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ABSTRACT

This paper proposes collaborative symmetricity exploitation (CSE), a novel symmet-
ric learning scheme of contextual policy for offline black-box placement problems.
Leveraging the symmetricity increases data-efficiency by reducing the solution
space, and improves generalization capability by capturing the invariant nature
present regardless of changing context. To this end, we design a learning scheme
that reduces the order bias (ex., neural network recognizes {1, 2, 3} and {2, 1, 3} as
difference placement design) inherited from a sequential decision-making scheme
of neural policy by imposing action-permutation (AP)-symmetricity (i.e, the per-
muted sequences are symmetric-placement of the original sequence) of placement
problems. We first defined the order bias and proved that AP-symmetricity is im-
posed when the order bias of neural policy becomes zero. Then, we designed two
collaborative losses for learning neural policy with reduced order bias: expert ex-
ploitation and self-exploitation. The expert exploitation loss is designed to clone the
behavior of the expert solutions considering order bias. The self-exploitation loss
is designed to be a special form of order bias where it measures AP-symmetricity
from a self-generated solution. CSE is applied to the decoupling capacitor place-
ment problem (DPP) benchmark, a significant offline black-box placement design
problem in hardware domain that requires contextual policy. Experiments show
that CSE outperforms state-of-the-art solver for the DPP benchmark.

1 INTRODUCTION

With the CMOS technology shrinking and increasing data rate, the design complexity of very large-
scale integrated (VLSI) has increased. Human experts are no longer able to design hardware without
the help of electrical design automation (EDA) tools, and EDA tools now suffer from long simulation
time and insufficient computing power, making machine learning (ML) application to hardware
design inevitable. Many studies have already shown that deep reinforcement learning (DRL), one
of the representative ML methods for sequential decision making, is promising in various tasks
in modern chip design; chip placement (Mirhoseini et al., 2021; Agnesina et al., 2020), routing
(Liao et al., 2019; 2020), circuit design (Zhao & Zhang, 2020), logic synthesis (Hosny et al., 2020;
Haaswijk et al., 2018) and bi-level hardware optimization (Cheng & Yan, 2021).

However, most previous DRL-based hardware design methods do not take the following into consid-
eration. (a) Online simulators for hardware are usually time intensive and inaccurate; thus, learning
with existing offline data by experts is more reliable. Since there exists a limited number of offline
hardware data, a data-efficient learning scheme is necessary. (b) Hardware design is composed of
electrically coupled multi-level tasks where task conditions are determined by the design of higher-
level tasks; thus, a solver (i.e., contextualized policy conditioned by higher-level tasks) with high
generalization capability to adapt to varying task conditions is necessary.

In this paper, we leverage the solution symmetricity of placement problem for data efficiency
and generalization capability. Conventional sequential decision-making schemes for placement
problems (Park et al., 2020; Mirhoseini et al., 2021; Cheng & Yan, 2021) auto-regressively generate
solutions without considering the solution symmetricity, thus having the order bias; the neural
network identifies the action-permutation (AP) symmetric solutions (i.e. identical placement designs),
for instance, {1, 2, 3} and {2, 1, 3}, as different solutions. Our proposed method overcomes the
order bias limitation of the previous sequential decision-making schemes with a novel regularization
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technique. Tackling the order bias (i.e. inducing AP-symmetricity) improves the data efficiency of
training and generalization capability of the trained policy due to the two following reasons. First,
data efficiency in training can be improved as learning the AP-symmetricity reduces the exploration
space (see Fig. 1); neural network can automatically learn not only from the explored trajectories but
also from their symmetric solution trajectories without additional exploration and simulation. Second,
generalization capability on task variation can be improved as AP-symmetricity is the task-agnostic
nature of placement problems.

Figure 1: Conventional sequential decision-
making method’s heterogeneous trajectories
from AP-Symmetric solution group.

To this end, we devised collaborative symmetricity
exploitation (CSE) framework, a simple but effec-
tive method to induce AP-symmetricity with two
collaborative learning schemes: expert exploitation
and self-exploitation. The expert exploitation sim-
ply augments the offline expert data (sequential data)
with a random permutation operator and uses it for
imitation learning. The self-exploitation generates
pseudo-labeled solutions from the current training
policy, transforms the pseudo-labeled solution with a
random permutation operator, and forces the solver to
have an identical probability to generate the original
pseudo-labeled solution and the transformed solution.

To verify the effectiveness of CSE, we applied CSE to the decoupling capacitance (decap) placement
problem (DPP), one of the significant hardware design benchmarks. The objective of DPP is to place a
given number of decaps on power distribution network (PDN) with two varying conditions: keep-out
regions and probing port location, determined by higher-level problems such as chip placement and
routing. The goal of CSE is to train a solver (i.e., contextualized policy) that has high generalization
capability to any given task condition.

Contribution 1: A novel symmetric learning scheme for contextualized policy. There exists
several works (Cohen & Welling, 2016; Thomas et al., 2018; Fuchs et al., 2020; Satorras et al., 2021)
that learn various symmetricities of input data in the domain space for regression and classification
tasks. However, learning symmetricity in solution space is less studied as learning the symmertrcities
in solution space of sequential policy (generative decision) is challenging. Bengio et al. (2021)
tackled solution symmetricity of sequential policy by turning the Markov decision process (MDP)
tree model into the directed acyclic graph (DAG)-based flow model. However, they target single-task
optimization where the optimal solution set is unchanged. On the other hand, our CSE is an effective
solution symmetric learning scheme for the contextualized policy capable of adapting to newly given
task-condition.

Contribution 2: DPP benchmark release. DPP is a widely studied task in hardware domain without
public release of the simulation models and source codes for the methods. Also, DPP can be seen
as a contextual offline black-box optimization benchmark with extended properties compared to the
design-bench (Trabucco et al., 2022), a representative non-contextual offline black-box optimization
benchmark. In this work, by releasing the DPP benchmark with open-source simulation models
and our reproduced baselines, DRL-based methods, meta-heuristic methods, behavior cloning-based
methods, and our state-of-the-art CSE method, we expect huge industrial impacts on the hardware
and the ML communities.

2 DECAP PLACEMENT PROBLEM (DPP) FORMULATION

This paper seeks to solve the decoupling capacitor placement problem (DPP), one of the essential
hardware design problems. Decoupling capacitor (decap) is a hardware component that reduces
power noise along the power distribution network (PDN) of hardware devices and improves the power
integrity (PI). With transistor scaling and continuously decreasing supply voltage margin (Hwang
et al., 2021), power noise has become a huge technical bottleneck in high-speed computing systems.
Generally, the more decaps are placed, the more reliable the power supply is. However, adding more
decaps requires more space and is costly. Thus, finding an optimal placement of decaps is essential in
terms of hardware performance and cost/space-saving.
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Figure 2: Overall pipeline of DPP contextualized policy parameterization with offline learning.

The goal of DPP benchmark is to optimally place a pre-defined number of decaps on a target PDN,
given two conditions determined by higher-level tasks. First, keep-out regions are action-restricted
areas where decaps cannot be placed as a design constraint. Second, probing port is the target
chip/logic block location where the objective, power integrity (PI), is evaluated. The ports on PDN
are represented as Nrow ×Ncol grids, and the number of decaps is denoted by K. See Appendix A.2
for details of PDN and decap modeling for the benchmark.

