
Scaling Epidemic Inference on Contact Networks:
Theory and Algorithms

Guanghui Min Yinhan He Chen Chen
University of Virginia

{jjm8vr, nee7ne, zrh6du}@virginia.edu

Abstract

Computational epidemiology is crucial in understanding and controlling infectious
diseases, as highlighted by large-scale outbreaks such as COVID-19. Given the in-
herent uncertainty and variability of disease spread, Monte Carlo (MC) simulations
are widely used to predict infection peaks, estimate reproduction numbers, and
evaluate the impact of non-pharmaceutical interventions (NPIs). While effective,
MC-based methods require numerous runs to achieve statistically reliable estimates
and variance, which suffer from high computational costs. In this work, we present
a unified theoretical framework for analyzing disease spread dynamics on both
directed and undirected contact networks, and propose an algorithm, RAPID, that
significantly improves computational efficiency. Our contributions are threefold.
First, we derive an asymptotic variance lower bound for MC estimates and identify
the key factors influencing estimation variance. Second, we provide a theoretical
analysis of the probabilistic disease spread process using linear approximations and
derive the convergence conditions under non-reinfection epidemic models. Finally,
we conduct extensive experiments on six real-world datasets, demonstrating our
method’s effectiveness and robustness in estimating the nodes’ final state distribu-
tion. Specifically, our proposed method consistently produces accurate estimates
aligned with results from a large number of MC simulations, while maintaining a
runtime comparable to a single MC simulation. Our code and datasets are available
at https://github.com/GuanghuiMin/RAPID.

1 Introduction

In recent years, outbreaks of infectious diseases such as COVID-19 have highlighted the critical
need for accurate modeling and prediction of disease dynamics [15, 8, 5, 49]. Existing epidemic
studies tend to model the disease spread process using differential equations at the population
level, and often assume homogeneous populations with random mixing of initial infections within
contact networks [27]. Consequently, such work can only provide a rough estimate of the overall
dynamics of epidemics, while missing important details about individual- or local-level infection
dynamics in the networks. In practice, individual-level infection dynamic inference has important
practical implications. For example, individuals with a high probability of transmitting the disease
can be prioritized for vaccination, thus reducing the overall infected population [22]. In addition,
understanding the results of local infections can provide a more accurate projection of the global
trajectory of the epidemic. Although some recent studies have enabled advances in understanding
the interplay of network structure and epidemic spread process, they can only provide an insight
about the epidemic at a high level by determining whether an outbreak will escalate into a complete
pandemic [50, 16, 43], while neglecting the impact of distribution of initial cases and offering limited
information on the infection states and expected size of the infected population.
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Currently, inferring the infectious state of individual nodes in the epidemic network heavily depends
on the Monte Carlo (MC) simulations, as they do not rely on assumptions of population homogeneity
or specific distributions of initial infections [60, 14, 10, 11, 21, 19]. For example, during the COVID-
19 pandemic, MC simulations have been widely employed to predict infection peaks, estimate
reproduction numbers, and assess the impact of non-pharmaceutical interventions (NPIs) [60, 14].
Due to the simplicity and robustness of MC simulations, they are widely adopted in various related
application domains such as information dissemination and cybersecurity, where network-based
contagion models play a crucial role [26, 47, 57]. However, a non-negligible drawback for MC
simulations is their high computational cost, as it requires hundreds or even thousands of runs of
simulations to reach a statistically reliable result due to the inherent uncertainty and variability of the
disease spread process [43].

In this paper, we address the high computational cost of MC simulations for modeling the disease
spread process by presenting an efficient framework to estimate the infection dynamics on large
networks while ensuring high estimation accuracy on predicting the infection states of individual
nodes at convergence. To our knowledge, we are the first to theoretically analyze how the network
structure impacts the variance of epidemic simulations and provide a linear approximation scheme
for nonlinear epidemic dynamics with provable performance guarantees. Our key contributions are as
follows:

• Theoretical Analysis: We present three key results: (1) we derive the variance lower bound of
the Monte Carlo estimator on large contact networks and reveal how the reproduction number,
average out-degree, initial infection ratio, and the number of simulations affect the variance; (2)
we provide a linear approximation of the nonlinear epidemic dynamics, clarifying the contribution
of neighborhoods to disease spread; and (3) we establish global convergence conditions for
probability-based propagation under non-reinfection epidemic models.

• Algorithm and Results: Building on these theoretical insights, we propose RAPID (Residual-
Aware Propagation for Infection Dynamics), a local approximation algorithm designed to effi-
ciently estimate the node-level state distribution in large networks while preserving interpretability
and reliability throughout the computational process. In particular, RAPID consistently produces
accurate estimates aligned with results from a large number of MC simulations, while maintaining
a runtime comparable to a single MC simulation.

2 Preliminary

Notations. We denote a general graph1 as G = (V, E ,A), where V is the set of nodes and N = |V|
is the number of nodes; E denotes the set of edges, and the edge between nodes vi and vj is denoted
as eij = (vi, vj); A ∈ {0, 1}N×N is the adjacency matrix, where Aij = 1 indicates that an edge
exists between vi and vj , otherwise Aij = 0. In this work, we assume a standard SIR (Susceptible-
Infected-Recovered) model with a constant transmission probability β and recovery probability γ
governs the spread of a virus on this network. All notations and symbols are summarized in Table 1.

Definition 1 (Individual-Level Epidemic Inference). Given a directed contact network G = (V, E ,A),
epidemic parameters β and γ, and an initial infected node set I0, the goal of individual-level
epidemic inference is to estimate the steady-state (converged) state probability distribution P i(∞) =
[P i

S(∞), P i
I (∞), P i

R(∞)]T for each node i ∈ V .

This problem fundamentally differs from typical graph-based spatio-temporal prediction tasks, which
aim to forecast future node-level observations (such as traffic or sensor signals) based on historical
data. In contrast, node-level epidemic inference seeks to estimate the final distribution of susceptible
probabilities at convergence with given initial conditions and epidemic parameters, and the contagion
process follows the stochastic infection dynamics without relying on past observation sequences.

1In this work, the graph or network can be either directed or undirected. Without loss of generality, we derive
our analysis on directed graphs as undirected graphs can be considered as a special case of directed graphs.
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Table 1: Summary of key notations
Graph
G = (V, E ,A) Directed contact network with node set V , edge set E , and adjacency matrix A.
N Number of nodes, |V|.
k̄, D Average out-degree, graph diameter.
NE in(i),NEout(i) In-/out-neighbors of node i.
Epidemic parameters
β, γ Transmission probability, recovery probability in unit time.
I0, α Initial infected node set, with fraction α = |I0|/N .
pe Edge-level transmission probability, pe = β/(β + γ).
State variables
P i
S(t), P

i
I (t), P

i
R(t) Probabilities that node i is susceptible, infected, or recovered at time t.

P i(t) Full state vector of node i: [P i
S(t), P

i
I (t), P

i
R(t)]

T .
PS(t), PI(t), PR(t) Vectors over all nodes, e.g., PS(t) = [P 1

S(t), . . . , P
N
S (t)]T .

P (t) Full network state: [P 1(t), . . . , PN (t)]T .
Rres(i) Propagation residual at node i.

2.1 SIR Dynamics

The classical SIR model describes disease transmission as a continuous-time Markov process,
governed by the following system of ordinary differential equations [27]:

dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI. (1)

These nonlinear equations are generally difficult to solve analytically, and the implicit assumption
of homogeneous random mixing may not hold in complex contact networks. Notably, the SIR
framework serves as a representative example of general non-reinfection epidemic models, where
once nodes transition into the recovered (or removed) state, they no longer re-enter the infection
dynamics [46, 28].

2.2 Probabilistic Disease Propagation in Neighborhood

Algorithm 1 Sketch of PID
Require: Graph G, rates β, γ, initial infected set I0,

threshold ε
1: Initialize PS , PI , PR, t
2: while ∥P (t)− P (t−1)∥2 > ε do
3: for all i ∈ V do
4: Update P i

S(t), P
i
I (t), P

i
R(t) with Eq. (2)

5: end for
6: t← t+ 1
7: end while
8: return PS , PI , PR

Given a directed contact network G =
(V, E ,A), epidemic parameters β and γ, and the
full network state P (t) at time t, we model the
SIR process as a non-reinfection system. Specif-
ically, for each node i ∈ V , the probability of be-
ing susceptible at time t+1, denoted P i

S(t+1),
is given by its value at time t multiplied by the
probability of not being infected during the inter-
val (t, t+1]. The probability of being infected at
time t+ 1, P i

I (t+ 1), consists of two parts: the
probability of becoming infected during (t, t+1]
while being susceptible at t, and the probability
of remaining infected by not transitioning to the recovered state. Similarly, the probability of being
recovered at t+ 1, P i

R(t+ 1), accounts for nodes that either recovered during (t, t+ 1] or remained
in the recovered state from the previous time step. Assuming that infection events are independent
across neighbors within each unit time interval [43, 25], the resulting update equations correspond to
the derivation of the message passing formulation in [24]:

P i
S(t+ 1) = P i

S(t)
∏
j∈V

Aji(1− βP j
I (t)) (2)

P i
I (t+ 1) = P i

S(t)[1−
∏
j∈V

Aji(1− βP j
I (t))] + (1− γ)P i

I (t)

P i
R(t+ 1) = P i

R(t) + γP i
I (t)

Based on these update equations, we develop a baseline inference algorithm, PID (Propagation for
Infection Dynamics), as shown in Algorithm 1.
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3 Theoretical Analysis

In this section, we provide a thorough analysis on the impact of network structure and epidemic
parameters on the variance of variance of Monte Carlo estimators; then we derive a linear approx-
imation of nonlinear epidemic dynamics that highlights neighborhood propagation, and establish
convergence guarantees for probability-based propagation in non-reinfection models.

