
STAMP Your Content:
Proving Dataset Membership via Watermarked Rephrasings

Saksham Rastogi 1 Pratyush Maini 2 3 Danish Pruthi 1

Abstract
Given how large parts of publicly available text
are crawled to pretrain large language mod-
els (LLMs), data creators increasingly worry
about the inclusion of their proprietary data for
model training without attribution or licensing.
Their concerns are also shared by benchmark cu-
rators whose test-sets might be compromised. In
this paper, we present STAMP, a framework for de-
tecting dataset membership—i.e., determining the
inclusion of a dataset in the pretraining corpora of
LLMs. Given an original piece of content, our pro-
posal involves first generating multiple rephrases,
each embedding a watermark with a unique se-
cret key. One version is to be released publicly,
while others are to be kept private. Subsequently,
creators can compare model likelihoods between
public and private versions using paired statis-
tical tests to prove membership. We show that
our framework can successfully detect contami-
nation across four benchmarks which appear only
once in the training data and constitute less than
0.001% of the total tokens, outperforming sev-
eral contamination detection and dataset inference
baselines. We verify that STAMP preserves both
the semantic meaning and utility of the original
data. We apply STAMP to two real-world scenar-
ios to confirm the inclusion of paper abstracts and
blog articles in the pretraining corpora.

1. Introduction
To train large language models, much of the available text
from the internet is crawled, allegedly including copyrighted
material such as news articles and blogs (Grynbaum & Mac,
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2023a;b). Additionally, some evaluation datasets, origi-
nally intended for benchmarking model performance, may
be compromised—an issue prominently discussed as test-
set contamination (Magar & Schwartz, 2022; Jacovi et al.,
2023; Sainz et al., 2023a). A recent study reveals concerning
evidence that pretraining corpora contain several key bench-
marks (Elazar et al., 2024), and another demonstrates that
impact of test set contamination has been underestimated in
many prominent LLM releases (Singh et al., 2024).

On one hand, training language models on copyrighted ma-
terial might violate legal standards, and on the other, con-
suming test sets of machine learning benchmarks might
offer a false sense of progress. Given the lack of regulations
or incentives for model developers to disclose contents of
their pretraining corpora (OpenAI, 2023; AI@Meta, 2024;
Anthropic, 2024), it is critical to equip content creators with
reliable tools to determine whether their content was in-
cluded as a part of model training. Especially, third party
approaches that can democratize detecting dataset member-
ship and enable independent accountability.

Some approaches for detecting dataset membership em-
bed random sequences in text or substitute characters with
visually-similar unicodes (Wei et al., 2024). However,
such alterations impair machine readability, indexing and
retrieval—making them impractical for content creators.
More critically for benchmarks, such substitutions can al-
ter tokenization, potentially compromising their utility for
evaluation. Other proposals rely on access to a validation
set that is unseen by the target model and drawn from the
same distribution as the original dataset—a requirement
hard to meet in practice (Maini et al., 2024). Recently, Oren
et al. (2024) suggest comparing canonical ordering of test
sets to random permutations, but this strategy assumes large
portions of datasets are processed together within a single
context window during pretraining. Most closely related to
our proposal, Zhang et al. (2024a) use a statistical test to
compare model confidence on original test instances and
their rephrasings, assuming that the two distributions are
identical—an assumption we show does not hold (Table 9).

We make all our code, data and models available at
github.com/codeboy5/STAMP
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Figure 1: Overview of STAMP. Stage 1: Create Watermarked Copies of the Dataset. We use a watermarked LLM to
generate multiple rephrased versions of their original dataset, each uniquely watermarked using a distinct key. The version
watermarked with the public key is released publicly on the internet, while other watermarked versions are kept private.
Stage 2: Prove Membership using a Paired T-Test. To detect membership, we compute model perplexities over documents
from both the public and private versions. Using these perplexity scores, we perform a paired t-test to detect membership.

In our work, we propose STAMP (Spotting Training
Artifacts through waterMarked Pairs), a practical approach
allowing creators to detect dataset membership through a
statistical test with a probabilistic interpretation (Figure 1).
Our approach begins by taking the original content and gen-
erating multiple rephrased versions. Each rephrased version
is watermarked using a distinct key for the hash function
used in watermarking. Content creators can then release
one of the generations publicly, while keeping the others
private. A statistical test then evaluates the model likelihood
of generating the public version against the private copies.
For models that were trained on the publicly available gen-
erations, we expect to observe higher model likelihoods for
these generations compared to their private counterparts.

Our work repurposes LLM watermarking to watermark doc-
uments that considerably enhance the detection sensitivity
of our statistical test. (This is different from watermark-
ing models themselves to prevent against model extraction
attacks.) Specifically, we leverage the KGW watermark-
ing scheme (Kirchenbauer et al., 2024), which embeds de-
tectable signals by steering generations towards a randomly
chosen “green” subset of the vocabulary.

We empirically validate the effectiveness of our approach
by continually pretraining the Pythia 1B model (Biderman
et al., 2023) on deliberately contaminated pretraining data.
We contaminate the pretraining corpus by injecting test ex-
amples from four different benchmarks. Even with minimal
contamination—that is, each test example appearing only
once and each benchmark comprising less than 0.001% of
the total training data—our approach significantly outper-
forms existing methods, achieving statistically significant
p-values across all contaminated benchmarks. We also con-
duct a false positive analysis, wherein we apply our detec-

tion methodology to off-the-shelf pretrained LLMs that have
not been exposed to the watermarked benchmarks and find
that our test successfully denies their membership. More-
over, our analysis reveals that watermarking substantially
enhances detection sensitivity, improving statistical signifi-
cance by up to three orders of magnitude.

To demonstrate STAMP’s effectiveness in detecting inclu-
sion of copyrighted data in pretraining corpora, we present
two expository case studies where we apply STAMP to de-
tect membership of paper abstracts and blog articles. Our
test achieves statistically significant p-values across these
real-world scenarios. To further ensure that our framework
preserves content quality, we conduct both automatic evalu-
ations using GPT4 (OpenAI, 2023) and a human study, and
find that STAMP maintains content quality. These results
highlight its utility in protecting copyrighted material (for
creators), and detecting contamination (for auditors).

2. Preliminaries
In this section, we begin by formalizing the problem of
detecting membership of a dataset (§2.1) and provide neces-
sary background on watermarks for LLMs (§2.2).

2.1. Dataset Membership

The problem of dataset membership (Maini et al., 2021)
aims to determine whether a dataset X has been included in
the pretraining data Dtrain of a language model θ. We oper-
ate under a gray-box setting, where we can compute token
probabilities for any sequence S but have no access to the
pretraining data or model weights. Formally detecting mem-
bership of a dataset can be posed as a hypothesis test with
the goal to distinguish between the following hypothesis:
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• H0: θ is independent of X (no membership)

• H1: θ is dependent on X (membership),

where we treat θ as a random variable whose randomness
arises from the sampling of the pretraining dataset Dtrain
(which may or may not include X). Framing membership
inference (Shokri et al., 2016) as hypothesis testing provides
statistical guarantees on the false detection rate.

Our focus is on building statistical tests that can reliably
detect dataset membership in language models. We aim
to develop methods that make minimal assumptions about
the format or nature of data—be it machine learning bench-
marks, newsletters, or books.

2.2. Watermarks for LLMs

Watermarking techniques for LLMs embed subtle but dis-
tinctive patterns within generated text that are imperceptible
to humans but algorithmically detectable. For our frame-
work, we utilize the prominent KGW scheme (Kirchenbauer
et al., 2024). KGW scheme uses a hash function that takes
the context (preceding tokens) and a hash key h to partition
the vocabulary V into two disjoint sets at each generation
step: a green list G and a red list R.

To embed a watermark, the scheme biases the model’s next-
token probabilities by adding δ (δ > 0) to the logits of
tokens in the green list. Specifically, if l

(t)
k denotes the

original logit for token k at position t, then the modified
logits are given by:

l̂
(t)
k ← l

(t)
k + δ11

[
k ∈ G

]
. (1)

3. STAMP: Spotting Training Artifacts
through Watermarked Pairs

We introduce STAMP, a practical and principled framework
that enables content creators to reliably detect whether their
content was included in LLM pretraining data. Our ap-
proach builds on a key insight: if an LLM consistently
prefers documents watermarked with a specific key (e.g.,
the key used for the publicly available version) over seman-
tically equivalent content with distinct watermarks, then
the model must have seen the preferred documents during
pretraining. In this section, we detail how STAMP lever-
ages this insight to create a robust statistical framework for
membership detection. STAMP consists of two stages: (1) a
process for content creators to release watermarked content
(§3.1) and (2) a paired statistical test to detect downstream
dataset membership (§3.2).

