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Abstract

This paper investigates the underlying mech-
anisms of toxicity generation in Large Lan-
guage Models (LLMs) and proposes an ef-
fective detoxification approach. Prior work
typically considers the Feed-Forward Network
(FFN) as the main source of toxicity, repre-
senting toxic regions as a set of toxic vec-
tors or layer-wise subspaces. However, our
in-depth analysis reveals that the global toxic
subspace offers a more effective and compre-
hensive representation of toxic region within
the model. Building on this insight, we propose
GloSS (Global Toxic Subspace Suppression),
a lightweight, four-stage method that mitigates
toxicity by identifying and removing the global
toxic subspace from the parameters of FFN. Ex-
periments across a range of LLMs show that
GloSS achieves state-of-the-art detoxification
performance while preserving the models’ gen-
eral capabilities, without requiring large-scale
data or model retraining. WARNING: This
paper contains context which is toxic in nature.

1 Introduction

Large language models (LLMs) have shown im-
pressive capabilities in various domains (Brown
et al., 2020; Xin et al., 2024; Gu et al., 2025). How-
ever, they also have risks of toxicity generation,
which may lead to undesirable effect in real-world
applications (Ma et al., 2025). To mitigate toxicity,
tuning-based methods such as Supervised Safety
Fine-Tuning (SSFT) (Ouyang et al., 2022) and
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) have been widely adopted, improving
LLM safety. However, aligned models can still
be bypassed by crafted attack prompts (Yan et al.,
2025). As a result, recent researches have shifted
toward analyzing the mechanisms of LLMs, aiming
to understanding and locating the regions that elicit
toxicity (Suau et al., 2024; Wang et al., 2024).
Toxic behaviors are often attributed to the Feed-
Forward Network (FFN) of Transformer blocks,
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Figure 1: (a) Removing toxic vectors do not alter the
underlying toxic subspace. (b) Layer-wise subspaces
are limited and fail to capture complete toxic features.
(c) Global toxic subspace provides a more faithful rep-
resentation of toxic region.

with two prevailing views proposed. One line of re-
search, such as Lee et al. (2024), identifies the toxic
region as a set of toxic vectors, and argues that DPO
mitigates toxic outputs by bypassing the region.
Another approaches, exemplified by ProFS (Up-
paal et al., 2025), posit that toxicity resides in layer-
wise toxic subspaces, identified via Singular Value
Decomposition (SVD) of embedding differences
between toxic and non-toxic prompts at each layer.

However, we find that both views exhibit lim-
itations, as shown in Figure 1. We first observe
that suppressing or removing toxic vectors do not
effectively reduce toxic outputs. Instead, toxic gen-



eration is primarily driven by the cumulative direc-
tional bias of FEN outputs toward toxicity (§3.1).
These results motivate us to model the toxic region
as a subspace formed by these toxic directions.
While ProFS emphasizes the value of subspace-
level modeling, its layer-wise contrastive extraction
fails to identify effective toxic directions at each
layer. This is largely due to the varying capacity
of FFN to capture toxic features (§3.2), resulting
in the extracted subspaces that are often ineffective
and incomplete. Building on these findings, we fur-
ther observe that toxic directions are shared across
layers (§3.3). Therefore, aggregating them into
a unified global toxic subspace provides a more
faithful representation of the toxic region.

Motivated by above analysis, we propose a
lightweight detoxification method, GloSS (Global
Toxic Subspace Suppression), without requiring
large-scale data or retraining (§4). GloSS first ex-
tracts candidate toxic directions from each layer
by applying SVD to activation differences between
multiple toxic and non-toxic input pairs. It then
ranks all candidates globally and selects high-
scoring ones to ensure that only directions with
meaningful toxicity are retained. Principal compo-
nents are subsequently extracted from the selected
directions to form a unified global toxic subspace.
To suppress toxicity, the value weights of each FFN
modules are projected onto the orthogonal comple-
ment of this subspace, effectively removing toxic
components while preserving the model’s general
capabilities.

