1
j ).

C.3 PROOF OF PROPOSITION 3

Proposition 3. The HD-LCA hj,j′ in Def. 3 has a closed-form solution, given by hj,j′ =

[0, . . . , 0, aj,j′ ]
⊤, where aj,j′ =

(Kc+1)
√
proj(z0j ∨ z0j′) · · · proj(z

Kc
j ∨ zKc

j′ ).

Proof. The orthogonal projections {ok
j,j′}

Kc

k=0 lie on the unique geodesic path γ0 that is on the
(m + 1)-axis in Hm+1. Note that the geodesic distance joining any two points ok1

j,j′ and ok2

j,j′ is
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given by
∣∣∣∣ln( proj(z

k1
j ∨z

k1
j′ )

proj(z
k2
j ∨z

k2
j′ )

)∣∣∣∣ (Stahl, 1993; Udriste, 2013). The Fréchet mean (Fréchet, 1948) of

{ok
j,j′}

Kc

k=0 is the point that minimizes the sum of squared distances to all points in the set. For our
set of points, the Fréchet mean mean will have the form [0, . . . , 0, aj,j′ ]

⊤, where aj,j′ ∈ R>0. We
want to find aj,j′ that minimizes

hj,j′ := argmin
h∈Hm+1

Kc∑
k=0

d2Hm+1(h,ok
j,j′)

= argmin
h=[0,...,0,a]⊤∈Hm+1

Kc∑
k=0

d2Hm+1(h,ok
j,j′)

= argmin
h=[0,...,0,a]⊤∈Hm+1

Kc∑
k=0

∣∣∣∣∣ln
(
proj(zkj ∨ zkj′)

a

)∣∣∣∣∣
2

.

Therefore, the geometric mean hj,j′ is obtained by setting aj,j′ =
(Kc+1)

√
proj(z0j ∨ z0j′) · · · proj(z

Kc
j ∨ zKc

j′ ).

C.4 PROOF OF PROPOSITION 4

Proposition 4. Let r be the root node of B obtained in Alg. 1 and zr be the corresponding
embedding inM. The HD-LCA depth is equivalent to the Gromov product (Gromov, 1987), i.e.,
dM(zr,hj,j′) ≃ ⟨j, j′⟩r, where ⟨j, j′⟩r = 1

2 (dB(j, r) + dB(j
′, r)− dB(j, j

′)).

Proof. Let zj and zj′ be two points inM. We denote γzj⇝zj′ (t) the unique geodesic path from
zj to zj′ such that γzj⇝zj′ (0) = zj and γzj⇝zj′ (1) = zj′ . Following Bowditch (2007), for any
point zj′′ ∈ M, we have dM(zj′′ , z) ≥ ⟨j, j′⟩j′′ , where z ∈ γzj⇝zj′ (t). Note that if zj′′ ∈
γzj⇝zj′ (t), then ⟨j, j′⟩j′′ = 0. In addition, let γzj⇝zj′′ (t) and γzj′⇝zj′′ (t) be the unique geodesic
path from zj to zj′′ and the unique geodesic path from zj′ to zj′′ , respectively. Let △j,j′,j′′ =
(γzj⇝zj′ (t), γzj⇝zj′′ (t), γzj′⇝zj′′ (t)) be the triangle connected by these geodesic paths. AsM is
0-hyperbolic, the triangle△j,j′,j′′ is 0-centre and by triangle inequality, we have

dM(zj , z) + dM(zj′ , z) ≤ dM(zj , zj′′)

dM(zj′ , z) + dM(zj′′ , z) ≤ dM(z′j , zj′′)

dM(zj , z) + dM(zj′ , z) = dM(zj , zj′).

Therefore, dM(zj′′ , z) ≤ ⟨j, j′⟩j′′ . By the direct application of the aforementioned two inequality,
we have dM(zr,hj,j′) ≃ ⟨j, j′⟩r.

C.5 PROOF OF THEOREM 1

Theorem 1. For sufficiently large Kc and m, there exist some constants C1, C2 > 0 such that
C1dT (j1, j2) ≤ dB(j1, j2) ≤ C2dT (j1, j2) for j1, j2 ∈ [m], where dB is the decoded tree metric
dB in Alg. 1, T is the ground truth latent tree assumed from Sec. 4.1, and dT is the hidden tree metric
between features defined as the length of the shortest path on T (i.e., the geodesic distances).

Proof. We adopt the equivalence proof from Lin et al. (2023), which stems from Coifman & Lafon
(2006) and (Leeb & Coifman, 2016). Note that diffusion operator P is typically used for manifold
learning, where it be viewed as a discrete proxy of the underlying manifold. It is shown that the
diffusion operator recovers the underlying manifold (Coifman & Lafon, 2006), i.e., P

m→∞,ϵ→0−→
H = exp(−∆), where H is the Neumann heat kernel of the underlying manifold and ∆ is the
Laplace–Beltrami operator on the manifold. In addition, the diffusion operator P is based on a finite
set of points, which is a discrete approximation of H.
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For a family of the operator {At}t∈R, the multi-scale metric using the inverse hyperbolic sine function
of the scaled Hellinger measure is defined by

dA,M(x, x′) :=
∑
k≥0

2 sinh−1

(
2−

k
2+1

∥∥∥∥√A2−k(x, ·)−
√
A2−k(x′, ·)

∥∥∥∥
2

)
,

where Atf(x) =
∫
X At(x, x′)f(x′)dx′. Our goal is to show that dB(j, j′) ≃ dH,M(j, j′), and

conclude with Thm. C.1 (Lin et al., 2023) which states the equivalence dH,M(j, j′) ≃ dT (j, j
′).

Note that for small enough ϵ > 0, we have dP,M(j, j′) ≃ dH,M(j, j′). Specifically, following
Coifman & Lafon (2006), we have ∥P−H∥L2(M) → 0 and ∥P−H∥L1(M) → 0 as ϵ → 0. We
denote dM(j, j′) = dP,M(j, j′) ≃ dH,M(j, j′) for abbreviation.

For any three features j1, j2, j3 ∈ [m], assume the HD-LCA relation [j2 ∨ j3 ∼ j1]M holds. Let
j2 ∨ j3 and j1 ∨ j3 be LCAs of (j2, j3) and (j1, j3) on B obtained in Alg. 1, respectively. We denote
zj2 ∨ zj3 and zj2 ∨ zj3 the corresponding embeddings. By Prop. 1, we have

zj2 ∨ zj3=

[[
1

2

(
ψ0

j2 +ψ
0
j3

)⊤
, proj(z0j2 ∨ z0j3)

]⊤
, . . . ,

[
1

2

(
ψk

j2 +ψ
k
j3

)⊤
, proj(zKc

j2
∨ zKc

j3
)

]⊤]⊤
and

zj1 ∨ zj3=

[[
1

2

(
ψ0

j1 +ψ
0
j3

)⊤
, proj(z0j1 ∨ z0j3)

]⊤
, . . . ,

[
1

2

(
ψk

j1 +ψ
k
j3

)⊤
, proj(zKc

j1
∨ zKc

j3
)

]⊤]⊤
.

