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Abstract001

This paper investigates the underlying mech-002
anisms of toxicity generation in Large Lan-003
guage Models (LLMs) and proposes an ef-004
fective detoxification approach. Prior work005
typically considers the Feed-Forward Network006
(FFN) as the main source of toxicity, repre-007
senting toxic regions as a set of toxic vec-008
tors or layer-wise subspaces. However, our009
in-depth analysis reveals that the global toxic010
subspace offers a more effective and compre-011
hensive representation of toxic region within012
the model. Building on this insight, we propose013
GloSS (Global Toxic Subspace Suppression),014
a lightweight, four-stage method that mitigates015
toxicity by identifying and removing the global016
toxic subspace from the parameters of FFN. Ex-017
periments across a range of LLMs show that018
GloSS achieves state-of-the-art detoxification019
performance while preserving the models’ gen-020
eral capabilities, without requiring large-scale021
data or model retraining. WARNING: This022
paper contains context which is toxic in nature.023

1 Introduction024

Large language models (LLMs) have shown im-025

pressive capabilities in various domains (Brown026

et al., 2020; Xin et al., 2024; Gu et al., 2025). How-027

ever, they also have risks of toxicity generation,028

which may lead to undesirable effect in real-world029

applications (Ma et al., 2025). To mitigate toxicity,030

tuning-based methods such as Supervised Safety031

Fine-Tuning (SSFT) (Ouyang et al., 2022) and032

Direct Preference Optimization (DPO) (Rafailov033

et al., 2023) have been widely adopted, improving034

LLM safety. However, aligned models can still035

be bypassed by crafted attack prompts (Yan et al.,036

2025). As a result, recent researches have shifted037

toward analyzing the mechanisms of LLMs, aiming038

to understanding and locating the regions that elicit039

toxicity (Suau et al., 2024; Wang et al., 2024).040

Toxic behaviors are often attributed to the Feed-041

Forward Network (FFN) of Transformer blocks,042
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Figure 1: (a) Removing toxic vectors do not alter the
underlying toxic subspace. (b) Layer-wise subspaces
are limited and fail to capture complete toxic features.
(c) Global toxic subspace provides a more faithful rep-
resentation of toxic region.

with two prevailing views proposed. One line of re- 043

search, such as Lee et al. (2024), identifies the toxic 044

region as a set of toxic vectors, and argues that DPO 045

mitigates toxic outputs by bypassing the region. 046

Another approaches, exemplified by ProFS (Up- 047

paal et al., 2025), posit that toxicity resides in layer- 048

wise toxic subspaces, identified via Singular Value 049

Decomposition (SVD) of embedding differences 050

between toxic and non-toxic prompts at each layer. 051

However, we find that both views exhibit lim- 052

itations, as shown in Figure 1. We first observe 053

that suppressing or removing toxic vectors do not 054

effectively reduce toxic outputs. Instead, toxic gen- 055
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eration is primarily driven by the cumulative direc-056