3.1 Monte Carlo Estimator Variance Analysis

In many existing epidemic dynamic studies, Monte Carlo simulations are often repeated 104–105
times without examining their necessity or computational trade-offs. In this subsection, we aim to
theoretically investigate this important question: under what conditions does the variance of the
steady-state infection probability across the network become large when performing Monte Carlo
simulations of epidemic dynamics, such that more simulation runs are needed to achieve sufficient
accuracy? To the best of our knowledge, this question has never been explored in prior work.
Addressing this overlooked gap not only offers practical guidance for real-world simulation tasks but
also motivates our development of scalable methods for epidemic inference.
Theorem 3.1 (Monte Carlo Estimation Variance Lower Bound). Given a directed contact network
G = (V, E) with N = |V|, average out-degree k̄, and diameter D. Let I0 ⊆ V be the initially infected
node set with fraction α := |I0|/N . Assume an SIR model parameterized by infection probability β
and recovery probability γ. Using M independent Monte Carlo simulations to estimate each node’s
infection probability pi, the average variance of the estimator p̂i satisfies:

1

N

N∑
i=1

Var(p̂i − pi) ≳
1

2M
min{1− (1− p0)

ck̄α, (1− p0)
ck̄α}, (3)

where
p0 := (

β

β + γ
)ℓ, ℓ := min{D,

logN

log k̄
}, (4)

and c > 0 is a constant depending on the network structure.

Proof. We briefly outline the key argument here; the full derivation is in the Appendix. Each node’s
infection probability pi is estimated via Monte Carlo simulation as

p̂i =
1

M

M∑
m=1

I(m)
i , (5)

where I(m)
i indicates infection in simulation m. Its variance is straightforwardly given by Var[p̂i] =

pi(1− pi)/M . Under the continuous-time SIR model, the transmission probability along any edge is
characterized by competing exponential infection and recovery processes, resulting in pe = β/(β+γ)
[28, 46]. Assuming independence and sparse network structure, node-level infection probabilities are
approximated as pi ≈ 1−

∏mi

j=1(1− p
ℓij
e ), where ℓij represents the path length between nodes i and

j and we neglect higher-order interactions and overlapping paths [25, 43].

The number of disjoint infection paths mi scales approximately as ck̄α, reflecting the influence
of average degree k̄ and initial infection fraction α [43, 25, 28]. Typical path lengths ℓ can be
approximated as ℓ = min{D, logN/ log k̄} [9, 42], leading to the simplified expression pi ≈
1 − (1 − p0)

ck̄α, with p0 := (pe)
ℓ. Given the concavity of pi(1 − pi), we apply a standard lower

bound, yielding pi(1− pi) ≥ 1
2 min{pi, 1− pi}. Averaging this lower bound across all nodes, we

obtain the claimed variance lower bound for the Monte Carlo estimator:

1

N

N∑
i=1

Var(p̂i − pi) ≳
1

2M
min{1− (1− p0)

ck̄α, (1− p0)
ck̄α}. (6)

Remark 1. Through Theorem 3.1, we observe that the variance of the Monte Carlo estima-
tor is primarily influenced by four factors: β/γ, k̄, α, and M . The base probability p0 :=
(β/(β + γ))ℓ increases with β/γ, since the ratio β/(β + γ) grows monotonically. Meanwhile,
ℓ := min{D, logN/ log k̄} decreases as k̄ increases, leading to an indirect increase of p0 with k̄.
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Figure 1: Influence of key factors on MC estimator variance.

As p0, k̄, or α increase, the term (1 − p0)
ck̄α in the variance bound decreases. Since the bound

depends on min{1− (1− p0)
ck̄α, (1− p0)

ck̄α}, it achieves its maximum when this term approaches
0.5. Therefore, estimator variance increases initially with β/γ, k̄, or α, reaching a peak when the
infection probability nears 0.5, and then decreases as the infection probability saturates. In contrast,
M appears in the denominator and monotonically reduces v̄ as M increases. These factor effects are
empirically verified in Figure 1.

3.2 Neighborhood Propagation Analysis

In Section 2.2, we show how diseases propagate probabilistically through local neighborhoods.
However, using PID directly for inference can lead to great computational inefficiencies, especially
on large-scale networks. A key bottleneck is the path-level inefficiency: in each update round, all
nodes with non-zero infected probabilities must be updated, resulting in a propagation complexity of
approximately O(|E|) as more nodes become affected. In this section, we provide a theoretical analy-
sis of neighborhood-level approximations and global convergence conditions, laying the groundwork
for scalable inference methods.
Remark 2. When using simulation-based methods for inference, it is common to approximate the
continuous-time dynamics with a discrete-time process [18, 17]. Here, β and γ denote the per-unit-
time transmission probability and healing probability, respectively. However, when β and γ take
relatively large values, it becomes necessary to scale them down to smaller time units, i.e., setting
β := β∆t and γ := γ∆t. This adjustment ensures consistency with the continuous infection rate:

lim
∆t→0

1− (1− β∆t)
1/∆t = β +O(β2), (7)

which approximates linear growth for small β. Otherwise, if β and γ are large, the non-linear higher-
order terms become non-negligible and can introduce significant errors in inference. Therefore, in
the following discussions, we assume scaled-down β and γ satisfying β ≪ 1 and γ ≪ 1.

A major challenge in SIR inference is that the underlying dynamic system is highly nonlinear,
as shown in Eq. (2). Remark 2 guarantees that the higher-order errors remain sufficiently small.
Following the linearization technique of [47], we locally linearize the nonlinear dynamics and derive
the following theorem.
Theorem 3.2 (Linear Approximation of Infection Dynamics). Given a directed contact network
G = (V, E ,A). Assume an SIR model parameterized by infection probability β and recovery
probability γ. The infection probability update equation in Eq. (2)

P i
I (t+ 1) = P i

S(t)− P i
S(t+ 1) + (1− γ)P i

I (t) (8)

can be approximated by the following linear expression:

P i
I (t+ 1) ≈ P i

S(t)(β
∑
j∈V

AjiP
i
I (t)) + (1− γ)P i

I (t). (9)

Proof. We sketch the main argument; detailed derivation is provided in the Appendix. Under the
SIR model on a directed contact network G = (V, E ,A), let P i

I (t) and P i
S(t) denote the marginal

probabilities that node i is infected or susceptible at time t. The infection update equation follows
from accounting for new infections and recoveries in Eq. (2):

P i
I (t+ 1) = P i

S(t)[1−
∏
j∈V

Aji(1− βP j
I (t))] + (1− γ)P i

I (t). (10)
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Here, P i
S(t)−P i

S(t+1) represents the probability that node i transitions from susceptible to infected
at time t+ 1, while (1− γ)P i

I (t) reflects staying infected without recovery. We then apply the first-
order approximation log(1− x) ≈ −x for small x to linearize the product term

∏
j(1− βAjiP

j
I (t)).

This yields the following approximation for the probability of remaining susceptible:

P i
S(t+ 1) ≈ P i

S(t)(1− β
∑
j∈V

AjiP
j
I (t)). (11)

Substituting into the update equation, we obtain:

P i
I (t+ 1) ≈ P i

S(t)(β
∑
j∈V

AjiP
j
I (t)) + (1− γ)P i

I (t). (12)

This linear form captures the cumulative infection pressure from neighbors and the retention of
infection due to non-recovery with probability 1− γ.
Theorem 3.3 (Convergence Condition for Non-Reinfection Epidemic Models). Consider a gen-
eralized non-reinfection epidemic model (e.g., S∗I2V ∗ [50]) over a directed contact network
G = (V, E ,A), where each susceptible node becomes infected with probability β upon contact
with an infected neighbor, and each infected node transitions to an absorbing state with probability γ
at each time step. Then, the system’s state distribution P (t) converges if and only if

max
i∈V

P i
I (t)→ 0. (13)

Proof. We sketch our proof as follows; detailed derivations are provided in the Appendix. We
divide the argument into necessity and sufficiency. For necessity, we observe that if the state
difference ∥P (t) − P (t − 1)∥2 tends to zero, then by the update equation of the absorbing state,
∥PV ∗(t)− PV ∗(t− 1)∥2 = γ∥PI(t− 1)∥2 must also vanish. Since this term is bounded by the total
state difference, we immediately obtain ∥PI(t− 1)∥2 → 0, and thus maxi∈V P i

I (t− 1)→ 0.