Therefore, the tree distance between j1 and j3 is given by dB(j1, j3) = dM(zj1 , zj1∨zj3)+dM(zj1∨
zj3 , zj2 ∨zj3)+dM(zj2 ∨zj3 , zj3). By triangle inequality, we have dB(j1, j3) ≤ dM(zj1 , zj3). We
denote dM(j1, j2) = dM(zj1 , zj3) for simplicity. By Prop. 2 and Prop. 4, we have c · dM(j1, j3) ≤
dB(j1, j3). Moreover, since the HD-LCA relation [j2 ∨ j3 ∼ j1]M holds, the tree distance between
j2, j3 ∈ [m] on B can be directly obtained by dB(j2, j3) = dM(j2, j3). As only one of the HD-LCA
relations [j2 ∨ j3 ∼ j1]M, [j1 ∨ j3 ∼ j2]M, or [j1 ∨ j2 ∼ j3]M holds in B, the proof can be applied
to any three points j1, j2, j3 ∈ [m] of which HD-LCA relation holds. Using Monte-Carlo integration,
the convergence is with probability one as Kc → ∞. For a finite set, we have a high probability
bound on the convergence. Therefore, dB ≃ dM ≃ dT .

Theorem C.1 (Theorem 1 in Lin et al. (2023)). For α→ 1
2 and sufficiently large Kc, there exists

some constants C̃1, C̃2 > 0 such that C̃1d
2α
T ≤ dM ≤ C̃2d

2α
T .

C.6 PROOF OF THEOREM 2

Theorem 2. For sufficiently large Kc and m, there exist some constant C̃1, C̃2 > 0 such that
C̃1TW(xi,xi′ , T ) ≤ TW(xi,xi′ , B) ≤ C̃2TW(xi,xi′ , T ) for all samples i, i′ ∈ [n].

Proof. Let µi and µi′ be two probability distributions supported on T with a ground metric dT ,
Π(µi, µi′) be the set of couplings π on the product space T × T such that π(B1 × T ) = µi(B1) and
π(T ×B2) = µi′(B2) for any sets B1, B2 ⊂ T . The Wasserstein distance (Villani, 2009) between
µi and µi′ is defined by

OT(µi, µi′ , dT ) := inf
π∈Π(µi,µi′ )

∫
T×T

d(x, y)dπ(x, y). (11)

LetFdT
and ∥·∥LdT

denote the Lipschitz functions w.r.t. dT and Lipschitz norm w.r.t. dT , respectively.
The Kantorovich-Rubinstein dual (Villani, 2009) of Eq. (11) is given by

OT(µi, µi′ , dT ) = sup
∥f∥LdT

≤1

∫
T

f(x)µi(dx)−
∫
T

f(y)µi′(dy).

By Evans & Matsen (2012), the witness function f can be represented by a Borel function g : T →
[−1, 1], i.e., ∫

T

f(x)µi(dx) =

∫
T

g(z)λ(dz)µi(ΓT (z)),
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where λ is the unique Borel measure on T . Therefore, following Le et al. (2019), the Wasserstein
distance OT(µi, µi′ , dT ) can be written as

OT(µi, µi′ , dT ) = sup

∫
T

(µi(ΓT (z))− µi′(ΓT (z))) g(z)λ(dz)

=

∫
T

|µi(ΓT (z))− µi′(ΓT (z))|λ(dz)

=
∑
v∈V

ωv

∣∣∣∣∣∣
∑

u∈ΓT (v)

(µi(u)− µi′(u))

∣∣∣∣∣∣
= TW(µi, µi′ , T ).

Note that based on Thm. 1, the decoded tree metric dB(·, ·) and the underlying tree metric dT (·, ·) are
bilipschitz equivalent. Additionally, the TWD using the tree T is the Wasserstein distance with ground
pairwise distance dT (Evans & Matsen, 2012), i.e., TW(µ1, µ2, T ) = OT(µ1, µ2, dT ). Therefore, for
any two discrete histograms xi and xi′ supported on T , we have TW(xi,xi′ , B) ≃ TW(xi,xi′ , T ).

C.7 PROOF OF PROPOSITION 5

Proposition 5. The TWD in Eq. (3) is bilipschitz equivalent to the sum of the multi-scale hyperbolic
TWDs TW(xi,xi′ , B

k) for k = 0, 1, . . . ,Kc, i.e., TW(xi,xi′ , B) ≃
∑Kc

k=0 TW(xi,xi′ , B
k).

Proof. By Alg. 3, the k-th rooted binary tree Bk = (V̂ k
c , Êk

c , Â
k
c ) is decoded based on the k-th scale

hyperbolic LCA {zkj ∨ zkj′}j,j′ , and the length of the edge is determined by the hyperbolic distance
dHm+1 . By Prop. 2, for all k ∈ {0, 1, . . . ,Kc}, the tree metric of the k-th rooted binary tree between
the features j, j′ ∈ [m] is bounded by

β′
kdB̂0

c
(j, j′) ≤ dBk(j, j′) ≤ βkdB̂0

c
(j, j′),

where βk, β
′
k > 0, and dB̂0

c
(·, ·) is the tree metric of B̂0

c . Since the embedding distance is induced by
the ℓ1 distance on the product of Kc + 1 hyperbolic spaces, the tree metric dB is the ℓ1 distance on
the product of Kc + 1 rooted binary tree {Bk}Kc

k=0, i.e., for any two features j, j′ ∈ [m], we have

dB(j, j
′) =

Kc∑
k=0

dBk(j, j′).

Incorporating the above equation with Prop. 2, the tree metric of the decoded tree dB is bounded by
the tree metric dB̂0

c
, given by

dB̂0
c
(j, j′)

Kc∑
k=0

β′
k ≤ dB(j, j

′) ≤ dB̂0
c
(j, j′)

Kc∑
k=0

βk.

Under the condition of uniform cost scaling in OT, we have

OT(xi,xi′ , dB) ≤ OT(xi,xi′ , dB̂0
c
)

Kc∑
k=0

βk

(1)

≤
Kc∑
k=0

OT(xi,xi′ , dBk),

where transition (1) is based on that OT(xi,xi′ , dBk) is at most βk · OT(xi,xi′ , dB̂0
c
). The lower

bound can be obtained in a similar way. Therefore, as TW(µ1, µ2, T ) = OT(µ1, µ2, dT ), the proposed
TWD is bilipschitz equivalent to the hyperbolic tree-sliced Wasserstein distance

TW(xi,xi′ , B) ≃
Kc∑
k=0

TW(xi,xi′ , B
k).
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Table 2: Statistics on real-world word-document and scRNA-seq benchmarks.

Dataset # Samples (n) # Classes # Features (m)

BBCSPORT 517 documents 5 13243 BOW
TWITTER 2176 documents 3 6344 BOW
CLASSIC 4965 documents 4 24277 BOW
AMAZON 5600 documents 4 42063 BOW

Zeisel 3005 cells 47 4000 genes
CBMC 8617 cells 56 500 genes

D ADDITIONAL DETAILS ON EXPERIMENTAL STUDY

We describe the setups and additional details of our experiments in Sec. 5. The experiments are
performed on NVIDIA DGX A100.