tional bias of FFN outputs toward toxicity (§3.1).057

These results motivate us to model the toxic region058

as a subspace formed by these toxic directions.059

While ProFS emphasizes the value of subspace-060

level modeling, its layer-wise contrastive extraction061

fails to identify effective toxic directions at each062

layer. This is largely due to the varying capacity063

of FFN to capture toxic features (§3.2), resulting064

in the extracted subspaces that are often ineffective065

and incomplete. Building on these findings, we fur-066

ther observe that toxic directions are shared across067

layers (§3.3). Therefore, aggregating them into068

a unified global toxic subspace provides a more069

faithful representation of the toxic region.070

Motivated by above analysis, we propose a071

lightweight detoxification method, GloSS (Global072

Toxic Subspace Suppression), without requiring073

large-scale data or retraining (§4). GloSS first ex-074

tracts candidate toxic directions from each layer075

by applying SVD to activation differences between076

multiple toxic and non-toxic input pairs. It then077

ranks all candidates globally and selects high-078

scoring ones to ensure that only directions with079

meaningful toxicity are retained. Principal compo-080

nents are subsequently extracted from the selected081

directions to form a unified global toxic subspace.082

To suppress toxicity, the value weights of each FFN083

modules are projected onto the orthogonal comple-084

ment of this subspace, effectively removing toxic085

components while preserving the model’s general086

capabilities.087

We evaluate the effectiveness of GloSS through088

extensive experiments across different LLMs (§5).089

The results demonstrate that: 1) GloSS achieves090

lower toxicity scores than ProFS and other base-091

lines, while preserving the model’s general capabil-092

ities. This supports the conclusion that removing093

the global toxic subspace enables more effective094

detoxification. 2) Despite using fewer training sam-095

ples, both GloSS and ProFS outperform SSFT and096

DPO, highlighting the effectiveness of safety mech-097

anism based approaches compared to traditional098

fine-tuning methods. 3) The global toxic subspace099

exhibits a low-dimensional structure, suggesting100

that toxicity is concentrated in a compact region of101

the model’s representation space.102

In summary, our contributions are the following:103

• We present a mechanistic understanding of104

how toxicity emerges in LLMs and identify105

the global toxic subspace as a more faithful106

representation of toxic regions. 107

• We propose GloSS, a lightweight detoxifica- 108

tion method that suppresses toxicity via sub- 109

space modeling, without requiring additional 110

data or model retraining. 111

• We conduct extensive experiments demon- 112

strating that GloSS achieves state-of-the-art 113

detoxification performance while preserving 114

the general capabilities of LLMs. 115

2 Preliminaries 116

In this section, we introduce the background and 117

define the notations used in our work. 118

FFN as Linear Combinations of Value Vectors. 119

Transformer-based language models are composed 120

of stacked Transformer layers (Vaswani et al., 121

2017). Each layer includes a Multi-head Self- 122

attention (MHSA) module and a Feed-Forward 123

Network (FFN), both equipped with residual con- 124

nections and layer normalization. 125

Given an input sequence w = ⟨w0, . . . , wt⟩, 126

the model maps each token wi to an embedding 127

ei ∈ Rd using the embedding matrix E. At each 128

layer ℓ, the FFN receives the hidden state xℓ
i ∈ Rd 129

corresponding to token i and produces an interme- 130

diate output oℓi ∈ Rd. The updated representation 131

after applying the FFN and residual connection is 132

denoted as x̃ℓ
i ∈ Rd: 133

oℓi = FFNℓ(xℓ
i) (1) 134

x̃ℓ
i = xℓ

i + oℓi (2) 135

FFN in each Transformer layer typically follows 136

a two-layer structure. It can be interpreted as com- 137

puting a context-dependent linear combination of 138

learned value vectors (Geva et al., 2022). Specifi- 139

cally, the FFN outputs at layer ℓ is given by: 140

FFNℓ(xℓ) = f
(
W ℓ

Kxℓ
)
W ℓ

V

=

dm∑
i=1

f
(
xℓ · kℓ

i

)
vℓ
i =

dm∑
i=1

mℓ
i v

ℓ
i

(3) 141

We focus on the FFN update for a single token and 142

omit the token index for simplicity, i.e., xℓ := xℓ
i . 143

The weight matrices W ℓ
K ,W ℓ

V ∈ Rdm×d parame- 144

terize the FFN at layer ℓ. We denote the i-th row of 145

W ℓ
K as kℓ

i (key vector) and the i-th column of W ℓ
V 146

as vℓ
i (value vector). The function f(·) represents 147

a non-linear activation, such as GELU. 148
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Figure 2: Results of Different Operations on Activation of Vectors. (a) Enhance different numbers of toxic and
non-toxic value vector activations, selectively; (b) Suppress toxic vector activations at different proportions; (c)
Reversing value vector activations steers the FFN blocks either toward or away from the toxic direction.

FFN outputs can be interpreted as a weighted149

sum of value vectors vℓ
i , where each vector is150

scaled by a context-dependent coefficient mℓ
i :=151

f(xℓ · kℓ
i). This shows that FFNs compute a linear152

combination of learned semantic directions.153

Interpreting Vectors in Vocabulary Space. To154

interpret the semantic meaning of a vector u ∈ Rd155

in the embedding space, we project it into the vo-156

cabulary space using the output embedding matrix157

E = [e1, . . . , e|V|]⊤ ∈ R|V|×d, where V denotes158

the vocabulary (Geva et al., 2020):159

r = Eu ∈ R|V| (4)160

We select the top-k tokens from the projection of161

u, offering an interpretable approximation of its162

semantic content. Notably, this projection depends163

only on the direction of u, not its magnitude.164

3 Motivation165

Two main perspectives have been proposed regard-166

ing the presence of toxic regions within the FFN167

module of Transformer: (1) a set of toxic vec-168

tors (Lee et al., 2024), and (2) layer-wise toxic169

subspace (Uppaal et al., 2025). Although both170

frameworks offer valuable insights, our findings171

suggest that they may not fully capture the under-172

lying mechanisms of toxicity.173

To investigate this, we conduct experiments on174

GPT-2 Medium (henceforth GPT2) using the chal-175

lenge subset of the REALTOXICITYPROMPTS176

dataset (Gehman et al., 2020), which includes177

1,199 prompts designed to elicit highly toxic re-178

sponses. Following (Uppaal et al., 2025), we use179

Detoxify1 to score the toxicity of the first 10 gener-180

ated tokens for each prompt.181

1https://github.com/unitaryai/detoxify

3.1 Limitations of Toxic Vectors 182

Lee et al. (2024) suggest that toxic region is formed 183

by a set of toxic vectors selected via a trained probe 184

vector. However, this view may be limited. 185

Observation
Suppressing or removing toxic vectors fails to
mitigate toxicity effectively.

186

We begin by examining whether toxic vectors 187

are correlated with toxicity. To this end, we use 188

a toxic probe vector to identify the most and least 189

similar value vectors in FFN. We refer to these as 190

toxic and non-toxic vectors, respectively. During 191

generation, we selectively enhance varying num- 192

bers of toxic and non-toxic value vector activations 193

and observe the corresponding changes in output 194

toxicity. Figure 2a shows the results when activa- 195

tion are scaled by 10. As the number of enhanced 196

activations increases, we observe a clear trend: tox- 197

icity increases rapidly when toxic vectors are am- 198

plified and decreases when non-toxic vectors are 199

enhanced. These results indicate that toxic vectors 200

contribute to the generation of toxic content, while 201

non-toxic vectors play a suppressive role. 202

To test whether toxic region is truly composed 203

of toxic vectors, we suppress their activations to 204

simulate their removal and observe model outputs. 205

As shown in Figure 2b, suppressing toxic vectors 206

reduces toxicity by less than 0.08, with little over- 207

all effect. Even when more vectors are suppressed, 208

toxicity remains high or even rebounds. This obser- 209

vation is similar with findings from (Mayne et al., 210

2024). In summary, Although enhancing the acti- 211

vation of toxic vectors leads to increased toxicity, 212

suppressing them does not significantly reduce it. 213

This suggests that while toxic vectors are correlated 214

with toxic output, they are unlikely to constitute 215

the structural basis of toxic regions. 216
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Table 1: Top Toxic and Non-Toxic Vectors in GPT-2 Projected into Vocabulary Space Under Different Activation.
Negative activation of toxic vectors yields non-toxic output, while that of non-toxic vectors can produce toxicity.

Vector Toxicity Top Tokens

Positive activation Negative activation

Wtoxic c*nt, f*ck, a**hole, d*ck, wh*re, holes orate, onding, medium, esp, iations, rece
MLP.v19

770 ✓ sh*t, a**, cr*p, f*ck, c*nt, garbage, trash anni, anwhile, Uri, iscovery, GMT, owship
MLP.v12

771 ✓ delusional, hypocritical, arr**nt, no**nse toggle, MAP, uration, bis, uala, Mine, Sig
MLP.v18

2669 ✓ degener, whining, idiots, stupid, sm**g iment, assetsadobe, ANGE, href, querque
MLP.v10

1882 ✗ buoy, stabilized, clud, helps, breaks, shows ardo, man**c, bul***it, fu**ing, nonsense
MLP.v11

1307 ✗ aker, atch, encer, erick, wik, follow, participant damn, kidding, freaking, darn, p**s, !, booze
MLP.v7

3094 ✗ dialect, texts, staples, rend, repertoire, sessions wasting, ternity, usterity, UCK, closure, fuss

Assumption

Toxicity arises when FFN outputs are biased
toward toxic directions.

