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Abstract

In this paper, we consider variational autoencoders (VAE) for general state space mod-
els. We consider a backward factorization of the variational distributions to analyze the
excess risk associated with VAE. Such backward factorizations were recently proposed to
perform online variational learning [Campbell et al.|(2021)) and to obtain upper bounds on
the variational estimation error (Chagneux et al.| (2022). When independent trajectories of
sequences are observed and under strong mixing assumptions on the state space model and
on the variational distribution, we provide an oracle inequality explicit in the number of
samples and in the length of the observation sequences. We then derive consequences of
this theoretical result. In particular, when the data distribution is given by a state space
model, we provide an upper bound for the Kullback-Leibler divergence between the data
distribution and its estimator and between the variational posterior and the estimated state
space posterior distributions. Under classical assumptions, we prove that our results can be
applied to Gaussian backward kernels built with dense and recurrent neural networks.

1 Introduction

Deep generative models have been increasingly used and analyzed for the past few years. In this setting,
Variational autoencoders (VAEs) offer the possibility to simultaneously model and train (i) the conditional
distribution of the observation given latent variables referred to as the decoder, and (ii) a variational approx-
imation of the conditional distribution of the latent variable given the observation referred to as the encoder.
They have been successfully applied in many contexts such as image generation (Vahdat & Kautz, 2020),
text generation (Bowman et al., 2015), state estimation and image reconstruction (Cohen et al., [2022)).

Variational inference has been widely and satisfactorily used for many practical applications but its theoret-
ical properties has been analyzed only very recently. Theoretical guarantees have been mostly proposed for
variational inference procedures in settings where datasets are based on independent data and for mean-field
approximations. In |Huggins et al.| (2020)), the authors provided variational error bounds, in particular for
the estimation of the posterior mean and covariance. In |Chérief-Abdellatif & Alquier| (2018), the authors
established the concentration of variational approximations of posterior distributions for mixtures of general
laws using PAC-Bayesian theory. The PAC-Bayesian theory has also been used in Mbacke et al.| (2023)
where the authors controlled in particular the L2 reconstruction loss under the true data distribution for
VAEs. In addition, [Tang & Yang| (2021)) provided a theoretical analysis of the excess risk for Empirical
Bayes Variational Autoencoders for both parametric and nonparametric settings. They derived a set of
generic assumptions to obtain an oracle inequality explicit in the number of samples and proposed an upper
bound for the total variation distance between the true distribution of the observations and a variational
approximation combining the empirical distribution of the dataset and the proposed VAE architecture.

In this paper, we aim at extending the theoretical results on variational inference procedures in two direc-
tions. First, we set the focus on the use of VAEs for general state space models, i.e. settings where the
decoding distribution P(,Y of the observations depends on an unobserved Markov chain. In addition, instead
of using mean-field approximations, we consider variational encoding distributions @, satisfying a backward
factorization as proposed in |Campbell et al|(2021); |[Chagneux et al. (2022)). In |Chagneux et al|(2022), the
authors derived the first theoretical results providing upper bounds on the state decoding estimation error
when using variational inference with backward factorization and no such results were proposed for state
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space models using a mean-field approximations. This factorization was used in |(Campbell et al.| (2021)) to
define new online variational estimation algorithms, where observations are processed on-the-fly.

In this paper, we provide the first (up to our knowledge) theoretical guarantees on the trained variational
approximation in the setting of independent copies of sequences with distribution Pp when using a backward
variational factorization.

o We provide assumptions on the decoding and variational encoding kernels under which we prove an
oracle inequality for the risk explicit in particular in the number of samples and in the length of the
observation sequences, see Theorem[3.1] This result is established using an alternative formulation of
(Tang & Yang), 2021, Theorem 3) in our state space setting and with an explicit dependency on some
constants to track all terms depending on the number of observations. This allows to understand
when the procedure leads to a decoding distribution that approximates well the data distribution
together with a coding distribution which approximates well the decoding state distribution.

e In particular, when data are generated from a general state space model, and when Pp belongs to
the decoding family of distributions, we give an upper bound also explicit in the way the backward
coding kernels approximate the backward decoding kernels, see Corollary

o We analyse settings in which our results hold, in particular settings with Gaussian backward kernels
based on Multi-Layer Perceptrons (MLPs) and on Recurrent Neural Networks (RNNs).