D.1 IMPLEMENTATION DETAILS

Setup. In our experiments, the datasets are divided into a 70% training set and a 30% testing set. The
split of the word-document datasets in Sec. 5.2 follows previous work (Kusner et al., 2015; Huang
et al., 2016). This split was applied to both learning of the underlying feature tree and to the kNN
model. Therefore, there is no train data leakage to the test data. The feature tree constructed from
the training data can be reused to process new samples. For each evaluation, we employ a kNN
classifier with varying k ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. The evaluation is repeated five times,
and we report the best result, averaged over these five runs.

Datasets. In real-world word-document datasets, we test four word-document benchmarks in Kusner
et al. (2015): (i) the BBCSPORT consisting of 13243 bags of words (BOW) and 517 articles
categorized into five sports types, (ii) the TWITTER comprising 6344 BOW and 2176 tweets in three
types of sentiment, (iii) the CLASSIC, including 24277 BOW and 4965 academic papers from four
publishers, and (iv) the AMAZON containing 42063 BOW and 5600 reviews of four products. The
Word2Vec embedding (Mikolov et al., 2013) is used as the word embedding vectors that are trained
on the Google News1 dataset. The types of documents are used as labels in classification tasks. In
scRNA-seq data analysis, we test two scRNA-seq datasets in Dumitrascu et al. (2021), where the
datasets are available at the link2. The first dataset, the Zeisel dataset, focuses on the mouse cortex
and hippocampus (Zeisel et al., 2015). It comprises 4000 gene markers and 3005 single cells. The
second dataset, the CBMC dataset, is derived from a cord blood mononuclear cell study (Stoeckius
et al., 2017). It comprises 500 gene markers and 8617 single cells. We apply the divisive biclustering
method from Zeisel et al. (2015) to obtain 47 subclasses for the Zeisel dataset and 56 subclasses for
the CBMC dataset. The cell subclasses are used as labels in cell classification tasks. The Gene2Vec
embeddings (Du et al., 2019) are used as the gene embedding vectors following the study of Gene
Mover’s Distance (Bellazzi et al., 2021).

We report the statistics of these benchmarks in Tab. 2.

Baselines. We compare the proposed TWD with existing TWDs, including (i) Quadtree (Indyk
& Thaper, 2003) that constructs a random tree by a recursive division of hypercubes, (ii) Flowtree
(Backurs et al., 2020) that computes the optimal flow of Quadtree, (iii) tree-sliced Wasserstein
distance (TSWD) (Le et al., 2019) that computes an average of TWDs by random sampling trees,
where the numbers of sampling are set to 1, 5, and 10, (iv) UltraTree (Chen et al., 2024) that constructs
an ultrametric tree (Johnson, 1967) by minimizing OT regression cost, (v) weighted cluster TWD
(WCTWD) (Yamada et al., 2022), (vi) weighted Quadtree TWD (WQTWD) (Yamada et al., 2022),
and their sliced variants (vii) SWCTWD and (viii) SWQTWD (Yamada et al., 2022). We also compare
to TWDs where the trees are constructed by (i) MST (Prim, 1957), (ii) Tree Representation (TR)

1https://code.google.com/archive/p/word2vec/
2https://github.com/solevillar/scGeneFit-python/tree/

62f88ef0765b3883f592031ca593ec79679a52b4/scGeneFit/data_files
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(Sonthalia & Gilbert, 2020) through a divide-and-conquer approach, (iii) gradient-based hierarchical
clustering (HC) in hyperbolic space (gHHC) (Monath et al., 2019), (iv) gradient-based Ultrametric
Fitting (UltraFit) (Chierchia & Perret, 2019), and (v) HC by hyperbolic Dasgupta’s cost (HHC)
(Chami et al., 2020). We refer to App. B for an extended description of these baselines. For non-TWD
baselines, we in addition include the Word Mover’s Distance (WMD) (Kusner et al., 2015) for
word-document data and we include the Gene Mover’s Distance (GMD) (Bellazzi et al., 2021) for
scRNA-seq data. In the experiments in Sec. 5, the Euclidean distance d̃ is used as the ground metric
for WMD, GMD, and the TWD baselines, which aligns with existing studies (Kusner et al., 2015;
Bellazzi et al., 2021; Indyk & Thaper, 2003; Backurs et al., 2020; Le et al., 2019; Chen et al., 2024;
Yamada et al., 2022). For the ablation study that uses cosine distance as the ground metric and directly
performs classification tasks in the feature space using Euclidean distance and cosine distance, we
refer to App. E.

Kernel Type, Scale, and Initial Distance Metric. When constructing the Gaussian kernel in Sec. 3,
the initial distance is derived from the cosine similarity calculated in the ambient space, and the
kernel scale is set to be {0.1, 1, 2, 5, 10} × σ, where σ is the median of the pairwise distances.

The diffusion operator’s scale parameter ϵ controls information propagation across data points.
Smaller ϵ values preserve local structures, beneficial for distinct clusters but may cause overfitting and
noise sensitivity. Larger ϵ values capture broader relationships, useful for overlapping clusters but can
blur distinctions. To balance these effects, we set ϵ within a standard range that is commonly-used in
kernel and manifold learning.

The maximal scale Kc determines the range of scales over which the hyperbolic manifold operates.
We follow (Lin et al., 2023) and suggest setting Kc ∈ {0, 1, . . . , 19}. Our empirical study, consistent
with (Lin et al., 2023), shows that increasing the maximal scale does not significantly impact
classification accuracy. This robustness simplifies the parameter selection process by indicating that
the method performs reliably across a broad range of Kc values.

As these parameters are task-specific and do not have a one-size-fits-all solution, we use Optuna
(Akiba et al., 2019) to efficiently explore the parameter space and identify optimal settings, where
(ϵ,Kc) are set (10, 12), (5, 7), (1, 15), (10, 14), (2, 7), and (5, 9) for BBCSPORT, TWITTER,
CLASSIC, AMAZON, Zeisel, and CBMC, respectively. We note that the selection of kernel type,
scale, and the initial distance metric in the kernel influences the effectiveness of our approach. Such
choices are not only crucial but also task-specific, which is in line with the common practice in
kernel and manifold learning methods. These elements, which do not have a one-size-fits-all solution,
continue to be of wide interest in ongoing research (Lindenbaum et al., 2020a).

In our study, we employed the Gaussian kernel with a distance measure based on cosine similarity
following prior research (Jaskowiak et al., 2014; Kenter & De Rijke, 2015), which is standard
and commonly used in classification tasks and manifold learning. In our empirical analysis, we
observed that employing the Euclidean distance in the ambient space tends to be highly sensitive and
underperforms compared to using a distance based on the cosine similarity in the tested datasets, as
detailed in the App. E. Our primary objective is to highlight the unique aspects of our method rather
than kernel selection, which, while crucial, is a common consideration across all kernel and manifold
learning methods.