For sufficiency, assume maxi∈V P i
I (t−1) → 0, which implies that ∥PI(t−1)∥2 → 0. Since the

absorbing state update satisfies ∥PV ∗(t)− PV ∗(t−1)∥2 = γ∥PI(t−1)∥2, it follows that ∥PV ∗(t)−
PV ∗(t−1)∥2 → 0. Moreover, we show in the Appendix that ∥PI(t) − PI(t−1)∥2 → 0. By
conservation of total probability, we then have:

∥PS∗(t)− PS∗(t−1)∥2 ≤ ∥PI(t)− PI(t−1)∥2 + ∥PV ∗(t)− PV ∗(t−1)∥2. (14)

Combining these bounds shows that all components in ∥P (t) − P (t − 1)∥2 vanish as t increases,
proving the claim.
Remark 3. Theorem 3.3 implies that under non-reinfection epidemics models such as SIR, SEIR,
or SIRD, the process inevitably converges as the infected probability at every node vanishes asymp-
totically, i.e., ∀i ∈ V, P i

I (t) → 0. Consequently, the entire disease dynamics can be equivalently
analyzed as a transition from susceptible to non-susceptible states (S∗ → V ∗), without needing to
explicitly model the transient infection state in the long term.

4 Methodology

In this section, we first introduce the proposed algorithm RAPID, and then analyze its computational
complexity. Our design ensures high efficiency, while the theoretical results in [24, 37] guarantee the
accuracy of inference on sparse or locally tree-like epidemic contact networks, which are commonly
encountered in practice.

4.1 The Proposed Algorithms

As our theoretical analysis in section 3.2 suggested that PID may suffer from computational inef-
ficiency in the neighborhood propagation process, we propose an accelerated counterpart, RAPID
(Residual-Aware Propagation for Infection Dynamics), to efficiently scale inference on large contact
networks. Our key idea is to define a propagation residual that quantifies the potential change in
a node’s infection probability due to local propagation. Nodes with large residuals are marked as
active, and infection updates are computed only for these nodes, significantly reducing the overall
computational cost.
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First, we analyze the source of a one-step update on a node’s infection probability. According to
Theorem 3.2, we have

P i
I (t+ 1) ≈ P i

S(t)(β
∑
j∈V

AjiP
j
I (t)) + (1− γ)P i

I (t). (15)

Taking the difference between consecutive time steps, we get:

P i
I (t+ 1)− P i

I (t) ≈ P i
S(t)(β

∑
j∈V

AjiP
j
I (t))− P i

S(t− 1)(β
∑
j∈V

AjiP
j
I (t− 1))

+ (1− γ)(P i
I (t)− P i

I (t− 1))

≤ P i
S(t− 1)(β

∑
j∈V

Aji(P
j
I (t)− P j

I (t− 1))) + (1− γ)(P i
I (t)− P i

I (t− 1))

≤ β
∑
j∈V

Aji(P
j
I (t)− P j

I (t− 1))︸ ︷︷ ︸
Change due to propagation

+(1− γ)(P i
I (t)− P i

I (t− 1))︸ ︷︷ ︸
Change due to retained infection

. (16)

We aim to update a node’s state through local propagation only when the external influence is
sufficiently strong. Based on the derivation in Eq. (16), we define

Rres(i) = β
∑
j∈V

Aji (P
j
I − P̃ j

I ), (17)

as the propagation residual at node i, where P j
I denotes the current infected probability of node j,

and P̃ j
I denotes its cached value before the most recent update.

Algorithm 2 Sketch of RAPID
Require: Graph G, threshold ε, rates β, γ, initial

infected set I0, preheat steps p
1: Initialize PS , PI , PR

2: Preheat system for p rounds and record P̃I

3: Initialize max heapH ← ∅
4: for v ∈ V do
5: Compute (Rres(v) with Eq. (17)
6: Push (Rres(v), v) intoH
7: end for
8: whileH not empty do
9: (Rres(i), i)← popTop(H)

10: if Rres(i) ≤ ε then break
11: end if
12: if P i

I > ε then
13: Update P i

S , P
i
I , P

i
R, P̃

i
I

14: Set δ ← P i
I − P̃ i

I

15: for j ∈ NEout(i) do
16: Rres(j)← Rres(j) + β · δ
17: if Rres(j) > ε then push j intoH
18: end if
19: end for
20: end if
21: Rres(i)← 0
22: end while
23: return PS , PI , PR

An overview of RAPID is shown in Algorithm
2. We first perform p rounds of probabilistic dis-
ease propagation using Eq.(2), which serves as a
preheating phase to initialize node states and com-
pute propagation residuals. After preheating, we
maintain a max-heap priority queue (referred to
as the active queue) sorted by node residuals. At
each iteration, the node i with the highest residual
is popped and its full state vector P i is updated
using Eq.(2) in line 13.

The resulting change in infection probability, P i
I−

P̃ i
I , is linearly propagated to its out-neighbors

by incrementing their propagation residuals. If
a neighbor’s updated residual exceeds the thresh-
old, it is pushed into the active queue for future
propagation as is shown from line 15 to line 19.
After propagation, the residual of the current node
is set to zero, indicating it is no longer active. The
algorithm terminates when the active queue be-
comes empty. Since Rres(i) ≤ β

∑
j∈V AjiP

j
I ,

Theorem 3.3 guarantees that once the system con-
verges (maxi∈V P i

I → 0), the residuals vanish
(Rres(i)→ 0), ensuring convergence of RAPID.

4.2 Complexity Analysis

Theorem 4.1 (Worst-Case Time Complexity of RAPID). Consider RAPID on a directed contact
network G = (V, E) with N = |V| nodes and average out-degree k̄. Let the infection probability
be β, the recovery probability be γ, and the residual threshold be ε > 0. Then, under worst-case
conditions, the total time complexity of RAPID is

O(N · k̄ ·min(
1

ε
,
1

β
)). (18)
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Figure 2: Trade-off between Kendall-Tau and Runtime across six datasets.

Proof. The key insight is that a node becomes active only if its residual exceeds ε, and the residual
update it can receive in a single iteration approximates k̄ · β, since infection can be passed through
k̄ neighbors on average at rate β. In the worst case, all N nodes become active, and each may
trigger residual pushes to up to k̄ neighbors. When ε is large (i.e., ε≫ k̄β), only large residuals are
propagated, and the number of total pushes is upper bounded by O(N · k̄ · β/ε). However, when
ε becomes very small (i.e., ε ≪ k̄β), further reducing ε does not lead to more node activations,
since the residuals themselves are bounded. Therefore, the total number of pushes saturates at
O(N · k̄). Combining both regimes gives the overall time complexity. This scaling behavior mirrors
residual-based approximations in PPR push methods [3], but here it arises from the probabilistic
infection dynamics of epidemic modeling.

5 Empirical Study

In this section, we conduct extensive experiments to investigate the effectiveness and efficiency of the
proposed method.

5.1 Experiment Settings

Datasets. We use graphs from diverse domains, including a real-world hospital contact network
(carilion-Hospital [1]), a real-world HIV transmission network (hiv-Trans [40]), communi-
cation networks (email-Enron [35, 29], email-EuAll [34]), and social networks (soc-Epinions
[52], soc-Pokec [54]). Among them, carilion-Hospital and email-Enron are undirected,
while the others are directed. Nodes with no incoming or outgoing edges are removed and each
undirected edge is represented as two reciprocal directed edges. Detailed statistics are summarized in
Table 2. We also inclue a Bitcoin trade network (bitcoin-Alpha [33, 32]) in the appendix.

Table 2: Datasets Statistics

Dataset #Nodes #Edges Avg Deg
carilion-Hospital 11,810 30,994 2.62
hiv-Trans 35,230 34,243 0.97
email-Enron 36,692 367,662 10.02
email-EuAll 265,214 420,045 1.58
soc-Epinions 75,879 508,837 6.71
soc-Pokec 1,632,803 30,622,564 18.75

Baselines. To serve as baselines, we implemented a
broad range of inference models. A detailed description
is provided in the Appendix.
• Network centrality measures: Degree, Eigenvector

[44], PageRank [45], Betweenness [6] and Closeness
[53]. These methods assess structural importance
and are evaluated by ranking.

• MC-based inference: 5-run and 10-run Monte Carlo
simulations (MC-5 and MC-10).

• Probability-based inference: Propagation for Infec-
tion Dynamics (PID), which retains all propagation steps during disease spread process, and is an
unaccelerated invariant of RAPID.
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Figure 4: RAPID runtime grows sublinearly
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Parameter Settings. To ensure the practical relevance of our study, we consulted the literature to
obtain the infectious period and basic reproduction number (R0) for various diseases, as summarized
in the Appendix. In our experiments, the ground-truth infection probability for each node is estimated
by averaging its infection frequency over 50-run Monte Carlo simulations2. For reporting and
baseline comparisons, we adopt the parameter setting of Nipah Virus (β = 1/18, γ = 1/9) with
an initial infection fraction of α = 0.01. Results for other disease parameters are similar and are
provided in the Appendix.

5.2 Effectiveness and Efficiency Analysis

Effectiveness of RAPID. We evaluate the effectiveness of RAPID and baseline methods from three
perspectives: the ranking of node-level infection probabilities, the classification performance of nodes
whether infected, and the accuracy of infection probability estimation.