The paper is organised as follows. The general setting and notations for state space models and variational
learning are given in Section 2] Assumptions and theoretical results are proposed in Section [3] along with
discussions on specific deep architectures used in practice. A discussion with insights for future works is
given in Section @] Detailed proofs of theoretical results are given in Appendices [Bland [C] Additional proofs
to highlight that when the state and observation spaces are compact our main results hold are given in

Appendix

2 State space model and variational estimation

Let © C R% be a parameter space. In this paper, we consider a state-space model depending on 6 € O,
i.e. a bivariate discrete-time process {(Xt,Y;)}i>0 where {X;}:>0 is a hidden Markov chain in a measurable
space (X, X') with initial distribution x with density ¢ with respect to a reference measure p and for all ¢ > 0,
the conditional distribution of X;,; given Xo.; is written My (X, ) and has density mg(Xy, ), where ay., is
a short-hand notation for (a, ..., a,) for 0 < v < v and any sequence (ar)¢>o. The observations {Y; }o<i<r
take values in a measurable space (Y,)) and they are assumed to be independent conditionally on Xg.7 and,
for all 0 < ¢t < T, the distribution of Y; given Xy.r depends on X; only, is written G¢(X4, ), and has density
Y gg(Xt) with respect to a reference measure v.

In this context, the joint probability distribution Py of (Xg.7, Yo.r) has density with respect to u®(T+1) ®
v®T+1) given, for all § € O, xg.r € XTt! and all yo.pr € YT+, by

T
pQ,O:T(IO:TvyO:T) ‘TO g@ H :Ef 17xt ge ( t) )

and the joint smoothing distribution, i.e. the conditional distribution of Xy.7 given Yg.r, is given for all
measurable function h by

J x(d0)gy” (o) [Ti=y Mo (-1, dz)gp' (x)h(zor)
S x(dw0)gf* (o) TTimy Mo (w1, da)gf (w2)

The probability density of (I)g?ézTﬂT is denoted by ¢g?6:TT|T' In the following, we use the notation ®g%* = CIDgOO' e

to denote the the filtering distribution at time ¢, i.e. the conditional distribution of X; given Y., with a

q)zOOTT|T(h)
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similar convention for the probability densities. The joint smoothing distribution can also be written

T-1
(I)g?(:):TT\T(dx()iT) = ©p% (dar) H BGy,OT:’T:tt:11|T7t($T—t’de—t—l)7
t=0
where Bg_‘}T_’t‘_’ll‘T_t(xT_t,de_t_l) is the backward kernel at time T — t defined by
By @r—, der—e—1) o g% ) (dwr—i—1)me(ar——1,27—¢) With a probability density with re-

spect to p denoted by szTI“T:tt:i\Tft(xT*t’ ). For all T, 6, yo.r € YT, the loglikelihood of the observations
is:

07 (0) = log L™ (6)

where

L™ (0) = /pG,O:T(CUO:TayO:T),U(de:T) .

The joint smoothing distribution is usually intractable and we focus in this paper on variational learning to
perform approximate maximum likelihood. Following (Campbell et al.| (2021)); |Chagneux et al| (2022)), we
propose a backward variational formulation:

T—1
nga(ij:T(deZT) = ZOQ? (dzr) H QZ(TT_t_MT_t(Z‘T—t, der_i—1),
t=0
where ¢ € ® C R%, and where QZO:TT—t—HT—t(xT—t") (resp. ZUTT) has probability density

qgj:;—t—HT—t(xT_t’.) (resp. qi”f) with respect to the reference measure p. In this setting, the ELBO
writes, for all § € ©, ¢ € ®, and for a sequence of observations Yj.r,

ELBOY'™ (0, ¢) = 6307 (8) - KL (Q)5ty

Yo.r
‘CDO,O:T\T) .

Let (Ygr)i<i<n be 1id. sequences with distribution Pp with density pp. Maximizing the ELBO

S ELBO}T/&T (0, ) is equivalent to minimizing the following loss function

n

1 )
‘C%T(a; (p) = ﬁ Z m(07 ®, YOZ:T) 5

i=1
where ‘
m(0, ¢, Yg.r) = log % + KL (Q:?ibT;T “I);/,OS:TNT) :
L7 (0)
Define

~

(On,7, Pn,T) € argmingeo yeo Ln1(0,0) .