D.2 PROBABILISTIC HIERARCHICAL MODEL FOR SYNTHETIC DATA

To generate the synthetic dataset in Sec. 5.1, we employ a probabilistic model (see Fig. 2(a)) designed
for generating 8-element vectors xi ∈ {0, 1}8, where each element indicates the presence of one
produce item. The generation of each vector is as follows. First, each of the two, fruits and vegetables,
is selected with an independent 50% probability. If fruits are selected, then each fruit (Apple, Orange,
and Banana) is selected with a 50% probability independently. If vegetables are selected, then each of
the subcategories, green leaf, and root vegetable, is selected with a 50% probability independently. If
root vegetable is selected, then the vegetables Carrot and Beetroot are selected with a 50% probability,
independently. If the green leaf is selected, then the vegetables Kale, Spinach, and Lettuce are
selected with a 50% probability, independently. By generating a set of 100 such vectors {xi}100i=1, we
create a data matrix with the hidden hierarchy of features (words).
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D.3 ACCOMMODATING LARGE DATASETS

In our work, we note that constructing the diffusion kernels and their eigenvectors by applying the
eigendecomposition to them is the most computationally intensive step. However, recent methods
in diffusion geometry have proposed various techniques to significantly reduce the run time and
space complexity of diffusion operators. Here, we consider the diffusion landmark (Shen & Wu,
2022) for scalability improvements which reduces the complexity to O(n1+2τ ) from the much larger
O(n3), where τ < 1 is the proportion of the landmark set. We briefly describe the diffusion landmark
approach below.

Consider a set of points A = {aj}mj=1 ⊆ Rn, let A′ = {a′j}m
′

j=1 ⊆ Rn be a subset of A, where
1 > τ = logm(m′). A landmark-set affinity matrix is constructed by K(j, j′) = exp(−d2(j, j′)/ϵ),
where d(j, j′) denotes a suitable distance between the data points aj ∈ A and a′j ∈ A′. Let
D̃ be a diagonal matrix, where the diagonal elements are D̃(j, j) = e⊤j KK⊤1m. The eigen-
structure of an SPD matrix D−1/2Q̃D−1/2 that is similar to the diffusion operator (Coifman & Hirn,
2014; Katz et al., 2020) is recovered by applying SVD to the matrix D̃−1/2K = ŨΛ̃Ṽ, where
Q̃ = KK⊤ ∈ Rm×m is the landmark-affinity matrix. The technique of constructing the diffusion on
A by going through the subset A′ and their eigenvectors can be seamlessly integrated into our TWD,
enabling the analysis of datasets larger than ten thousand data points, e.g., the word-document data in
Sec. 5.2.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 TOY PROBLEM

Consider a four-level balanced binary tree T = (V,E,A) rooted at node v1, where V =
{v1, . . . , v15} is the vertex set organized from the root to the leaves of the tree, E is the edge
set, and A ∈ R15×15 is the non-negative edge weights. Consider a set of vectors {xi ∈ R15}ni=1

such that xi is a non-negative realization from a normal distribution N (µ,L†) (Rue & Held, 2005),
where µ = 5 · 115 ∈ R15 and L is the graph Laplacian of T 3.

The set of vectors {xi}ni=1 were generated five times, and each time with a different number of
samples n ∈ {3, 10, 32, 102, 316, 103, 3162, 104}. Fig. 3 illustrates the normalized Frobenius norm
of the discrepancy between the pairwise TWD matrix obtained by Alg. 2 and the pairwise TWD
matrix TW(·, ·, T ). We see that the proposed TWD provides an accurate approximation of the TWD
with the tree T , even based on a limited sample size. In addition, as the number of samples increases,
the proposed TWD approaches closer to the true TWD, highlighting its efficacy in capturing the
hidden feature hierarchy.

Figure 3: The normalized Frobenius norm of the difference between the proposed TWD and ground
truth TWD with different number of samples n.

3The mean is large compared to the covariance matrix, and the realizations are non-negative with high
probability. Realizations with negative elements are rejected.
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E.2 RUNTIME ANALYSIS

In Fig. 4, we present the runtime performance of our TWD in comparison to other TWDs and
Wasserstein distances when applied to scRNA-seq and word-document datasets. Although our
TWD is not the fastest method, it consistently ranks as the fourth or fifth quickest. It outperforms
deep-based methods like HHC-TWD and gHHC-TWD, as well as pre-trained OT baselines such as
GMD for single-cell RNA sequencing datasets and WMD for word-document datasets. The fastest
methods identified are TSWD-1, TR-TWD, and MST-TWD. The work in (Le et al., 2019) reports
that the runtime of TSWD is influenced by the number of tree slices used in sampling. Similarly,
slice variants SWCTWD and SWQTWD are also affected by the number of slices. Despite being
slightly slower compared to TSWD-1, TR-TWD, and MST-TWD, our TWD demonstrates significant
advantages in terms of classification accuracy, as shown in Tab. 1. We also report the runtime of
the OT distance using the embedding distance between features as a ground distance, denoted as
OT-ED. We note that this computational expense is O(mn3 + m3 logm). In contrast, our TWD
offers a substantially reduced runtime of O(m1.2), thereby demonstrating a significant advantage
when handling large datasets. Note that the scalability of the proposed TWD is enhanced by utilizing
diffusion landmarks (Shen & Wu, 2022), as detailed in App. D.3. This enhancement allows our
TWD to achieve computational performance comparable to TSWD-1, TR-TWD, and MST-TWD,
particularly in datasets with a large number of features, such as the word-document datasets shown in
Fig. 4.

ED

Figure 4: Run time of the proposed TWD and competing TWD and OT distances on scRNA-seq
datasets and word-document datasets.

E.3 ABLATION STUDIES

We note that our method consists of several non-trivial steps. We provide theoretical justification for
our method in Sec. 4. Specifically, in Thm. 2, we show that the TWD TW(·, ·, T ) based on the hidden
feature tree T can be approximated by our TWD using the decoded tree B, where the proposed TWD
and B are obtained solely from the data matrix, without access to ground truth T . In addition, in
Thm. 1, we show that the tree metric of the decoded tree B is bilipschitz equivalent to the tree metric
of the hidden tree T . These results stem directly from the particular steps of the proposed method
and might not exist otherwise. In the following, we performed a comprehensive empirical ablation
study, demonstrating the importance of each component in our method.

E.3.1 EUCLIDEAN INITIAL METRIC

Fig. 5 presents the classification performance on the scRNA-seq and word-document datasets using
the Euclidean distance as an input to Alg. 2 instead of using the distance based on cosine similarity.
The Euclidean distance leads to inferior classification compared to the cosine similarity. Indeed, as
remarked in App. D, the selection of the distance metric influences the performance of our method.
In future work, we plan to comprehensively investigate the use of different metrics.

E.3.2 TWD BY MST AND AT

Fig. 6 shows the classification performance of the scRNA-seq and word-document datasets using the
TWD with the tree constructed using Minimum Spanning Trees (MST) (Prim, 1957) and Approximat-
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Figure 5: The classification accuracy of the proposed TWD using the distance based on cosine
similarity and Euclidean distance for scRNA-seq and word-document datasets.

ing Tree (AT) (Chepoi et al., 2008). To ensure that the tree nodes are contained in a subtree, which
is required when computing the TWD in Eq. (1), we set the minimal leaf number as the number of
features in MST for computing the TWD between samples. We see that the TWD approximated by
either the MST or the AT is less effective than our TWD, implying that MST and AT do not capture
well the underlying tree structure between features compared to our binary tree construction.