Remark that DPP cannot be formulated as a conventional mixed-integer linear programming (MILP)-
based combinatorial optimization because PI performance can not be formulated as a closed analytical
form but can only be measured or simulated. This study aims to learn an effective DPP solver that
can be used in practice.

2.1 CONTEXTUAL MARKOV DECISION PROCESS (MDP) OF DPP
As shown in Fig. 2, the procedure for solving DPP is modeled as a contextual Markov decision
process (CMDP). CMDP is an augmented MDP proposed by (Hallak et al., 2015). The parameters of
CMDP, transition and reward function, change based on the context variable. DPP can be formulated
as CMDP, where the objective function J (;x) is determined by the task-condition x ∈ X (i.e.
context); the X is task-condition space.

Specifically, our objective function J (;x) is determined by PDN which is contextualized by x. The
contextualized PDN is represented as a set of three-dimensional feature vectors x = {xi}Nrow×Ncol

i=1 ,
where each grid (i.e., port) on PDN is represented as xi = (xi, yi, ci), in which xi, yi indicate 2D
coordinates of location, ci indicates the condition of port whether it belongs to a probing port Iprobe
(ci = 2), keep-out regions Ikeepout (ci = 1), or decap allowed ports Iallowed (ci = 0). Note that
Ikeepout and Iallowed represent index sets consisting of indices corresponding to keep-out regions
and decap allowed ports, respectively. Iprobe refers to an index of probing port. See Appendix A.3.

The design process sequentially places decaps on the available PDN ports until planning all the
designated K decaps. We model this CMDP with state, action, and policy as follows:

State st contains task-condition x and previous selected actions: st = {x,a1:t−1}.

Action at ∈ {1, ..., Nrow ×Ncol} \ st−1 is defined as an allocation of a decap to one of the available
ports on PDN. The available ports are the ports on PDN except for the probing port, keep-out ports,
and the previously selected ports. The concatenation of sequentially selected actions a = a1:K
indicates the final decap placement solution.

Policy πθ(a|x) is the probability of producing a specific solution a = a1:K , given task-condition x,
and is factorized as:

πθ(a|x) =
K∏
t=1

pθ(at|st), (1)

where pθ(at|st) is the segmented one-step action policy parameterized by the neural network.
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The objective of DPP is to find the optimal parameter θ∗ of the policy πθ(·|x) as:

θ∗ = argmax
θ

Ex∼pX (x)Ea∼πθ(·|x)
[
J (a;x)

]
, (2)

where pX (x) is the probability distribution for varying task-condition x and J is objective function.
Finding the optimal policy for various DPPs is a task contextual learning problem, in which each
DPP has a distinct task condition. Once the task x is specified by pX (x), the state-action space
with complexity of

(
Nrow×Ncol−1−|Ikeepout|

K

)
is determined. Thus, an efficient policy πθ(a|x) should

capture the contextual features among varying task conditions x.

Note that CSE is based on imitation learning, by which objective function J is implicitly induced
through offline expert data. The objective function of DPP is described in equation 3.

2.2 OBJECTIVE FUNCTION OF DPP

(a) Unit-cell representation of target PDN of a hardware device (b) Z-parameter of target PDN.

Figure 3: Unit-cell and Z-parameter representations of real-world target PDN.

Performance Evaluation Metric. The performance of DPP is evaluated by power integrity (PI)
simulation that computes the level of impedance suppression over a specified frequency domain and
is quantified as:

J :=
∑
f∈F

(Zinitial(f)− Zfinal(f)) ·
1GHz
f

(3)

where Zinitial and Zfinal are the initial and final impedance at the frequency f before and after
placing decaps, respectively. F is the set of specified frequency points. As shown in Fig. 3, the PI
simulation for (Nrow ×Ncol) PDN requires a NrowNcol×NrowNcol×nfreq (number of frequency
points) sized Z-parameter matrix calculation because each port is electrically coupled to the rest of
the ports and Z (i.e., impedance) is frequency-dependent. Thus, performance evaluation with a large
Z-parameter matrix calculation is costly. The more impedance is suppressed, the better the power
integrity and the higher the performance score. Note that this performance metric was also used for
collecting the offline expert data using a genetic algorithm (GA).

3 METHODOLOGY

This section provides technical details of the proposed collaborative symmetricity exploitation (CSE)
framework and the modified attention model (AM) neural architecture with two domain-specifically
devised context neural networks for training a DPP solver.

3.1 ACTION-PERMUTATION SYMMETRICITY AND ORDER BIAS OF PLACEMENT TASK

The symmetricity found in placement problems is the action-permutation (AP)-symmetricity, the
order of placement does not affect the design performance. Let us denote ti a permutation of an
action sequence {1, ...,K}, where K is the length of the action sequence. We then define the AP-
transformation TAP = {ti}K!

i=1 as a set of all possible permutations. The AP-symmetricity of DPP is
induced to the learned solver through the AP-transformation TAP .

Definition 3.1 (AP-symmetricity). For any a ∈ A, x ∈ X , t ∈ TAP where A is solution space and
X is task-condition space,

• Scala-valued Function f : A×X → R is AP-symmetric if, f(a,x) = f(t(a),x).
• Conditional probability π is AP-symmetric if, π(a|x) = π(t(a)|x).
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The objective function J : A× X → R of DPP is an AP-symmetric function because a and t(a)
have identical placement design. The main role of CSE is to induce AP-symmetricity to the policy π
(conditional probability) to reflect the AP-symmetricity of an objective function J .

Moreover, we define an order bias metric, b(π;p), to measure AP-symmetricity.

Definition 3.2 (Order bias on distributions p = {pX , pA, pTAP
}). For a conditional probability

π(a|x), where x ∈ X (task-condition space) and a ∈ A (solution space), the order bias b(π;p) is
defined as:

b(π;p) = Ex∼pX (x)Ea∼pA(a)Et∼pTAP
(t)[||π(a|x)− π(t(a)|x)||1]

Intuitively, the order bias b(π;p) is a general property of a sequential solution generation scheme. It
measures how much the solver π(a|x) has different probabilities to generate AP-symmetric solutions.
The order bias metric holds for the following theorem:

Theorem 3.1. Task-conditioned policy π(a|x) is AP-symmetric if and only if order bias is zero
(b(π;p) = 0) while the distributions are non-zero, pX (x) > 0, pA(a) > 0, pTAP

(t) > 0, for any
x ∈ X , a ∈ A and t ∈ TAP . Proof. See Appendix G.

3.2 COLLABORATIVE SYMMETRICITY EXPLOITATION (CSE) FRAMEWORK

Figure 4: Illustration of collaborative symmetricity exploitation (CSE) process.

The CSE framework was designed to induce the AP-symmetricity to the trained model to improve
the generalization capability and to allow data-efficiency in training.