217

To further investigate the structure of toxic re-218

gions, we conduct a detailed analysis of vector219

activations. We first observe that activations of the220

toxic vectors significantly influence the expression221

of toxicity. As shown in Table 1, negative activa-222

tion of a toxic vector leads to non-toxic output; con-223

versely, negative activation of a non-toxic vector224

results in toxic output. This suggests that toxicity225

depends not only on which vectors are involved but226

also on how they are activated.227

Motivated by above observations, and grounded228

in the view that FFNs operate as linear combina-229

tions of value vectors (Geva et al., 2022), we hy-230

pothesize that toxicity arises when the FFN outputs231

is biased toward a specific toxic direction. To test232

this hypothesis, we define the normalized toxic233

probe vector as the toxic direction and design a234

contrastive experiment with two settings.235

• FFN towards the toxic direction: Aactivation236

signs follow the similarity (positive stays pos-237

itive, negative stays negative);238

• FFN away from the toxic direction: Activation239

signs are flipped (positive becomes negative,240

negative becomes positive).241

As shown in Figure 2c, when FFN outputs are bi-242

ased toward the toxic direction, the toxicity score243

remains high (close to 1.00). In contrast, when bi-244

ased away from the toxic direction, the score drops245

toward 0. These results support our hypothesis that246

the cumulative directional bias of FFN layers drives247

toxic generation. Toxic vectors amplify activations248

along toxicity-aligned directions, and even after re-249

moving some vectors, the remaining ones can still250

combine to induce toxicity.251

Table 2: Toxicity Projection Results Across Layers. The
heuristic scaling factor α = 100.

Vector Top Tokens

d1 ften, Painter, proper, nce, AMY, favour, squared
d2 proper, Painter, court, Extrem, Court, squared
d4 po*p, h**ny, nip**es, kittens, tits, sh*t, s**en
d12 sh*t, f*ck, u**er, bag, weed, yeah, dragon, stab
d14 sh*t, f*ck, F*ck, f*cking, b**ch, d*ck, F*CK
d23 B, b, C, S, P, L, p, M, F, T, d, A, R, H, V, D, u
d24 -, (, and, the, a, ", The, s, in, A, The, S, B, b, C

x1 Citiz, mum, Levy, Petr, discrep, Guinea, Sponsor
x′
1 sh*t, F*ck, f*ck, st*b, ucker, cision, bi*ch, ser

x24 the, and, -, (, a, in, I, to, of, The, A, or, for, that
x′
24 sh*t, f*ck, ucker, F*ck, god, ard, uck, ass, p*op

Conclusion. Toxic vectors correlate with toxic- 252

ity and increase it when amplified, but suppressing 253

them has little effect. This suggests toxicity arises 254

from a cumulative directional bias in FFN outputs 255

toward a toxic subspace, rather than from individ- 256

ual vectors alone. 257

3.2 Limitations of Layer-wise Toxic Subspace 258

Prior works have highlighted the importance 259

of toxic subspace, but offered limited insight. 260

ProFS (Uppaal et al., 2025) suggests that the toxic 261

subspace is layer-wise, identifying toxic directions 262

based on differences in FFN outputs between toxic 263

and non-toxic prompts at each layer, and combin- 264

ing these directions to form the subspace. 265

Observation
Layer-wise extraction fails to effectively iden-
tify the toxic subspace in most layers.

266

ProFS proposes that an embedding vector at any 267

Transformer layer can be approximated as a com- 268

bination of stopwords, toxic component, context 269

component, and noise. To analyze this structure, it 270

applies factor analysis to toxic and non-toxic input 271
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pairs at a given layer, modeling the embeddings as:272

x+i = a+i µ︸︷︷︸
stopwords

+ Bfi︸︷︷︸
toxic

+ B̃f̃i︸︷︷︸
context

+ u+i︸︷︷︸
noise

,273

x−i = a−i µ︸︷︷︸
stopwords

+ B̃f̃i︸︷︷︸
context

+ u−i︸︷︷︸
noise

(5)274

Building on this formulation, we input multiple275

toxic and non-toxic pairs and construct contrastive276

matrices at each layer. We then apply SVD to ex-277

tract the top one-dimensional direction dℓ, which278

is assumed to represent the toxic direction, and279

project it into the vocabulary space to examine280

the top-k tokens. As shown in Table 2, projec-281

tions from middle layers show mostly toxic tokens,282

whereas those from lower and upper layers do not.283

This suggests that layer-wise toxic directions lack284

effectiveness and consistency, making the resulting285

subspaces unreliable.286

Assumption

The capacity of FFN blocks to capture toxic
features varies across layers.

287

If input pairs differ clearly in toxicity, what288

causes the failure in layer-wise toxic direction ex-289

traction? We hypothesize that this stems from the290

variation in how FFN blocks model toxic features.291

As shown in Table 2, the projection results exhibit292

a clear layer-wise pattern. In the early layers (e.g.,293

the first and second), the contrast between toxic294

and non-toxic projections mainly involves context295

words. In the final layers, the differences shift to-296

ward symbols and stopwords. Only the middle297

layers consistently reveal toxic tokens; however,298

both the intensity and semantics of these tokens299

vary across layers. These results suggest that the300

lower and upper layers encode toxicity differently301

from the middle layers. Even among the middle302

layers, toxic features are expressed inconsistently,303

both in strength and type. This aligns with prior304

finding (Sun et al., 2025), potentially reflecting305

functional differences in FFNs across layers.306

Conclusion. Due to the varying capacity of FFN307

blocks to model toxicity, we found that contractive308

extraction fails to identify effective toxic directions309

at each layer. Therefore, toxic subspace is unreli-310

able and inconsistent.311

3.3 Global Toxic Subspace312

The toxic region can be viewed as a toxic subspace,313

but existing layer-wise extraction methods are lim-314
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Figure 3: Top-5 Toxic Directions Across Layers. They
are primarily located in the middle-to-late layers and
exhibit pairwise cosine similarities close to 1.

ited. This raises a key question: how can we model 315

it more effectively? 316

Observation
The toxic subspace is shared across all layers.