We evaluate the effectiveness of GloSS through
extensive experiments across different LLMs (§5).
The results demonstrate that: 1) GloSS achieves
lower toxicity scores than ProFS and other base-
lines, while preserving the model’s general capabil-
ities. This supports the conclusion that removing
the global toxic subspace enables more effective
detoxification. 2) Despite using fewer training sam-
ples, both GloSS and ProFS outperform SSFT and
DPO, highlighting the effectiveness of safety mech-
anism based approaches compared to traditional
fine-tuning methods. 3) The global toxic subspace
exhibits a low-dimensional structure, suggesting
that toxicity is concentrated in a compact region of
the model’s representation space.

In summary, our contributions are the following:
* We present a mechanistic understanding of

how toxicity emerges in LLMs and identify
the global toxic subspace as a more faithful

representation of toxic regions.

* We propose GloSS, a lightweight detoxifica-
tion method that suppresses toxicity via sub-
space modeling, without requiring additional
data or model retraining.

* We conduct extensive experiments demon-
strating that GloSS achieves state-of-the-art
detoxification performance while preserving
the general capabilities of LLMs.

2 Preliminaries

In this section, we introduce the background and
define the notations used in our work.

FFN as Linear Combinations of Value Vectors.
Transformer-based language models are composed
of stacked Transformer layers (Vaswani et al.,
2017). Each layer includes a Multi-head Self-
attention (MHSA) module and a Feed-Forward
Network (FFN), both equipped with residual con-
nections and layer normalization.

Given an input sequence w = (wp, ..., w;),
the model maps each token w; to an embedding
e; € R? using the embedding matrix £. At each
layer /, the FFN receives the hidden state xf € R?
corresponding to token ¢ and produces an interme-
diate output of € R?. The updated representation
after applying the FFN and residual connection is
denoted as if € R%:

= FFN*(x}) (1)
=x{+0f )

FFN in each Transformer layer typically follows
a two-layer structure. It can be interpreted as com-
puting a context-dependent linear combination of
learned value vectors (Geva et al., 2022). Specifi-
cally, the FFN outputs at layer / is given by:

FEN(x!) = f (Wf;xf) W

dm dm
l l l L L
:Zf(x kz) szzmzvz
=1 i=1

3)
We focus on the FFN update for a single token and
omit the token index for simplicity, i.e., x* := xf.
The weight matrices W, W{, € R%*4 parame-
terize the FFN at layer . We denote the i-th row of
WY as k! (key vector) and the i-th column of W},
as Vf (value vector). The function f(-) represents

a non-linear activation, such as GELU.
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Figure 2: Results of Different Operations on Activation of Vectors. (a) Enhance different numbers of toxic and
non-toxic value vector activations, selectively; (b) Suppress toxic vector activations at different proportions; (c)
Reversing value vector activations steers the FFN blocks either toward or away from the toxic direction.

FFN outputs can be interpreted as a weighted
sum of value vectors vf, where each vector is
scaled by a context-dependent coefficient mf =
f(x* - k£). This shows that FFNs compute a linear
combination of learned semantic directions.
Interpreting Vectors in Vocabulary Space. To
interpret the semantic meaning of a vector u € R?
in the embedding space, we project it into the vo-
cabulary space using the output embedding matrix
E =lel,...,e[V||T € RV where V denotes
the vocabulary (Geva et al., 2020):

r=FueRVY 4)

We select the top-k tokens from the projection of
u, offering an interpretable approximation of its
semantic content. Notably, this projection depends
only on the direction of u, not its magnitude.

3 Motivation

Two main perspectives have been proposed regard-
ing the presence of toxic regions within the FFN
module of Transformer: (1) a set of toxic vec-
tors (Lee et al., 2024), and (2) layer-wise toxic
subspace (Uppaal et al., 2025). Although both
frameworks offer valuable insights, our findings
suggest that they may not fully capture the under-
lying mechanisms of toxicity.

To investigate this, we conduct experiments on
GPT-2 Medium (henceforth GPT2) using the chal-
lenge subset of the REALTOXICITYPROMPTS
dataset (Gehman et al., 2020), which includes
1,199 prompts designed to elicit highly toxic re-
sponses. Following (Uppaal et al., 2025), we use
Detoxify' to score the toxicity of the first 10 gener-
ated tokens for each prompt.