Figure 6: The classification accuracy of our TWD and TWDs computed with MST and AT for
scRNA-seq and word-document datasets.

E.3.3 TREE CONSTRUCTION BY EMBEDDING DISTANCE

We note that the embedding distance (Lin et al., 2023) could be simply used for tree construction in
existing TWDs (Indyk & Thaper, 2003; Le et al., 2019; Yamada et al., 2022), graph-based algorithms
(Alon et al., 1995), or linkage methods (Murtagh & Contreras, 2012) instead of the HD-LCA in the
tree decoding (Alg. 1). However, these generic algorithms, while providing upper bounds on the
distortion of the constructed tree distances, do not build a geometrically meaningful tree when given
a tree metric (Sonthalia & Gilbert, 2020), because they do not exploit the hyperbolic geometry of the
embedded space or do not have theoretical guarantees to recover the hidden feature hierarchy.

Tab. 3 shows the classification accuracy on the word-document and scRNA-seq datasets obtained by
the proposed TWD and TWDs using embedding distance as input to construct the feature tree. We
see that our TWD leads to the best empirical performance among all the tested methods. This result
indicates that using HD-LCA, where the information is encoded in the multi-scale hyperbolic LCAs,
is important for revealing the hidden feature hierarchy, and therefore, our TWD is more effective and
meaningful.
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Table 3: Document and single-cell classification accuracy of the proposed TWD and TWDs using
embedding distance (ED).

Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

Quadtree-ED 94.7±0.3 70.3±1.0 94.7±0.9 88.2±0.7 81.4±1.7 80.9±1.3

Flowtree-ED 95.0±1.6 71.2±1.2 93.2±0.9 90.6±1.1 81.0±1.2 81.0±1.3

WCTWD-ED 93.1±2.7 68.7±2.4 92.4±3.1 87.9±1.7 81.9±5.2 78.9±2.7

WQTWD-ED 94.0±2.1 67.5±2.9 93.5±3.9 86.5±2.1 80.0±3.7 79.7±3.6

UltraTree-ED 94.0±2.2 69.3±3.0 91.4±2.5 87.9±3.4 83.1±2.3 80.6±2.2

TSWD-1-ED 86.4±2.1 67.3±1.8 92.9±1.4 86.2±1.3 79.4±1.2 74.8±2.2

TSWD-5-ED 87.3±1.9 69.2±1.4 93.7±1.4 89.8±0.7 80.8±1.2 75.4±1.9

TSWD-10-ED 88.0±1.3 70.0±1.1 94.2±0.9 90.7±0.3 81.9±1.3 76.0±1.3

SWCTWD-ED 91.9±1.5 70.7±1.0 94.0±1.3 91.0±1.5 81.4±2.5 76.2±1.5

SWQTWD-ED 93.8±1.4 71.2±1.4 94.2±2.6 90.3±1.5 82.6±2.7 80.4±2.9

MST-TWD-ED 89.2±4.4 69.1±1.4 89.2±2.7 87.8±2.1 81.3±2.2 77.4±2.7

TR-TWD-ED 90.6±1.3 71.8±1.3 94.5±1.5 90.6±1.5 84.2±1.9 80.5±1.0

HHC-TWD-ED 84.1±1.3 71.2±2.2 91.8±3.3 89.6±1.5 80.7±1.2 79.5±0.9

gHHC-TWD-ED 82.5±2.3 70.8±1.4 91.0±1.8 87.4±3.1 80.1±0.8 74.6±1.7

UltraFit-TWD-ED 84.5±1.2 70.6±1.5 93.0±1.6 89.3±2.7 80.6±2.9 78.1±1.3

Ours 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

E.3.4 EXPLORING OTHER HYPERBOLIC EMBEDDING AND THE IMPACT OF CURVATURE

Hyperbolic embedding methods (Chamberlain et al., 2017; Nickel & Kiela, 2017; 2018) typically
assume a fully known or partially known graph of T , which in turn is embedded into hyperbolic space.
In Sonthalia & Gilbert (2020); Lin et al. (2023); Sala et al. (2018); Weber et al. (2024), these methods
were shown to inadequately capture the intrinsic hierarchical relation underlying high-dimensional
observational data X (i.e., the node attributes). Therefore, we opted to use hyperbolic embedding (Lin
et al., 2023), a recent hyperbolic embedding method with theoretical guarantees. This embedding
and its accompanying theory enabled us to introduce our theoretical results in Sec. 4.

It is important to note that we could indeed apply traditional hyperbolic embedding methods directly
to the affinity matrix Q. From a graph perspective, this is the affinity of a graph, but this graph is not
usually a tree. These traditional methods, due to the quantity they are minimizing, will estimate a
hyperbolic distance that approximates as best as possible the shortest path distance on this non-tree
graph induced by Q. As such, they do not, in general, recover a hyperbolic distance related to the
hyperbolic distance of the hidden tree T . In contrast, the hyperbolic diffusion embedding approach
(Lin et al., 2023) is designed such that the recovered hyperbolic metric is close to that of the hidden
tree T , guaranteeing it will be bilipschitz equivalent to it. One of the reasons for the success of this
method is that the obtained embedding is not provided by the minimization of an objective function
controlled by Q. Instead, Lin (Lin et al., 2023) designed a non-trivial process that is neither iterative
nor based on optimization that computes the embedding directly with theoretical guarantees. We
build on the theoretical guarantees of this embedding in our own theoretical contribution in Thm. 1.

We here give an intuition as to the reason for the success of the approach from Lin et al. (2023). After
normalizing the affinity matrix Q, the diffusion operator P is computed. This operator was proven to
reveal the underlying manifold. This property is what allows an embedding approach based on the
diffusion operator to approximately recover the underlying tree metric dT rather than fit the metric of
a non-tree graph constructed from the affinity matrix Q. The diffusion operator reveals the underlying
manifold in the following sense (Coifman & Lafon, 2006). In the limit of the infinite number of
features m→∞ and small scale ϵ→ 0, the operator Pt/ϵ pointwise converges to the Neumann heat
kernel of the underlying manifold Ht = exp(−t∆), where ∆ is the Laplace–Beltrami operator on
the manifold. In other words, the diffusion operator is a discrete approximation of the heat kernel on
the manifold. Intuitively, Pt is designed to reveal the local connectivity at diffusion time scale t.
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Considering multiple timescales on a dyadic grid {2−k}Kc

k=0 allows for the association of different dif-
fusion timescales with neighborhoods of varying sizes. The multi-scale embedding of the associated
diffusion operators in hyperbolic space generates distances that are exponentially scaled, aligning
with the structure of a tree distance. This scaling naturally introduces a hierarchical relationship
between the diffusion timescales, enabling the estimation of a latent hierarchical metric. From a
theoretical standpoint, it was shown that the ℓ1 distance in this multi-scale embedding induced by the
metric of the product of hyperbolic spaces can estimate the distance dT in the hidden hierarchical
space that underlies the observations even when dT is not given or when we do not have access to
the explicit T (Lin et al., 2023). It is stated under the assumption that (Pt)t∈(0,1] is a pointwise
approximation of the heat kernel. Such an approximation, mainly in the limit m→∞ and ϵ→ 0,
was shown and studied in Coifman & Lafon (2006); Singer (2006); Belkin & Niyogi (2008). In
addition, three strong regularity conditions are required: an upper bound on the operator elements,
a lower bound on the operator elements, and a Hölder continuity condition. Importantly, the heat
kernel satisfies these conditions (Lin et al., 2023).