To train a contextualized policy with a limited number of expert data, we designed the CSE loss term
L consisting of expert exploitation loss LExpert and self-exploitation loss LSelf . Each loss function
is mainly designed to reduce bias order (Definition 3.2):

L := LExpert + λLSelf (4)
LExpert = −Ea∗,x∼Daug [logπθ(a

∗|x)] (5)

LSelf = Ex∼UXEa′∼πθ̃(·|x)Et∼UTAP
[||πθ̃(a

′|x)− πθ(t(a
′)|x)||1] (6)

Expert Exploitation. The major role of expert exploitation is to train high-quality symmet-
ric contextualized policy for various task-conditions x by leveraging the offline expert data a∗

with TAP . The TAP transforms the existing offline expert data a∗ for P times to augment
the offline expert dataset Dexp = {(x(i), a(i)∗)}Ni=1 to reflect the AP-symmetric nature of the
placement task. Specifically, we randomly choose {t1, ..., tP } ⊂ TAP to generate Daug =

{
(
x(i), a(i)∗

)
,
(
x(i), t1(a

(i)∗)
)
, ...,

(
x(i), tP (a

(i)∗)
)
}Ni=1. Then, LExpert is expressed as a teacher-

forcing imitation learning scheme with the augmented expert dataset Daug . Note that expert exploita-
tion is expected to reduce order bias defined with the three uniform distributions; x of UDexp

(x), a
of UDexp

(a), and t of UTAP (t).

Self-Exploitation. While Daug only contains expert quality, self-exploitation involves self-generated
data, whose quality is poor at the beginning but improves over the phase of training. Thus, the
self-exploitation scheme is designed to induce the AP-symmetricity in a wider action space to achieve
greater generalization capability. Formally, self-exploitation loss is a special form of order bias
defined based on the distributions, x ∼UX , a ∼πθ̃ (current policy) and t ∼UTAP

, where U is a
uniform distribution; LSelf = b(πθ,p = {UX , πθ̃,UTAP

}).
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3.3 CONTEXTUAL ATTENTION MODEL

To further improve the generalization capability of the trained DPP solver, we modified the attention
model (AM) (Kool et al., 2019) and termed contextual attention model. As described in Fig. 2,
the decision-making procedure consists of two newly devised context neural networks; (1) encoder
capturing initial design conditions while contextualizing the probing port through the probing port
context network (PCN), and (2) decoder sequentially allocating decaps on PDN while contextualizing
the stages of the partial solution through the recurrent context network (RCN). See Appendix C for
detailed implementation.

Encoder. Our encoder consists of multi-head attention (MHA) and feedforward (FF), similar to the
transformer network (Vaswani et al., 2017). The encoder takes the task-conditioned PDN feature
vector x as an input and outputs all node embedding h. Encoding is processed once at the initial state,
t = 0. The node embedding h is time-invariant (i.e., fixed after the encoding process) and is used in
the decoding process. We proposed a novel probing context network (PCN) in the encoding process
so that the learned solver can adapt well to a new task. PCN is a simple but effective two-layer
perceptron model with a ReLU activation layer that takes the hidden embedding of the probing port
node hprobe and outputs the probing port contextual vector cprobe = MLPPCN (hprobe).

Decoder. With the node embedding h generated by the encoder, decoder sequentially selects an
action at until placing all K decaps. At each step t, the decoder takes (1) the node embedding h
(static information), (2) the current state st, (3) the probing port contextual vector cprobe, and (4)
the previous action context vector cat−1

= MLPRCN (hat−1
) generated by the recurrent context

network (RCN) as inputs and outputs a new action at. To leverage sequential state transitions in
decoder, we devised the recurrent context network (RCN). RCN is a two-layer perceptron model
with a ReLU activation layer that embeds the previously selected node’s embedding hat−1

at step t
into cat−1

. Then, overall context vector is updated as c = cprobe + cat−1
and is used as query for

attention decoder that eventually infers the next action at by the attention mechanism, where the key
and value comes from h. See Appendix C.2 for detailed process.

4 RELATED WORKS

Machine Learning-based Methods for DPP. Deep reinforcement learning (DRL) has been widely
used to solve DPP. Park et al. (2018) employed Q-learning and Park et al. (2020); Zhang et al. (2020)
applied convolutional neural network (CNN)-based Q approximators to solve a target DPP. However,
their methods require large iterations involving costly reward calculations and their trained policies
were non-reusable; if the DPP condition changes, they must be re-trained. In an effort to overcome
the reusability limitation by training a solver, Park et al. (2022); Kim et al. (2021) implemented
promising neural combinatorial optimization (NCO) models, the attention model (Kool et al., 2019)
and pointer network (Vinyals et al., 2015), to construct a contextualized policy without iterative
exploration and domain knowledge. However, their methods still showed poor data-efficiency in
training and unsatisfactory generalization performance.

Symmetricity Learning in Solution Space. There exists several studies to leverage the symmetricity
in solution space. Kwon et al. (2020) suggested a new reinforcement learning scheme, a policy
optimization for multiple optima (POMO) to leverage the traveling salesman problem (TSP)’s
solution symmetricity, the cyclic property that identical solution can be expressed as N heterogeneous
trajectories by permuting initially visited node. Kim et al. (2022) proposed the symmetric neural
combinatorial optimization (Sym-NCO) method, which is an extension of POMO to general-purpose
symmetric learning for various combinatorial optimization tasks. Bengio et al. (2021) proposed a
generative flow net (GFlowNet) to train policy distribution proportional to reward distribution π ∝ R
considering solution symmetricity. The GFlownet suggests a sequential decision-making scheme with
a directed acyclic graph (DAG), instead of classical tree structure, to induce solution symmetricity.
The GFlowNet is applied to solve molecule optimization and bio-sequential design (Jain et al., 2022).

While POMO (Kwon et al., 2020) and Sym-NCO Kim et al. (2022) leverage DRL, CSE focuses on
offline imitation learning. Though GFlowNet (Bengio et al., 2021) can be trained in a fully offline
manner, it is not yet designed for training a contextualized policy. Thus, CSE is positioned between
POMO and Gflownet as an offline symmetricity learning method to train contextualized policy.
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Table 1: Performance evaluation with the average score of 100 PDN cases (the higher the better).

Method Method Type PI Simulation (M ) Avg. Score

Random Search Online Search 10,000 12.70
Genetic Algorithm (expert policy) Online Search 100 12.56
Genetic Algorithm Online Search 500 12.79
AM-RL (Park et al., 2022) Pretrained 1 11.71
Arb-RL (Kim et al., 2021) Pretrained 1 9.60
AM (Park et al., 2022)-IL Pretrained 1 12.06
Arb (Kim et al., 2021)-IL Pretrained 1 10.80
CSE (ours) Pretrained 1 12.88

5 EXPERIMENTAL RESULTS

5.1 SETUP

PDN and Decap Specifications. The PDN used for verification is a chip-package hierarchical
PDN, modeled by the segmentation method (Kim et al., 2010; Cho et al., 2019). The PDN model
is represented as (Nrow ×Ncol) = (10× 10) grids over 201 frequency points linearly distributed
between 200MHz and 20GHz, which gives 100× 100× 201 ≈ 2M impedances to be evaluated
per each task; the PDN scale is reasonable to reflect the simulation intensiveness of DPP. The RLGC
electrical parameters of PDN unit-cell are shown in Appendix A.2. Out of the Nrow ×Ncol ports
on PDN, one is assigned as a probing port and 0 to 15 ports are assigned as keep-out ports (see
Appendix A.4). Decap is modeled as a unit-cell with a single port that is attached to a specific port
on PDN when an action is made. The RLGC electrical parameters of decap unit-cell are also shown
in Appendix A.2. 100 PDN cases for test and another 100 PDN cases for validation were generated
for performance evaluation. We made sure test data, validation data and training data did not overlap.
We used the number of decap K = 20 for every training, but K can be changed during the inference.