3.1. Watermarking Datasets

The first stage of our approach involves generating multiple
watermarked versions of a dataset through rephrasing. For

a given dataset X , we employ an open-weights instruction-
tuned LLM to generate rephrases. For each document q in
the original dataset, we create a public version (denoted as
q
′
), where the rephrase is watermarked using a designated

public key as the hash key. Additionally, we generate m
private versions (denoted as q

′′

1 , q
′′

2 , . . . , q
′′

m), where each
generation is watermarked using a distinct private key as
the hash key. The public version is released online, while
the private versions are kept confidential. Crucially, due to
the design of our test relying on pairwise comparisons at a
document level (§3.2), each document q in a dataset X can
use a different set of hash keys. This ensures that introducing
watermarking during the rephrasing stage does not alter
the token distribution of the dataset X and, importantly,
preserves the overall token distribution of the internet data.

LLM Watermarks as Sampled Markers. While water-
marking is traditionally intended for attributing generated
text to a specific LLM, our motivation diverges from this
original purpose. First, we leverage LLM watermarking as
a mechanism to embed distinct signals into the rephrases
through the use of distinct hash keys. The randomness in
both our hash key selection and the watermarking process
itself enables us to frame the detection problem as hypothe-
sis testing. Under the null hypothesis H0 (no membership),
the target model shouldn’t favor content watermarked with
any particular key. Second, the watermarking process it-
self introduces subtle perturbations that increase sequence
perplexity, which has been empirically shown to enhance
memorization during training (Meeus et al., 2024a), further
amplifying our ability to detect membership.

3.2. Detecting Dataset Membership

To detect membership, we leverage the insight that under
the null hypothesis H0 (no membership), the model should
not exhibit any systematic preference towards any of the
semantically equivalent paraphrases of documents that are
watermarked with distinct keys—the public version of the
dataset and privately held versions of the dataset. This
follows from the randomness inherent in our selection of
keys and nature of watermark we employ. We formalize this
intuition through a statistical testing framework.

For each document q, we compute the perplexity difference
di between its public version q

′

i and private version q
′′

i that
form a pair (q

′

i, q
′′

i ):

di = PPLθ(q
′

i)− PPLθ(q
′′

i ). (2)

Prior to applying the paired t-test, we modify the top 5%
outliers by clipping their values. This prevents issues where
the test can become ineffective due to a few outlier samples.
Under the alternative hypothesis H1, we expect these differ-
ences to be negative on average, indicating lower perplexity
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for public versions. We evaluate this using a one-sided
paired t-test statistic:

t =
d̄

sd/
√
n
, (3)

where d̄ and sd are the mean and standard deviation of the
differences across the collection of documents respectively
and n is the number of documents (Student, 1908). The
one-sided p-value specifically tests for d̄ < 0, following our
alternative hypothesis that exposure during training leads
to lower perplexity on public versions. Paired tests provide
higher statistical power, enabling detecting membership
even with a smaller collection of documents (n), as we show
in our experiments.

Multiple Private Keys. In practice, we empirically ob-
serve that models may exhibit inherent biases at an individ-
ual document level, occasionally assigning lower perplexity
to specific private rephrases (q′′) independent of member-
ship. To make our detection robust against such biases, we
propose using multiple private rephrases, each watermarked
with a distinct key. Instead of comparing against a single
private version, we test whether public rephrases exhibit
lower perplexity compared to the average perplexity across
m different private rephrases:

di = PPLθ(q
′

i)−
1

m

j=m∑
j=1

PPLθ(q
′′

i,j), (4)

where m is a hyperparameter known as private key count,
and q

′′

i,j represents the jth private rephrase of ith document.
Through controlled experiments, we analyze the effect of
this hyperparameter on statistical strength of our test (§4.4).

4. Experiments & Results
To evaluate the ability of STAMP for membership detec-
tion, we first focus on benchmark contamination—the in-
clusion of evaluation benchmarks in the pretraining corpora
of LLMs. This setting presents unique challenges for mem-
bership detection. First, benchmarks must maintain their
utility as reliable indicators of progress, which constrains
the modifications we can make prior to their release. Sec-
ond, benchmarks typically contain limited text compared
to other content types (e.g., books or newsletters), making
detection particularly challenging.

4.1. Releasing Watermarked Test Sets

We evaluate our approach using four widely-used bench-
marks: TriviaQA (Joshi et al., 2017), ARC-C (Clark et al.,
2018), MMLU (Hendrycks et al., 2021), and GSM8K
(Cobbe et al., 2021). For each benchmark, we follow our

proposed methodology (§3.1) to generate watermarked pub-
lic and private paraphrases. We use the instruction tuned
Llama3-70B (AI@Meta, 2024) model and a benchmark-
agnostic prompt (provided in Appendix K) to generate these
rephrased copies. For each benchmark, we randomly select
one watermarked version to be the public version. Examples
of the rephrased test instances are provided in Appendix L.

Key Distinction. While rephrasing has been previously
explored for detecting contamination (Zhang et al., 2024a),
existing approaches typically compare human-written con-
tent against their LLM-generated rephrases, overlooking a
crucial confounding factor: language models exhibit system-
atic preferences for LLM-generated text over human-written
content (Liu et al., 2023b; Mishra et al., 2023; Laurito et al.,
2024). This inherent bias undermines the reliability of statis-
tical approaches that compare human-written content with
their LLM rephrasings, as any detected differences might
stem from this general preference rather than training ex-
posure. To enable reliable statistical testing, it is crucial to
control the data generating process for both versions being
compared. We address this by ensuring both our public and
private versions are generated through the same process,
differing only in their watermarking keys. Given the ran-
dom selection of keys, we expect no systematic preferences
between versions unless one was seen during training.

We empirically validate that human-written content and its
LLM-generated rephrasings are easily distinguishable (thus
violating the expected IID requirement): a simple bag-of-
words classifier obtains AUROC > 0.8 on four out of five
benchmarks, whereas the classifier performs no better than
random chance when distinguishing between rephrasings
watermarked with different keys. Detailed analysis and
classifier specifications are provided in Appendix C.

4.2. Pretraining with Intentional Contamination

Setup. To simulate downstream benchmark contamination
as it occurs in real-world scenarios and evaluate the effec-
tiveness of our test, we perform continual pretraining on the
1 billion parameter Pythia model (Biderman et al., 2023)
using an intentionally contaminated pretraining corpus. The
corpus is a combination of OpenWebText (Contributors,
2023) and public watermarked version of the four bench-
marks, as mentioned in Section 4.1. Each test set accounts
for less than 0.001% of the pretraining corpus, with exact
sizes detailed in Table 6 in the appendix. All test sets in
our experiments have a duplication rate of 1 (denoting no
duplication whatsoever), and the overall pretraining dataset
comprises 6.7 billion tokens. Details of the exact training
hyperparameters are provided in Appendix E.

Baselines. We compare STAMP against two recent statisti-
cal approaches to detect membership: PaCoST (Zhang et al.,
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Table 1: P-values for detecting test-set contamination for different methods. For LLM DI (Maini et al., 2024), same
refers to using rephrases of the benchmark questions as validation set, while different uses an entirely different set of unseen
questions from the same benchmark as the validation set. Bold indicates statistically significant results (p < 0.05). Across
all the four benchmarks, our approach results in lower p-values compared to other approaches (lower is better).

BENCHMARK (↓)
METHOD TRIVIAQA ARC-C MMLU GSM8K

PACOST (ZHANG ET AL., 2024A) 1.6E-3 0.33 0.19 0.21

LLM DI (MAINI ET AL., 2024) (same) 0.43 0.31 0.46 0.30
LLM DI (MAINI ET AL., 2024) (different) 0.02 0.53 0.03 0.71

STAMP (W/O PAIRED TESTS) 0.14 0.07 0.08 0.02
STAMP (W/O WATERMARKING) 0.02 5.1E-3 0.02 1.4E-3
STAMP 1.2E-4 2.8E-4 7.0E-4 6.6E-6

2024a) and LLM DI (Maini et al., 2024). PaCoST employs
a paired t-test that compares model confidence on original
and rephrased versions, while LLM DI aggregates multiple
membership inference attacks (MIAs) to perform statistical
testing. For LLM DI, which requires access to an unseen
validation set, we evaluate two settings: (1) using private
rephrases of the publicly available dataset as the validation
set, and (2) using an entirely different set of documents from
the same distribution as the validation set.