In our work, we use the hyperbolic diffusion embedding from Lin et al. (2023) to present a novel
data-driven tree decoding method that operates in high-dimensional hyperbolic spaces. Our method is
based on a new definition of the counterpart of the LCA in hyperbolic spaces. Our Thm. 1 is built on
the multi-scale hyperbolic embedding from Lin et al. (2023), where we use the theoretical property
(Lin et al., 2023) that the ℓ1 distance in this embedding can estimate the hidden tree metric dT . The
difference between Thm. 1 and the work from Lin et al. (2023) is that we construct an explicit tree B
whose tree metric approximates the hidden tree metric dT . In Lin et al. (2023), no tree is recovered,
and only the hidden tree metric is approximated by the hyperbolic embedding distances. Our Thm. 2
is established based on Thm. 1, where the proposed TWD can estimate the TWD associated with the
latent feature tree T without access to T . The uniqueness of our approach lies in its ability to work
without the need for a pre-known hierarchical graph.

Among the existing hyperbolic models, we chose to work with the Poincaré half-space model because
(i) it is natural to represent diffusion times on a dyadic grid in this model, following previous work
(Lin et al., 2023), and (ii) there exists a closed-form solution of the hyperbolic LCA and the HD-LCA,
which are the key components in our tree decoding algorithm in Alg. 1. Since the four standard
models of hyperbolic space (Bowditch, 2007): the Poincaré disk, Lorentz, Poincaré half-space,
and Beltrami-Klein, are equivalent and isometric, it is possible to use the closed-form solution of
LCA in the alternative models, e.g., the Lorentz model for numerical stability. However, we did
not encounter any numerical instabilities in our empirical studies using our implementation in the
Poincaré half-space model.

We consider hyperbolic space with negative constant curvature of −1 because it aligns with the
common practice in hyperbolic representation (Nickel & Kiela, 2017; 2018; Sala et al., 2018; Chami
et al., 2020). Any negative constant curvature can indeed be used and considered as a hyperparameter,
e.g., (Chami et al., 2019). The modifications that it will require from our algorithm are minimal, and
most of the steps can be applied seamlessly in such a space. We conducted experiments on scRNA-seq
data to investigate the role of curvature in our method. Specifically, we vary the curvature and explore
the effects of constant negative curvature −1/κ where κ > 0. Fig. 7 presents the classification
accuracy of the Zeisel and CBMC datasets as a function of the curvature. We see that decreasing
the curvature slightly improves the cell classification accuracy. This suggests that while the choice
of curvature does have a large impact, our method remains robust across a range of curvatures. In
addition, fine-tuning the curvature can enhance performance, and starting with the default choice of
−1/κ = −1 is a reasonable and commonly accepted practice.

We note that other TWD baselines could use other two-dimensional Poincaré representations (e.g.,
Poincaré embedding (PE) (Nickel & Kiela, 2017) or hyperbolic VAE (Nagano et al., 2019)) and
decode the hyperbolic embedding into a tree by HHC (Chami et al., 2020). We denoted these baselines
by PE-HHC-TWD and HVAE-HHC-TWD, respectively, and present their results in Tab. 4. We see in
the table that HHC (Chami et al., 2020) applied to a PE (Nickel & Kiela, 2017) or hyperbolic VAE
(Nagano et al., 2019) is less effective than our TWD by a large margin. This discrepancy is attributed
to the sensitivity of the recovery of the hidden feature hierarchy using the competing methods, a
finding that is consistent with previous works (Sala et al., 2018; Sonthalia & Gilbert, 2020; Lin et al.,
2023).
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Figure 7: The classification accuracy for the Zeisel and CBMC datasets under different curvatures
−1/κ. Decreasing curvature could slightly improve the cell classification accuracy.

Table 4: Document and single-cell classification accuracy of our TWD and TWDs constructed by
other hyperbolic embeddings.

Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

PE-HHC-TWD 87.2±1.2 69.7±0.9 93.2±1.1 86.2±0.9 81.6±0.9 74.9±1.0

HVAE-HHC-TWD 88.4±2.5 64.3±1.7 90.8±1.5 87.3±1.7 80.2±0.9 75.1±1.0

Ours 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

E.3.5 ROBUSTNESS ANALYSIS UNDER GAUSSIAN NOISE

To demonstrate the robustness of our method, we conducted experiments on scRNA-seq data to
evaluate the resilience of the proposed TWD to the presence of noise. Specifically, we added Gaussian
noise to the measurements and examined the effect of varying the noise variance on classification
performance.

Fig. 8 presents the cell classification accuracy on Zeisel and CBMC datasets under Gaussian noise
perturbations. We see that while adding noise to the measurements hinders the extraction of hidden
feature hierarchy and is directly reflected in degraded cell classification performance, our method
remains more robust than the competing methods by a large margin. This demonstrates that our
approach can provide reliable recovery guarantees even when the ground truth hierarchical features
are obscured by noise.

Figure 8: Assessing the robustness of cell classification under Gaussian noise perturbations. While
adding noise to the measurements hinders the extraction of hidden feature hierarchy and is directly
reflected in the cell classification performance, our method remains more robust than the competing
baselines by a large margin.

E.3.6 COMPARISON TO NON-TWD BASELINES

For non-TWD baselines, we also compare our method to Word Mover’s Distance (WMD) (Kusner
et al., 2015) for word-document datasets and Gene Mover’s Distance (GMD) (Bellazzi et al., 2021)
for scRNA-seq datasets in Sec. 5. Note that WMD (Kusner et al., 2015) computes the Wasserstein
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Table 5: Document and single-cell classification accuracy of WMD and GMD using cosine distance
as the ground metric.

Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

WMD 91.2±0.4 68.4±0.2 93.5±0.3 89.4±0.2 - -
GMD - - - - 86.9±0.5 82.7±0.9

Ours 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

Table 6: Document and cell classification accuracy in the feature space using the Euclidean distance
and cosine distance.

Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

Euclidean 78.2±1.5 57.3±0.6 64.0±0.5 71.3±0.4 67.2±1.3 62.5±0.9

Cosine 91.5±0.9 68.1±0.6 90.3±0.8 86.4±0.7 73.5±1.0 72.7±1.1

Ours 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

distance using the Euclidean distance d̃ between precomputed Word2Vec embeddings (Mikolov et al.,
2013) as the ground cost, while GMD (Bellazzi et al., 2021) is defined similarly, using the Euclidean
distance d̃ between precomputed Gene2Vec embeddings as the ground cost. In the experiments
in Sec. 5, the Euclidean distance d̃ is used as the ground metric for WMD, GMD, and the TWD
baselines, which aligns with existing studies (Kusner et al., 2015; Huang et al., 2016; Le et al., 2019;
Takezawa et al., 2021; Yamada et al., 2022; Chen et al., 2024; Bellazzi et al., 2021).