"https://github.com/unitaryai/detoxify

3.1 Limitations of Toxic Vectors

Lee et al. (2024) suggest that toxic region is formed
by a set of toxic vectors selected via a trained probe
vector. However, this view may be limited.

Observation

Suppressing or removing toxic vectors fails to
mitigate toxicity effectively.

We begin by examining whether toxic vectors
are correlated with toxicity. To this end, we use
a toxic probe vector to identify the most and least
similar value vectors in FFN. We refer to these as
toxic and non-toxic vectors, respectively. During
generation, we selectively enhance varying num-
bers of toxic and non-toxic value vector activations
and observe the corresponding changes in output
toxicity. Figure 2a shows the results when activa-
tion are scaled by 10. As the number of enhanced
activations increases, we observe a clear trend: tox-
icity increases rapidly when toxic vectors are am-
plified and decreases when non-toxic vectors are
enhanced. These results indicate that toxic vectors
contribute to the generation of toxic content, while
non-toxic vectors play a suppressive role.

To test whether toxic region is truly composed
of toxic vectors, we suppress their activations to
simulate their removal and observe model outputs.
As shown in Figure 2b, suppressing toxic vectors
reduces toxicity by less than 0.08, with little over-
all effect. Even when more vectors are suppressed,
toxicity remains high or even rebounds. This obser-
vation is similar with findings from (Mayne et al.,
2024). In summary, Although enhancing the acti-
vation of toxic vectors leads to increased toxicity,
suppressing them does not significantly reduce it.
This suggests that while toxic vectors are correlated
with toxic output, they are unlikely to constitute
the structural basis of toxic regions.
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Table 1: Top Toxic and Non-Toxic Vectors in GPT-2 Projected into Vocabulary Space Under Different Activation.
Negative activation of toxic vectors yields non-toxic output, while that of non-toxic vectors can produce toxicity.

Vector Toxicity Top Tokens
Positive activation Negative activation

Wioxic c*nt, f¥ck, a**hole, d*ck, wh*re, holes orate, onding, medium, esp, iations, rece
MLP.vi2, v sh*t, a**, cr¥*p, f¥ck, c*nt, garbage, trash anni, anwhile, Uri, iscovery, GMT, owship
MLP.V%% v delusional, hypocritical, arr**nt, no**nse toggle, MAP, uration, bis, uala, Mine, Sig
MLP.v33cq v degener, whining, idiots, stupid, sm**g iment, assetsadobe, ANGE, href, querque
MLP.vi%, X buoy, stabilized, clud, helps, breaks, shows ardo, man**c, bul ***it, fu**ing, nonsense
MLP.VE,W X aker, atch, encer, erick, wik, follow, participant damn, kidding, freaking, darn, p**s, !, booze
MLP.v}y94 X dialect, texts, staples, rend, repertoire, sessions wasting, ternity, usterity, UCK, closure, fuss

Toxicity arises when FFN outputs are biased
toward toxic directions.

Table 2: Toxicity Projection Results Across Layers. The
heuristic scaling factor o = 100.

To further investigate the structure of toxic re-
gions, we conduct a detailed analysis of vector
activations. We first observe that activations of the
toxic vectors significantly influence the expression
of toxicity. As shown in Table 1, negative activa-
tion of a toxic vector leads to non-toxic output; con-
versely, negative activation of a non-toxic vector
results in toxic output. This suggests that toxicity
depends not only on which vectors are involved but
also on how they are activated.

Motivated by above observations, and grounded
in the view that FFNs operate as linear combina-
tions of value vectors (Geva et al., 2022), we hy-
pothesize that toxicity arises when the FEN outputs
is biased toward a specific toxic direction. To test
this hypothesis, we define the normalized toxic
probe vector as the toxic direction and design a
contrastive experiment with two settings.

» FFN towards the toxic direction: Aactivation
signs follow the similarity (positive stays pos-
itive, negative stays negative);

* FFN away from the toxic direction: Activation
signs are flipped (positive becomes negative,
negative becomes positive).