Additionally, we also evaluate state-of-the-art MIAs: PPL
(Yeom et al., 2018), Zlib (Carlini et al., 2021), Min-K (Shi
et al., 2024), Min-K++ (Zhang et al., 2024c) and DC-PDD
(Zhang et al., 2024d). Since MIAs rely on a non-trivial
detection threshold, we report AUROC scores across two
settings: (1) discriminating between public rephrases in
training and private rephrases of the same documents, and
(2) discriminating between public rephrases in training and
unseen documents from the same dataset.

Main Results. We compare STAMP and baseline meth-
ods in Table 1. STAMP achieves statistically significantly
low p-values (ranging from 10−4 to 10−6) across all bench-
marks, substantially outperforming existing methods. In
contrast, PaCoST detects contamination only on TriviaQA
(p ≈ 10−3), while LLM DI shows significance on just two
benchmarks (TriviaQA and MMLU) even with access to
validation data of extra test examples.

In our experiments, all MIA methods achieve an AUROC
score of ≈ 0.5 across all benchmarks, indicating perfor-
mance no better than random guessing. Detailed MIA re-
sults and analysis are presented in Table 7.

False Positive Analysis. To ensure the robustness of
STAMP against false positives, we conduct two key experi-
ments. First, we apply our detection methodology to off-the-

Table 2: False positive analysis. Pythia Uncontaminated
denotes the p-values on a pretrained Pythia model that has
not been contaminated. Pythia Contaminated refers to p-
values when testing for membership of held-out subsets of
datasets on a model contaminated with different subsets of
the same datasets. High p-values denote that our approach
does not falsely detect membership.

DATASET
(↑) PYTHIA

UNCONTAMINATED

(↑) PYTHIA
CONTAMINATED

TRIVIAQA 0.52 0.28
ARC-C 0.31 0.56
MMLU 0.54 0.15
GSM8K 0.38 0.47
ABSTRACTS 0.55 0.07
BLOGS 0.21 0.73

shelf pretrained LLMs that have not been exposed to the wa-
termarked benchmarks. The results for Pythia 1B, presented
in the first column of Table 2, show no false positives. We
extend this analysis to models of different sizes and families
in Table 8, consistently finding no false positives across all
tested models, confirming the robustness of STAMP against
false positives. Second, we perform a stronger test to evalu-
ate whether STAMP detects the membership of the dataset
rather than just distributional differences due to different
watermarking keys. We create held-out subsets from the
same benchmarks and watermark them using the identical
public keys used for our contaminated versions. While these
held-out sets share the same distribution and watermarking
as our training data, they contain entirely different exam-
ples. We then apply our detection methodology to test if
these held-out sets are falsely detected as members in our
contaminated Pythia 1B model. The second column of Ta-
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Table 3: Performance of models on the original datasets compared to the watermarked benchmarks. We evaluate the
models using the LM evaluation harness (Gao et al., 2024) with the default settings, comparing performance on original
benchmarks against two watermarking approaches: UNICODE substitutions (Wei et al., 2024) and STAMP. We find that
models obtain comparable performance on STAMP-watermarked benchmarks, but crucially, the relative ranking of LLMs
remains unchanged across all benchmarks, demonstrating the utility of watermarked benchmarks in comparing models.

DATASET METRIC VARIANT
PYTHIA

1B
GEMMA-2

2B
MISTRAL

7B
LLAMA-3

8B
GEMMA-2

9B

ARC-C 0-SHOT
ORIGINAL 26.1 48 49.1 50.6 59.0
UNICODE 21.6 37.3 39.0 41.5 49.8
STAMP 26.3 46.8 49.1 50.5 57.1

MMLU 5-SHOT
ORIGINAL 28.1 52.9 59 61.1 68.6
UNICODE 28.4 45.0 51.5 55.9 63.2
STAMP 28.8 51.6 56 61.8 68.4

TRIVIAQA 5-SHOT
ORIGINAL 12.4 52.7 67.2 68.9 70.1
UNICODE 1.1 23.6 46.0 44.3 54.8
STAMP 11.4 51.9 65.9 66.3 68.6

GSM8K 5-SHOT
ORIGINAL 1.6 25.8 34.4 51.8 65.5
UNICODE 1.5 23.1 23.3 46.7 60.8
STAMP 2.2 27.2 37.5 54.9 65.8

ble 2 shows consistently large p-values, indicating STAMP
successfully refutes membership for these held-out sets.

Performance Without Watermarks Embedded. To vali-
date our hypothesis that using a watermarked LLM to gen-
erate the rephrased copies of the benchmark enhances the
statistical strength of our test, we conduct experiments un-
der the same settings as described above (§4.2), but with
rephrased copies generated without using a watermarked
LLM. The results, presented in Table 1, confirm that in-
corporating watermarked test sets significantly boosts the
statistical power of our test, improving performance by at
least two orders of magnitude across all benchmarks.

4.3. Utility of Test Sets

Detecting contamination alone is insufficient; the water-
marked content should retain the desired properties (for e.g.,
benchmarks should maintain their utility as reliable indica-
tors of LLM performance). Using the lm-evaluation-harness
framework (Gao et al., 2024), we assess five pre-trained
LLMs on both original and watermarked benchmarks. Addi-
tionally, we measure semantic preservation using the P-SP
metric (Wieting et al., 2022).

Our results, presented in Table 3, demonstrate that STAMP-
watermarked variants maintain benchmark utility: LLMs
achieve similar absolute performance and the relative rank-
ings of LLMs across all benchmarks are unaffected. In con-
trast, UNICODE watermark (Wei et al., 2024) significantly

Table 4: Semantic similarity scores (P-SP) (Wieting et al.,
2022) between original datasets and their watermarked
rephrases (higher is better). TRIV-QA and ABS. refers
to TriviQA and paper abstracts respectively. For reference:
the P-SP value is 0.76 for human-written paraphrases as per
a recent study (Krishna et al., 2023).

TRIV-QA ARC-C MMLU GSM8K ABS.

P-SP 0.91 0.83 0.86 0.90 0.95

degrades benchmark utility, with performance drops of up
to 20% and does not preserve relative rankings. STAMP-
watermarked variants also result in high semantic preserva-
tion (P-SP scores between 0.83 & 0.91) across all bench-
marks. For reference, the average score of human para-
phrases is 0.76 as per (Krishna et al., 2023). These results
are available in Table 4.

4.4. Parameters Affecting the Power of the Test

Benchmark size. To analyze the effect of sample size (n)
on detection power, we evaluate our test on benchmark sub-
sets ranging from 100 to 1000 examples. For each size, we
average p-values across 10 runs with different random seeds.
Our results, in Figure 2a, demonstrate that our approach
works even with just 600 examples, where we consistently
achieve low p-values (≈ 10−3) across all datasets.
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Figure 2: Impact of benchmark size (n) and private key count (m) on STAMP’s statistical power. The dotted red line
indicates the standard significance threshold (p = 0.05). Lower values indicate stronger statistical evidence of contamination.

Private key count. Our proposed test compares the per-
plexity of the public version against the average perplexity
of m private versions (Equation 4). Here we analyze how
this hyperparameter (m) affects the statistical power of our
test. As shown in Figure 2b, increasing the number of pri-
vate keys strengthens detection up to a threshold of 5 keys,
beyond which we see negligible improvement.

Size of Pretraining Corpora. We analyze our test’s effec-
tiveness for different scales of pretraining data by combining
contaminated benchmarks with varying amounts of Open-
WebText data (Contributors, 2023). We note that while
the strength decreases with corpus size, the rate of decline
diminishes substantially beyond 4 billion tokens, with mini-
mal drop in detection strength between 4 and 6 billion tokens
(Figure 3). Notably, these results are obtained with a mod-
est 1B-parameter model; given that larger models exhibit
stronger memorization (Carlini et al., 2019), we believe that
STAMP will detect membership for larger models.