We conduct additional experiments evaluating WMD on word-document datasets and GMD on
scRNA-seq datasets, both using cosine distance as the ground metric. Tab. 5 presents the document
and cell classification accuracy of WMD and GMD using cosine distance as the ground metric.
The results show that WMD performs worse with cosine distance as the ground metric compared
to Euclidean distance, while GMD performs better with cosine distance than Euclidean distance.
However, regardless of the ground metric (cosine or Euclidean), WMD and GMD exhibit less effective
performance compared to our method. These findings emphasize the value of inferring latent feature
hierarchies, as our approach outperforms the baselines in these tasks.

It is important to note that using the ground metric d̃ (e.g., Euclidean) in WMD, GMD, or existing
TWD methods results in the (approximated) Wasserstein distance being based on the predefined
metric d̃. In contrast, our method employs an initial distance d, computed using the cosine similarity
in the experiments, to compute an affinity matrix within the diffusion operator, which is central to
kernel and manifold learning methods. This process leads to a Wasserstein distance based on a latent
hierarchical metric induced by d. As noted in App. D.1, the kernel type, scale parameter, and initial
distance metric selection in our approach significantly influence its effectiveness. These choices are
task-specific and are critical in achieving optimal performance (Lindenbaum et al., 2020a).

In addition, we conduct additional tests evaluating classification performance directly in the feature
space, without using Wasserstein distance or TWD. Tab. 6 presents the document and cell classification
accuracy in the feature space using the Euclidean distance and cosine distance. We see that the
classification performance relying on generic metrics (Euclidean or cosine) is much less effective
than WMD and GMD, which aligns with the findings reported in WMD (Kusner et al., 2015) and
GMD (Bellazzi et al., 2021). This highlights that incorporating the feature relationship into a distance
between samples improves the effectiveness of distance metric learning. Furthermore, we see that our
TWD method performs better than the distance relying on generic metrics, WMD and GMD. This
suggests that inferring explicitly the feature hierarchies is important and leads to the effectiveness of
distance metric learning for data with a hierarchical structure.
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E.4 EVALUATING OUR TWD ON NON-HIERARCHICAL DATA

We focus on the problem of data with a hidden feature hierarchy as it is of broad interest and prevalent
across a wide range of applications. Therefore, the existence of a hidden feature hierarchy is an
important assumption in our method.

We tested our TWD on MNIST datasets, where the images are column-stacked. We compared the
proposed TWD with the same competing methods as in the paper. The digit classification was
performed in the same way as in Sec. 5. Fig. 9 presents the resulting digit classification accuracy. As
expected, and in contrast to the word-document and scRNA-seq data, the classification results do not
match the state of the art since there are no definitive latent hierarchical structures in this case. Yet,
our method still demonstrates good results and outperforms all the other TWD-based methods.
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Figure 9: Digit classification accuracy on MNIST dataset. In contrast to the word-document and
scRNA-seq data, in this case, there are no definitive latent hierarchical structures. Yet, our method
still demonstrates good results and outperforms the competing TWD methods.

We remark that the state-of-the-art methods of MNIST do not tackle the problem of finding meaningful
distances between data samples that incorporate the latent hierarchical structure of the features.
Moreover, they usually train on labeled data, whereas the distance we compute is unsupervised.
Therefore, comparing the results obtained by our method (and the results obtained by the other
TWD-based methods) to the state of the art is not entirely fair.

F ADDITIONAL REMARKS

F.1 SINGLE-SCALE HYPERBOLIC DIFFUSION BINARY TREE DECODING

In Alg. 1, the tree decoding is based on the multi-scale embeddings and the corresponding HD-LCAs.
In Alg. 3 we present a similar algorithm based on the single scale hyperbolic embedding zkj and the
corresponding k-th hyperbolic LCAs zkj ∨ zkj′ in Def. 1, giving rise to a (single-scale) binary tree Bk.
Specifically, we merge the pair of features exhibiting the highest similarity at the k-th hyperbolic
LCA, determined by the smallest value of proj(zkj ∨ zkj′) in Prop. 1. Following Def. 2, only one of
the hyperbolic LCA relations [j2 ∨ j3 ∼ j1]

k
Hm+1 , [j1 ∨ j3 ∼ j2]

k
Hm+1 , or [j1 ∨ j2 ∼ j3]

k
Hm+1 , holds

in Bk. The merged nodes are then connected by edges whose weights are assigned by dHm+1(·, ·)
between the corresponding points. It is worth noting that considering (Kc + 1) trees {Bk}Kc

k=0
generated by Alg. 3 gives rise to a tree-sliced Wasserstein distance as defined in Prop. 5. In Prop. 5,
we show that our TWD efficiently captures the tree-sliced information encoded within these multi-
scale trees, circumventing the need for their explicit construction. In addition, we posit that our
high-dimensional tree decoding in Alg. 3 for single-scale hyperbolic embedding can be readily
applied to other hyperbolic embeddings, e.g., (Nickel & Kiela, 2017; 2018; Nagano et al., 2019),
extending its applicability and utility. While this extension is technically feasible, it does not carry
the theoretical guarantees as those established in Thm. 1 and Thm. 2.
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Algorithm 3 Single-Scale Hyperbolic Binary Tree Decoding

Input: A single scale Poincaré half-space representation at the k-th level {{zk1}, {zk2}, . . . , {zkm}}

Output: The k-th rooted binary tree Bk = (V̂ k
c , Êk

c , Â
k
c ) with m leaf nodes

function H_BinaryTree({{zk1}, {zk2}, . . . , {zkm}})
Bk ← leaves({j} : j ∈ {1, 2, . . . ,m})
for j, j′ ∈ {1, 2, . . . ,m} do

zkj ∨ zkj′ ← argmin
z∈Hm+1

∑
l=j,j′

d2Hm+1(z, zkl )

end for
S = {(j, j′)| pairs sorted by zkj ∨ zkj′(m+ 1)}
for (j, j′) ∈ S do

if nodes j and j′ are not in the same subtree in Bk

Ij ← internal node consisting node j
Ij′ ← internal node consisting node j′

add a new internal node consisting Ij and Ij′
assign the edge weight by their geodesic distance

end if
end for

return Bk

F.2 PUTTING THE FEATURES ON THE LEAVES OF THE TREE

The ground truth latent tree T does not assume that features are positioned at the leaves. In addition,
note that the hyperbolic embedding (Lin et al., 2023), which is consistent with other common
hyperbolic embedding methods (Chamberlain et al., 2017; Nickel & Kiela, 2017; 2018; Sala et al.,
2018), does not restrict all the features to the leaves. Assigning the features to the leaf nodes is only
carried out in the tree decoding (Alg. 1), which is in line with other tree decoding algorithms (Sarkar,
2011; Chami et al., 2020; Indyk & Thaper, 2003). Note that our tree decoding algorithm generates a
weighted binary tree. We assert that this does not pose a restriction because any tree can be effectively
transformed into a binary tree (Bowditch, 2007; Cormen et al., 2022). For instance, consider the
flexible tree in Fig. 10 (a): [sport[soccer,football,basketball]] (where “sports” is a parent node with
three children: “basketball”, “soccer”, and “football”). This tree can be accurately modeled as a
(weighted) binary tree as in Fig. 10 (b): [c[b[a[soccer, football], basketball]], sport] (where “sports”,
“basketball”, “soccer”, and “football” are all leaves, a, b, c are internal nodes, and the edges encode
the same relationships as the flexible tree above).
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Figure 10: (a) In a flexible tree, “sports” is a parent node with three children: “basketball”, “soccer”,
and “football”. (b) In a binary tree, “sports”, “basketball”, “soccer”, and “football” are all leaves,
a, b, c are internal nodes.
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F.3 DIFFERENTIABILITY OF OUR TWD