Offline Expert Data Collection. Since expert data for the DPP benchmark was not available, we
synthetically generated offline expert data using genetic algorithm (GA) for this study. The number
of iterations done for collecting a single data is represented as M . Note that the higher the M , the
better the quality of data, but the higher the simulation cost. We used GA{M = 100} to collect the
offline expert data. In addition, we denote N as the number of offline expert data used for training
CSE. Note that the lower the N the more data-efficient the training is.

Hyperparameters. For training, we generate three transformed data per expert data. We denote
P (= 3) as the number of AP-transformed data per offline data. Thus, the total number of guiding
data becomes N × (P + 1). For instance, P = 3, N = 50 makes total 50× 3 + 50 = 200 guiding
data. We set the distribution ρ, described in Section 2.1, as uniform distribution for training.

We used N = 2000 offline expert data for training CSE and IL-based baselines. For the learning
algorithm, we used ADAM (Kingma & Ba, 2015) with a learning rate of 10−5. We trained our model
with batch size 100 for N < 200 and batch size 1, 000 for N = 1, 000 and 2, 000. We trained for a
maximum of 200 epochs for each model; we used the model with the best validation score for CSE
and other ML baselines to evaluate performance. See Appendix D for detailed setup.

Baselines for Comparison. For search heuristic baseline methods, we implemented random search
and genetic algorithm. Since these methods are iterative solvers, they require a large number of
simulations (i.e., M >= 100. See Table 1) for each problem. For non-iterative learning-based solvers,
we reported two RL baselines, AM-RL (Park et al., 2022) and Arb-RL (Kim et al., 2021) and two IL
baselines, AM-IL and Arb-IL, which are modified AM-RL and Arb-RL with imitation learning instead
of reinforcement learning, to investigate the effectiveness of CSE components compared to the same
imitation learning approaches with different learning strategies/neural architecture. Implementation
details of the baselines are provided in Appendix D.2 and Appendix D.3.

5.2 GENERALIZATION CAPABILITY EVALUATION

To verify the generalization capability of the trained solver, each method is given the same unseen
100 DPPs and the average performance score was measured, after allocating K = 20 decaps on each.
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As shown in Table 1, our CSE significantly outperformed all baselines in terms of average performance
score. Online search methods generally find solutions that give a high average performance. This is
due to a large number of searching iterations M , which incurs the same number of costly simulations.
On the other hand, the learning-based baselines and CSE do not require simulations to generate
solutions; once trained, they only require a single simulation to measure the performance. Though
learning-based methods can easily find such a solution, CSE is the only method capable of finding a
solution that outperforms the highly iterative online search methods by a zero-shot inference.

When the number of costly simulations was limited, RL-based methods (AM-RL, Arb-RL) showed
poorer generalization capability than their IL versions (AM-IL, Arb-IL) due to inefficiency in
exploring over extremely large combinatorial action space of DPP. We believe that imitation learning
approach, fitting the policy with offline expert data, has greater exploration capability with the help
of expert policy thus able to achieve higher performance with a limited simulation budget (see
Appendix D.2). Note that if we have an infinite budget for reward simulation (which never happens in
a real-world hardware setting), DRL could achieve greater performance and generalization capability
with a sufficient learning loop.

Among the IL approaches trained with the same number of offline expert data (N = 2, 000), CSE
showed the highest performance. We believe that such higher generalization capability comes
from both symmetricity exploitation schemes and the newly devised neural architecture: (1) expert
exploitation and self-exploitation with symmetric label transformation amplify the number of data
to train with and induce solution symmetricity to improve generalization capability. (2) the neural
architecture with PCN and RCN makes the policy easily adapt to new task conditions.

Extrapolation over Expert Method. The CSE policy trained with offline expert data generated by
the expert policy, GA{100}, outperformed GA{500}, with zero-shot inference. That is, the CSE
policy trained with low-quality offline expert data produced higher-quality designs. We believe this
was possible because we trained a factorized form of policy that does not predict labels in a single
step but produced a solution through a serial iterative roll-out process, during which a good strategy
for placing decaps can be identified. In addition, the CSE with symmetric label transformation has
further guided the policy to learn such an effective decap placement design scheme.

(a) CSE in Original AM (b) CSE in Contextual AM (c) Original vs. Contextual AM
Figure 5: Ablation study on CSE components

Ablation Study. We conducted ablation studies to validate the effectiveness of CSE components and
context neural networks with sparse offline data (N = 100). We ablated the effectiveness of expert
exploitation (EE) and self-exploitation (SE) in two policy networks: original AM and contextual AM
(ours). The original AM refers to the AM-IL baseline. Each component of CSE supported increasing
generalization capability in both policy networks and the contextual AM with newly devised context
neural networks was verified to outperform the original AM. Therefore, we verified that both CSE
components and the modifications of AM successfully contributed to the promising performance.

Order Bias Measurement. We empirically show that our CSE successfully induces AP-symmetricity
by reducing the order bias (see Appendix H).

5.3 OFFLINE DATA EFFICIENCY EVALUATION

Figure 6: Offline data-efficiency
evaluation (P = 3, λ = 8)

We investigated how the number N of offline data generated by
the expert method, GA{M = 100}, affects the design perfor-
mance of CSE and the two baselines, AM-IL and Arb-IL. As
shown in Fig. 6, CSE outperformed the baselines in all N vari-
ation; CSE trained with N = 100 even performed better than the
baselines trained with N = 2000. Moreover, CSE monotonically
improved with N while the others saturated when N > 500.

8
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Table 2: Scalability evaluations on larger PDN scale and varying number of decap K.

Scale Variables Methods

PDN Scale Number of Decap, K GA {100} AM (Park et al., 2022)+IL CSE (ours)

10×10

12 11.77 10.22 12.23
16 12.25 11.13 12.60
20 12.53 11.71 12.81
24 12.79 12.20 12.95
30 13.02 12.62 13.11

15×15 20 7.61 6.23 8.47
40 7.69 7.75 8.54

5.4 SCALABILITY EVALUATION

For scalability verification, learning-based DPP methods were
pre-trained for a fixed scale PDN, (10 × 10), and a fixed number of decaps, K = 20. Then, the
pre-trained models were asked to place decaps of varying K ∈ {12, 16, 20, 24, 30} on (10×10) PDN
and varying K ∈ {20, 40} for a larger (15× 15) PDN without additional training (i.e, zero-shot). We
chose two baseline methods for comparison: GA {100} and AM-IL. As shown in Table 2, our CSE
outperformed GA {100} and AM-IL for all scales. Furthermore, CSE achieved greater performance
with fewer decaps. Reducing the number of decaps has a significant industrial impact; as hardware
devices are mass-produced, reducing a single decap saves enormous fabrication cost.

5.5 FLEXIBILITY VERIFICATION FOR PRACTICAL APPLICATION

(a) Sideview

(b) Topview

Figure 7: Structure of HBM
PDN model

To verify the practical applicability, we applied the proposed CSE to
a real-world hardware application, high bandwidth memory (HBM),
which is an interposer-based 2.5D IC. As shown in Fig. 7, the hierar-
chical PDN model of HBM is composed of (40× 40) package PDN,
(40× 60) interposer PDN and (15× 20) on-chip PDN, each layers
connected by TSV + C4 bumps and microbumps.