As shown in Figure 2c, when FFN outputs are bi-
ased toward the toxic direction, the toxicity score
remains high (close to 1.00). In contrast, when bi-
ased away from the toxic direction, the score drops
toward 0. These results support our hypothesis that
the cumulative directional bias of FFN layers drives
toxic generation. Toxic vectors amplify activations
along toxicity-aligned directions, and even after re-
moving some vectors, the remaining ones can still
combine to induce toxicity.

Vector Top Tokens
d; ften, Painter, proper, nce, AMY, favour, squared
do proper, Painter, court, Extrem, Court, squared
dy po*p, h**ny, nip**es, kittens, tits, sh*t, s**en

dis sh*t, f¥ck, u**er, bag, weed, yeah, dragon, stab
dig sh*t, f¥ck, F*ck, f*cking, b**ch, d*ck, F*CK
das B,b,C,S,PL,p, M,ET,d,A,R,H,V,D,u

day -, (, and, the, a, ", The, s, in, A, The, S, B, b, C
X1 Citiz, mum, Levy, Petr, discrep, Guinea, Sponsor
x) sh*t, F*ck, f*ck, st*b, ucker, cision, bi*ch, ser

X24 the, and, -, (, a, in, I, to, of, The, A, or, for, that
Xhy sh*t, f¥ck, ucker, F*ck, god, ard, uck, ass, p*op

Conclusion. Toxic vectors correlate with toxic-
ity and increase it when amplified, but suppressing
them has little effect. This suggests toxicity arises
from a cumulative directional bias in FFN outputs
toward a toxic subspace, rather than from individ-
ual vectors alone.

3.2 Limitations of Layer-wise Toxic Subspace

Prior works have highlighted the importance
of toxic subspace, but offered limited insight.
ProFS (Uppaal et al., 2025) suggests that the toxic
subspace is layer-wise, identifying toxic directions
based on differences in FFN outputs between toxic
and non-toxic prompts at each layer, and combin-
ing these directions to form the subspace.

Observation

Layer-wise extraction fails to effectively iden-
tify the toxic subspace in most layers.

ProFS proposes that an embedding vector at any
Transformer layer can be approximated as a com-
bination of stopwords, toxic component, context
component, and noise. To analyze this structure, it
applies factor analysis to toxic and non-toxic input



pairs at a given layer, modeling the embeddings as:

zf = aipu +Bfi+ Bfi + u,
stopwords  toxic ~ context  pojse

5= ap + B +ui )
~—~ N
stopwords context  poise

Building on this formulation, we input multiple
toxic and non-toxic pairs and construct contrastive
matrices at each layer. We then apply SVD to ex-
tract the top one-dimensional direction dy, which
is assumed to represent the toxic direction, and
project it into the vocabulary space to examine
the top-k tokens. As shown in Table 2, projec-
tions from middle layers show mostly toxic tokens,
whereas those from lower and upper layers do not.
This suggests that layer-wise toxic directions lack
effectiveness and consistency, making the resulting
subspaces unreliable.

The capacity of FFN blocks to capture toxic
features varies across layers.

If input pairs differ clearly in toxicity, what
causes the failure in layer-wise toxic direction ex-
traction? We hypothesize that this stems from the
variation in how FFN blocks model toxic features.
As shown in Table 2, the projection results exhibit
a clear layer-wise pattern. In the early layers (e.g.,
the first and second), the contrast between toxic
and non-toxic projections mainly involves context
words. In the final layers, the differences shift to-
ward symbols and stopwords. Only the middle
layers consistently reveal toxic tokens; however,
both the intensity and semantics of these tokens
vary across layers. These results suggest that the
lower and upper layers encode toxicity differently
from the middle layers. Even among the middle
layers, toxic features are expressed inconsistently,
both in strength and type. This aligns with prior
finding (Sun et al., 2025), potentially reflecting
functional differences in FFNs across layers.
Conclusion. Due to the varying capacity of FFN
blocks to model toxicity, we found that contractive
extraction fails to identify effective toxic directions
at each layer. Therefore, toxic subspace is unreli-
able and inconsistent.