5. Real World Case Studies
To demonstrate STAMP’s effectiveness in detecting unli-
censed use of copyrighted data in model training, we present
two expository case studies. Specifically, we apply STAMP
to detect membership of (1) abstracts from EMNLP 2024
proceedings (emn, 2001) and (2) articles from the AI Snake
Oil newsletter (Narayanan & Kapoor, 2023).

Paper Abstracts. We sample 500 papers from EMNLP
2024 proceedings (emn, 2001) and generate watermarked
rephrasings of their abstracts. Additionally, we generate
watermarked rephrasings for another set of 500 abstracts,
which we use as a held-out validation set for our experi-
ments. The prompt templates used for rephrasing and exam-
ples of watermarked abstracts are provided in Appendix K
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Figure 3: Log p-value vs pretraining corpus size. We
observe that the rate of decline diminishes as we increase
the corpus size, with negligible drop between 4B and 6B.

and Appendix L , respectively.

To evaluate whether the semantic content of abstracts is
preserved, we use the P-SP metric (Wieting et al., 2022),
where watermarked abstracts achieve a high score of 0.95,
indicating that the semantic content is largely preserved. To
further evaluate the acceptability of watermarked abstracts,
we conduct both an automated evaluation (using GPT-4) and
a small-scale human study involving original authors. In
both evaluations, the original abstract and its watermarked
rephrasing is compared, classifying the rephrased content
into one of five options: preferred, acceptable, acceptable
with minor revisions, or major revisions, and lastly unac-
ceptable. Further details are available in Appendix I.

For 1000 watermarked abstracts, 99% were rated by GPT-4
as either preferred or acceptable. In a preliminary human
study, we ask authors to review rephrasings of their own
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Figure 4: Author evaluation of watermarked abstracts.
Out of the 40 total abstracts, for 4 of them the watermarked
version was preferred, for another 24 it was found to be
acceptable, 11 required minor edits with just 1 requiring
major edits, suggesting that watermarking preserve quality.

abstracts. Our results in Figure 4 show that out of the 40
watermarked abstracts evaluated, authors find 24 to be ac-
ceptable as is, indicate 11 could use minor edits, and 4
prefer the rephrased version over their self-written abstracts,
with just 1 abstract requiring major edits. Details of the
evaluation are provided in Appendix I.

Blog Posts from AI Newsletter. We collect 56 posts from
the popular AI Snake Oil newsletter (Narayanan & Kapoor,
2023), and use 44 for pretraining and hold 12 for validation.
To demonstrate how STAMP could handle longer-form con-
tent, we adapt it to rephrase at the paragraph level, treating
each paragraph as an independent datapoint for our test.
Note, while each paragraph serves as a datapoint for our
test, the blog posts are included in the pretraining corpora at
the document level, following standard pretraining practices
(detailed in Appendix E). We present the prompt used to
rephrase in Appendix K

We evaluate STAMP’s ability to detect dataset membership
by performing continual pretraining on the Pythia 1B model
using a training corpus composed of watermarked paper
abstracts (≈ 105K tokens), watermarked blog posts (≈ 95K
tokens), and a subset of OpenWebText (≈ 3.3B tokens).
Additionally, to verify that STAMP can detect dataset mem-
bership for distinct datasets watermarked with the same key,
we apply a consistent watermarking key when generating
the public versions of both datasets.

Results. Our results in Table 5 demonstrate that STAMP
effectively detects dataset membership for both paper ab-
stracts and blog posts, achieving statistically significant
p-values. To compare, we evaluate LLM DI under different
choices of validation set: first, using private rephrases of

Table 5: Case studies. We report p-values of different ap-
proaches for detecting dataset membership (lower is better).
LLM DI (same) uses the private rephrasing of the same doc-
uments, while LLM DI (different) uses different documents
from a held out set from the same distribution.

METHOD (↓) PAPER
ABSTRACTS

BLOG
ARTICLES

LLM DI (SAME) 0.15 0.44
LLM DI (DIFFERENT) 0.05 0.58

STAMP
(W/O PAIRED TESTS) 0.01 0.07

STAMP 2.7E-12 2.4E-3

the same documents and second, using a different held-out
set of documents watermarked with the same public key.
While LLM DI can detect membership for paper abstracts,
it fails to do so for blog posts. Further, membership infer-
ence attacks exhibit near-random performance (Table 7). To
verify the robustness of STAMP against false positives, we
evaluate it under the two settings discussed earlier (§4.2).
Our results in Table 2 confirm that STAMP does not result
in any false positives, reinforcing its reliability.

6. Related Work
We discuss the most closely related work below, focusing on
statistical approaches for detecting dataset membership, test-
set contamination and the use of watermarks for detecting
membership of datasets. A more comprehensive review of
related literature is provided in Appendix G.

Dataset Membership. A recent hypothesis-testing ap-
proach embeds random sequences in text or substitutes
characters with visually-similar unicodes (Wei et al., 2024).
Similarly, Meeus et al. (2024a) propose inserting “copyright
traps” into documents to enhance document-level member-
ship inference. These methods then test the model’s prefer-
ence for these inserted sequences or substitutions. However,
such alterations impair machine readability, making them
impractical for content creators. Another recent proposal
(Maini et al., 2024) selectively combines membership infer-
ence attacks (MIAs) that provide positive signals for a given
distribution and aggregates them to perform a statistical test
on a dataset. Their method assumes access to a validation
set drawn from the same distribution as the target dataset
and unseen by the model—a difficult requirement to satisfy.

A recent position paper (Zhang et al., 2024b) argues that
methods attempting to estimate FPR by collecting non-
members a posteriori are statistically unsound, a position
that aligns with our analysis of PaCoST (Zhang et al.,

8
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2024a). We believe STAMP aligns with the criteria for a
sound membership proof presented in the paper. Specifi-
cally, we use private members sampled from the same distri-
bution as the publicly released version x. Since our private
members are semantically equivalent to the public member,
any causal effects of publishing x would similarly affect
the private members, ensuring the statistical validity of our
approach.

Test Set Contamination. While our focus is detecting
membership of any arbitrary collection of documents, some
recent statistical approaches have focused on detecting test
set contamination. A recent work (Oren et al., 2024) pro-
poses a permutation test based on the canonical ordering in
a benchmark but relies on the strong assumption of metadata
contamination (canonical ordering of the dataset). Another
recent proposal (Zhang et al., 2024a) compares the model
confidence on test instances and their rephrased counter-
parts. However, as discussed earlier (§4.1), LLMs may favor
their own outputs, and this is an oft-overlooked confounder.
Additionally, there have been a few approaches based on
prompting models to reproduce near-exact test examples
(Sainz et al., 2023b; Golchin & Surdeanu, 2024). However,
the heuristic-y nature of these approaches prevents them
from providing statistical evidence of contamination.

Watermarking for Dataset Membership. A few recent
approaches have explored using LLM watermarks for mem-
bership detection. Waterfall (Lau et al., 2024) proposes
a watermarking scheme for protecting IP of text and fur-
ther demonstrates how to detect unauthorized fine-tuning of
LLMs on proprietary text data. Specifically, to detect mem-
bership of a text, their approach prompts the target model
with a prefix and detects the embedded watermarking in the
generated new tokens to test for membership. While effec-
tive in certain scenarios, their approach requires a higher
level of memorization and has only been demonstrated in
fine-tuning settings with multiple epochs. Additionally, their
method is not applicable to domains like benchmarks where
each sample is only a few tokens long. These limitations
may restrict its practical utility for detecting membership of
a dataset in the pretraining corpora of an LLM.

Another recent contemporaneous study (Sander et al., 2025)
proposes a similar approach where watermarks are embed-
ded in benchmarks by reformulating the original questions
with a watermarked LLM. While employing a similar setup,
their detection approach differs substantially from ours.
Their method relies on detecting overfitting of the contam-
inated model on token-level watermarking biases to prove
contamination, whereas our approach compares perplexity
differences between the publicly released benchmarks and
private versions watermarked with different keys.