Such a procedure is a so-called M-estimation method in the statistical literature. The intuition is that with
large data sets, that is when n is large, the ELBO is closed to the expected (under the unknown distribution of
the data) value of m, and the estimated decoding and coding parameters are close to minimize this expected
value. An important body of work in the statistical community has been devoted to develop very general
settings in which non asymptotic bounds on the risk of M-estimators, referred to as oracle inequalities, can
be given, see ivan de Geer| (2000) as early reference, or Wainwright| (2019) and the references therein for
more recent results. Moreover, oracle inequalities are obviously the only property one can hope for such
estimators, the other properties being consequences of the oracle inequality. In the following section, we thus
first provide assumptions under which we obtain an oracle inequality and then discuss consequences.
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3 Main results

3.1 Notations.

In the following, for all measures A and 1 on (X, X) and all transition kernels K we consider the follow-
ing notations. For all measurable sets A C X x X, A®@ n(A) = [La(z,2’)\(dz)n(dz’) and A @ K(A) =
J14(z,2")\(dz) K (z,dz’), for all measurable sets B C X, AK(B) = [A(dz)1pg(2')K(z,dz’), and for all
real-valued measurable functions h on (X, X), A(h) = [ A(dz)h(x). For all measurable functions hq, ha, we
write hy ® he : (z,2") — hy(z)ha(2').

For all a > 0, define on R the function ), : x — exp(z®) — 1.

For all real-valued random variables X, define the Orlicz norm of order a by

[ X o, = infaso {E [a (|X[/A)] <1}

For all probability measures P and @ defined on the same probability space, ||P — Q|| will denote the total
variation norm between P and @, and KL (Q| P) their Kullback-Leibler divergence, that is KL (Q||P) =

Eq[log(dQ/dP)].
3.2 Assumptions

In this section, we propose a set of assumptions on the kernel densities mg and qZ“;‘Tt 41, 0t <T -1, and on

the conditional densities g, under which we are able to prove an oracle inequality. In the state space model
literature, Assumption H[I] is usual to control smoothing expectations and HZ| for the study of asymptotic
properties of maximum likelihood estimators. More assumptions are needed to manage the complexity of
the models and to get a nonasymptotic control of the risk of the estimators. These controls are obtained
with Assumptions We discuss in Section how they can be applied to specific architectures used in
practice. Additional discussions on the assumptions are provided in Appendix [D| where we prove that usual
compact state space models are covered by our theory.

H1 There exist probability measures 77— and 1y on (X, X) and constants 0 < o_ < o4 < oo such that
for all € ©, x € X, all measurable set A,

o-n-(A) < x(4) < oyn4(4)

and
o-n-(A) < My(z, A) < oyn4(A) .

There exist probability measures A_ and A, on (X, X)) such that for all yo.r € Y71 there exist
997 > 0 and 94" > 0 such that for all p € ®, ¢t >0, x € X, all measurable set A,

PUIN(A) < QUL (. A) < 9T AL(A).

In addition, for all ¢ € ®, all yg.r € YTT!, and all measurable set A,

POTA(A) < QU (A) < DPTAL(A).

H2 For all y € Y, infgco [ gf (z)n-(dz) = c_(y) > 0 and supgeg [ g (2)n4(dz) = ¢4 (y) < oo.

We consider also the following notation supgcggy’ = ¥ and infoeog)’ = gvt.

We constrain the kernels and the conditional densities to be Lipschitz in the parameters with a Lipschitz
coefficient depending on the variables.

H3 There exists M such that for all §,6’ € © and z,2’ € X,

Ime(x, &) — me: (z, )| < M(z,2")[|6 — '] -
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For all 1 <t < T, yo.r, there exists Kg’olTlt such that for all ¢, ¢’ € ® and z,2’ € X,

a2 ') = a7 (@,0)| < K0 e = e
In addition, there exists K% such that for all ¢, ¢’ € ® and z € X,
2% (@) — 485 (@)| < KT @)le = ¢l
For all y € Y, there exists GY such that for all 6,6’ € © and z € X,
|95 () — g5/ (2)| < G¥(2)[|0 — 0" -
Define, for 1 <t < T — 1,

hgoeT@(mtfl’xt) = lOg qg?l:‘/qllﬁ(xt’xt*l) IOg b@t 1|t(xt7xt71) (1)

and, by convention, hT@w(xT 1,Tr) = 1qug?§?_1\T($T7$T71) _ 10gb§°;’f|T(xT,:vT 1)+ logqyOT( ) —

log ¢ (@7).