For performance evaluation, we compared the CSE{N = 1000}
to GA{M = 100}, AM-IL{N = 1000} and Arb-IL{N = 1000}
on placing varying number of decaps, K, for 100 test cases. The
pre-trained solvers with K = 20 were used for CSE, AM-IL and
Arb-IL without additional training.

Fig. 8 verifies that CSE achieved higher performance with signifi-
cantly fewer decaps. For instance, the performance score of 26.68,
attained with 40 decaps by GA{M = 100} and 34 decaps by AM-IL,
was achieved with only 26 decaps by zero-shot CSE. Arb-IL was
unable to achieve 26.68 even with 80 decaps. Power noise analysis
in a test case was carried out (see Appendix E.3), where the ini-
tial power noise before placing decap was 10.546mV. CSE was able to reduce the power noise to
0.610mV (-94.2%) with 26 decaps while GA{M = 100} reduced to 0.682mV (-93.5%) with 40
decaps. Reducing the number of decaps is a huge contribution to the industry as hardware devices are
mass-produced, reducing a single decap can greatly reduce production costs.

6 CONCLUSION

Figure 8: Performance com-
parison with number of decap
variation on HBM

This paper proposed the collaborative symmetricity exploitation
(CSE) framework for training contextualized policy (i.e., solver) of
placement tasks in an offline manner. The CSE was applied to decap
placement problem (DPP) and achieved the most promising perfor-
mance among all baseline methods. The CSE was also validated
on several scales and on multiple hardware devices. The CSE is a
general purpose offline learning scheme for placement tasks that can
be further applied to other hardware placement tasks including chip
placement, ball grid array (BGA) placement, and via placement.
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A DPP ELECTRICAL MODELING AND PROBLEM DEFINITION

This section provides electrical modeling details of PDN and decap models used for verification of
CSE in DPP. Note that these electrical models can be substituted by those of your interest. There are
three methods to extract PDN and decap models that are also used for objective evaluation; 3D EM
simulation tool, ADS circuit simulation tool, and unit-cell segmentation method. For each method,
there exists a trade-off between time complexity and accuracy. See Table 3. Out of the three methods,
we used the unit-cell segmentation method for a benchmark. Simulation time was evaluated using the
same PDN model on Intel i7. Note that simulation time depends on the size and complexity of the
PDN model.

Table 3: Time Taken for an Objective Evaluation of a PDN model described in Appendix A.2

Simulation Method Time Taken

EM Simulation Tool ≈10 hours
ADS Circuit Simulation Tool 23.58 sec

A.1 DOMAIN PERSPECTIVE DECAP PLACEMENT PROBLEM

(a) An example of hierarchical power distribution net-
work (PDN).

(b) Electrical circuit model of the hierarchical PDN in
(a).

(c) Water supply chain from the source to household.

Figure 9: Illustration of Hierarchical Power Distribution Network (PDN) analogous to Water Supply
Chain.

The development of AI has led to an increased demand for high-performance computing systems.
High-performance computing systems not only require precise design of hardware chips such as
CPU, GPU and DRAM, but also require stable delivery of power to the operating integrated circuits.
Power delivery has become a huge technical bottleneck of hardware devices due to the continuously
decreasing supply voltage margin along with the technology shrink of CMOS transistors (Hwang
et al., 2021).

Fig. 9 (a) shows the power distribution network (PDN) consisting of all the power/ground planes
from the voltage source to operating chips. Power is generated in VRM and delivered through
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electrical interconnections of PCB, package and chip. Finding ways to meet the desired voltage
and current from the power source to destinations along the PDN is detrimental because failure in
achieving power integrity (PI) leads to various reliability problems such as incorrect switching of
transistors, crosstalk from neighboring signals, and timing margin errors (Swaminathan & Engin,
2007). Decoupling capacitors (decaps) placed on the PDN allows the reliable power supply to the
operating chips, thus improving the power integrity of hardware. As shown in Fig. 9 (b)-(c), the role
of decap is analogous to that of water storage tanks, placed along the city, apartment, and household,
that can provide water uninterruptedly and reliably. As if placing more water tanks can make the
water supply more stable, placing more decaps can make power supply more reliable. However,
because adding more decaps requires more space and is costly, optimally placement of decaps is
important in terms of PI and cost/space-saving.

A.2 PDN AND DECAP MODELS FOR VERIFICATION

Unit-Cell Segmentation Method. The segmentation method (Kim et al., 2010) is a simple and fast
way to generate approximated electrical models. Because the analysis of the full electrical model
using EM simulation is very time-consuming, we divided the full PDN model into smaller unit-cells
and constructed the full PDN model using the unit-cell segmentation method. For fast simulation, we
used equation-based python implemented segmentation method, illustrated in Fig. 10.

Segmentation method was used for generation of PDN model consisting of a chip layer and a package
layer for verification as illustrated in Fig. 10 (a). The segmentation method was also used for objective
evaluation of DPP. When a solution for DPP is made, decaps are placed on the corresponding ports
on PDN using the segmentation method as illustrated in Fig. 10 (b).

(a) Generation of Chip PDN.

(b) Decap Placement.

(c) Segmentation Method.

Figure 10: Segmentation Method Implemented for PDN Generation and Decap Placement on PDN.

The PDN model we used for verification has a two-layer structure; a package layer at the bottom
and a chip layer on top of it as illustrated in Fig. 11. The PDN was modeled through the unit-cell
segmentation method. Package layer was composed of 40× 40 package unit-cells and chip layer was
composed of 10× 10 (i.e, Nrow ×Ncol) chip unit-cells. Because the DPP benchmark places MOS
type decaps, which are placed on chip, ports are only available on chip. Thus, we extracted 10× 10
ports information from the chip layer. See Fig. 14 (a), illustrating the chip PDN divided into 10× 10
units and each unit-cell numbered.
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(a) Top-View of PDN model. (b) Side-View of PDN model.

Figure 11: Top-view and Side-view of PDN Model used for Verification

The electrical models of package and chip unit-cells that are used to build the PDN model for
verification are described in Fig. 12. The chip layer is composed of 10 × 10 unit-cells, and the
package layer is composed of 40× 40 unit-cells using the segmentation method. The corresponding
values of electrical parameters are listed in Table 4.

(a) Balanced Transmission Line Model of Chip Unit-Cell.

(b) Balanced Transmission Line Model of Package Unit-Cell.

Figure 12: Electrical Modeling of Chip and Package Unit-Cells for PDN Model generation.

Table 4: Width and Electrical Parameters for Chip and Package Unit-Cells used for Verification

Unit-Cell Model W R L G C

Chip 300µm 0.26 Ω 22pH 1.2mS 0.77pF
Package 0.5mm 0.093 Ω 0.25nH 5.4µS 0.045pF

We implemented MOS type decap for verification. Decap model and its electrical parameters are
shown in Fig. 13. As mentioned in appendix A.1 Fig. 10 (b), the solution to DPP is evaluated using
the segmentation method.

Note that these electrical parameters and PDN structures were used as a benchmark. For practical use
of CSE, these PDN and decap models can be substituted by those of your interests.