7. Conclusion & Future Directions
In this work, we presented STAMP, a statistical framework
for detecting dataset membership, which can reliably be
used by content creators to watermark their content, while
preserving the utility, or the meaning, of the original con-
tent. We demonstrated STAMP’s effectiveness in detecting
test-set contamination through comprehensive experiments.
Our ablation studies systematically analyzed how detec-
tion strength varies with dataset size, the number of private
versions, and pretraining corpus size. We validated the real-
world applicability of our approach through two case studies:
detecting paper abstracts and blog posts in pretraining data.

There are several important limitations of our work: first,
watermarks must be embedded before the content is released
online, making it inapplicable to already published content.
We believe this is a fundamental limitation shared by ex-
isting statistical methods, as they require knowledge of the
data-generating process to construct a valid null distribution.
Second, our method requires access to token probabilities
from the model (gray box access). Third, while our human
study showed that majority of authors found the rephrasings
to be acceptable, rephrasing could introduce errors in the
content. However, we believe this will be less of a concern
moving forward as general model capabilities, including
paraphrasing quality, continue to improve. Finally, due to
computational constraints, we evaluated our approach us-
ing continual pretraining rather than training models from
scratch. While our results demonstrate effectiveness in this
setting outperforming baselines, future work could validate
these findings using models that are trained from scratch.

Future work could explore the optimal watermarking
strength for different data distributions (and use cases) to
balance a (plausible) trade-off between detectability and
quality of watermarked content. Future work could also
validate, or extend, our approach to other domains, such as
code, speech, images or videos.
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their pretraining corpora, we believe our proposal holds
potential to considerably increase transparency in model
training. Our tool could be beneficial to content creators
seeking to protect their work from unauthorized use.

Additionally, our work has implications for the broader AI
ecosystem. By detecting test-set contamination, our ap-
proach can help researchers obtain more accurate estimates
of model capabilities and track AI progress.
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A. Additional Results

Table 6: Size of evaluation benchmark used in the intentional contamination experiment (§4.4). Each benchmark is
subsampled to 1,000 examples, with each injected benchmark making up less than 0.001% of the entire pretraining corpus,
which consists of 6.7 billion tokens. Each benchmark is injected exactly once into the corpus without any duplication.

BENCHMARK SIZE (TOKENS) % PRETRAINING DATA

TRIVIAQA 34609 5.1E-4
ARC-C 36863 5.5E-4
MMLU 42548 6.3E-4
GSM8K 61132 9.0E-4

Table 7: Comparison of Membership Inference Attacks (MIA) performance across different datasets. We report AUC
scores for three MIA methods under two settings: Same Documents: public rephrases in training vs private rephrases of
the same documents, and Different Documents: public rephrases in training vs different unseen documents from the same
dataset. AUROC score of ≈ 0.5 indicates performance no better than random guessing.

Same Documents. (↑) Different Documents. (↑)
DATASET PPL ZLIB MIN-K MIN-K++ DC-PDD PPL ZLIB MIN-K MIN-K++ DC-PDD

TRIVIAQA 0.50 0.50 0.50 0.50 0.52 0.46 0.57 0.48 0.44 0.58
ARC-C 0.50 0.50 0.50 0.49 0.51 0.49 0.50 0.48 0.45 0.52
MMLU 0.48 0.49 0.48 0.49 0.52 0.43 0.48 0.44 0.45 0.52
GSM8K 0.50 0.50 0.50 0.50 0.52 0.47 0.47 0.48 0.48 0.52
PAPER ABSTRACTS 0.48 0.49 0.48 0.46 0.53 0.41 0.46 0.42 0.40 0.55
BLOG ARTICLES 0.50 0.51 0.51 0.49 0.50 0.49 0.51 0.48 0.46 0.51

Table 8: False positive analysis on off-the-shelf LLMs. We apply STAMP on LLMs that have not seen the datasets and
report the p-values. Our results (high p-values) show that our method is robust against false positives.

DATASET (↑) PYTHIA
1B

GEMMA-2
2B

MISTRAL
7B

LLAMA-3
8B

GEMMA-2
9B

TRIVIAQA 0.52 0.91 0.94 0.65 0.91
ARC-C 0.31 0.25 0.12 0.26 0.37
MMLU 0.54 0.41 0.29 0.24 0.43
GSM8K 0.38 0.16 0.26 0.71 0.37
PAPER ABSTRACTS 0.55 0.74 0.83 0.63 0.89
BLOG ARTICLES 0.21 0.72 0.74 0.88 0.12

A.1. Detecting Partial Contamination

In practice, benchmarks may be partially contaminated, where only a subset of test examples appears in the pretraining
corpora. Understanding the impact of partial contamination is critical because benchmark owners cannot identify which
specific test examples have been leaked. This study complements our earlier analysis in Section 4.4, by focusing on the
sensitivity of our approach under varying proportions (α) of contaminated examples within a fixed benchmark size (n).

Our results in Figure 5 highlight that as α increases the detection strength improves, with p-values dropping below 10−3

when majority of the benchmark is contaminated. We also observe that STAMP reliably detects contaminated even when
only 40% of the test examples are contaminated. Our findings confirm that STAMP successfully identifies contamination
with high statistical significance, even in scenarios of partial contamination.
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Figure 5: Log p-value vs proportion of benchmark that is contaminated. We plot the log p-value against the proportion
of test examples that are leaked to analyze the sensitivity of our test to detect contaminated in scenarios where the benchmark
is only partially contaminated (lower is better).

B. P-SP Metric
To validate semantic preservation in our watermarking process, we employ P-SP (Wieting et al., 2022), a state-of-the-art
semantic similarity model. P-SP uses embedding averaging trained on a large corpus of filtered paraphrase data, and
has been shown to effectively distinguish between true paraphrases and unrelated text. As evidenced by Krishna et al.
(2023), P-SP assigns an average score of 0.76 to human-created paraphrases in the PAR3 dataset (Thai et al., 2022), while
random paragraph pairs from the same book score only 0.09. Table 4 reports the average P-SP scores between original
benchmarks and their watermarked versions across 9 random hash keys. Our watermarked versions achieve high P-SP
scores (0.83-0.95) across all benchmarks, substantially exceeding the average score for human paraphrases, indicating strong
semantic preservation.

C. Bag-of-Words Classifier
We train a random forest classifier on the bag-of-words feature representations for the datasets. The classifier is trained on
80% of the member and non-member sets, with evaluation performed on the remaining 20%. Results are aggregated over a
5-fold cross-validation. The detailed results are presented in Table 9.

Table 9: AUROC using bag-of-words features to distinguish between different versions of datasets. The first column
shows AUROC for distinguishing original datasets from their rephrased versions, where high values (> 0.8) indicate clear
distributional differences. The second column shows AUROC for distinguishing between public and private watermarked
versions, where values near 0.5 indicate distributional similarity.

DATASET
ORIGINAL VS
REPHRASED

PUBLIC VS
PRIVATE

TRIVIAQA 0.66 0.51
ARC-C 0.83 0.52
MMLU 0.83 0.53
GSM8K 0.84 0.57
PAPER ABSTRACTS 0.86 0.57
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D. Perplexity
Perplexity (PPL) measures how well a language model predicts a given text sequence S, with lower values indicating better
prediction. For an auto-regressive language model θ and text sequence S, tokenized as a sequence of N tokens {s1, . . . , sN},
perplexity is computed as the exponent of the loss. Formally:

PPLθ(S) = exp (Lθ(S)) (5)

Where the loss Lθ is defined as:

Lθ(S) = −
1

N

N∑
i=1

log (Pθ(si|s<i)) (6)

Here Pθ(si|s<i) denotes the predicted probability for token si by the language model θ given the context of previous tokens
{s1, . . . , si−1}.

E. Pretraining Details
We continually pretrain Pythia 1B on intentionally contaminated OpenWebText Test case instances from the benchmark
were randomly inserted between documents from OpenWebText. We trained for 1 epoch of 46000 steps with an effective
batch size of 144 sequences and sequence length of 1024 tokens. We used the AdamW optimizer (Loshchilov & Hutter,
2019) with a learning rate of 10−4, (β1, β2) = (0.9, 0.999) and no weight decay.