317

We further analyze the directions extracted from 318

each layer in Section 3.2 by ranking all candidate 319

directions from different layers using a predefined 320

bad words list B (Gehman et al., 2020). Each di- 321

rection dℓ is projected into the vocabulary space, 322

and its top-m tokens Tdℓ
are compared against B. 323

The toxicity score is computed as: 324

tox_score(dℓ) =
|Tdℓ

∩ B|
m

(6) 325

We select the top-5 directions with the highest toxi- 326

city scores based on this metric. These directions 327

are mainly concentrated in the middle-to-late layers 328

(e.g., layers 14, 15, 18, 20, and 21) and exhibit high 329

pairwise cosine similarity, as illustrated in Figure 3. 330

Additionally, we use 1,000 non-toxic WikiText- 331

2 (Merity et al., 2016) sentences as prompts to 332

compute the average token activation at each layer, 333

denoted as xℓ. We then select the top-ranked toxic 334

direction dℓ0 at layer ℓ0 = 14, and shift the average 335

activation along this direction: 336

x′
ℓ = xℓ + α · dℓ0 (7) 337

α is a heuristic scaling factor. As shown in Table 2, 338

shifting activations along a toxic direction in layers 339

1 and 24 converts the projected tokens from non- 340

toxic to toxic. This suggests that toxicity directions 341

are shared across the model, and the subspace they 342

form is therefore global in nature. 343
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Conclusion. The above observations reveal that344

toxic directions are not limited to individual layers345

but are consistently shared across multiple layers.346

We therefore consider the global toxic subspace,347

constructed by aggregating toxic directions from348

all layers, to be a more essential representation of349

toxic regions in the model.350

4 Detoxification Method: GloSS351

Building on the insights from Section 3, we pro-352

pose a detoxification method, GloSS (Global Toxic353

Subspace Suppression), a detoxification method354

that identifies and removes the global toxic sub-355

space through a four-stage procedure to effectively356

reduce toxic generation, as shown in Figure 4.357

Step 1: Layer-wise Directions Extraction. Fol-358

lowing ProFS, we identify candidate toxic direc-359

tions by comparing the FFN output of paired toxic360

and non-toxic inputs at each layer. Given a model361

and N sentence pairs Dpref = {(p+i , p
−
i )}Ni=1, we362

compute the average FFN output at each layer363

for every input pair, and stack them into matri-364

ces X+
ℓ , X−

ℓ ∈ RN×d. The initial contrastive rep-365

resentation is then defined as T 0
ℓ := X+

ℓ − X−
ℓ .366

To mitigate the influence of frequent token seman-367

tics,we perform mean-centering to obtain a refined368

contrastive matrix Tℓ.369

Finally, we apply singular value decomposition370

(SVD) to Tℓ to extract the dominant directions:371

UΣV⊤
ℓ = Tℓ, Vℓ = (v1

ℓ ,v
2
ℓ , . . . ,v

N
ℓ ) (8)372

We extract the top-k right singular vectors373

v1
ℓ ,v

2
ℓ , . . . ,v

k
ℓ ∈ Rd as the candidate toxic direc-374

tions at layer ℓ. Larger k values enable capture a375

richer set of toxic representations.376

Step 2: Ranking. In this step, we rank all can- 377

didate toxic directions v extracted from each lay- 378

ers. Each direction is projected into the vocab- 379

ulary space using the output embedding matrix 380

E ∈ R|V|×d as described in Equation (4). We then 381

select the top-m tokens from the projection result, 382

denoted as T v, and compute the toxicity score by 383

measuring the overlap with a predefined bad words 384

list B, as defined in Section 3.3: 385

tox_score(v) =
|Tv ∩ B|

m
(9) 386

This score quantifies how strongly direction v is 387

associated with toxicity and serves as the basis for 388

cross-layer ranking. 389

Step 3: Global Toxic Directions Extraction. To 390

identify high-confidence toxic directions across all 391

layers, we define a threshold τ based on the distri- 392

bution of toxicity scores tox_score(v): 393

τ = µ+ α · σ (10) 394

Here, µ and σ are the mean and standard deviation 395

of the toxicity scores, respectively. α is a scal- 396

ing parameter that controls the selection strictness. 397

Accordingly, we select directions whose toxicity 398

scores exceed this threshold. 399

Vhigh = {vi | tox_score(vi) > τ} (11) 400

This subset Vhigh captures the most salient direc- 401

tions associated with toxic content across layers. 402

To extract the principal components from Vhigh, 403

we apply PCA (Hotelling, 1933) and retain the 404

minimal number of components whose cumulative 405

explained variance exceeds a threshold η: 406

VPCA = PCA≥ η(Vhigh) ∈ Rr×d (12) 407
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Table 3: Comparison of Detoxification Effectiveness and General Capability Across Methods and Models. ProFS
and GloSS are trained on N = 500 pairwise toxic samples, while SSFT and DPO use N = 2000. Here, N denotes
the number of prompt pairs. Noop refers to the original model without any modification.

Methods
GPT-2 Medium GPT-J 6B OPT 6.7B Mistral 7B

Toxicity Perplexity Toxicity Perplexity Toxicity Perplexity Toxicity Perplexity

Noop 0.480 29.70 0.453 13.24 0.465 14.67 0.425 7.49
SSFT (Ouyang et al., 2022) 0.398 30.50 0.429 13.18 0.434 14.04 0.417 7.34
DPO (Rafailov et al., 2023) 0.363 29.86 0.437 13.96 0.453 14.37 0.364 7.52
ProFS (Uppaal et al., 2025) 0.268 32.50 0.374 14.53 0.435 13.83 0.304 7.99