15



Under review as a conference paper at ICLR 2023

Figure 13: Decap Unit-Cell with the Electrical Parameters used for Verification.

A.3 INPUT PROBLEM PDN AND OUTPUT DECAP PLACEMENT DATA STRUCTURE

(a) Input Problem PDN. (b) Output Decap Placement Solution.

Figure 14: Illustration of how the DPP problem with specific condition is given as an input and decap
placement solution is generated as an output.

Each unit-cell (i.e, port) of the PDN model described in Appendix A.2 is represented as a set of
3D feature vectors composed of x-coordinate, y-coordinate and port condition; 1 representing keep-
out region, 2 representing a probing port and 0 for the decap allowed ports. Total 10 × 10 (i.e,
Nrow×Ncol) 3D vectors represent the problem PDN. The solution to DPP is the placement of decaps.
As illustrated in Fig. 14 (b), the solution is given as a set of port numbers corresponding to each decap
location.

A.4 RANDOM PROBLEM GENERATION OF DPP

To randomly generate decap placement problems (DPPs) with distinct conditions for training, test and
validation, a probing index Iprobe is selected randomly from a uniform distribution of {1, ..., Nrow ×
Ncol}. Then keep-out region indices Ikeepout are randomly selected through the following two stages:
the number of keep-out regions |Ikeepout| is randomly selected from a uniform distribution of 0 ∼ 15.
Then, a set of indices of keep-out ports Ikeepout is generated by random selection from the uniform
distribution of {1, ..., Nrow ×Ncol}. We generated 100 test problems and 100 validation problems
for 10× 10 PDN and 50 test problems and 50 validation problems for 15× 15 PDN. We made sure
the training, test, and validation problems do not overlap.

B EXPERT LABEL COLLECTION

We used a genetic algorithm (GA) as the expert policy to collect expert guiding labels for imitation
learning. GA is the most widely used search heuristic method for DPP (Erdin & Achar, 2019;
de Paulis et al., 2020; Xu et al., 2021; Juang et al., 2021). We devised our own GA for DPP, the
objective of which is to find the placement of given number (K) of decaps on PDN with a probing
port and 0-15 keep-out regions that best suppresses the impedance of the probing port.

Notations. M is the number of samples to undergo an objective evaluation to give the best solution.
The value of M is defined by the size of population P0 times the number of generation G. K refers
to the number of decaps to be placed. Pelite is the number of elite population.
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Guiding Dataset. To generate expert labels, guiding problems were generated in the same way test
dataset was generated. We made sure the guiding data problems do not overlap with the test dataset
problems. Also, we made sure each guiding problem does not overlap with each other. Each guiding
data problem goes through the following process described in Fig. 15 to collect the corresponding
expert label.

Figure 15: Process Flow of Genetic Algorithm for DPP.

(a) Initial Population Generation. (b) Elitism.

(c) Crossover. (d) Mutation.

Figure 16: Illustration of each GA Operators used for DPP Guiding Data Generation.

Population and Generation. For GA {M = 100} (expert policy), we fixed the size of population
as P0 = 20 and the number of generation as G = 5, which makes up total number of samples to be
M = P0 ×G = 100. Each solution in the initial population is generated randomly. As described in
Fig. 14 (b), each solution consists of K numbers, each representing a decap location on PDN. Note
that each solution consists of random numbers from 0 to 99 except numbers corresponding to probing
port and keep-out region locations.
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Once the initial population is generated randomly, a new population is generated through elitism,
crossover, and mutation. This whole process of generating a new population makes one generation;
the Generation process is iterated for G− 1 times.

Elitism. Once initial population is formulated, the entire population undergoes objective evaluation
and gets sorted in order of objective value. The size of elite population is pre-defined as Pelite = 4
for GA {M = 100} (expert policy). That means the top 4 solutions in the population become the
elite population and are kept for the next generation.

Crossover. Crossover is a process by which new population candidates are generated. Each solution
of the current population including the elites is divided in half. Then, as described in Fig. 16 (c), half
the solutions on the left and the other half on the right go through random crossover for P0 times to
generate a new population. If the elite population is available, P0 − Pelite random crossover takes
place so that the total population size becomes P0, including the elite population.

Mutation. According to Fig. 16 (d), there may exist solutions with overlapping numbers after the
random crossover. We replace the overlapping number with a randomly generated number, and we
call this mutation.

Select Best. When G is reached, the final population is evaluated by the performance metric. Then, a
solution with the highest objective value becomes the final guiding solution for the given DPP.

The guiding problems and corresponding solutions generated as a result of GA are saved and used as
guiding expert labels for imitation learning.

C DETAILS OF NEURAL ARCHITECTURE DESIGN

Our neural architecture has the AM (Kool et al., 2019) with context modification. The AM is a
transformer(Vaswani et al., 2017)-based encoder-decoder model designed to solve combinatorial
optimization problems. We used conventional notations from transformer (Vaswani et al., 2017) and
AM (Kool et al., 2019), including multi-head attention (MHA), feed forward (FF), query, key and
value (Q,K, V ). Because their terminologies are well organized, we tried to keep every notation
as possible. In this paper, we focused on presenting the main differences between AM and our
architecture. See Kool et al. (2019) for detailed mechanism of AM.

C.1 CHANGE OF NOTATIONS.

There are small revisions we made from Kool et al. (2019). In AM, TSP nodes are presented as
xi, i ∈ {1, ..., N}, where N refers to the number of TSP nodes. This paper uses Iprobe for the
node of the probing port, Ikeepout for nodes of the keep-out regions and Iallowed for nodes of the
decap-allowed ports.

Kool et al. (2019) denotes action as π (for representing permutation action), but we denoted action as
a.

In, Kool et al. (2019), the notation, h(N), refers to N times MHA in encoder; we denoted this notation
as h just for readability.

There are two additional notations: cprobe is the probing context embedding from the probing port
context network (PCN in section 3.2) and cat−1 is the recurrent context embedding from the recurrent
context network (RCN in section 3.2) for step = t.

C.2 HIGHLIGHT OF MODIFICATIONS: CONTEXT EMBEDDING.

The main difference between the AM and ours is the context embedding and is illustrated in Fig. 17.

AM’s (Kool et al., 2019) context embedding is presented as follows:

h(c) = MHA([h(g), haτ−1
,ha1 ],h) (7)

Context embedding of AM. Since the AM was originally designed for TSP and its invariant problems,
AM’s context embedding is implemented for capturing the entire graph by taking the average of all
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Figure 17: Overview of main difference between AM and modified version of AM.

node embedding, h(g), state-transition with haτ−1
and final destination with ha1 . Note that TSP is

a routing problem, where it must return to the first node (i.e, destination node is first visited node).

Context embedding of AM for DPP (AM-RL (Park et al., 2022)). Park et al. (2022) also used
the AM for decap placement with modification of context embedding. Park et al. (2022) tried to add
hprobe to capture the location of probing port as follows:

h(c) = MHA([h(g),hat−1
,hp],h) (8)

Context embedding of Ours. We observed that h(g) degrades the performance of the model for
DPP. DPP is different from TSP; we need a new DPP-specific context embedding strategy. Therefore,
we tried to focus on the probing port more than others by proposing the PCN. We removed h(g) and
ha1 from the context embedding and replaced them with our newly designed context embedding.
Our context embedding is described as follows:

h(c) = MHA(cprobe + cat−1
,h) (9)

cprobe = MLPPCN (hprobe) (10)
cat−1

= MLPRCN (hat−1
) (11)

Note that both MLPPCN and MLPRCN are two-layer perceptron models with ReLU activation,
where input and output dimensions are identical (d = 128 in all experiments).