F. Watermark for Large Language Models
In work, we use the prominent KGW (Kirchenbauer et al., 2023) watermarking scheme. KGW scheme uses a hash function
that takes the context (preceding tokens) and a hash key h to partition the vocabulary V into two disjoint sets at each
generation step: a green list G and a red list R. Formally, for a language model M with vocabulary V , and a prefix
comprising tokens w1,w2, . . . ,wn, the scheme involves first computing the logitsM(w1 . . . ,wn) = (l1, . . . , l|V |) of
the language model that would ordinarily be used to predict the subsequent token. As per a hyper-parameter k, the last
k tokens, wn−k+1 to wn, are then fed to a pseudo-random function F to partition V into a green list G and a red list R
such that |G| + |R| = |V |. Finally, the logits corresponding to the tokens in the green list, G, are boosted by δ (δ > 0).
Specifically, in our work we set k = 1 and δ = 1.0 as the chose hyperparameters. The watermark can then be detected
through a one-proportion z-test on the fraction of green tokens in the generated text.

G. Related Works
Our works relates to a large literature of work on membership inference (§G.2), dataset membership (§G.3) and test-set
contamination detection (§G.4) in large language models.

G.1. Watermarking for Dataset Membership

Liu et al. (2023a) propose TextMarker, a backdoor-based membership inference technique for protection of classification
datasets. Their approach watermarks each original sample (x, y) by inserting specific triggers (character or word-level
substitutions) into x, creating a backdoored sample xt. They then assign an altered target label yt (yt ̸= y) to this
modified input. Membership detection is performed by testing whether a model f produces the watermarked label with
high probability: Pr(f(xt) = yt). While effective, TextMarker is specifically designed for classification datasets and it is
not trivial to extend it to other kinds of benchmarks or the broader problem of dataset membership detection, limiting its
real-world applicability.

Recent work has proposed detecting watermark signals in suspect model outputs to determine dataset membership. Waterfall
(Lau et al., 2024) enables creators to watermark their text using a robust watermarking scheme that leverages an LLM for
rephrasing. They further demonstrate that watermarks in fine-tuning data, persist in downstream LLM outputs, allowing for
membership detection. While both approaches use LLM-based rephrasing, Waterfall relies on detecting watermarks directly
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in model generations, whereas our method uses multiple watermarked versions to detect perplexity divergences. While
Waterfall is effective for text watermarking, it has limited utility for pretraining membership detection. It relies on strong
overfitting and presumes that the model is trained on datasets over multiple epochs. Additionally, their approach is not
applicable to short text segments commonly found in benchmarks. Another recent contemporaneous study (Sander et al.,
2025) proposes a similar approach where watermarks are embedded in benchmarks by reformulating the original questions
with a watermarked LLM. While employing a similar setup, their detection approach differs substantially from ours. Their
method relies on detecting model overfitting on the green tokens in the watermarked benchmark to prove contamination,
whereas our approach compares perplexity differences between the publicly released benchmarks and private versions
watermarked with different keys.

G.2. Membership Inference

Membership inference, initially proposed by Shokri et al. (2016), is a long-standing problem in machine learning: given a
data point and a machine learning model, determine whether that data point was used to train the model. MIAs for LLMs
are broadly based on applying pre-defined thresholds to membership scores that are typically based on loss-based metrics.
We briefly describe the specific membership scores proposed by different MIAs that we employ in our experiments.

• PERPLEXITY: Proposed by Yeom et al. (2018), this MIA uses loss (perplexity in the context of LMs) as the scoring
metric. However, this approach suffers from high false positives as it tends to classify naturally predictable sequences
as members of the training set.

• ZLIB ENTROPY (Carlini et al., 2021) computes a score by taking the ratio between the model’s perplexity and the zlib
compression size of the text. Lower ratios indicate potential membership in the training data.

• MIN-K% (Shi et al., 2024) computes the score by averaging the probabilities of the k% least likely tokens in a sequence.
By focusing on the least likely tokens, it aims to solve the false positive problem with perplexity.

• MIN-K%++ (Zhang et al., 2024c) compares the probability of the target token with the expected probability of all
tokens within the vocabulary. It is based on the insight that each training token will tend to have higher probability
relative to many other candidate tokens in the vocabulary.

• DC-PPD (Zhang et al., 2024d) computes the divergence between the token probability distribution and the token
frequency distribution for detection.

G.3. Detecting Dataset Membership

Detecting dataset membership addresses the challenge of detecting whether a given dataset was used by LLM developers in
pretraining. Unlike membership inference attacks (MIAs), which focus on identifying whether individual sequences were
included in a model’s training data, dataset membership concerns verifying the inclusion of a collection of documents.

Wei et al. (2024) propose a hypothesis-testing approach to detect membership by inserting random sequences or Unicode
character substitutions as data watermarks. This method works by testing the model’s preference for the inserted data
watermarks against other random data watermarks. First, their proposed watermarks can impact machine readability,
affecting search engine indexing and retrieval-augmented generation (RAG) pipelines. More critically, unicode substitutions
can significantly alter tokenization processes, potentially compromising the utility of evaluation benchmarks. Although
these limitations may be manageable for some creators, Our approach offers an alternative that better preserves content
quality while maintaining detection capability. Another recent proposal (Maini et al., 2024) is to selectively combining
MIAs that provide positive signal for a given distribution, and aggregating them to perform a statistical test on a given
dataset. Their method assumes access to a validation set drawn from the same distribution as the target dataset and unseen
by the model–a requirement that can be challenging to satisfy in many practical scenarios.

Meeus et al. (2024a) propose inserting “copyright traps” into documents to enhance document-level membership inference
for smaller models that lack natural memorization. Liu et al. (2023a) introduce a backdoor-based dataset inference approach.
However, these methods rely on heuristics and do not provide the false positive guarantees that hypothesis-testing-based
approaches offer.

Recent studies (Maini et al., 2024; Duan et al., 2024; Das et al., 2024; Meeus et al., 2024b) suggest that detecting sequence
level membership in LLMs trained on trillions of tokens in a single epoch is likely infeasible. These studies also highlight
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the limited efficacy of MIAs for LLMs, showing that such approaches barely outperform random guessing. Moreover, the
apparent success of MIAs in certain scenarios can often be attributed to distributional differences between the member and
non-member sets used in evaluations, rather than their ability to reliably infer true membership.

G.4. Test Set Contamination Detection

There have been a few recent third-party approaches that are focused on detecting test-set contamination in LLMs. Heuristic
prompting-based methods (Sainz et al., 2023b; Golchin & Surdeanu, 2024) attempt to detect contamination by prompting
models to reproduce exact or near-exact test examples. Reproducing verbatim examples requires a high level of memorization
which typically requires a high duplication of test examples (Carlini et al., 2021) and strong memorization capabilities
typically absent in smaller models (Meeus et al., 2024a). The heuristic nature of these approaches prevents them from
providing a statistical evidence of contamination.

Statistical approaches to detect contamination are limited. Oren et al. (2024) build on the principle that in absence of
data contamination, all orderings of an exchangeable test set should be equally likely. Their work relies on the strong
assumption of metadata contamination (canonical ordering of the dataset)–a presumption that can often be violated. Another
recent proposal (Zhang et al., 2024a) uses a statistical test to compare model confidence on original test instances and their
rephrased counterparts. However, as discussed earlier, their null hypothesis can be invalid due to LLMs’ inherent bias
towards machine-generated content.

H. Radioactivity of Watermarks
Sander et al. (2024) proposed methods to detect when watermarked texts are used as fine-tuning data for an LLM. Their
approach is based on the insight that training on watermarked texts leaves detectable traces of the watermark signal in
the resulting model due to token-level overfitting. In a recent contemporaneous study, Sander et al. (2025) extended this
approach to detect benchmark contamination. Specifically, they propose watermarking benchmarks before release and
later detecting traces left by the watermarked benchmarks through a statistical test. Since the statistical test relies on
token-level overfitting, their approach requires duplication and stronger watermarks, which introduce more distortion into the
rephrasings. Additionally, the tokenizer-dependent nature of detecting watermarks limits the applicability of their approach,
as the rephrasing model and contaminated model need to share the same tokenizer.

Given the requirement that the rephrasing and contaminated LLM should share the same tokenizer, we conduct additional
controlled experiments comparing the approaches. We rephrase with Llama-3.1-8B Instruct (AI@Meta, 2024) with top-
p sampling with p = 0.7 and temperature = 0.5, matching the sampling parameters used in the original study. For
watermarking, we use KGW (Kirchenbauer et al., 2024) scheme, with context window of size 2, split ratio (γ) of 0.5 & and
boosting value (δ) of 2. We create a contaminated corpus of 2 billion tokens following our methodology in Section 4.2, but
with a duplication count of 4, meaning each benchmark sample is inserted four times in the pretraining corpora.