3.3 Global Toxic Subspace

The toxic region can be viewed as a toxic subspace,
but existing layer-wise extraction methods are lim-
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Figure 3: Top-5 Toxic Directions Across Layers. They

are primarily located in the middle-to-late layers and
exhibit pairwise cosine similarities close to 1.

ited. This raises a key question: how can we model
it more effectively?

Observation

The toxic subspace is shared across all layers.

We further analyze the directions extracted from
each layer in Section 3.2 by ranking all candidate
directions from different layers using a predefined
bad words list B (Gehman et al., 2020). Each di-
rection dy is projected into the vocabulary space,
and its top-m tokens 7q, are compared against B.
The toxicity score is computed as:

tox_score(dy) = 7|Td£ nB 6)
m

We select the top-5 directions with the highest toxi-
city scores based on this metric. These directions
are mainly concentrated in the middle-to-late layers
(e.g., layers 14, 15, 18, 20, and 21) and exhibit high
pairwise cosine similarity, as illustrated in Figure 3.

Additionally, we use 1,000 non-toxic WikiText-
2 (Merity et al., 2016) sentences as prompts to
compute the average token activation at each layer,
denoted as x,. We then select the top-ranked toxic
direction dy, at layer £p = 14, and shift the average
activation along this direction:

xp =%+ a-dy, @)

« is a heuristic scaling factor. As shown in Table 2,
shifting activations along a toxic direction in layers
1 and 24 converts the projected tokens from non-
toxic to toxic. This suggests that toxicity directions
are shared across the model, and the subspace they
form is therefore global in nature.
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Conclusion. The above observations reveal that
toxic directions are not limited to individual layers
but are consistently shared across multiple layers.
We therefore consider the global toxic subspace,
constructed by aggregating toxic directions from
all layers, to be a more essential representation of
toxic regions in the model.

4 Detoxification Method: GloSS

Building on the insights from Section 3, we pro-
pose a detoxification method, GloSS (Global Toxic
Subspace Suppression), a detoxification method
that identifies and removes the global toxic sub-
space through a four-stage procedure to effectively
reduce toxic generation, as shown in Figure 4.
Step 1: Layer-wise Directions Extraction. Fol-
lowing ProFS, we identify candidate toxic direc-
tions by comparing the FFN output of paired toxic
and non-toxic inputs at each layer. Given a model
and N sentence pairs Dprer = {(p;,p; )}, we
compute the average FFN output at each layer
for every input pair, and stack them into matri-
ces X7, X, € RV*4, The initial contrastive rep-
resentation is then defined as Té0 =X ; - X, .
To mitigate the influence of frequent token seman-
tics,we perform mean-centering to obtain a refined
contrastive matrix 7.

Finally, we apply singular value decomposition
(SVD) to T} to extract the dominant directions:

UEVZ:Tg, Vg:(v%,v%,...,vév) )

We extract the top-k right singular vectors
vi,vZ, ..., vk € R? as the candidate toxic direc-
tions at layer ¢. Larger k values enable capture a

richer set of toxic representations.

Step 2: Ranking. In this step, we rank all can-
didate toxic directions v extracted from each lay-
ers. Each direction is projected into the vocab-
ulary space using the output embedding matrix
E € RVI¥d a5 described in Equation (4). We then
select the top-m tokens from the projection result,
denoted as 7 v, and compute the toxicity score by
measuring the overlap with a predefined bad words
list B3, as defined in Section 3.3:
7, N B

tox_score(v) = o 9)

This score quantifies how strongly direction v is
associated with toxicity and serves as the basis for
cross-layer ranking.