H4 For all yg.r € YT and all 0 <t < T,

/ Ay (dz)

and for all 6,0 € ©, o, o' € ®, 1 <t < T,

sup
0cO,pcd

Yo:T yOT
htew ‘H

/A+ ® /\+(dxdx') )long;?tT_1|t($7xl) - longi?:{_llt($,$l) < Cyo i ||90 12 ||2 ’

~—

//\+ ® Ay (dadx’)

o1 (@, 2’) —log by, =y (z,2")| < ey (10— 0],

[ sttn) Jog @ @) - log 5 @) < A o= 9

[ Astan) og o ) ~ log a3 @)] < e o~ 0,
where A, is defined in
Our upper bounds require to prove that m is a Lipschitz function of the parameters, and we need an upper

bound on the L2-norm of the Lipschitz coefficient. For this, we consider the following moment assumptions.

H5 There exists A such that the following inequalities are satisfied.

E {(1910:%;%)2] <A,E {(ﬂywconr)?] <A,

forall0 <t < T,

o P o

forall1<t<T,

2 M®7Yt,1—Y,,)2
Yo.7\2 Yo:t—1 < 77+®M( g g <
2|(wrpeim)] <. m [MEEEREGE <.
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T 2
E (ﬂi” > A+®A+<Ki:’°;il>p<yoﬂs—t> <4,

s=t—1

where for all yo.7, p(yo.r) = 1 — 977, for all 0 < s, < T,

e (Y2 (GY)?
B L+(K)Zc (Ys>2} =4

and forall 0 <t <T,all 1 <s<T,

<A.

(c+(Yt>n+ © (M ®§Y-*—1§Y-<>>2
Cc— (Y;,l)C, (Ys)cf(yt)

The following assumption is used to have concentration properties, as usual in the statistical literature to
get theoretical guarantees with finite samples.

H6 There exists a, and B > 0 such that for all T > 1,

||10gp'D(YOT)H,¢a* S BT and

)

< BT
Yo

)

T
(977)% - supg o Y AL @ Ay (‘h?%
t=1

and for all 0 <t < T,
[[log e (Y2)| V [log c— (Yy)|[l¢., < B .

3.3 Oracle inequalities and consequences

Our main result is an oracle inequality for the risk. The so-called variance term has the usual rate 1/n up to
log n terms in the sample size n. It is proved to grow as much as T2 in the length T of the sample sequences.
We assume that © and ® are compact spaces, and that the sum of their diameters is bounded by dj.

Theorem 3.1. Assume that b@ hold. Then, there exist constants co, c¢1, ¢2, D which depend on o4,
o_, ax, A, B and dy only, such that with probability at least 1 — coexp(—cy{d. logn}1"*),

~ ) _,.Dd,T? N
/m(@mT, Pn,T> yo:7)pp (Yo:1)dp(yo.1) < inf > {(1 +7)Er +ca(1 47 1) log(d.n)(log n)l/ *} )

where Ep = mingee,pea [ m(0, 0, yo.r)po (Yo.r)dp(yo.r) and d. = dg + d,.

Proof. To prove Theorem we use Theorem which is an alternative formulation of (Tang & Yang,
2021, Theorem 3), proved in Appendlx First, Assumptlon A of Theorem 1{holds with D = DT for some
positive constant D depending on B. This is a consequence of the first point in H@, Proposition and

Proposition [B
We now prove that Condition A of Theorem holds with a; < CT? for some C > 0. Write, for all 8, ¢1,
¥25 Yo:T

Yo:T
q OT(XO:T)
EVOT (0, 1, =E v log =222 = 77
O enen) =By, |18 0.0 (Xor)
Note that
AB,0, 0,0 yor) < [T (0) — 07T (0")] 4 |EYT (0,0, 0) — EVT (0, ¢, ¢")| .
Write

|gy0:T( ) 5yOT( )| < A ( <P7<P/,QO:T) +A2(070/790a(p/7y01T) y



Under review as submission to TMLR

where
A1(0, 0, ¢ yo.r) = [E97 (0, 0,0) = Y7 (0, ¢, 0)]
Ds(0,6",0, ", yor) = [EV7(0, ', 0) — EV7 (0, o', )| -
Therefore,
A0,0' 0,9 yor) < |67 (0) = 77 (0')] + A (0, 0, @', yor) + D2(0,0, 0,9 your) -
By Proposition Proposition m B.2| and Proposition we get that for all 6, 0, ¢, ¢, and all yg.r,
A0,8' 0,9 yor) < (K1(yo.r) + Ka(yor)) 10 — 0'[l2 + (w2 (yo.r) + K3(yo.1)) |9 — ¢'[|2

where

T ~ _
0’+77+(Gy°) oy N+ @ p(M - ¥ @g%)