GloSS(ours) 0.208 32.31 0.283 14.52 0.352 14.53 0.271 7.95

The resulting matrix VPCA contains the dominant408

directions that best represent toxicity signals con-409

sistently shared across layers.410

Step 4: Removing. We mitigate toxic represen-411

tations by projecting the model’s parameters onto412

the orthogonal complement of the global toxic sub-413

space. Given the n orthonormal global toxic direc-414

tions {d1,d2, . . . ,dn} from VPCA,we define the415

projection matrix for the toxic subspace as:416

Ptoxic =
n∑

i=1

did
⊤
i (13)417

To suppress toxicity, we apply the projection to418

the FFN value matrices WV,ℓ at each layer ℓ:419

W
proj
V,ℓ =

(
I−Ptoxic)W orig

V,ℓ (14)420

This operation removes toxic components while421

preserving semantic content, enabling lightweight,422

interpretable detoxification without retraining or423

performance loss.424

5 Experiment425

5.1 Experiment Setup426

Base LLMs. Our experiments on four large lan-427

guage models of varying sizes, including GPT-2428

Medium (Radford et al., 2019), GPT-J(6B) (Wang429

and Komatsuzaki, 2021), OPT-6.7B (Zhang et al.,430

2022), and Mistral-7B (Jiang, 2024).431

Baseline Methods. We compare our method432

against several baselines, including SSFT (Ouyang433

et al., 2022), DPO (Rafailov et al., 2023), and434

ProFS (Uppaal et al., 2025). The implementation435

details are shown in (§ B).436

Evaluation. We evaluate both the toxicity and437

the general capabilities of the model. To assess438

toxicity, we use the challenge subset of the RE-439

ALTOXICITYPROMPTS (Gehman et al., 2020)440

dataset as input prompts and measure the toxicity441

GPT2-Medium GPT-J-6b OPT-6.7b Mistral-7b
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0.27
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Figure 5: Effectiveness of Extracted vs. Random Sub-
spaces in Toxicity Reduction. No-op denotes the origi-
nal model without any modification.

of generated responses using Detoxify. To eval- 442

uate general capabilities, we follow the approach 443

of Yang et al. (2024) and report perplexity on the 444

WikiText-2 validation set (Merity et al., 2016). 445

5.2 Experiment Results 446

GloSS Demonstrates Stronger Detoxification 447

with Comparable Model Capability. As shown in 448

Table 3, GloSS maintains stable perplexity scores, 449

indicating that the model’s general language capa- 450

bilities are not compromised. In terms of detoxifi- 451

cation, GloSS achieves lower toxicity than ProFS, 452

demonstrating the advantage of modeling a global 453

toxic subspace over layer-wise subspaces for cap- 454

turing and suppressing toxic behaviors. Moreover, 455

although using only N = 500 training pairs, which 456

is substantially fewer than the N = 2000 used by 457

SSFT and DPO, both GloSS and ProFS outperform 458

these fine-tuning based methods in reducing toxi- 459

city. These findings underscore the effectiveness 460

of safety mechanism based approaches over tradi- 461

tional fine-tuning in mitigating toxic outputs. 462

Global Toxic Subspace is Crucial and Exhibits 463

Low-dimensional Properties. We first validate 464

the role of the extracted global toxic subspace in 465
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Table 4: Dimensionality of Toxic Subspace Identified by GloSS. The subspace generally covers less than 1% of the
hidden space, and its most toxic directions primarily correspond to toxic tokens in the vocabulary.

Model tox_dim n_hidden Ratio Projection

Direction Top Tokens

GPT-2 Medium 4 1024 0.004
d1 f**ked, really, sh*t, kinda, da*n, f**king, crazy
d2 p*ss, st**id, upid, F*ck, ass**le, p**sed, godd

GPT-J 6B 5 4096 0.001
d1 f**kin, f*cking, albums, album, f*ck, peaked
d2 males, Se*ual, vag**al, Males, Sex, Females

OPT 6.7B 21 4096 0.005
d1 f*ck, sh*t, p*ss, b**ch, f*cking, f*cked, as**ole
d2 Male, male, r*ped, female, Female, sex**lly

Mistral 7B 45 4096 0.011
d1 se**al, s*x, p*rn, pen*s, r*pe, actor, biological
d2 f*cking, f*ck, c*ck, UK, f*cked, sh*t, d*ck, rack

detoxification through a control experiment. For466

each model, we construct random subspaces that467

are orthogonal to the global toxic subspace and468

have the same dimensionality. These subspaces are469

then removed from the corresponding FFN layers,470

and the resulting toxicity levels are compared. As471

shown in Figure 5, removing random subspaces has472

minimal impact on toxicity reduction and, in some473

cases, even increases toxicity relative to the original474

model. These results confirm that the extracted475

global toxic subspace captures essential directions476

specifically associated with toxic behavior.477

We further analyze the properties of global toxic478

subspace and find that it exhibits low-dimensional479

characteristics. As shown in Table 4, the toxic sub-480

space identified by GloSS spans less than 1% of481

the full representation space, and in most cases,482

remains below 0.5%. This suggests that toxic infor-483

mation is concentrated in a small number of direc-484

tions, supporting the notion of a low-dimensional485

toxic structure. Moreover, when the most toxic486

directions are projected into the vocabulary space,487

they consistently align with toxic tokens.488

Projection Effects of Different Layers. Although489

the toxic subspace is shared across layers, applying490

projection at all layers simultaneously can signifi-491

cantly impair model performance. To investigate492

this, we systematically evaluate the effects of ap-493

plying projection starting from different layers up494

to the final layer, measuring both toxicity and per-495

plexity across four LLMs. As shown in Figure 6,496

we find that in all models except GPT-2, reducing497

the number of projected layers leads to a gradual498

increase in toxicity and a corresponding decrease499

in perplexity. Furthermore, applying projection at500

early layers causes a sharp drop in perplexity, in-501

dicating substantial performance degradation. For502
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(a) Toxicity Across Layers in Different LLMs
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(b) Perplexity Across Layers in Different LLMs

Figure 6: Impact of Projection Layers on Toxicity and
Perplexity. (a) Fewer projected layers lead to higher
toxicity. (b) Perplexity decreases overall, with a sharp
drop when projection is applied to early layers.

example, in Mistral-7B, projection from layer 2 503

yields a perplexity of 231.7, while starting from 504

layer 3 reduces it to 9.7, highlighting the model’s 505

sensitivity to early-layer interventions. 506

6 Conclusion 507

In this work, we propose a mechanistic perspec- 508

tive on toxicity in LLMs and identify the global 509

toxic subspace as a faithful representation of toxic 510

region. Building on this, we introduce GloSS, a 511

lightweight, training-free method that mitigates tox- 512

icity by removing toxic subspace from FFN param- 513

eters. Our results demonstrate the effectiveness of 514

structural interventions in enhancing LLM safety. 515
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7 Limitations516