Step 3: Global Toxic Directions Extraction. To
identify high-confidence toxic directions across all
layers, we define a threshold 7 based on the distri-
bution of toxicity scores tox_score(v):

T=pu+a-o (10)

Here, p and o are the mean and standard deviation
of the toxicity scores, respectively. « is a scal-
ing parameter that controls the selection strictness.
Accordingly, we select directions whose toxicity
scores exceed this threshold.

an

This subset Vyign captures the most salient direc-
tions associated with toxic content across layers.
To extract the principal components from Vyjign,
we apply PCA (Hotelling, 1933) and retain the
minimal number of components whose cumulative
explained variance exceeds a threshold 7:

Vaigh = {Vv; | tox_score(v;) > 7}

Vpca = PCA> (Vhign) € R4 (12)



Table 3: Comparison of Detoxification Effectiveness and General Capability Across Methods and Models. ProFS
and GloSS are trained on NV = 500 pairwise toxic samples, while SSFT and DPO use N = 2000. Here, N denotes
the number of prompt pairs. Noop refers to the original model without any modification.

Methods GPT-2 Medium GPT-J 6B OPT 6.7B Mistral 7B
Toxicity Perplexity Toxicity Perplexity Toxicity Perplexity Toxicity Perplexity
Noop 0.480 29.70 0.453 13.24 0.465 14.67 0.425 7.49
SSFT (Ouyang et al., 2022)  0.398 30.50 0.429 13.18 0.434 14.04 0.417 7.34
DPO (Rafailov et al., 2023)  0.363 29.86 0.437 13.96 0.453 14.37 0.364 7.52
ProFS (Uppaal et al., 2025)  0.268 32.50 0.374 14.53 0.435 13.83 0.304 7.99
GloSS(ours) 0.208 32.31 0.283 14.52 0.352 14.53 0.271 7.95

The resulting matrix Vpca contains the dominant
directions that best represent toxicity signals con-
sistently shared across layers.

Step 4: Removing. We mitigate toxic represen-
tations by projecting the model’s parameters onto
the orthogonal complement of the global toxic sub-
space. Given the n orthonormal global toxic direc-
tions {dj,ds,...,d,} from Vpca,we define the
projection matrix for the toxic subspace as:

Ptoxic — Z dlle (13)
=1

To suppress toxicity, we apply the projection to

the FFN value matrices Wy, at each layer £:
proj toxic orig

Wy, = (I — P ) Wy (14)

This operation removes toxic components while

preserving semantic content, enabling lightweight,

interpretable detoxification without retraining or
performance loss.

S Experiment

5.1 Experiment Setup

Base LLMs. Our experiments on four large lan-
guage models of varying sizes, including GPT-2
Medium (Radford et al., 2019), GPT-J(6B) (Wang
and Komatsuzaki, 2021), OPT-6.7B (Zhang et al.,
2022), and Mistral-7B (Jiang, 2024).

Baseline Methods. We compare our method
against several baselines, including SSFT (Ouyang
et al., 2022), DPO (Rafailov et al., 2023), and
ProFS (Uppaal et al., 2025). The implementation
details are shown in (§ B).

Evaluation. We evaluate both the toxicity and
the general capabilities of the model. To assess
toxicity, we use the challenge subset of the RE-
ALTOXICITYPROMPTS (Gehman et al., 2020)
dataset as input prompts and measure the toxicity
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0.6 [ Random Subspace
I No-op Subspace

0.5 48
0.470 047, 0.450-47

0.430.42

Toxicity

GPT2-Medium

GPT-J-6b
Model

OPT-6.7b Mistral-7b

Figure 5: Effectiveness of Extracted vs. Random Sub-
spaces in Toxicity Reduction. No-op denotes the origi-
nal model without any modification.

of generated responses using Detoxify. To eval-
uate general capabilities, we follow the approach
of Yang et al. (2024) and report perplexity on the
WikiText-2 validation set (Merity et al., 2016).

5.2 Experiment Results

GloSS Demonstrates Stronger Detoxification
with Comparable Model Capability. As shown in
Table 3, GloSS maintains stable perplexity scores,
indicating that the model’s general language capa-
bilities are not compromised. In terms of detoxifi-
cation, GloSS achieves lower toxicity than ProFS,
demonstrating the advantage of modeling a global
toxic subspace over layer-wise subspaces for cap-
turing and suppressing toxic behaviors. Moreover,
although using only /N = 500 training pairs, which
is substantially fewer than the N = 2000 used by
SSFT and DPO, both GloSS and ProFS outperform
these fine-tuning based methods in reducing toxi-
city. These findings underscore the effectiveness
of safety mechanism based approaches over tradi-
tional fine-tuning in mitigating toxic outputs.