The proposed TWD can be expressed in a matrix form (Takezawa et al., 2021) as

TW(xi,xi′ , B) =
∑
v∈Ṽ

αv

∣∣∣∣∣∣
∑

u∈ΓB(v)

(xi(u)− xi′(u))

∣∣∣∣∣∣ = ∥diag(α)RB (xi − xi′)∥1 , (12)

where α ∈ RM is a weights vector with α(v) = αv, RB ∈ {0, 1}M×m is a parent-child relation
matrix of the decoded tree B, where RB(v

′, j) = 1 if node v′ is the ancestor of the leaf node j, and
M = 2m+ 1 is the total number of the nodes in B.

Note that the hyperbolic embedding in Lin et al. (2023) can be recast as a function mapping from
the feature diffusion operator P to the product manifold of the hyperbolic spacesM, denoted by
f1 : P→M. The weight αv in the our TWD can then be expressed by

g1 :M×M→ R,
and the weights vectorα ∈ RM in Eq. (12) can be written as g2 : f1(P)×f1(P)→ RM by applying
the function g1 M times. Let h1 :M→ B be the hyperbolic diffusion binary tree decoding function
in Alg. 1. The parent-child relation matrix RB can be obtained by applying the function

h2 : B → {0, 1}M×m

⇒ h2 : h1(M)→ {0, 1}M×m

⇒ h2 : (h1 ◦ f1)(P)→ {0, 1}M×m,

where ◦ denotes function composition. Therefore, the gradient of the our TWD w.r.t. j can be written
as

∇∥diag(f1(P)× f1(P))((h1 ◦ f1)(P)) (xi − xi′)∥1 .
This implies that the gradient of our TWD depends on the feature diffusion operator P. Notably,
since the gradient of the feature diffusion operator hinges on the gradient of the Gaussian kernel
Qc (as detailed in Sec. 3), the gradient of the proposed TWD can be expressed only in terms of the
gradient of Qc. Such formulation could be highly beneficial in future applications that require rapid
computation of the gradients of the proposed TWD.

F.4 THE DIFFERENCES BETWEEN OUR TWD AND THE EMBEDDING DISTANCE (LIN ET AL.,
2023)

Our TWD is a TWD between samples that incorporates the hidden hierarchical structure of the
features, while the embedding distance (Lin et al., 2023) is a hierarchical distance between the
samples. Namely, in our TWD, the features are assumed to have hidden hierarchies, whereas in Lin
et al. (2023), the samples are assumed to have hidden hierarchies. The work in Lin et al. (2023) does
not involve TWD or OT.

More concretely, in comparison to the work in Lin et al. (2023), our work presents a new algorithm
for tree decoding (Alg. 1) and a corresponding new TWD (Alg. 2). Our work also includes theoretical
analysis of these two algorithms:

1. Our TWD recovers the TWD associated with the true hidden feature tree, as stated in Thm. 2.

2. Our decoded tree metric represents a form of unsupervised ground metric learning derived
from the latent tree underlying the features, as presented in Thm. 1.

3. Our TWD captures the tree-sliced information encoded in the multi-scale trees efficiently,
as stated in Prop. 5.

4. Our TWD can be computed in linear time, enhancing computational efficiency in OT
framework, as detailed in Sec. 4 and App. E.

5. Our TWD is differentiable (details in App. F.3), which is an important property that is
lacking in existing TWD baselines.

In addition, we present favorable empirical results in Sec. 5 compared to several TWDs and Wasser-
stein distances.
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Table 7: Document and single-cell classification accuracy of our TWD, embedding distance (ED),
and OT distance using embedding distance (OT-ED).

Real-World Word-Document Real-World scRNA-seq

BBCSPORT TWITTER CLASSIC AMAZON Zeisel CBMC

ED 87.2±1.2 69.7±0.9 93.2±1.1 86.2±0.9 84.5±1.7 81.4±2.8

OT-ED 95.9±0.3 73.5±0.3 96.7±0.4 93.2±0.2 89.0±0.3 84.1±0.5

Ours 96.1±0.4 73.4±0.2 96.9±0.2 93.1±0.4 89.1±0.4 84.3±0.3

Seemingly, from a metric learning viewpoint, both our TWD and the embedding distance (Lin
et al., 2023) generate distances between the samples. Since the two are fundamentally different, the
comparison can be carried out in two ways: (i) directly compute the embedding distance between the
samples (denoted as ED), and (ii) use the embedding distance between the features as the ground
distance for the computation of the Wasserstein distance between the samples (denoted as OT-ED).
We present the classification accuracy of the word-document and scRNA-seq datasets of these two
baselines in Tab. 7. We see a clear empirical advantage of our TWD in classifying documents and
scRNA-seq data compared to embedding distance (ED), as our TWD learns the latent hierarchy of
the features explicitly by constructing a tree, and then, incorporating it in a meaningful distance
between the samples. We note that while OT-ED performs similarly to our TWD in terms of accuracy
(empirically corroborating Thm. 2), the computational expense is O(mn3 +m3 logm). In contrast,
our proposed TWD offers a substantially reduced runtime of O(m1.2), thereby demonstrating a
significant advantage when handling large datasets. This computational advantage is empirically
validated and illustrated in Fig. 4.

F.5 INTUITION BEHIND SINGLE-LINKAGE TREE CONSTRUCTION IN HYPERBOLIC
EMBEDDINGS

The single-linkage tree aligns well with hyperbolic embeddings because it inherently emphasizes
hierarchical relationships by connecting points based on the measure of similarity determined by their
HD-LCAs, where there is the “treelike” nature of a hyperbolic space (Bowditch, 2007). Specifically,
Prop. 4 shows that the LCA depth closely approximates the Gromov product, which corresponds to
the tree depth in 0-hyperbolic metrics.

In the context of tree-Wasserstein distance (TWD), many tree construction methods aim to approxi-
mate a given ground metric d̃ (often Euclidean) using tree metrics, enabling efficient computation of
optimal transport distances. The quality of TWD methods is typically assessed by the mean relative
error between the proposed TWD and the Wasserstein distance with the ground metric d̃. For instance,
an ultrametric incurs a logm distortion with respect to Euclidean distance (Fakcharoenphol et al.,
2003), as utilized in UltraTree (Chen et al., 2024). Hence, the ultrametric Wasserstein distance (Chen
et al., 2024) incurs a logm distortion compared to the original Euclidean Wasserstein distance.

Our approach differs fundamentally from existing TWD methods. Instead of approximating the
Wasserstein distance with a given ground metric d̃ (e.g., Euclidean), we aim to approximate the
Wasserstein distance with a latent underlying hierarchical distance via TWD, where we use the tree
to represent the latent feature hierarchy.
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