C.3 CALCULATION OF PROBABILITY.

Probability calculations using context hidden embedding h(c), and PDN hidden embedding hi,
i ∈ {1, ..., Nrow × Ncol} in (11-14) are exactly identical to (5-8) in Kool et al. (2019) except the
masking mechanism in equation 13 and equation 14. Because Kool et al. (2019) solves TSP, so they
mask the previously selected actions by forcing −∞ as compatibility u(c)j . For DPP, we mask not
only the previously selected actions a1:t−1 but also the probing port index Iprobe and the keep-out
region indices Ikeepout; it is forbidden to choose the Iprobe, Ikeepout and previously selected actions
a1:t−1

Query, key and value are computed by:

qc = WQh(c),ki = WKhi,vi = WV hi (12)
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Note that WQ, WK and WV are 128-to-128 linear projections.

After that, compatibility u(c)j is computed by the dot product of query and key, with masking
mechanism (setting −∞ not to select actions in st−1).

u(c)j =

{
qT
(c)kj√
128

if j /∈ Iprobe, Ikeepout, a1:t−1

−∞ otherwise
(13)

The tanh clipping is done following Bello et al. (2016) and Kool et al. (2019).

u(c)j =

10 · tanh
(

qT
(c)kj√
128

)
if j /∈ Iprobe, Ikeepout, a1:t−1

−∞ otherwise.
(14)

Finally, probability can be computed using softmax function as follows:

pθ (at = i | st) =
eu(c)i∑
j e

u(c)j
(15)

D DETAILED EXPERIMENTAL SETTINGS

This section provides detailed experimental settings for main experiments and ablation studies.

D.1 TRAINING HYPERPARAMETERS.

There are several hyperparameters for training; we tried to fix the hyperparameters as Kool et al.
(2019) did for showing their frameworks’ practicality. We then provided several ablation studies on
each hyperparameter to analyze how each component contributes to performance improvement.

Training hyperparameters are set to be identical to those presented in AM for TSP (Kool et al., 2019)
except learning rate, unsupervised regularization rate λ, the number of expert data N , number of
action permutation transformed data per expert data P and batch size B.

Table 5: Hyperparameter setting for training model.

Hyperparameter Value
learning rate 0.00001
λ 8×1032

N 1000
P 3
B 1000

D.2 IMPLEMENTATION OF ML BASELINES.

There are two main ML baselines, Arb-RL (Kim et al., 2021) and AM-RL (Park et al., 2022).

Arb-RL. Arb-RL is a PointerNet-based DPP solver proposed by Kim et al. (2021). However,
reproducible source code was not available. Therefore, we implemented the Arb-RL following the
implementation of Bello et al. (2016) 1 and paper of Kim et al. (2021). We set the training step 1, 600
with batchsize B = 100 that makes total 160, 000 PI simulation.

Arb-IL. Arb-IL is an imitation learning version of Arb-RL trained by our training data. We set
N = 2000, B = 1000 for training Arb-IL.

1https://github.com/pemami4911/neural-combinatorial-rl-pytorch
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AM-RL. AM-RL is a AM-based DPP solver proposed by Park et al. (2022). We reproduced AM-RL
by following implementation of Kool et al. (2019)2 and paper of Park et al. (2022). We set the training
step 2, 000 with batchsize B = 100 that makes total 200, 000 PI simulation.

AM-IL. AM-IL is an imitation learning version of AM-RL trained by our training data. For
experiments in Table 1, we set N = 2000 and B = 1000 for training. For ablation study, we mainly
ablate N , when N = 100 we set B = 100. Here is the training sample complexity (the number of PI
simulations during training) of each ML baselines and CSE:

Table 6: Training sample complexity of ML baselines and CSE.

Methods The Number of PI simulations for Training
Arb-RL 200,000
AM-RL 200,000
Arb-IL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)
AM-IL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)
CSE {N = 100} (ours) 10,000 (N = 100, M = 100 from GA expert)
CSE {N = 1000} (ours) 100,000 (N = 1000, M = 100 from GA expert)
CSE {N = 2000} (ours) 200,000 (N = 2000, M = 100 from GA expert)

During the inference phase, each learned model produces a greedy solution from their policies (i.e.,
M = 1) following (Kool et al., 2019).

2https://github.com/wouterkool/attention-learn-to-route
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D.3 IMPLEMENTATION OF META-HEURISTIC BASELINES.

Genetic Algorithm (GA). GA {M = 100} and GA {M = 500} are implemented as baselines.
For detailed procedures and operators used for GA, see Appendix.B. GA {M = 100} is the expert
policy used to generate expert data for imitation learning in CSE. For GA {M = 100}, the size
of population, P0, is 20, number of generation, G, is 5 and elite population, Pelite, is 4. For GA
{M = 500}, P0 is 50, G is 10 and Pelite is 10.

Random Search (RS). The random search method generates M random samples for a given problem
and selects the best sample with the highest objective value.

Figure 18: Performance of GA and RS with varying number of iterations (M ) in comparison to CSE
at M = 1.

Fig. 18 shows the performance of GA and RS depending on the number of iterations (M ). The
performance was measured by taking the average of 100 test data solved by each method at each
M . GA outperformed RS at every M , and the performance increased with increasing M for both
methods. However, the gradient of performance increment decreased with increasing M . On the
other hand, our CSE showed higher performance than GA{M = 100} and RS {M = 10, 000} with
a single inference M = 1.

E EXPERIMENTAL RESULTS IN TERMS OF POWER INTEGRITY

The objective of DPP is to suppress impedance of the probing port as much as possible over a
specified frequency range and is measured by the objective metric, Obj :=

∑
f∈F (Zinitial(f) −

Zfinal(f)) · 1GHz
f . Performance of CSE was evaluated in comparison to GA {M = 100} (expert

policy), GA {M = 500}, RS {M = 10, 000}, AM-RL and AM-IL on unseen 100 PDN cases. Each
method was asked to place 20 decaps (K = 20) on each test.

E.1 IMPEDANCE SUPPRESSION PLOTS
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(a) Test Case 1. (b) Test Case 2.

(c) Test Case 3. (d) Test Case 4.

(e) Test Case 5. (f) Test Case 6.

Figure 19: Impedance suppressed by each method, GA {M = 100} (expert policy), GA {M = 500},
RS {M = 10, 000}, AM-RL , AM-IL and CSE (Ours) for 6 example PDN cases out of 100 test
dataset. (The lower the better.)
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E.2 DECAP PLACEMENT TENDENCY ANALYSIS

(a) GA {M = 100}.

(b) GA {M = 500}.

(c) RS {M = 10, 000}.

(d) AM-RL {M = 1}.

(e) AM-IL {M = 1}.

(f) CSE(ours){M = 1}.

Figure 20: Corresponding decap placement solutions to Fig. 19 by each method. Red represents
probing port, black represents keep-out ports and blue represents decap locations.