(yO ) B 7(?-/0)

{C+(yt)Lt—1(y0:t—1)+ +77+(Gyt)}v (2)

—o-c(v) —C—(Ye-1)
with M - g¥-1 ® g¥*(z,2’) = M(z,2')g¥" -1 (x)g¥% (z’), and for all ¢,
¢
L) = 3ot s g o) 46 ®)
withe=1—-0_/04,
T T
Ka(yor) = (OF7)° Y 0l > AL @ A (KT plyor)*™" (4)

s=t—1

H3(yO:T) 19?/0 T (ﬂyo T Z Cyo T 4 Yo T) 7 (5)

and

im0z (s Eti ) "

in which v*", ¢{%", ¢5%' ™", 4% and ¢f" are defined in I-l Using 7—! 5} it is easy to prove that E[r1(yo.r)?],
E[k2(yo.7)?], E[r3(yo.r)?], and E[m(yo;T) ] are upper bounded by ¢T* for a constant ¢ that depends only

on oy, o_ and A, and Theorem [3.1] follows. O
Note that
~ R Yy Y,
[ m@ir Boie o oo (o) dutvor) =KL (Po[[PY )+ Er,KL ( o <I>9AZ§70:T|T> .

If the upper bound in Theorem [3.1]is small, then the distribution Pp of the observations is well approximated
by the decodlng observational distribution PA , and the decoding distribution of the latent state distribution

nT

given data <I>A = is also in average well approximated by the coding distribution Q
9,L,T,O:T|T Pn, T,O T
YO 2T

Er = mingeo,pco {KL (Pp||P}) + Er KL (QU7 | @555r) } -

In case the data follows a state space distribution given by some decoding distribution, that is if there exists
0* € © such that Pp = PJ., the oracle inequality in Theorem becomes, by taking 8 = 6* to upper bound
Er,

In the same way,

v YL
KL (P"Y PA ) +Epy KL ( on, T,o T 5:;,0:TT> < (14 7)mingeeEpy KL (Q*" 0:T Gg;giTlT)
Dd, T3
+e(l+771) log(d.n)(logn)'/*= (7
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for any v > 0. In the following corollary, we assume that the coding backward kernels are chosen such that
they are good approximations of the backward decoding kernels in Kullback-Leibler divergence.

H7 There exists € > 0, such that for all # € © there exists ¢ € ® such that for all yg.pr € Y7+,

KL (@i

L) <e

and forall 1 <t <T,

KL (Quyr

pit—1|t

By(]:t—l ) <e.

0,t—1]t

Corollary 3.2. Assume there exists * € © such that Pp = Pg:. Assume moreover Iﬂ Then under the
same assumptions as in Theorem [3.1], for the constants co, c1, ca, D in Theorem [31], with probability at
least 1 — coexp(—ci{d. logn}"\), for any v > 0,

3
*

vy v ~1,Dd.T a
KL (Pgi P@{ YT)—HEPQY*KL< T 5:;70:TT> < (M) (TH1)etea (14771 log(d.n)(logn)t/* .

When the data distribution is given by a state space model, Corollary provides an upper bound for the
Kullback-Leibler divergence between the data distribution and its estimator and between the variational
posterior and the estimated state space posterior distributions. This result sheds additional light on the
quality of variational reconstruction in state space models with respect to (Chagneux et al.| 2022} Proposition
3). In (Chagneux et al.) 2022, Proposition 3), the authors provided upper bounds on the error between
conditional expectations of state functionals under the true posterior distribution and under its variational
approximation. In both settings, designing coding backward kernels that are good approximations of the
true backward decoding kernels is enough to obtain quantitative controls on the reconstruction error.

Proof. The result follows from equation [7] H7 and the fact that for any 6 € © and ¢ € ®, for any yo.7,

kL (@2

Bjily) + KL (Qp

T
Yo:.T _ Yo:T Yyo.T
’@0*,O:T\T) - z :KL< p,t—1]t (DQ*,T> .
t=1

3.4 Applications

In this section, we consider generative models where the transition kernels and emission distributions are
Gaussian in various classical settings. We show that under weak assumptions on these models, some as-
sumptions of our main results hold. Establishing that all assumptions are satisfied in general settings, i.e.
without very specific assumptions on the architectures, is a more challenging problem.