While this paper investigates the underlying mecha-517

nisms of toxicity generation in LLMs and proposes518

an effective detoxification approach, several limi-519

tations remain. First, our evaluation is limited to a520

small set of open-source LLMs ranging from 0.6B521

to 7B parameters. The generalization of GloSS522

to larger models remains to be explored. Second,523

we compare GloSS primarily against representative524

fine-tuning methods (SSFT and DPO). While these525

baselines are strong and relevant, a broader set of526

detoxification methods, including prompt-based or527

detection-based approaches, should also be consid-528

ered for a more comprehensive evaluation.529

8 Ethics Statement530

This paper focuses on improving the safety of531

large language models (LLMs) by identifying and532

suppressing toxic subspaces through interpretable,533

training-free interventions. All toxic prompts used534

for evaluation are sourced from public datasets and535

manually reviewed to minimize potential harm. No536

private or user-generated data is used, and the pro-537

posed method does not require model retraining.538

We acknowledge potential misuse of internal model539

insights and take care to present our findings with540

the goal of strengthening LLM defenses, not en-541

abling harmful applications.542

References543

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie544
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind545
Neelakantan, Pranav Shyam, Girish Sastry, Amanda546
Askell, Sandhini Agarwal, Ariel Herbert-Voss,547
Gretchen Krueger, Tom Henighan, Rewon Child,548
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,549
Clemens Winter, and 12 others. 2020. Lan-550
guage models are few-shot learners. Preprint,551
arXiv:2005.14165.552

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao553
Chang, and Furu Wei. 2022. Knowledge neurons in554
pretrained transformers. In Proceedings of the 60th555
Annual Meeting of the Association for Computational556
Linguistics (Volume 1: Long Papers), pages 8493–557
8502, Dublin, Ireland. Association for Computational558
Linguistics.559

Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding,560
Huawei Shen, and Xueqi Cheng. 2024. Everything561
is editable: Extend knowledge editing to unstruc-562
tured data in large language models. arXiv preprint563
arXiv:2405.15349.564

Zenghao Duan, Wenbin Duan, Zhiyi Yin, Yinghan Shen,565
Shaoling Jing, Jie Zhang, Huawei Shen, and Xueqi566

Cheng. 2025. Related knowledge perturbation mat- 567
ters: Rethinking multiple pieces of knowledge editing 568
in same-subject. arXiv preprint arXiv:2502.06868. 569

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom 570
Henighan, Nicholas Joseph, Ben Mann, Amanda 571
Askell, Yuntao Bai, Anna Chen, Tom Conerly, and 572
1 others. 2021. A mathematical framework for 573
transformer circuits. Transformer Circuits Thread, 574
1(1):12. 575

Samuel Gehman, Suchin Gururangan, Maarten Sap, 576
Yejin Choi, and Noah A. Smith. 2020. RealToxi- 577
cityPrompts: Evaluating neural toxic degeneration 578
in language models. In Findings of the Association 579
for Computational Linguistics: EMNLP 2020, pages 580
3356–3369, Online. Association for Computational 581
Linguistics. 582

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold- 583
berg. 2022. Transformer feed-forward layers build 584
predictions by promoting concepts in the vocabulary 585
space. In Proceedings of the 2022 Conference on 586
Empirical Methods in Natural Language Process- 587
ing, pages 30–45, Abu Dhabi, United Arab Emirates. 588
Association for Computational Linguistics. 589

Mor Geva, R. Schuster, Jonathan Berant, and Omer 590
Levy. 2020. Transformer feed-forward layers are 591
key-value memories. ArXiv, abs/2012.14913. 592

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, 593
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 594
Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun 595
Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni, 596
and Jian Guo. 2025. A survey on llm-as-a-judge. 597
Preprint, arXiv:2411.15594. 598

Skyler Hallinan, Alisa Liu, Yejin Choi, and Maarten Sap. 599
2022. Detoxifying text with marco: Controllable 600
revision with experts and anti-experts. arXiv preprint 601
arXiv:2212.10543. 602

Harold Hotelling. 1933. Analysis of a complex of sta- 603
tistical variables into principal components. Journal 604
of educational psychology, 24(6):417. 605

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 606
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu 607
Chen. 2021. Lora: Low-rank adaptation of large 608
language models. CoRR, abs/2106.09685. 609

Fengqing Jiang. 2024. Identifying and mitigating vul- 610
nerabilities in llm-integrated applications. Master’s 611
thesis, University of Washington. 612

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, 613
Caiming Xiong, and Richard Socher. 2019. Ctrl: A 614
conditional transformer language model for control- 615
lable generation. arXiv preprint arXiv:1909.05858. 616

Tomasz Korbak, Kejian Shi, Angelica Chen, 617
Rasika Vinayak Bhalerao, Christopher Buck- 618
ley, Jason Phang, Samuel R Bowman, and Ethan 619
Perez. 2023. Pretraining language models with 620
human preferences. In International Conference on 621
Machine Learning, pages 17506–17533. PMLR. 622

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685


Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wat-623
tenberg, Jonathan K. Kummerfeld, and Rada Mihal-624
cea. 2024. A mechanistic understanding of align-625
ment algorithms: A case study on DPO and toxicity.626
In Forty-first International Conference on Machine627
Learning.628

Chak Tou Leong, Yi Cheng, Jiashuo Wang, Jian Wang,629
and Wenjie Li. 2023. Self-detoxifying language mod-630
els via toxification reversal. In Proceedings of the631
2023 Conference on Empirical Methods in Natural632
Language Processing, pages 4433–4449, Singapore.633
Association for Computational Linguistics.634

Xingjun Ma, Yifeng Gao, Yixu Wang, Ruofan Wang,635
Xin Wang, Ye Sun, Yifan Ding, Hengyuan Xu, Yun-636
hao Chen, Yunhan Zhao, Hanxun Huang, Yige Li,637
Jiaming Zhang, Xiang Zheng, Yang Bai, Zuxuan Wu,638
Xipeng Qiu, Jingfeng Zhang, Yiming Li, and 28 oth-639
ers. 2025. Safety at scale: A comprehensive survey640
of large model safety. Preprint, arXiv:2502.05206.641