Figure 2 shows the trade-off between Kendall-τ and runtime across six datasets. RAPID achieves the
best or near-best rank correlation on all of them while keeping the runtime consistently fast. We treat
nodes with inferred infection probability above 0.5 as infected. Figure 3 presents the classification
results on hiv-Trans, where RAPID significantly improves precision over baselines, achieving the
best overall performance.

Table 3: MAE comparison (lower is better). All values are
scaled by 10−2. Best results are in bold.

Dataset MC-5 MC-10 PID RAPID
carilion-Hospital 13.01±0.35 10.78±0.44 5.67±0.51 2.64±0.49

hiv-Trans 5.12±0.12 3.24±0.11 6.43±0.52 1.27±0.47

email-Enron 7.60±0.02 5.98±0.03 8.70±0.04 4.66±0.00

email-EuAll 2.09±0.01 1.63±0.01 1.36±0.02 1.03±0.01

soc-Epinions 5.48±0.03 4.31±0.02 4.92±0.03 2.77±0.00

soc-Pokec 4.50±0.00 3.54±0.00 3.32±0.00 2.32±0.00

Table 3 reports the mean absolute
error (MAE) for infection probabil-
ity estimation. RAPID consistently
outperforms MC-5, MC-10, and PID
across all datasets. As noted in [37],
when contact networks contain many
short loops, nodes within these loops
cyclically influence each other’s states
over time, which reduces the accu-
racy of the original PID algorithm.
RAPID addresses this issue by em-
ploying asynchronous max-heap iterations to accelerate convergence and selective updates to mitigate
the effect of short loops, thereby achieving higher inference accuracy than PID. Notably, although
the Kendall-τ on hiv-Trans is lower than on other datasets, largely due to the large number of
uninfected nodes at convergence, RAPID still achieves superior classification accuracy and lower
MAE compared to all baselines.

Runtime Comparison. Table 4 shows the runtime of RAPID and baselines on each dataset. On
the six datasets, RAPID achieves an average speedup of 5.11×, 10.67×, and 8.52× over MC-5,
MC-10, and PID, respectively. Compared to PID, the speedup is more pronounced on denser graphs,
reaching 12.91× on soc-Epinions. Against MC-10, RAPID exhibits stable acceleration ranging
from 7.64× to 12.58×, consistently maintaining a runtime comparable to that of single-run MC
across all datasets.

2On carilion-Hospital and hiv-Trans, we adopt 1000-run MC simulations as the ground truth for
acceptable estimator variance.
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Table 4: Runtime comparison across datasets (seconds, lower is better). ∆ indicates the speedup
factor relative to RAPID, computed as ∆ = Baseline time

RAPID time .

carilion-Hospital2 hiv-Trans2 email-Enron email-EuAll soc-Epinions soc-Pokec

MC-5
t 5.81±0.51 21.87±3.15 29.84±1.43 169.46±8.23 59.69±1.26 1241.00±18.79

∆ 5.43× 5.16× 5.41× 5.06× 5.82× 3.78×

MC-10
t 13.46±1.14 49.94±1.74 56.45±0.79 330.97±6.81 122.31±2.44 2506.60±45.46

∆ 12.58× 11.78× 10.24× 9.88× 11.91× 7.64×

MC-50
t 1234.73±13.13 4678.18±8.96 279.26±3.09 1659.57±23.55 614.58±2.36 12782.37±237.30

∆ 1153.95× 1103.34× 50.66× 49.52× 59.86× 38.93×

PID
t 3.56±0.01 17.91±0.14 66.95±0.29 206.18±0.65 132.60±0.62 4056.89±6.40

∆ 3.33× 4.22× 12.14× 6.15× 12.91× 12.36×
RAPID t 1.07±0.00 4.24±0.03 5.51±0.04 33.50±0.05 10.27±0.09 328.28±0.66

Complexity Validation. Figure 4 shows the empirical log-scale runtime of RAPID versus log(Nk̄)
on six real-world networks. The fitted complexity runtime ∝ (Nk̄)0.74 is better than the worst-case
bound established in Theorem 4.1, confirming the validity of our analysis.

6 Conclusion

In this paper, we systematically studied the variance of Monte Carlo simulations for modeling
the disease spread process in contact networks, and introduce a linear approximation for infection
propagation under non-reinfection models with a provable convergence guarantee. Based on the
theoretical findings, we propose RAPID, a residual-driven framework to infer node-level infection
probability distribution with high estimation accuracy and low computational cost. Experiments on
six real-world networks show that RAPID matches the accuracy of multi-run Monte Carlo within
the runtime of a single simulation. Future work includes extensions to models with reinfection,
time-varying parameters, and dynamic networks.
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paper’s contributions and scope?
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Justification: The abstract and introduction in this paper accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: All the results in this paper can be reproduced.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
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(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the experimental details necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For each experiment, the paper provide sufficient information on the computer
resources needed to reproduce the experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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experimental runs as well as estimate the total compute.
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9. Code of ethics
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Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in the supplementary material.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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and the license and terms of use are explicitly mentioned and properly respected.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
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13. New assets
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provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [No]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Supplemental Material
Organization. This supplementary material is organized as follows. Appendix A reviews related
work and relevant theoretical background. Appendix B presents detailed proofs of the main theorems.
Appendix C provides complete algorithm descriptions and highlights our design rationale from a
Jacobian perturbation perspective, from which we derive the classical epidemic threshold and
offer a physical interpretation of the propagation residual. Appendix D outlines implementation
details and presents additional experiments, including: (i) how Monte Carlo variance affects the
reliability of MC-based inference, (ii) the extension of our method to the SEIR model, (iii) the
impact of initial infection distributions, (iv) experiments under alternative disease settings, and (v)
a sensitivity analysis of hyperparameters. Appendix E discusses current limitations and potential
directions for future research.

A Related Work

Belief Propagation on Graphs. Belief propagation (BP), also known as the sum–product algorithm,
is a foundational message-passing technique for probabilistic inference on graphs. Originally intro-
duced by Pearl for exact inference in tree-structured Bayesian networks [48], BP was later applied to
graphs with cycles as an approximate method, i.e. loopy BP [41]. The algorithm iteratively transmits
local “messages” along edges of a factor graph to compute marginal probability estimates [30].
Despite the lack of general convergence guarantees, loopy BP often produces accurate results and
has achieved remarkable success across domains (e.g. decoding of error-correcting codes and vision
networks). Numerous extensions have enhanced BP’s accuracy and robustness. For instance, Yedidia
et al. reinterpreted BP in terms of variational free-energy minimization and proposed generalized
BP for higher-order region graphs [61]. Other work has focused on improving BP’s convergence,
such as methods that dampen oscillations or prioritize message updates based on residual magnitude
[13]. These advances have solidified BP as a versatile approximate inference framework in graphical
models.

Local Push Algorithms and Variants. LocalPush algorithms are a class of residual-based methods
for approximate graph propagation, widely used in computing node influence scores or similarities
on large graphs. A prime example is the estimation of Personalized PageRank (PPR) vectors,
which measure the influence of a source node across a graph. Early approaches [23] found that by
maintaining a “residual” at each node and pushing this probability mass outwards along edges, one
can obtain accurate PPR estimates efficiently without full graph traversal. Andersen et al. formalized
this idea by introducing a local push procedure with rigorous error bounds, enabling fast local graph
partitioning via PageRank [4]. The LocalPush strategy restricts computation to the source’s local
neighborhood, yielding near-linear time updates for sparse networks. Subsequent research has built
on this foundation to handle more complex settings. Notably, bidirectional and multi-target push
algorithms improve efficiency for queries between specific node pairs [36]. Dynamic extensions
have been developed to maintain PPR results under streaming graph updates, by locally adjusting
residuals after each edge insertion or deletion [62]. Further optimizations address weighted graphs
and precision guarantees, as in the edge-based LocalPush variant that decomposes pushes per edge to
reduce redundant work [56]. Collectively, these residual-based propagation techniques have become
essential tools for scalable graph mining, enabling approximate inference of importance or similarity
scores with provable accuracy on massive networks.

B Theoretical Proof

B.1 Proof of Theorem 3.1

Theorem 3.1 (Monte Carlo Estimation Variance Lower Bound) Given a directed contact network
G = (V, E) with N = |V|, average out-degree k̄, and diameter D. Let I0 ⊆ V be the initially infected
node set with fraction α := |I0|/N . Assume an SIR model parameterized by infection probability β
and recovery probability γ. Using M independent Monte Carlo simulations to estimate each node’s
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infection probability pi, the average variance of the estimator p̂i satisfies:

1

N

N∑
i=1

Var(p̂i − pi) ≳
1

2M
min{1− (1− p0)

ck̄α, (1− p0)
ck̄α}, (19)

where
p0 := (

β

β + γ
)ℓ, ℓ := min{D,

logN

log k̄
}, (20)

and c > 0 is a constant depending on the network structure.
Proof. Each node’s infection probability pi is estimated by Monte Carlo simulation:

p̂i :=
1

M

M∑
m=1

I(m)
i , (21)

where I(m)
i ∈ {0, 1} indicates whether node i is infected in simulation m. The variance is:

Var[p̂i] =
1

M
pi(1− pi). (22)

Under the continuous-time SIR model, infection along an edge competes with recovery via indepen-
dent exponential clocks. The transmission probability per edge is [28, 46]:

pe := Pr[Tinfect < Trecover] =
β

β + γ
. (23)

Assuming that infection is mainly driven by multiple independent disjoint paths [25, 43], the infection
probability of node i can be approximated as:

pi ≈ 1−
mi∏
j=1

(1− pℓije ), (24)

where we neglect overlapping paths and higher-order interactions in sparse networks.