Global Toxic Subspace is Crucial and Exhibits
Low-dimensional Properties. We first validate
the role of the extracted global toxic subspace in



Table 4: Dimensionality of Toxic Subspace Identified by GloSS. The subspace generally covers less than 1% of the
hidden space, and its most toxic directions primarily correspond to toxic tokens in the vocabulary.

Model tox_dim n_hidden Ratio Projection

Direction Top Tokens
GPT-2 Medium 4 1024 0.004 g; f*iieit:i?:yu;?; t}c];i:/j “;sfi:7;,f;:§i'2§ Z)aj;
T R R o
omen e s 3 TEELTR
Mistral 7B 45 4096 0.011 g; f:;’:‘;; gf::kngkp?;ffcﬁd ?Zt;}:;b;i)lcfircaaclk

detoxification through a control experiment. For
each model, we construct random subspaces that
are orthogonal to the global toxic subspace and
have the same dimensionality. These subspaces are
then removed from the corresponding FFN layers,
and the resulting toxicity levels are compared. As
shown in Figure 5, removing random subspaces has
minimal impact on toxicity reduction and, in some
cases, even increases toxicity relative to the original
model. These results confirm that the extracted
global toxic subspace captures essential directions
specifically associated with toxic behavior.

We further analyze the properties of global toxic
subspace and find that it exhibits low-dimensional
characteristics. As shown in Table 4, the toxic sub-
space identified by GloSS spans less than 1% of
the full representation space, and in most cases,
remains below 0.5%. This suggests that toxic infor-
mation is concentrated in a small number of direc-
tions, supporting the notion of a low-dimensional
toxic structure. Moreover, when the most toxic
directions are projected into the vocabulary space,
they consistently align with toxic tokens.

Projection Effects of Different Layers. Although
the toxic subspace is shared across layers, applying
projection at all layers simultaneously can signifi-
cantly impair model performance. To investigate
this, we systematically evaluate the effects of ap-
plying projection starting from different layers up
to the final layer, measuring both toxicity and per-
plexity across four LLMs. As shown in Figure 6,
we find that in all models except GPT-2, reducing
the number of projected layers leads to a gradual
increase in toxicity and a corresponding decrease
in perplexity. Furthermore, applying projection at
early layers causes a sharp drop in perplexity, in-
dicating substantial performance degradation. For
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Figure 6: Impact of Projection Layers on Toxicity and
Perplexity. (a) Fewer projected layers lead to higher
toxicity. (b) Perplexity decreases overall, with a sharp
drop when projection is applied to early layers.

example, in Mistral-7B, projection from layer 2
yields a perplexity of 231.7, while starting from
layer 3 reduces it to 9.7, highlighting the model’s
sensitivity to early-layer interventions.

6 Conclusion

In this work, we propose a mechanistic perspec-
tive on toxicity in LLMs and identify the global
toxic subspace as a faithful representation of toxic
region. Building on this, we introduce GloSS, a
lightweight, training-free method that mitigates tox-
icity by removing toxic subspace from FFN param-
eters. Our results demonstrate the effectiveness of
structural interventions in enhancing LLM safety.



7 Limitations

While this paper investigates the underlying mecha-
nisms of toxicity generation in LLMs and proposes
an effective detoxification approach, several limi-
tations remain. First, our evaluation is limited to a
small set of open-source LLMs ranging from 0.6B
to 7B parameters. The generalization of GloSS
to larger models remains to be explored. Second,
we compare GloSS primarily against representative
fine-tuning methods (SSFT and DPO). While these
baselines are strong and relevant, a broader set of
detoxification methods, including prompt-based or
detection-based approaches, should also be consid-
ered for a more comprehensive evaluation.