Harry Mayne, Yushi Yang, Adam Mahdi, and Filip642
Sondej. 2024. Ablation is not enough to emulate643
dpo: How neuron dynamics drive toxicity reduction.644
Preprint, arXiv:2411.06424.645

Kevin Meng, David Bau, Alex Andonian, and Yonatan646
Belinkov. 2022. Locating and editing factual associa-647
tions in gpt. Advances in neural information process-648
ing systems, 35:17359–17372.649

Stephen Merity, Caiming Xiong, James Bradbury, and650
Richard Socher. 2016. Pointer sentinel mixture mod-651
els. Preprint, arXiv:1609.07843.652

Yixin Ou, Yunzhi Yao, Ningyu Zhang, Hui Jin, Jiacheng653
Sun, Shumin Deng, Zhenguo Li, and Huajun Chen.654
2025. How do llms acquire new knowledge? a knowl-655
edge circuits perspective on continual pre-training.656
arXiv preprint arXiv:2502.11196.657

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,658
Carroll Wainwright, Pamela Mishkin, Chong Zhang,659
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1660
others. 2022. Training language models to follow in-661
structions with human feedback. Advances in neural662
information processing systems, 35:27730–27744.663

Wenbo Pan, Zhichao Liu, Qiguang Chen, Xiangyang664
Zhou, Haining Yu, and Xiaohua Jia. 2025. The665
hidden dimensions of llm alignment: A multi-666
dimensional safety analysis. arXiv preprint667
arXiv:2502.09674.668

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-669
gavatula, Jena Hwang, Ronan Le Bras, Antoine670
Bosselut, and Yejin Choi. 2020. Back to the future:671
Unsupervised backprop-based decoding for counter-672
factual and abductive commonsense reasoning. arXiv673
preprint arXiv:2010.05906.674

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,675
Dario Amodei, Ilya Sutskever, and 1 others. 2019.676
Language models are unsupervised multitask learn-677
ers. OpenAI blog, 1(8):9.678

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano 679
Ermon, Christopher D. Manning, and Chelsea Finn. 680
2023. Direct preference optimization: your language 681
model is secretly a reward model. In Proceedings 682
of the 37th International Conference on Neural In- 683
formation Processing Systems, NIPS ’23, Red Hook, 684
NY, USA. Curran Associates Inc. 685

Xavier Suau, Pieter Delobelle, Katherine Metcalf, Ar- 686
mand Joulin, Nicholas Apostoloff, Luca Zappella, 687
and Pau Rodríguez. 2024. Whispering experts: Neu- 688
ral interventions for toxicity mitigation in language 689
models. Preprint, arXiv:2407.12824. 690

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion 691
Jones. 2025. Transformer layers as painters. Pro- 692
ceedings of the AAAI Conference on Artificial Intelli- 693
gence, 39(24):25219–25227. 694

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron 695
Mueller, Byron C Wallace, and David Bau. 2023. 696
Function vectors in large language models. arXiv 697
preprint arXiv:2310.15213. 698

Rheeya Uppaal, Apratim Dey, Yiting He, Yiqiao Zhong, 699
and Junjie Hu. 2025. Model editing as a robust and 700
denoised variant of DPO: A case study on toxicity. In 701
The Thirteenth International Conference on Learning 702
Representations. 703

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 704
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 705
Kaiser, and Illia Polosukhin. 2017. Attention is all 706
you need. Advances in neural information processing 707
systems, 30. 708

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A 6 709
billion parameter autoregressive language model. 710

Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, 711
Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi 712
Yang, Jindong Wang, and Huajun Chen. 2024. Detox- 713
ifying large language models via knowledge editing. 714
In Proceedings of the 62nd Annual Meeting of the 715
Association for Computational Linguistics (Volume 1: 716
Long Papers), pages 3093–3118, Bangkok, Thailand. 717
Association for Computational Linguistics. 718

Zihao Wei, Jingcheng Deng, Liang Pang, Hanxing Ding, 719
Huawei Shen, and Xueqi Cheng. 2024. Mlake: Mul- 720
tilingual knowledge editing benchmark for large lan- 721
guage models. arXiv preprint arXiv:2404.04990. 722

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, 723
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang, 724
Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, De- 725
jian Yang, Zhibin Gou, Z. F. Wu, Fuli Luo, and 726
Chong Ruan. 2024. Deepseek-prover-v1.5: Har- 727
nessing proof assistant feedback for reinforcement 728
learning and monte-carlo tree search. Preprint, 729
arXiv:2408.08152. 730

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan 731
Jia, Bill Yuchen Lin, and Radha Poovendran. 732
2024. Safedecoding: Defending against jailbreak 733
attacks via safety-aware decoding. arXiv preprint 734
arXiv:2402.08983. 735

10

https://openreview.net/forum?id=dBqHGZPGZI
https://openreview.net/forum?id=dBqHGZPGZI
https://openreview.net/forum?id=dBqHGZPGZI
https://doi.org/10.18653/v1/2023.emnlp-main.269
https://doi.org/10.18653/v1/2023.emnlp-main.269
https://doi.org/10.18653/v1/2023.emnlp-main.269
https://arxiv.org/abs/2502.05206
https://arxiv.org/abs/2502.05206
https://arxiv.org/abs/2502.05206
https://arxiv.org/abs/2411.06424
https://arxiv.org/abs/2411.06424
https://arxiv.org/abs/2411.06424
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2407.12824
https://arxiv.org/abs/2407.12824
https://arxiv.org/abs/2407.12824
https://arxiv.org/abs/2407.12824
https://arxiv.org/abs/2407.12824
https://doi.org/10.1609/aaai.v39i24.34708
https://openreview.net/forum?id=lOi6FtIwR8
https://openreview.net/forum?id=lOi6FtIwR8
https://openreview.net/forum?id=lOi6FtIwR8
https://doi.org/10.18653/v1/2024.acl-long.171
https://doi.org/10.18653/v1/2024.acl-long.171
https://doi.org/10.18653/v1/2024.acl-long.171
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152