In sparse graphs, the number of disjoint infection paths to a node is heuristically assumed to scale
with the average degree k̄ and the initial infection fraction α, yielding mi ≈ ck̄α. This scaling reflects
the intuition that a higher initial infection fraction increases the number of potential sources and thus
the likelihood of multiple disjoint infection paths [43, 25, 28]. The typical path length approximates
ℓ := min{D, logN/ log k̄} [9, 42]. Substituting these yields:

pi ≈ 1− (1− p0)
ck̄α, p0 := (pe)

ℓ. (25)

Since pi(1− pi) is concave with maximum at pi = 1
2 , we lower bound it by:

pi(1− pi) ≥
1

2
min{pi, 1− pi}. (26)

Averaging this bound over all nodes (the bound is node-independent and thus unchanged by averaging),
we obtain the claimed variance lower bound for the Monte Carlo estimator:

1

N

N∑
i=1

Var(p̂i − pi) ≳
1

2M
min

{
1− (1− p0)

ck̄α, (1− p0)
ck̄α

}
. (27)

B.2 Proof of Theorem 3.2

Theorem 3.2 (Linear Approximation of Infection Dynamics) Given a directed contact network
G = (V, E ,A). Assume an SIR model parameterized by infection probability β and recovery
probability γ. The infection probability update equation

P i
I (t+ 1) = P i

S(t)− P i
S(t+ 1) + (1− γ)P i

I (t) (28)
can be approximated by the following linear expression:

P i
I (t+ 1) ≈ P i

S(t)(β
∑
j∈V

AjiP
i
I (t)) + (1− γ)P i

I (t). (29)
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Proof. Substitute the susceptible update:

P i
S(t+ 1) := P i

S(t)
∏
j

(1− βAjiP
j
I (t)) (30)

into
P i
I (t+ 1) = P i

S(t)− P i
S(t+ 1) + (1− γ)P i

I (t). (31)

Take logarithm:

log

∏
j

(1− βAjiP
j
I (t))

 =
∑
j

log(1− βAjiP
j
I (t)). (32)

Approximate log(1− x) ≈ −x and exponentiate both sides:∏
j

(1− βAjiP
j
I (t)) ≈ e−β

∑
j Aj,iP

j
I (t). (33)

According to Remark 2, we have β ≪ 1. Use 1− e−x ≈ x:

1− e−β
∑

j AjiP
j
I (t) ≈ β

∑
j

AjiP
j
I (t). (34)

Substitute into P i
I (t+ 1) to obtain the linear form.

B.3 Proof of Theorem 3.3

Lemma B.1. ∥PI(t− 1)∥2 → 0 is sufficient for ∥PI(t)− PI(t− 1)∥2 → 0.

Proof. This problem is equivalent to proving that for all ε > 0, there exists δ > 0 such that if
∥PI(t− 1)∥2 < ε, then ∥PI(t)− PI(t− 1)∥2 < δ.

We have:
max
i∈V

P i
I (t− 1) ≤ ∥PI(t− 1)∥2 ≤ ε. (35)

First, for the absorbing state PV ∗(t):

∥PV ∗(t)− PV ∗(t− 1)∥2 = ∥γPI(t− 1)∥2 = γ∥PI(t− 1)∥2 ≤ γε. (36)

Next, for PS(t):

P i
S(t− 1)− P i

S(t) = P i
S(t− 1)− P i

S(t− 1)
∏
j∈V

(1− βAj,iP
j
I (t− 1))

≤ 1−
∏
j∈V

(1− βAj,iP
j
I (t− 1))

≤ 1− (1− βε)din(i).

By Bernoulli’s inequality, if 0 < x < 1, then (1− x)din(i) ≥ e−din(i)x. Letting x = βε, we get:

(1− βε)din(i) ≥ e−din(i)βε. (37)

Thus:
P i
S(t− 1)− P i

S(t) ≤ 1− e−din(i)βε. (38)

Since P i
S(t− 1)− P i

S(t) ∈ (0, 1), we can further bound:

1− e−din(i)βε ≤ (1− e−Nβ)ε. (39)

Therefore:
P i
S(t− 1)− P i

S(t) ≤ (1− e−Nβ)ε. (40)

Aggregating:
∥PS(t− 1)− PS(t)∥2 ≤

√
N(1− e−Nβ)ε. (41)
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Finally, for PI(t)− PI(t− 1):

∥PI(t)− PI(t− 1)∥2 = ∥1− PS(t)− PV ∗(t)− (1− PS(t− 1)− PV ∗(t− 1))∥2
= ∥PS(t− 1)− PS(t) + PV ∗(t− 1)− PV ∗(t)∥2
≤ ∥PS(t− 1)− PS(t)∥2 + ∥PV ∗(t)− PV ∗(t− 1)∥2
≤
√
N(1− e−Nβ)ε+ γε.

Let:
δ :=

(√
N(1− e−Nβ) + γ

)
ε. (42)

Then from maxi∈V P i
I (t− 1) ≤ ε, we conclude:

∥PI(t)− PI(t− 1)∥2 ≤ δ. (43)

Theorem 3.3 (Convergence Condition for Non-Reinfection Epidemic Models) Consider a generalized
non-reinfection epidemic model (e.g., S∗I2V ∗ [50]) over a directed contact network G = (V, E ,A),
where each susceptible node becomes infected with probability β upon contact with an infected
neighbor, and each infected node transitions to an absorbing state with probability γ at each time step.
Then, the system’s state distribution P (t) converges if and only if

max
i∈V

P i
I (t)→ 0. (44)

Proof. We first prove necessity. We aim to show that for any ε > 0, if ∥P (t)− P (t− 1)∥2 ≤ ε, then
∃δ > 0 such that ∥PI(t− 1)∥2 ≤ δ. Since

∥PV ∗(t)− PV ∗(t− 1)∥2 = γ∥PI(t− 1)∥2 ≤ ∥P (t)− P (t− 1)∥2 ≤ ε, (45)

it follows that
∥PI(t− 1)∥2 ≤

ε

γ
. (46)

Therefore,
max
i∈V

P i
I (t− 1) ≤ ∥PI(t− 1)∥2 ≤ δ :=

ε

γ
. (47)

Next we prove sufficiency. For any ε > 0, assume maxi∈V P i
I (t− 1) ≤ ε. Then

∥PI(t− 1)∥2 ≤
√
N max

i∈V
P i
I (t− 1) ≤

√
Nε. (48)

From the update of PV ∗ ,

∥PV ∗(t)− PV ∗(t− 1)∥2 = ∥γPI(t− 1)∥2 = γ∥PI(t− 1)∥2 ≤ γ
√
Nε. (49)

By Lemma B.1, since maxi P
i
I (t− 1) ≤ ε, there exists δ′ > 0 such that ∥PI(t)− PI(t− 1)∥2 ≤ δ′.

Since PS(t) + PI(t) + PV ∗(t) = 1,

∥PS(t)− PS(t− 1)∥2 = ∥1− PI(t)− PV ∗(t)− (1− PI(t− 1)− PV ∗(t− 1))∥2
= ∥PI(t− 1)− PI(t) + PV ∗(t− 1)− PV ∗(t)∥2
≤ ∥PI(t)− PI(t− 1)∥2 + ∥PV ∗(t)− PV ∗(t− 1)∥2
≤ δ′ + γ

√
Nε.

Therefore,

∥P (t)− P (t− 1)∥22 = ∥PS(t)− PS(t− 1)∥22 + ∥PI(t)− PI(t− 1)∥22 + ∥PV ∗(t)− PV ∗(t− 1)∥22
≤ (δ′ + γ

√
Nε)2 + (δ′)2 + (γ

√
Nε)2.

Taking square roots:

∥P (t)− P (t− 1)∥2 ≤
√
(δ′ + γ

√
Nε)2 + (δ′)2 + (γ

√
Nε)2 := δ. (50)

Thus, for any ε > 0, ∥PI(t− 1)∥2 ≤ ε implies ∥P (t)− P (t− 1)∥2 ≤ δ.
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C Details of Algorithms

C.1 Baselines

All centrality-based baselines (including Degree, Eigenvector [44], PageRank [45], Betweenness [6]
and Closeness [53]) are implemented using Python’s networkx3 library.