We prove in Appendix [D] that holds in particular for compact state spaces. We also prove that the
functions hi’?éia are upper-bounded explicitly, and that ¢Z?£t and bZ?£t11\ , are lower and upper-bounded ex-
plicitly. This allows to obtain explicit constants in Providing additional comments on the assumptions
requires assumptions on the observation space or on the dependency of the variational distributions on the
observations. When the observation space is compact we can also obtain a uniform control with respect to

the observations of these upper bounds which is crucial to check Hp| and H]

Gaussian backward kernels with dense networks. We consider a generative model where the
transition kernels and emission distributions are Gaussian and parameterized by dense networks.

o For all z € X, 2’ — mg(x,2’) is the Gaussian probability density function with mean pg(x), and
variance Xg(x) where (ug(z), Zo(z)) = MLP? () with MLP? a dense Multi-layer network with input
2 and weights given by 6. In this case, if the output layer of MLPY is such that pg is bounded and
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2 <8 (2) <2 (le. By (z) —Z and & — X, (z) are positive semi-definite matrices) for all z € X,
then there exist constants ¢, ¢ such that for all z,z’ € X,

cexp (—Xx'z) < mg(a,x) < Cexp (—Aa(2)) ,

where ) is the smallest eigenvalue of ¥ and X is the largest eigenvalue of ¥ and where

(Ulzll = M)*Lyaysar + (2l = m)*Lyjgy<m + (M = m)* i< joy<n)

N |

alz) =

with m = inf,ex geo [|po(7)]| and M = sup,cx gee llpto(w)[|. This implies that holds. In order
to check if we assume also that for all x € X, 0 + pg(x) and 0 +— X, (2) are continuously
differentiable and that © is compact then there exists M such that for all #,0" € © and z,z’ € X,
Imo (2, 2") — me/(z,2")] < M(2,2")[|0 = 0|2 .

We can check for log bz?::f‘ ;» as other items can be verified following the same steps. Assuming
that bz?t:t:f‘ ;(z,-) is a Gaussian probability density with mean MZ?ii’f\ ,(z) and variance Ez?t’ffl ().
Under similar regularity assumptions on the networks providing uz?t:t:f‘ ,(z) and Zz?t‘fll‘ ,(z), when ©
is compact, H] holds.

e Forall1 <t < T,z € X, 2+ ¢’T_ (x,2') is the Gaussian probability density function with

@, t—1|t
mean pi‘jﬁl‘t(x), and variance E(‘y;jfillt(x) where (pi‘fil‘t(x),Ez(jfillt(x)) = MLPtyﬁ:f‘f(x) with
MLPY%T:# 5 dense Multi-layer network with input x and weights depending on ¢. In this case, is
t—1t ®
the output layer of MLPY*7* is Slfh that pg’i" |, is bounded and X7, < (ngﬁllt(x))_l < ftyff‘t
(i.e. (ZZ‘:;T_l‘t(x))_l —Zi’ﬂ:f‘t and fof‘t - (Eif;illt(x))_l are positive semi-definite matrices) for all
x € X, then there exist constants gi’ﬂ‘lTl . E?ﬂ:fl , such that for all z,2’ € X,

Yo:T yYor T Yo:T / —Y0:T Yyo:T
Qt—l\t exp (7At—1‘t‘r :C) S q¢7t_1|t(x 7I) S Ct—l\t exp (7At_1|t5(x)) i

where AY°7, is the smallest eigenvalue of XY, and Xfiflt is the largest eigenvalue of iﬁiﬂt and

A1t Syt
where
1 : .
Blz) = ) <(||a:|\ - Mfl_oﬁt)Q]leuzMj‘nglt + ([|z]l — m?ﬂ'at)%”zugmfgﬁt
: T2
P = M) L or <papeanor )
with mgflTlt = infyex ||,u;”31T‘t(x)|| and Mg’fﬁt = SUP,ex ||,uty31T|t(m)|| Similar assumptions can be used

for ¢”°:7" using dense neural networks with bounded output. Under similar regularity assumptions on
», T