8 Ethics Statement

This paper focuses on improving the safety of
large language models (LLMs) by identifying and
suppressing toxic subspaces through interpretable,
training-free interventions. All toxic prompts used
for evaluation are sourced from public datasets and
manually reviewed to minimize potential harm. No
private or user-generated data is used, and the pro-
posed method does not require model retraining.
We acknowledge potential misuse of internal model
insights and take care to present our findings with
the goal of strengthening LLM defenses, not en-
abling harmful applications.
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A Related Works
A.1 Reducing Toxicity in LLMs

Existing approaches for reducing toxicity in large
language models (LLMs) can be broadly catego-
rized into three groups. (1) Pre-training Data Modi-
fication. These methods reduce toxic generation by
curating or modifying the data used during model
pre-training (Korbak et al., 2023; Keskar et al.,
2019). (2) Tuning-based Methods. This line of
work fine-tunes LL.Ms into safer variants using su-
pervised learning or reinforcement learning from
human feedback, such as Supervised Safety Fine-
Tuning (SSFT) (Ouyang et al., 2022) and Direct
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Preference Optimization (DPO) (Rafailov et al.,
2023). (3) Toxicity Detection and Filtering. These
approaches add detection mechanisms to identify
and block toxic content at the input or output level
during inference (Zhang et al., 2023; Qin et al.,
2020; Hallinan et al., 2022).

Above methods do not address the underlying
causes of toxicity within the model, and aligned
LLMs remain susceptible to adversarial prompting
attacks (Zou et al., 2023; Zhu et al., 2023; Yan et al.,
2025). Consequently, recent research has shifted to-
ward analyzing the internal mechanisms of LLMs,
with the goal of understanding and localizing the
regions responsible for toxic behavior (Lee et al.,
2024; Suau et al., 2024; Pan et al., 2025; Uppaal
et al., 2025; Wang et al., 2024).

A.2 Mechanistic Interpretability

The goal of mechanistic interpretability is to
reverse-engineer model behaviors (Elhage et al.,
2021) by mapping functional properties, such as
knowledge (Meng et al., 2022), linguistic fea-
tures (Wei et al., 2024), toxicity (Wang et al., 2024),
even tasks(Todd et al., 2023) to identifiable com-
ponents within LLMs. These components include
neurons (Yu and Ananiadou, 2023; Dai et al., 2022),
Multi-headed Self-attention (MHSA) (Leong et al.,
2023), Feed-Forward Network (FFN) (Deng et al.,
2024; Duan et al., 2025), Transformer layer (Xu
et al., 2024; Zhao et al., 2024), and circuit (Yao
et al., 2024; Ou et al., 2025).

B Experimental Detail

In this section, we describe the implementation
details for all baseline and proposed methods.

For DPO, we follow the setup of (Lee et al.,
2024) and train models on 2,000 pairwise toxic
samples. Default hyperparameters are used with
B = 0.1. For larger models, we apply LoRA (Hu
et al., 2021) to each layer, with a rank of 64, scaling
factor of 16, and dropout rate of 0.1. Training
employs early stopping with a patience value of 10
based on validation loss.

For SSFT, we follow the DPO setup, including
dataset, LoRA, and early stopping.

For ProFS, we follow (Uppaal et al., 2025) and
train on 500 pairwise toxic samples. Two hyper-
parameters are tuned: the number of top-k right
singular vectors for constructing the toxic subspace,
and the starting layer index ¢, for projection-based
editing. Specifically, we set (k = 2, ¢, = 11)
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Table 5: GloSS Hyperparameters. 7 and 7 are used to
identify the global toxic subspace, while ¢, determines
the layers where projection is applied.

Model T n Ly

GPT-2 Medium 1.0 0.8 13-24
GPT-J 6B 40 0.7 15-28
OPT-6.7B 20 0.8 10-32
Mistral-7B 1.0 0.7 15-32

for GPT-2; (k = 10, ¢y = 11) for GPT-J; and
(k =10, £y = 15) for all other models.

For GloSS, we introduce three hyperparameters:
the toxicity threshold 7 for selecting candidate di-
rections, the variance ratio 7 for PCA-based sub-
space extraction, and the starting layer index ¢
for applying projection. The detailed configura-
tions of these hyperparameters for each model are
summarized in Table 5.
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