C.2 MC for SIR

Algorithm 1: Monte Carlo Simulation for SIR

Require: Graph G = (V, E), infection rate β, recovery rate γ, initial infected set I0, number of
trials M

Ensure: Estimated final-state probabilities P i
S , P i

I , P i
R for all i ∈ V

1: ▷ Initialize counters
2: countiS ← 0, countiI ← 0, countiR ← 0 for all i ∈ V
3: for m = 1 to M do ▷ Run M independent trials
4: statei ← S for all i ∈ V
5: for i ∈ I0 do statei ← I
6: end for
7: while some node i has statei = I do
8: Initialize next_statei ← statei for all i
9: for all i ∈ V do

10: if statei = I then
11: for all j ∈ NEout(i) do
12: if statej = S and rand() < β then
13: next_statej ← I
14: end if
15: end for
16: if rand() < γ then
17: next_statei ← R
18: end if
19: end if
20: end for
21: statei ← next_statei for all i
22: end while
23: ▷ Update final counts
24: for all i ∈ V do
25: if statei = S then
26: countiS ← countiS + 1
27: end if
28: if statei = I then
29: countiI ← countiI + 1
30: end if
31: if statei = R then
32: countiR ← countiR + 1
33: end if
34: end for
35: end for
36: ▷ Normalize to obtain final-state probabilities
37: P i

S ← countiS/M, P i
I ← countiI/M, P i

R ← countiR/M
38: return PS , PI , PR

3https://networkx.org/
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C.3 Details of PID Algorithm

Algorithm 2: PID: Probabilistic Infection Dynamics

Require: Graph G = (V, E), infection rate β, recovery rate γ, initial infected set I0, threshold
ε

Ensure: Marginal probabilities PS(t), PI(t), PR(t)
1: P i

S(0)← 1, P i
I (0)← 0, P i

R(0)← 0, ∀i ∈ V
2: for i ∈ I0 do
3: P i

S(0)← 0, P i
I (0)← 1

4: end for
5: t← 0
6: repeat
7: for all i ∈ V do
8: P i

S(t+1)← P i
S(t) ·

∏
j∈NE in(i)

(
1− β · P j

I (t)
)

9: P i
I (t+1)← P i

S(t)− P i
S(t+1) + (1− γ) · P i

I (t)
10: P i

R(t+1)← 1− P i
S(t+1)− P i

I (t+1)
11: end for
12: t← t+ 1
13: until ∥PS(t)− PS(t−1)∥2 + ∥PI(t)− PI(t−1)∥2 + ∥PR(t)− PR(t−1)∥2 ≤ ε
14: return PS(t), PI(t), PR(t)

C.4 Details of RAPID Algorithm

Algorithm 3: RAPID: Residual-Accelerated Propagation for Infection Dynamics

Require: Graph G = (V, E), rates β, γ, initial infected set I0, threshold ε, preheat steps p
Ensure: State probabilities PS , PI , PR

1: ▷ Initialization
2: P v

S ← 1, P v
I ← 0, P v

R ← 0 for all v ∈ V
3: for v ∈ I0 do
4: P v

S ← 0, P v
I ← 1

5: end for
6: P̃ v

I ← P v
I for all v ▷ Snapshot for residuals

7: ▷ Preheat phase to reduce approximation error
8: for t = 1 to p do
9: for all v ∈ V do

10: P̃ v
S ← P v

S
11: P v

S ← P v
S ·

∏
u∈NE in(v)(1− β · Pu

I )

12: P v
I ← (1− γ) · P v

I + (P̃ v
S − P v

S )
13: P v

R ← 1− P v
S − P v

I
14: end for
15: end for
16: ▷ Residual initialization
17: for all v ∈ V do
18: Rres(v)← β ·

∑
u∈NE in(v)

(
Pu
I − P̃u

I

)
19: end for
20: Initialize max-heapH with all v such that Rres(v) > ε
21: whileH not empty do ▷ Residual-driven propagation
22: (Rres(i), i)← popTop(H)
23: if Rres(i) ≤ ε then break
24: end if
25: if P i

I > ε then
26: P̃ i

S ← P i
S
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27: P i
S ← P i

S ·
∏

u∈NE in(i)(1− β · Pu
I )

28: P i
I ← (1− γ) · P i

I + (P̃ i
S − P i

S)
29: P i

R ← 1− P i
S − P i

I

30: δ ← P i
I − P̃ i

I

31: P̃ i
I ← P i

I
32: ▷ Propagate residual to out-neighbors
33: for j ∈ NEout(i) do
34: Rres(j)← Rres(j) + β · δ
35: if Rres(j) > ε then push (Rres(j), j) intoH
36: end if
37: end for
38: end if
39: Rres(i)← 0
40: end while
41: return PS , PI , PR

C.5 Design of Propagation Residual

The residual term is derived from the one-step temporal difference of the infected probability, as
formulated in Eq. (15):

P i
I (t+ 1)− P i

I (t) ≲ β
∑
j∈V

Aji(P
j
I (t)− P j

I (t− 1))︸ ︷︷ ︸
Change due to propagation

+(1− γ)(P i
I (t)− P i

I (t− 1))︸ ︷︷ ︸
Change due to retained infection

. (51)

Although the propagation residual was originally motivated by the temporal dynamics of infection
spread, its formulation is not heuristic. Instead, it admits a principled interpretation as a first-order
Jacobian approximation of neighbor-induced perturbations under a linearized infection model.

In the following, we formally derive this connection, show how it naturally leads to the classical
epidemic threshold, and provide a physical interpretation of the residual-driven max-heap update
mechanism.
Theorem C.1 (Jacobian Interpretation of Propagation Residual). In Eq. (16), we define the propaga-
tion residual at node i as:

Rres(i) = β
∑
j∈V

Aji (P
j
I − P̃ j

I ), (52)

where P j
I and P̃ j

I denote the current and previously cached infection probabilities of node j. This
residual can be interpreted as a local Jacobian-vector product:

Rres(i) =
∑
j∈V

∂P i
I

∂P j
I

· δj , (53)

where δj = P j
I − P̃ j

I , and the partial derivative ∂P i
I

∂P j
I

= βAji arises from the linear approximation

of the infection dynamics. Thus, Rres(i) quantifies the first-order propagation response of node i to
perturbations in its neighbors.
Remark 4 (Recovery of Epidemic Threshold). Denote ∆PI(t+ 1) = P i

I (t+ 1)− P i
I (t). Starting

from Eq. (C.5), we can express the system in matrix form as:

∆PI(t+ 1) ≲
(
β ·AT + (1− γ) · I

)
·∆PI(t), (54)

which defines a linear dynamical system. For this system to remain stable, the spectral radius of the
Jacobian matrix must satisfy:

ρ
(
β ·AT + (1− γ) · I

)
< 1, (55)

which leads to the classical epidemic threshold condition:

β

γ
<

1

λmax(A)
. (56)
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This derivation illustrates that our residual-based formulation naturally recovers fundamental condi-
tions in epidemic dynamics.

Remark 5 (Connection to Local Lipschitz Bound). The Jacobian matrix J = β ·AT governs the
propagation sensitivity with respect to neighbor infection states. It induces a local Lipschitz upper
bound:

∥∆PI(t+ 1)∥ ≲ ∥J∥ · ∥∆PI(t)∥. (57)

The residual term Rres captures the Jacobian-induced local propagation energy, and thus provides a
structure-aware signal for selective inference.

Remark 6 (Connection to Discrete Diffusion Operators). Although our model targets stochastic
epidemic diffusion, the propagation residual exhibits a structural resemblance to classical diffusion
operators. Specifically, the residual at node i,

Rres(i) = β
∑
j∈V

Aji (P
j
I − P̃ j

I ), (58)

aggregates state changes from incoming neighbors, analogous to the discrete Laplace-Beltrami
operator [51]:

∆fi =
1

di

∑
j∈Ni

wij(fi − fj), (59)

which measures local imbalance across a mesh. While not a Laplacian in the strict sense, our formu-
lation shares a key geometric intuition: it emphasizes update prioritization where local dynamics
remain active—analogous to high-gradient regions in physical diffusion.

D Experiments

D.1 Experimental Settings

Infrastructure and Implementation. All experiments were conducted on a machine equipped with
a Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz processor with 376 GB Memory. All algorithms are
implemented in Python with the Networkx library.

Setup of Figure 1. The setup for each subfigure of Figure 1 in the main paper is as follows: (a) We
run 20 Monte Carlo simulations on a 1000-node asymmetric Erdős–Rényi graph (k̄ = 10), varying
β and γ across a [0.01, 1.0] grid. Each point reports the average node-level infection variance, and
we plot its relationship with log(β/γ) under a fixed initial infection ratio of 10%. (b) We simulate
disease spread on 1000-node asymmetric Erdős–Rényi graphs with varying target average degree
k̄ ∈ {0.5, 1, . . . , 20}. For each graph, we randomly infect 10% of nodes and compute the average
node-level variance over a 6 × 6 grid of (β, γ) ∈ [0.01, 0.2]. We then analyze the relationship
between the actual average degree and the mean variance of the estimator. (c) We run 10 Monte
Carlo simulations on a 1000-node asymmetric Erdős–Rényi graph (k̄ = 10), across a 6 × 6 grid
of (β, γ) ∈ [0.01, 0.2]. For each initial infection ratio α ∈ {0.01, 0.02, . . . , 0.30}, we compute
the mean variance of node-level infection probabilities. (d) We run Monte Carlo simulations on a
1000-node asymmetric Erdős–Rényi graph (k̄ = 10), using an initial infection ratio of 1%. For each
sample size M ∈ {5, 10, . . . , 50}, we evaluate the mean estimator variance across a 6 × 6 grid of
(β, γ) ∈ [0.01, 0.2].