Fig. 21 shows the decap placement solutions of 6 PDN cases plotted in Fig. 19. The solutions by
the search-heuristic methods, GA and RS, tend to be scattered while the solutions by learning-based
methods, AM-RL, AM-IL and CSE, are clustered. Since search-heuristic methods are based on
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random generations, they do not show clear tendency. On the other hand, learning based methods are
based on a policy so that they have distinct tendency in placing decaps.

The role of placing decaps in hardware design is to decouple loop inductance of PDN. In terms of PI,
analysis of loop inductance is critical, but at the same time, is complex (Farrahi & Koether, 2019).
The loop inductance distribution of PDN highly depends on various design parameters such as the
location of probing port, spacing between power/ground, size of PDN, and hierarchical layout of
PDN (Fan et al., 2000). When human experts place decaps on PDN, there are too many domain rules
to consider. On the other hand, CSE understands the PDN structure and its electrical properties by
data-driven learning. According to Fig. 21, CSE tends to place decaps near the probing port, which is
a well-known expert rule in the PI domain.

E.3 POWER NOISE ANALYSIS ON HBM PDN

(a) Impedance suppression.

(b) Initial power noise before decap placement.

(c) Power noise after decap placement by our CSE{M = 1,K = 26} and GA{M = 100,K = 40}.

Figure 21: Power noise analysis in terms of simultaneous switching noise (SSN) on HBM PDN
before and after decap placed by our CSE{M = 1,K = 26} and GA{M = 100,K = 40}.

Appendix E.3 analyzes the performance of CSE in comparison to GA{M = 100} in terms of power
noise. Out of 100 test cases on HBM PDN, we randomly chose a test case and carried out peak-to-
peak power noise analysis for a circuit block, phase locked loop (PLL), operating at 5GHz. Note
that CSE placed 26 decaps and GA{M = 100} placed 40 decaps. CSE reduced power noise more
than GA{M = 100} with 14 less decaps. The impedances of the probing port on power distribution
network (PDN) before and after decap placed by CSE and GA{M = 100} are presented in Fig. 21a.
The time-domain power noise before and after decap placement by each method is shown in Fig. 21b.
For performance comparison, Fig. 21c shows the time-domain power noise after decap placement by
CSE and GA{M = 100}.
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F FURTHER ABLATION STUDY

This section reports ablation studies on action permutation invariance and hyperparameters N
(number of guiding samples), λ (weight of self-exploitation loss term), and P (number of permutation
transformed labels).

F.1 ABLATION STUDY ON N

N is the number of expert labels generated by the expert policy, GA {M = 100}. We ablate
N ∈ {100, 500, 1000, 2000} with fixed P = 3 and λ = 8 and compare to AM-IL baseline for all N .
As shown in Table 7, CSE with N = 2000 gives the best performance and CSE outperforms AM-IL
for all N variations. Performance of AM-IL is saturated at N > 500 while the performance of CSE
continuously increases with the increase of N .

Table 7: Ablation study on N for CSE (P = 3, λ = 8) and AM-IL.

Validation Score

AM-IL {N = 100} 11.60
CSE (ours) {N = 100} 12.98
AM-IL {N = 500} 12.37
CSE (ours) {N = 500} 12.99
AM-IL {N = 1000} 12.23
CSE (ours) {N = 1000} 13.09
AM-IL {N = 2000} 12.32
CSE (ours) {N = 2000} 13.13

Figure 22: Validation graph CSE in comparison to AM-IL for varying number of offline expert data
N ∈ {100, 500, 1000, 2000}.
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F.2 ABLATION STUDY ON λ

λ refers to the weight of self-exploitation loss term LSelf , in the collaborative learning loss L :=
LExpert + λLSelf . To set λ× LU be 0.1 ∼ 1, we first multiplied 1032 to λ because the probability
of a specific solution is extremely small. Then, we ablated for λ ∈ {1, 2, 4, 6, 7, 8, 9, 10} (1032
is omitted) with fixed N = 100 and P = 3. For every λ, it prevents overfitting of the model in
comparison to the baselines trained only with LExpert (see Fig. 23). According to the Table 9, λ = 8
gives the best validation scores.

Table 8: Ablation study of λ on fixed P = 3 and N = 100.

λ (×1032) Validation Score
1 12.96
2 12.96
4 12.94
6 12.96
7 12.98
8 12.98
9 12.97
10 12.96
Only IL, λ = 0 12.97

Figure 23: Validation graph of λ ∈ {1, 2, 4, 6, 7, 8, 9, 10} on fixed P = 3 and N = 100.
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F.3 ABLATION STUDY ON P

P is the number of permutation transformed labels per each expert label used for imitation learning-
based expert exploitation. We ablate P ∈ {3, 5, 7} with fixed N = 100 and λ = 8 and compared
collaborative symmetricity exploitation (i.e., both expert and self-exploitation) to only expert ex-
ploitation training case. As shown in Table 9, P = 3 with {Expert exploitation + Self-exploitation}
give best performances. For every P , {Expert exploitation + Self-exploitation} gives the better
performances, indicating self-exploitation scheme well prevents overfitting of training process for
sparse dataset.

Table 9: Ablation study on P with and without unsupervised loss term.

Validation Score

Expert exploitation {P = 3} 12.97
+ Self- exploitation {λ = 8} 12.98
Expert exploitation {P = 5} 12.95
+ Self- exploitation {λ = 8} 12.95
Expert exploitation {P = 7} 12.93
+ Self- exploitation {λ = 8} 12.95

Figure 24: Validation score of P ablation with and without self-exploitation loss term.
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G PROOF OF THEOREM 3.1

(→) Suppose that policy π(a|x) is AP-symmetric. Then, by the Definition 3.1, π(a|x) = π(t(a)|x)
for any a ∈ A, x ∈ X , t ∈ TAP .

Therefore,

b(π;p) = Ex∼pX (x)Ea∼pA(a)Et∼pTAP
(t)[||π(a|x)− π(t(a)|x)||1] = 0

(←) Suppose that b(π;p) = 0, where pX (x) > 0, pA(a) > 0, pTAP
(t) > 0.

Assume that there exist a∗ ∈ A, x∗ ∈ X , and t∗ ∈ TAP , such that π(a∗|x∗) ̸= π(t(a∗)|x∗).

Then,

b(π;p) = Ex∼pX (x)Ea∼pA(a)Et∼pTAP
(t)[||π(a|x)− π(t(a)|x)||1]

≥ pX (x∗)pA(a
∗)pTAP

(t∗)||π(a∗|x∗)− π(t(a∗)|x∗)||1 > 0,

which results in a contradiction. Therefore, π(a|x) = π(t(a)|x) for any Fa ∈ A, x ∈ X , t ∈ TAP :
i.e, policy π(a|x) is AP-symmetric.

H ORDER BIAS MEASUREMENT

This section reports the order bias measurements of AM-IL and our CSE. We measured b(π,p =
{UX , π,UTAP

} for sample width 100 and took the average value. As shown in Appendix H, our CSE
significantly reduced the order bias, verifying that CSE successfully induced the AP-symmetricity.

Table 10: Evaluation of Order Bias

b(π,p = {UX , π,UTAP })

AM-IL 8.70×10−21

CSE (ours) 1.25×10−28
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