‘LLZO%T_” ;> and EZOZT—M . than for yp, and variance Xy, we may prove that H3 holds when @ is compact.
Gaussian backward kernels with recurrent networks. A natural parameterization is also to use
a recurrent neural network which updates an internal state (s;);>¢ from which the backward variational
kernels and filtering density are built. For all ¢ > 0, define s; = RNN¥(s;_1,y;) where RNN¥ is a recurrent
neural network, and let ' — qi’;’ﬁu ,(z,2") be the Gaussian probability density function with mean ufﬂ:fl "
and variance Efﬂ{‘ . where (p, ;) = MLP¥(s;). If the network MLP¥ is bounded similarly as in the dense
neural network case, then the backward variational kernels satisfy H[]

Functional autoregressive models. The discussion on neural networks also indicates that the as-
sumptions can be verified for some classical statistical models. Assume for instance that X = R and
that for all # € ©, x € X, 2’ — mp(z,2') is the Gaussian probability density function with mean fp(z),
and variance o3(x). Then, holds for mg when —oco < infiex geo fo() < sup,ex geo fo(r) < oo and

—00 < infzex peo 09(2) < SUP,ex peo 0o (2) < 00.
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Gaussian emission densities. Assume that at each time ¢ > 0, Y; = ho(X;) + €, where {&;}+>0 are
independent Gaussian random variables. Assume also that hg(X;) = MLP?(X,) where MLP? is a dense neural
network with bounded output layer, then holds. Assume that for all z € X, 6 — hy(x) is continuously
differentiable and that © is compact, for all y € Y, there exists GY such that for all 6,0’ € © and z € X,

|96 () — g (@) < GY ()]0 = O']]2,

which means that HB3| holds for the emission distributions.

4 Discussion

In this paper, we used a backward decomposition of variational posterior distributions to propose the first
theoretical results for variational autoencoders (VAE) applied to general state space models. Under strong
mixing assumptions on the state space model and on the variational distribution, we provide in particular
an oracle inequality and an upper bound for the Kullback-Leibler divergence between the data distribution
and its estimator.

Although these results are the first theoretical guarantees for VAE in the context of state space models, we
believe that this is the first step to solve challenging open problems. First, in order to cover a wider variety of
applications, weakening the strong mixing assumptions, for instance using local Doeblin assumptions, would
be very interesting although it is a challenge when analyzing the stability of smoothing distributions. Another
research direction is to understand how our results can be extended in settings where the observations are
processed online, i.e. in cases where the parameters are updated when new observations are received but
never stored. To the best of our knowledge, online variational estimation has recently been explored with
new methodologies but without any theoretical guarantees.
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A An oracle inequality adapted from Tang & Yang (2021)

We propose an alternative formulation of Theorem 3 in Tang & Yang (2021 in which we provide the precise
behavior of the constant in the variance term. To avoid introducing too many new notations, we formulate
the results of [Tang & Yang] (2021) choosing the observation to be Yy.r, the latent variables to be Xg.7 in
our setting.

Condition A. There exist a; > 0 and a function b such that for all 0 € ©, ' € ©, p € O, o' € D,
yor € YT,

‘m(ev 2 yO:T) - m(e/a 90/7 yO:T)| S b(yO:T) ||(07 50) - (9/’ QD/) ||2 )
with E[bQ(YOZT)] S aj.

Assumption A. There exist a, > 0 and D > 0 such that

Supy { ‘d%i”f)}

Theorem A.l. Assume that © and ® are compact spaces and that the sum of their diameter is upper
bounded by dy. Assume moreover that Condition A and Assumption A hold. Then, there exist constants
co, 1, which depend on dy, a1 and oy, and a universal constant ca, such that with probability at least
1 — coexp(—c1{d. logn}the),

L7 (0)

log ———%
s pp(Yo.r)

<D. (8)

oy

+ KL (QUtr

~ . _1 a1 Dd, o
/m(en,Tv San,T, yO:T)pD (yO:T)dNJ<yO:T) S lnf'y>0 {(1 + 7) ET + CQ(1 + Y 1) ! n 1Og(d*n) (log n)l/ * } ’
where Er = mingeo,ycao [ m(0, ¢, yo.r)pp (Yo )dp(yo.r) and di = dp + d,.
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Proof. We follow the proof of (Tang & Yang, 2021, Theorem 3), in which we track the dependencies of the
constants with respect to a;. In (Tang & Yang), 2021, Lemma 14), a multiplicative term ,/a; is required on
the r.h.s. of the inequality. Then on page 24 third line the inequality needs again ,/a; on the r.h.s., and
the end of the proof follows by multiplying 6,, by \/a1. We obtain that in (Tang & Yang, 2021, Theorem 3),
their constant co is proportional to a;. O