Hyperparameter Setting in Experiments. For RAPID, the number of preheat steps p is set to 20,
and the propagation residual threshold is set to 10−3.

Full results for Figure 3. We treat nodes with inferred infection probability above 0.5 as infected.
Figure 3 in the main paper shows the classification results on hiv-Trans using MC-5, MC-10, PID,
and RAPID. Here, we present the full results across all six datasets in Figure 5, illustrating each
method’s ability to distinguish highly infected individuals.

SIR Parameter Setting of More Diseases. To ensure the practical relevance of our research, we
reviewed the literature and compiled the infectious period and basic reproduction number (R0) data
for various infectious diseases, as summarized in Table 5. It is important to note that we assume a
well-equipped healthcare environment where infected individuals are isolated and treated promptly
upon showing symptoms, effectively preventing further transmission. As a result, for diseases listed
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Figure 5: Classification metrics (precision, recall, F1) on six datasets.

in the table other than the common cold, the infectious period is taken to be the incubation period of
the disease.

In traditional epidemiological studies, γ can also be defined as the rate at which a disease transitions
from being infectious to non-infectious. Therefore, γ can be calculated as the reciprocal of the
infectious period. The SIR model parameters are derived as follows:

γ =
1

Infectious Period
β = R0 · γ

For simplicity, when the infectious period is reported as a range, we use the average of the minimum
and maximum values for calculations.

Table 5: Summary of some infectious diseases with their parameters in the SIR model.

Disease Infectious Pe-
riod

Transmission R0 γ [1/day] β [1/day]

Nipah Virus 4–14 days [59] Body fluids 0.5 [38] 0.1111 0.0556

Andes Hantavirus 7–39 days (me-
dian 18 days)
[55]

Respiratory
droplets and
body fluids

1.2 (0.8–1.6)
[39]

0.0556 0.0667

MERS 5 days (2–14
days) [7]

Respiratory
droplets

0.5 (0.3–0.8)
[31]

0.2 0.1

Ebola Average 12.7
days [12]

Body fluids 1.8 (1.4–1.8)
[58]

0.0787 0.1417

Mpox 4–14 days [59] Physical con-
tact, body
fluids, respira-
tory droplets,
sexual (MSM)

2.1 (1.1–2.7)
[20, 2]

0.1111 0.2333

D.2 Influence of Variance on the Reliability of MC Inference

In this subsection, we aim to bridge the conclusion of Theorem 3.1 with empirical evidence, by
demonstrating how a high variance in Monte Carlo (MC) estimators can lead to degraded inference
accuracy.

We investigate the relationship between Kendall-τ and ground-truth per-node infection standard
deviation on the hiv-Trans dataset by varying the initial infection ratio α, as shown in Figure 6.
We observe that while MC-based methods exhibit performance degradation as uncertainty increases,
RAPID and PID maintain relatively stable ranking performance across high-variance regimes.

D.3 Extension to Two-stage Non-reinfection Epidemic Model

Although Theorem 3.3 in the main paper shows that our algorithm, while developed under the
SIR model, naturally extends to generalized non-reinfection models, in this subsection we provide
empirical results on the SEIR model to demonstrate its effectiveness in a more complex setting.

29



0.00 0.01 0.02 0.03 0.04
Ground Truth STD (per node)

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l T

au

Method
MC-5
MC-10
PID
RAPID

Figure 6: Scatter plot and LOESS-smoothed trend lines of Kendall-τ versus ground-truth per-node
infection standard deviation.

SEIR Model Dynamics. The SEIR model extends the classic SIR framework by introducing an
intermediate exposed (E) state to capture the incubation period of infection. It models a two-stage
infection process: individuals first become exposed after contact with infectious nodes, and then
transition to the infected state after a latency period. The continuous-time dynamics are governed by
the following ODEs:

dS

dt
= −βSI,

dE

dt
= βSI − σE,

dI

dt
= σE − γI,

dR

dt
= γI,

(60)

where β is the infection rate, σ is the incubation (exposure-to-infection) rate, and γ is the recovery
rate. The probability-based update equations are given by:

P i
S(t+ 1) = P i

S(t)
∏
j

(1− βAjiP
j
I (t)),

P i
E(t+ 1) = (1− σ)P i

E(t) + P i
S(t)

1−∏
j

(1− βAjiP
j
I (t))

 ,

P i
I (t+ 1) = (1− γ)P i

I (t) + σP i
E(t),

P i
R(t+ 1) = P i

R(t) + γP i
I (t).

(61)

Extend RAPID to SEIR. Similar to the idea adopted in the SIR model, for general non-reinfection
models, global convergence requires that both PE → 0 and PI → 0. In particular, for the two main
transition stages S → E and E → I , we define the following residuals:

• Exposure-stage residual (from S → E):

RE
res(i) = β

∑
j∈V

Aji

(
P j
I (t)− P j

I (t− 1)
)
. (62)

• Infection-stage residual (from E → I):

RI
res(i) = σ

(
P i
E(t)− P i

E(t− 1)
)
. (63)

Note that once P i
E → 0, the infection-stage residual RI

res(i)→ 0 naturally follows. Moreover, RI
res(i)

depends solely on the change in the node’s own state, whereas our main paper defines the propagation
residual to be structure-aware. Hence, we define the global propagation residual for non-reinfection
models as:

Rres(i) := RE
res(i) = β

∑
j∈V

Aji

(
P j
I − P̃ j

I

)
, (64)
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which is exactly the same as our derivation in the main paper for SIR! To verify the effectiveness of
our method, we conduct similar experiment in the main paper on hiv-Trans.

Experiment. We adopt the same parameter setting as in the Nipah Virus scenario, with β = 1/18
and γ = 1/9, and further set σ = 0.8 to model the transition probability from E → I . The initially
infected ratio α = 0.01. We use 1000-run Monte Carlo simulation as the ground truth. All other
hyperparameter settings are kept consistent with those in the main paper.
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Figure 7: Kendall-τ vs. Runtime on hiv-Trans
under SEIR model.
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Figure 8: Classification metrics on
hiv-Trans under SEIR model.

Table 6: SEIR Results on hiv-Trans with α = 0.01. All values are scaled by 10−2. Best results are
in bold.

Method hiv-Trans
MAE ↓ t (s) ↓

MC-5 6.13±0.25 3.55±0.21

MC-10 4.01±0.35 6.79±0.47

PID 6.23±0.51 10.50±0.14

RAPID 0.82±0.23 2.43±0.12

Figure 7 and Figure 8 present the Kendall-τ versus runtime trade-off and the radar chart of precision,
F1 and recall rate under the SEIR model on the hiv-Trans dataset, respectively. Table 6 further
reports the detailed MAE and runtime values. These results closely mirror those under the SIR
setting in the main paper, confirming that our RAPID method remains effective across general
non-reinfection models beyond SIR.

D.4 Influence of Distribution of Initially Infected Nodes

As highlighted in the Introduction of the main paper, traditional epidemic modeling often relies
on assumptions of random mixing and population homogeneity, which limit its applicability in
real-world scenarios. In contrast, RAPID takes the initial infected set I0 as an explicit input, allowing
flexible adaptation to different initial conditions. In this subsection, we demonstrate that RAPID
remains robust under varying distributions of I0.

Impact of Initial Infection Phase α. In this part, we investigate the impact of different values of α,
which reflect different stages of an epidemic at the initial time. While the main paper presents results
for α = 0.01 to simulate the early stage which is the most common setting, we additionally evaluate
α = 0.5 and α = 0.8 to represent mid-stage and late-stage outbreaks, respectively, and report the
corresponding results.

• α = 0.5. The trade-off between Kendall-τ and runtime is illustrated in Figure 9, while the
MAE scores are summarized in Table 7.

• α = 0.8. The trade-off between Kendall-τ and runtime is illustrated in Figure 10, while the
MAE scores are summarized in Table 8.

Based on the comparison across different epidemic phases, we make the following observations: (1)
Consistent with the results in the main paper, our RAPID algorithm maintains high accuracy across
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Figure 9: Trade-off between Kendall-Tau and Runtime across six datasets. (α = 0.5)

Table 7: MAE comparison (α = 0.5, lower is better). All values are scaled by 10−2. Best results are
in bold.

Dataset MC-5 MC-10 PID RAPID
bitcoin-Alpha 4.47±0.02 3.39±0.04 2.65±0.10 2.27±0.04

hiv-Trans 4.15±0.11 2.14±0.03 4.24±0.20 1.02±0.20

email-Enron 3.99±0.03 3.14±0.00 2.79±0.01 2.26±0.01

email-EuAll 1.33±0.01 1.02±0.00 0.73±0.00 0.68±0.00

soc-Epinions 2.99±0.02 2.36±0.01 1.91±0.01 1.57±0.01

soc-Pokec 2.24±0.00 1.76±0.00 1.35±0.00 1.16±0.00
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Figure 10: Trade-off between Kendall-Tau and Runtime across six datasets. (α = 0.8)

all α settings, consistently accelerating both MC-based methods and PID, while preserving a runtime
comparable to a single-run MC simulation. (2) As the initial infection ratio increases, centrality-based
baselines become increasingly unreliable, and by α = 0.8, most of them exhibit almost no correlation
with ground truth.