Yu Yan, Sheng Sun, Zenghao Duan, Teli Liu, Min Liu,736
Zhiyi Yin, Qi Li, and Jiangyu Lei. 2025. from benign737
import toxic: Jailbreaking the language model via738
adversarial metaphors. Preprint, arXiv:2503.00038.739

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin,740
and Xueqi Cheng. 2024. The butterfly effect of741
model editing: Few edits can trigger large language742
models collapse. Preprint, arXiv:2402.09656.743

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,744
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024.745
Knowledge circuits in pretrained transformers. arXiv746
preprint arXiv:2405.17969.747

Zeping Yu and Sophia Ananiadou. 2023. Neuron-748
level knowledge attribution in large language models.749
arXiv preprint arXiv:2312.12141.750

Susan Zhang, Stephen Roller, Naman Goyal, Mikel751
Artetxe, Moya Chen, Shuohui Chen, Christopher De-752
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1753
others. 2022. Opt: Open pre-trained transformer754
language models. arXiv preprint arXiv:2205.01068.755

Zhexin Zhang, Jiale Cheng, Hao Sun, Jiawen Deng, and756
Minlie Huang. 2023. Instructsafety: a unified frame-757
work for building multidimensional and explainable758
safety detector through instruction tuning. In Find-759
ings of the Association for Computational Linguistics:760
EMNLP 2023, pages 10421–10436.761

Wei Zhao, Zhe Li, Yige Li, Ye Zhang, and Jun Sun.762
2024. Defending large language models against763
jailbreak attacks via layer-specific editing. arXiv764
preprint arXiv:2405.18166.765

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe766
Barrow, Zichao Wang, Furong Huang, Ani Nenkova,767
and Tong Sun. 2023. Autodan: interpretable gradient-768
based adversarial attacks on large language models.769
arXiv preprint arXiv:2310.15140.770

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,771
J Zico Kolter, and Matt Fredrikson. 2023. Univer-772
sal and transferable adversarial attacks on aligned773
language models. arXiv preprint arXiv:2307.15043.774

A Related Works775

A.1 Reducing Toxicity in LLMs776

Existing approaches for reducing toxicity in large777

language models (LLMs) can be broadly catego-778

rized into three groups. (1) Pre-training Data Modi-779

fication. These methods reduce toxic generation by780

curating or modifying the data used during model781

pre-training (Korbak et al., 2023; Keskar et al.,782

2019). (2) Tuning-based Methods. This line of783

work fine-tunes LLMs into safer variants using su-784

pervised learning or reinforcement learning from785

human feedback, such as Supervised Safety Fine-786

Tuning (SSFT) (Ouyang et al., 2022) and Direct787

Preference Optimization (DPO) (Rafailov et al., 788

2023). (3) Toxicity Detection and Filtering. These 789

approaches add detection mechanisms to identify 790

and block toxic content at the input or output level 791

during inference (Zhang et al., 2023; Qin et al., 792

2020; Hallinan et al., 2022). 793

Above methods do not address the underlying 794

causes of toxicity within the model, and aligned 795

LLMs remain susceptible to adversarial prompting 796

attacks (Zou et al., 2023; Zhu et al., 2023; Yan et al., 797

2025). Consequently, recent research has shifted to- 798

ward analyzing the internal mechanisms of LLMs, 799

with the goal of understanding and localizing the 800

regions responsible for toxic behavior (Lee et al., 801

2024; Suau et al., 2024; Pan et al., 2025; Uppaal 802

et al., 2025; Wang et al., 2024). 803

A.2 Mechanistic Interpretability 804

The goal of mechanistic interpretability is to 805

reverse-engineer model behaviors (Elhage et al., 806

2021) by mapping functional properties, such as 807

knowledge (Meng et al., 2022), linguistic fea- 808

tures (Wei et al., 2024), toxicity (Wang et al., 2024), 809

even tasks(Todd et al., 2023) to identifiable com- 810

ponents within LLMs. These components include 811

neurons (Yu and Ananiadou, 2023; Dai et al., 2022), 812

Multi-headed Self-attention (MHSA) (Leong et al., 813

2023), Feed-Forward Network (FFN) (Deng et al., 814

2024; Duan et al., 2025), Transformer layer (Xu 815

et al., 2024; Zhao et al., 2024), and circuit (Yao 816

et al., 2024; Ou et al., 2025). 817

B Experimental Detail 818

In this section, we describe the implementation 819

details for all baseline and proposed methods. 820

For DPO, we follow the setup of (Lee et al., 821

2024) and train models on 2,000 pairwise toxic 822

samples. Default hyperparameters are used with 823

β = 0.1. For larger models, we apply LoRA (Hu 824

et al., 2021) to each layer, with a rank of 64, scaling 825

factor of 16, and dropout rate of 0.1. Training 826

employs early stopping with a patience value of 10 827

based on validation loss. 828

For SSFT, we follow the DPO setup, including 829

dataset, LoRA, and early stopping. 830

For ProFS, we follow (Uppaal et al., 2025) and 831

train on 500 pairwise toxic samples. Two hyper- 832

parameters are tuned: the number of top-k right 833

singular vectors for constructing the toxic subspace, 834

and the starting layer index ℓ0 for projection-based 835

editing. Specifically, we set (k = 2, ℓ0 = 11) 836
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Table 5: GloSS Hyperparameters. τ and η are used to
identify the global toxic subspace, while ℓ0 determines
the layers where projection is applied.

Model τ η ℓ0

GPT-2 Medium 1.0 0.8 13-24
GPT-J 6B 4.0 0.7 15-28
OPT-6.7B 2.0 0.8 10-32
Mistral-7B 1.0 0.7 15-32

for GPT-2; (k = 10, ℓ0 = 11) for GPT-J; and837

(k = 10, ℓ0 = 15) for all other models.838

For GloSS, we introduce three hyperparameters:839

the toxicity threshold τ for selecting candidate di-840

rections, the variance ratio η for PCA-based sub-841

space extraction, and the starting layer index ℓ0842

for applying projection. The detailed configura-843

tions of these hyperparameters for each model are844

summarized in Table 5.845
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