We compare STAMP with Sander et al. (2025) for detecting benchmark contamination in Table 10. With a moderate
watermarking strength (δ = 2.0) and repetition count of 4, the radioactivity based approach fails to detect contamination of
watermarked test examples, while STAMP achieves significantly low p-values. These results align with the original paper’s
findings, which indicated that their method requires around 16 repetitions to achieve low p-values.

Table 10: P-values for detecting test-set contamination. We compare our proposed STAMP approach with detection based
on radioactivity (Sander et al., 2025). Rows marked 0 denote vanishingly small p-values. Across both the benchmarks,
STAMP consistently achieves lower p-values (lower is better).

BENCHMARK (↓)
METHOD ARC-C MMLU

RADIOACTIVITY
(SANDER ET AL., 2025) 0.61 0.13

STAMP 0 0
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I. Case Study: Detecting Research Paper Abstracts in Pretraining Data
To demonstrate the broader applicability of STAMP for detecting dataset membership across different forms of content, we
explore its effectiveness in detecting membership of abstracts of papers from EMNLP ’24 proceedings (emn, 2001). We
evaluate both the preservation of academic writing quality in watermarked abstracts and the effectiveness of STAMP in
detecting their inclusion in training data.

Experimental Setup. We sample 500 papers from EMNLP 2024 proceedings and create watermarked versions of their
abstracts following our methodology from Section 3. The prompt template and examples of rephrased abstracts are presented
in Appendix K and Appendix L.2 respectively. To evaluate detection capability, we perform controlled experiments on the
Pythia 1B model (Biderman et al., 2023) through continual pretraining. The pretraining corpora consists of a mixture of
the public watermarked versions of these abstracts and a subset of OpenWebText (approximately 3 billion tokens). The
abstracts comprise approximately 100K tokens, representing just 0.003% of the pretraining corpus.

Results. Table 11 demonstrates STAMP’s effectiveness in detecting dataset membership. Our approach achieves a near-
zero p-value (≈ 10−12), indicating strong statistical evidence of membership. For comparison, LLM DI (Maini et al.,
2024) achieves a p-value of 0.05 with access to a validation set of unseen abstracts from the same conference and is unable
to detect membership using the privately held counterparts of the same abstracts included in the pretraining data as the
validation set. In Table 7 we evaluate state-of-the-art MIAs and finding that they perform no better than random chance
(AUROC ≈ 0.5). Our findings corroborate with recent studies (Duan et al., 2024; Maini et al., 2024; Das et al., 2024) that
highlight the failure of sequence level MIAs on LLMs.

Quality Evaluation. To evaluate the quality of watermarked abstracts, we use GPT-4 (OpenAI, 2023) as a judge following
the prompt template in Figure I. Each abstract was classified into one of five quality tiers. Our analysis shows that 82.7% of
the watermarked abstracts were rated as preferred and 16.3% as acceptable indicating that 99% maintain high academic
quality. Only 1% required minor revisions, with none requiring major revisions or deemed inadequate.

Since LLMs often exhibit systematic preferences for LLM-generated text over human-written content (Liu et al., 2023b;
Mishra et al., 2023; Laurito et al., 2024), we additionally conduct a human study involving the original authors. We asked
40 authors to rate watermarked versions of their own abstracts using the same quality tiers. The human evaluation strongly
corroborates our automatic assessment, with most watermarked versions being preferred or acceptable: 4 authors preferred
the watermarked version, 24 authors rated the watermarked abstracts as acceptable, 11 indicated the text required minor
revisions and just 1 indicating that their rephrased abstract requires major edits.

Additionally, we measure semantic preservation using the P-SP metric (Wieting et al., 2022), finding an average score of
0.95 between original and watermarked abstracts, demonstrating strong semantic similarity.

Table 11: Comparison of different approaches for detecting membership of paper abstracts. Bold indicates statistically
significant results (p < 0.05). Our approach results in lower p-values compared to other approaches (lower is better).

METHOD P-VALUE (↓)
LLM DI (MAINI ET AL., 2024) (1) 0.15
LLM DI (MAINI ET AL., 2024) (2) 0.05

STAMP (W/O PAIRED TESTS) 0.01
STAMP 2.7E-12
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Prompt Template to Evaluate Quality of the Rephrased Abstracts using GPT4

You will be given an original abstract and its rephrased version. Your task
is to evaluate the quality of abstract rewrites for ML research paper based
on:

1. Meaning Preservation
2. Clarity
3. Technical Accuracy

Evaluate the rewritten abstract and assign one of these ratings:
- Preferred: The rewrite improves upon the original in terms of clarity and
readability while maintaining full technical accuracy.
- Acceptable: The rewrite matches the original in quality and could serve
as a direct replacement without requiring changes.
- Minor Revisions: The rewrite is promising but requires minor edits to
reach the original’s quality.
- Major Revisions: The rewrite has significant issues with meaning
preservation, clarity, or technical accuracy and requires major edits.
- Inadequate: The rewrite fails to convey the original research effectively
due to critical flaws in meaning, clarity, or technical accuracy.

Here are the abstracts:

Original Abstract: {original abstract}
Rephrased Abstract: {watermarked abstract}

Provide a short explanation of your rating, followed by your final rating
in the format:
Final Rating: {rating}

J. Case Study: Detecting ML Blog Posts in Pretraining Data
The inclusion of copyrighted material in LLM training data has emerged as a significant concern, leading to legal disputes,
such as the lawsuit between New York Times and OpenAI (NewYorkTimes, 2023), among others. Through a case study, we
demonstrate how STAMP can help creators detect potential unauthorized use of their content in model training. Specifically,
we use STAMP to detect the membership of the popular AI Snake Oil newsletter (Narayanan & Kapoor, 2023).

Experimental Setup. We collect 56 blogs from the newsletter, creating watermarked versions of each newsletter using,
the prompt template is presented in Figure K. We randomly select a subset of 44 blogs that we include in pretraining
corpora and keep the remaining 12 blogs as a validation set that is unseen by the model. To evaluate detection capability,
we perform controlled experiments on the Pythia 1B model (Biderman et al., 2023) through continual pretraining. The
pretraining corpora consists of a mixture of the public watermarked versions of these abstracts and a subset of OpenWebText
(approximately 3 billion tokens). The abstracts comprise approximately 94K tokens, representing just 0.003% of the
pretraining corpus.

Results. Table 11 demonstrates STAMP’s effectiveness in detecting dataset membership for the blog articles. LLM DI is
unable to detect membership under the two different choices of validation set: (1) with the private rephrases of the same
44 blog posts as the validation set, and (2) with the version of the held out set of 12 blog posts that is watermarking using
the public key. In Table 7 we evaluate state-of-the-art MIAs and finding that they perform no better than random chance
(AUROC ≈ 0.5). Our findings corroborate with recent studies (Duan et al., 2024; Maini et al., 2024; Das et al., 2024) that
highlight the failure of sequence level MIAs on LLMs.
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Table 12: Comparison of different approaches for detecting membership of AI Snake Oil. Bold indicates statistically
significant results (p < 0.05). Our approach results in lower p-values compared to other approaches (lower is better).

METHOD P-VALUE (↓)
LLM DI (MAINI ET AL., 2024) (1) 0.44
LLM DI (MAINI ET AL., 2024) (2) 0.58

STAMP (W/O PAIRED TESTS) 0.07
STAMP 2.4E-3

K. Prompt Templates for Rephrasing
In this section, we outline the prompts used with LLaMA-3 70B (AI@Meta, 2024) to generate watermarked versions of the
documents used in our experiments.

Prompt Template for Rephrasing Benchmarks

Rephrase the question given below. Ensure you keep all details present in
the original, without omitting anything or adding any extra information not
present in the original question.

Question: What is the main energy source for deep ocean currents that move
large volumes of water around the planet?