Impact of Initial Infection Clustering Patterns. In this part, we divide the initial infection set into
several disjoint and disconnected clusters to examine the impact on different methods. We conduct
experiments on the bitcoin-Alpha dataset with an initial infection ratio of α = 0.01. Figure 11
demonstrates the robustness of RAPID under varying distributions of initial infection clusters.
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Table 8: MAE comparison (α = 0.8, lower is better). All values are scaled by 10−2. Best results are
in bold.

Dataset MC-5 MC-10 PID RAPID
bitcoin-Alpha 1.84±0.03 1.34±0.01 0.96±0.02 0.94±0.01

hiv-Trans 1.68±0.03 1.26±0.00 0.31±0.05 0.45±0.07

email-Enron 1.62±0.02 1.29±0.01 0.92±0.01 0.87±0.01

email-EuAll 0.57±0.00 0.45±0.00 0.30±0.00 0.29±0.00

soc-Epinions 1.21±0.00 0.95±0.00 0.68±0.01 0.63±0.01

soc-Pokec 0.89±0.00 0.70±0.00 0.49±0.00 0.47±0.00

1 5 10 15 20 50 80
Number of Disjoint Infection Clusters

0.03

0.04

0.05

0.06

0.07

0.08
M

AE

MC-5 MC-10 PID RAPID

Figure 11: Expected MAE vs. Number of Disjoint Infection Clusters.

D.5 Results for more Diseases

According to Remark 2, since the discrete SIR simulation aims to approximate a continuous-time
process, we require β ≪ 1 and γ ≪ 1. Under this regime, the simulation behavior depends primarily
on the ratio R0 = β/γ, rather than the specific values of β and γ, which aligns with classical
epidemiological theory. Therefore, in our additional experiments, we evaluate the algorithm’s
performance using representative values of R0 listed in Table 5.

Andes Hantavirus (R0 = 1.2). The Kendall-τ versus runtime trade-off is shown in Figure 12, and
the MAE comparison across different datasets is presented in Figure 9.
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Figure 12: Trade-off between Kendall-Tau and Runtime across six datasets. (Andes Hantavirus)

MERS (R0 = 0.5). As MERS share the same R0 with Nipah Virus according to Table 5, the results
are the same as those in main paper.

Ebola (R0 = 1.8). The Kendall-τ versus runtime trade-off is shown in Figure 13, and the MAE
comparison across different datasets is presented in Figure 10.
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Table 9: MAE comparison (Andes Hantavirus, lower is better). All values are scaled by 10−2. Best
results are in bold.

Dataset MC-5 MC-10 PID RAPID
bitcoin-Alpha 8.21±0.10 6.53±0.03 8.27±0.06 6.38±0.05

hiv-Trans 14.82±0.30 4.99±0.12 16.79±0.35 5.40±0.36

email-Enron 6.82±0.08 5.26±0.01 9.31±0.02 4.52±0.08

email-EuAll 2.13±0.01 1.69±0.02 2.05±0.03 1.17±0.02

soc-Epinions 5.47±0.03 4.33±0.05 6.96±0.01 4.31±0.03

soc-Pokec 3.64±0.00 2.86±0.00 3.68±0.01 3.51±0.01
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Figure 13: Trade-off between Kendall-Tau and Runtime across six datasets. (Ebola)
Table 10: MAE comparison (Ebola, lower is better). All values are scaled by 10−2. Best results are
in bold.

Dataset MC-5 MC-10 PID RAPID
bitcoin-Alpha 8.79±0.09 6.82±0.08 7.10±0.11 4.77±0.08

hiv-Trans 10.50±0.44 6.29±0.23 3.31±0.72 1.87±0.62

email-Enron 7.49±0.04 5.98±0.01 9.27±0.04 4.39±0.01

email-EuAll 2.10±0.00 1.67±0.01 1.46±0.01 1.02±0.01

soc-Epinions 5.51±0.02 4.30±0.01 5.41±0.02 2.99±0.01

soc-Pokec 4.33±0.00 3.40±0.00 3.42±0.00 2.68±0.00

Mpox (R0 = 2.1). The Kendall-τ versus runtime trade-off is shown in Figure 14, and the MAE
comparison across different datasets is presented in Figure 11.

Table 11: MAE comparison (Mpox, lower is better). All values are scaled by 10−2. Best results are
in bold.

Dataset MC-5 MC-10 PID RAPID
bitcoin-Alpha 5.44±0.03 4.20±0.07 2.71±0.02 2.68±0.01

hiv-Trans 7.44±0.03 6.03±0.04 1.84±0.61 1.78±0.66

email-Enron 5.57±0.01 4.37±0.02 2.83±0.01 2.77±0.01

email-EuAll 0.96±0.00 0.76±0.00 0.48±0.00 0.47±0.00

soc-Epinions 2.84±0.01 2.24±0.00 1.47±0.01 1.45±0.01

soc-Pokec 6.74±0.00 5.29±0.00 3.58±0.00 3.52±0.00

Discussion. (1) Across all epidemic settings and datasets, our RAPID method consistently maintains
high Kendall-τ and low MAE, often achieving the best performance while significantly improving
computational efficiency. (2) Under the Andes Hantavirus setting (R0 = 1.2), we observe notably
higher variance on the hiv-Trans dataset, aligning with Theorem 3.1 in the main paper. However,
this increased stochasticity also challenges the fidelity of our reference distribution. In our experi-
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Figure 14: Trade-off between Kendall-Tau and Runtime across six datasets. (Mpox)

ments, we estimate the ground truth infection probability P̄GT using 50 Monte Carlo simulations (on
hiv-Trans, we use 1000-run Monte Carlo simulation as ground-truth). While this yields accurate
approximations on most datasets, the elevated randomness in hiv-Trans makes the reference distri-
bution inherently noisy. As a result, the MAE values should be interpreted with caution, as they may
partially reflect the variance of the reference rather than the bias of the estimators.

D.6 Sensitivity of Hyperparameters

RAPID has two key hyperparameters: the number of preheat steps p used to initialize the inference
via PID, and the propagation residual threshold ε used to control message updates. Figure 15 shows
how these hyperparameters affect performance in terms of mean Kendall-τ and MAE.

We observe that increasing p initially improves both Kendall-τ and MAE, as more preheating
facilitates better initialization. However, beyond a moderate value, the performance begins to degrade,
indicating that excessive preheating may lead to over-propagation and reduced inference quality.
For the residual threshold ε, we observe that overly loose settings (i.e., large ε) lead to reduced
performance, as many small but informative updates are skipped. However, as ε becomes very
small, its influence diminishes. This is because the scale of local residuals is largely determined by
k̄β, so further reducing ε without changing β has limited effect. Overall, RAPID maintains stable
performance across a wide range of settings, demonstrating strong robustness to both hyperparameters.
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Figure 15: Sensitivity analysis on preheat steps p and propagation residual threshold ε.

E More Discussion

E.1 Limitation

Although RAPID achieves high inference accuracy and significant runtime reduction across various
networks, several limitations remain. First, our framework assumes a discrete-time approximation
of the continuous-time infection process, and the linearization results rely on sufficiently small
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per-time-step transmission and recovery probabilities, i.e., β, γ ≪ 1 (see Remark 2). In practical
scenarios with coarse time resolution or unscaled parameters, this assumption may not strictly hold,
potentially introducing approximation bias. Second, RAPID is designed under the assumption of
non-reinfection epidemic models (e.g., SIR, SEIR), where infections are irreversible. Extending the
method to reinfection settings such as SIS or SIRS models remains non-trivial, as it would require
fundamentally different update dynamics and potentially new convergence guarantees.

E.2 Future Work

Extension to General Epidemic Settings. While our method is developed under the setting of
non-reinfection models, extending it to more general epidemic settings is a promising direction. For
reinfective models (e.g., SIS or SIRS), where nodes can return to the susceptible state, the propagation
process becomes recurrent and requires modifying the residual formulation to account for cyclical
transitions. Moreover, real-world epidemics often involve time-varying parameters—such as dynamic
infection or recovery rates β(t) and γ(t)—which can be incorporated into our framework by adapting
the update rules to operate on temporal sequences of residuals. Finally, in dynamic graphs where
nodes and edges evolve over time (e.g., contact networks or mobility patterns), our residual-driven
approach can be extended by computing propagation residuals on each snapshot and reinitializing
the active node queue accordingly. Together, these extensions would enable our method to handle a
wider range of realistic and complex epidemic processes.

Extension to Graph Neural Networks (GNNs). Our theoretical framework of linear approximation,
residual-driven selection, and asynchronous propagation can be naturally extended to enhance Graph
Neural Networks. Specifically, message passing in GNNs often involves nonlinear transformations,
which can similarly benefit from Jacobian-based linear approximations (explained in Theorem C.1)
to quantify node-level sensitivity to neighbor perturbations. By defining propagation residuals based
on node feature dynamics, one can design prioritized, residual-guided asynchronous GNNs that
selectively update nodes according to their local propagation significance. Such an approach promises
significant computational efficiency improvements on large-scale graphs and offers theoretical insights
into the interpretability and stability of GNNs. Exploring this connection presents an exciting avenue
for future research.
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