Your response should end with "Rephrased Question: [rephrased question]"

Prompt Template for Rephrasing Abstracts

Rephrase the abstract of a ML research paper given below following these
strict guidelines:

PRESERVE:
- All technical details and findings
- Original tone of the abstract

AVOID:
- Adding interpretive language not present in the original abstract
- Removing any details
- Changing meaning or emphasis

Abstract: {original abstract}

Your response should end with "Rephrased Abstract: {rephrased abstract}"
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Prompt Template for Rephrasing Blogs

Rephrase the below paragraph from an AI newsletter while maintaining
coherent flow between paragraphs. Here are your instructions:

1. I will provide the previous paragraph (marked as CONTEXT) and the
current paragraph to rephrase (marked as TARGET).
2.Your task is to:
- Rephrase the TARGET paragraph so it flows naturally from the previous
paragraph (CONTEXT)
- Keep the same tone and emphasis as the original paragraph
-Preserve the technical details present in the original paragraph
- Do not add any extra information not present in the original paragraph
- Avoid making sentences wordier or adding interpretive language

3. Format your response as: REPHRASED PARAGRAPH: [your rephrased version]

Context: {context}
Paragraph: {paragraph}

L. Watermarked Examples
L.1. Watermarked Test Sets

L.1.1. TRIVIAQA

Original Question: Which enduring cartoon character was created by Bob
Clampett for the 1938 cartoon Porky’s Hare Hunt?

Rephrased Question: Which long-lasting cartoon character was originally
created by Bob Clampett for the 1938 cartoon titled ’Porky’s Hare Hunt’?

Original Question: Which US state lends its name to a baked pudding, made
with ice cream, sponge and meringue?

Rephrased Question: Which US state is the namesake of a baked pudding that
consists of sponge, meringue, and ice cream?

L.1.2. ARC CHALLENGE

Original Question: Company X makes 100 custom buses each year. Company
Y makes 10,000 of one type of bus each year. Which of the following is
the most likely reason a customer would buy a bus from company X instead
of company Y?

Rephrased Question: What is the most probable reason a customer would
choose to purchase a bus from Company X, which produces 100 custom buses
annually, over Company Y, which manufactures 10,000 buses of a single type
each year?
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Original Question: Sugars are necessary for human cell function. Which of
the following are human cells not capable of doing?

Rephrased Question: Given that sugars are necessary for human cell
function, what is it that human cells are unable to do?

L.1.3. MMLU

Original Question: Noradrenaline is the neurotransmitter between which of
the two structures below?

Rephrased Question: Between which two structures listed below does
noradrenaline act as the neurotransmitter?

Original Question: On which surfaces of the teeth is dental plaque most
likely to accumulate in the mouth of a patient with poor oral hygiene?

Rephrased Question: In a patient with poor oral hygiene, on which surfaces
of the teeth is dental plaque accumulation most probable in the mouth?

L.1.4. GSM8K

Original Question: Darrell and Allen’s ages are in the ratio of 7:11. If
their total age now is 162, calculate Allen’s age 10 years from now.

Rephrased Question: If the current ages of Darrell and Allen are in a 7:11
ratio and their combined age at present is 162, what will be Allen’s age a
decade from now.

Original Question: Indras has 6 letters in her name. Her sister’s name has
4 more letters than half of the letters in Indras’ name. How many letters
are in Indras and her sister’s names?

Rephrased Question: If Indras’ name contains 6 letters, and her sister’s
name has a number of letters that is 4 more than half the number of letters
in Indras’ name, then how many letters are there in Indras’ and her sister’s
names combined?
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L.2. Watermarked Paper Abstracts

Tree of Problems: Improving structured problem solving with compositionality (Zebaze et al., 2024)

Original Abstract:

Large Language Models (LLMs) have demonstrated remarkable performance across
multipletasks through in-context learning. For complex reasoning tasks
that require step-by-step thinking, Chain-of-Thought (CoT) prompting has
given impressive results, especially when combined with self-consistency.
Nonetheless, some tasks remain particularly difficult for LLMs to solve.
Tree of Thoughts (ToT) and Graph of Thoughts (GoT) emerged as alternatives,
dividing the complex problem into paths of subproblems. In this paper,
we propose Tree of Problems (ToP), a simpler version of ToT, which
we hypothesise can work better for complex tasks that can be divided
into identical subtasks. Our empirical results show that our approach
outperforms ToT and GoT, and in addition per forms better than CoT on
complex reasoning tasks. All code for this paper will be made available.

Watermarked Abstract:

Large Language Models (LLMs) have achieved notable performance in multiple
tasks using in-context learning. For complex reasoning tasks requiring
step-by-step thinking, Chain-of-Thought (CoT) prompting, especially when
combined with self-consistency, has yielded impressive results. However,
certain tasks continue to pose significant challenges for LLMs. Tree of
Thoughts (ToT) and Graph of Thoughts (GoT) have emerged as alternatives by
breaking down complex problems into subproblem paths. This paper introduces
Tree of Problems (ToP), a simplified ToT version that we hypothesize will
be more effective for complex tasks comprising identical subtasks. Our
empirical findings indicate that ToP outperforms both ToT and GoT, and also
surpasses CoT on complex reasoning tasks. The code used in this paper will
be made available.
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“A good pun is its own reword”: Can Large Language Models Understand Puns? (Xu et al., 2024)

Original Abstract:

Puns play a vital role in academic research due to their distinct structure
and clear definition, which aid in the comprehensive analysis of linguistic
humor. However, the understanding of puns in large language models (LLMs)
has not been thoroughly examined, limiting their use in creative writing
and humor creation. In this paper, we leverage three popular tasks, i.e.,
pun recognition, explanation and generation to systematically evaluate
the capabilities of LLMs in pun understanding. In addition to adopting
the automated evaluation metrics from prior research, we introduce new
evaluation methods and metrics that are better suited to the in-context
learning paradigm of LLMs. These new metrics offer a more rigorous
assessment of an LLM’s ability to understand puns and align more closely
with human cognition than previous metrics. Our findings reveal the \lazy
pun generation" pattern and identify the primary challenges LLMs encounter
in understanding puns.

Watermarked Abstract:

Puns, due to their distinct structure and clear definition, play a vital
role in academic research on linguistic humor analysis. Despite their
importance, the understanding of puns in large language models (LLMs)
remains understudied, which hinders their application in creative writing
and humor generation. This paper employs three tasks - pun recognition,
explanation, and generation - to systematically evaluate LLMs’ capabilities
in pun understanding. Building upon prior research’s automated evaluation
metrics, we propose new evaluation methods and metrics tailored to the
in-context learning paradigm of LLMs. These novel metrics provide a more
rigorous assessment of an LLM’s pun understanding ability and better align
with human cognition. Our results expose the "lazy pun generation" pattern
and pinpoint the primary challenges LLMs face in understanding puns.
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MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents (Tang et al., 2024)

Original Abstract:

Recognizing if LLM output can be grounded in evidence is central to
many tasks in NLP: retrieval-augmented generation, summarization,
document-grounded dialogue, and more. Current approaches to this kind
of fact-checking are based on verifying each piece of a model generation
against potential evidence using an LLM. However, this process can be very
computationally expensive, requiring many calls to a model to check a single
response. In this work, we show how to build small fact-checking models
that have GPT-4-level performance but for 400x lower cost. We do this by
constructing synthetic training data with GPT-4, which involves creating
realistic yet challenging instances of factual errors via a structured
generation procedure. Training on this data teaches models to check each
fact in the claim and recognize synthesis of information across sentences.
For evaluation, we unify datasets from recent work on fact-checking and
grounding LLM generations into a new benchmark, LLM-AggreFact. Our best
system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable
size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data
synthesis, and models.

Watermarked Abstract:

Verifying the evidential grounding of LLM outputs is crucial for various
NLP tasks, including retrieval-augmented generation, summarization, and
document-grounded dialogue. Existing fact-checking approaches typically
involve verifying each component of model generation against potential
evidence using an LLM, which can be computationally expensive and require
multiple model calls for a single response. This work demonstrates the
construction of compact fact-checking models that achieve GPT-4-level
performance at a 400x lower cost. We accomplish this by generating
synthetic training data using GPT-4 through a structured procedure that
creates realistic yet challenging instances of factual errors. Models
trained on this data learn to verify facts within claims and recognize
information synthesis across sentences. We establish a unified benchmark,
LLM-AggreFact, by consolidating datasets from recent fact-checking and
LLM grounding research. Our top-performing system, MiniCheck-FT5 (770M
parameters), outperforms comparable-sized systems and matches GPT-4’s
accuracy. We make LLM-AggreFact, the data synthesis code, and the models
publicly available.
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