B Additional proofs
Proposition B.1. Assume that hold. For all 8, ' € ©, and all yo.r € YT+,

677 (0) — 27 (0")] < k1 (yor) 10 — 02

where

U+77+(Gy°) a o4 . Ny @ p(M - g¥—@g¥") e
(yO T) —(yO) +; O'_C_(yt) { Jr(yt)Lt*l(yOZt*l) + —C—(yt—l) +77+(G )} )

with M - g¥*=1 @ g¥ (z,2') = M (z,2)g¥~* (x)g¥ (z'), where Ly_1 is defined in Lemma[C 3

Proof. For all §, §' € ©, and all yo.r € YT with the convention pg(yo|y_1) = pe(vo),

T
(T (0) — 7 (0') = (log po(yelyo:i—1) — log por (yelyo:e—1)) -
t=0

For all t > 0,
Po(Yelon—1) = / B (o) M1, ) gl ()
Note first that

Po(Yt|yo:t—1) > o—c—(yt)
so that

PYOT () _ gYoT (91| < Ipo(yo) — por (y 1Po (Yelyo:t—1) — por (Ye|yo:e—1)] '
|T ( ) T ( )| — —(yO) Z o _c_ (yt)

For ¢ = 0, using that pg(yo) = [ x(dzo)gs°(z0), Assumptions H1|and }' yield

1po(y0) = por (o) < 41 (G0 =0 -
In addition,
Pe(yt|yom—1) — Do/ (yt|y0:t—1) = / (<I>7;,°gt_‘f (det—l) - @39:2:11 (dmt—l)) Me(wt_l,dxt)gé” (xt)
+/ Dy (da—1) (Mg (241, day) — M0’(xt71adxt))ggt(xt)+/ Oy (dar 1) M (-1, dae) (98" () — g4t (1))

Using Lemma [C.1] Assumptions HI| and H3] we get

Yo:t—1 Yo:t—1
‘(I)G,t—l - q)ﬂ’,t—l

IPo (Yelyo:t—1) — por (Yelyo:e—1)| < {U+C+(yt)

T [ a1 (o) 0 ) + 70 (67} 1600

+
tv

The proof is completed by using Lemma [C.2} O

12
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Proposition B.2. Assume that hold. Then,

Al(ea P @/ay():T) < HQ(yO:T)”()O - 4,0/”2 )

where
Yo:T Yyo:T
4o o7 (Xor) a5 0o (Xo.r)
A1, 9,8 yor) = [Egnor. |log 22T 0T | Ry |log 00T
Z?O:TT\T(X&T) Yot g?O:TT\T(XotT)
with p(yo.r) = 1 — 9%7 and
T T
Ka(yo.r) = (V5°7) Z Z + @A (K0T )p(yor) ™"
=1 s=t—1
Proof. For all p,¢' € ®,0<t<T — 1, define
t+1
a0 r(@or) = ¢ (r) T a2 0 (@ wus 1‘[% (@ T )
u=T
t+2
_qzoj? rr) H QZOHT 1|u (Tus Tu—1) H q@ u—1|u (T, Ty—1)

u=t+1

with the convention [ inuT 1ju(@u Tu—1) = 1 and Hi:o qi?izillu(xu,xu,l) =1,and fort =T,

~Yo:T UOT Yo:T
qip,tp/,T‘T(xO:T) H q¢ u— 1|u x'mxufl) qwa mT H q(P u—1lu xluxufl) .

Therefore,

Al(eaSOagol7y0:T) = )

t,0,p

T
ZEqZ%TT [ t9<p(Xt 1’Xt>} —E,

i, B )

— v:so ,s|T t.0,p

Eor {hy” (Xt,l,Xt)} ’ ,

where hi"},z, < t < T, are defined in equation Note first that if ¢ > s + 1, then

1
Egor P57, (Xo1, X0)| = 050 that

T T
> Epur R (Xe X0

For all t < s + 1, write for all measurable set A,

Al(oa 2 90,7 yO:T) =

s+1

'MZ?ST(A) /]lA(xé) p(dzr) H QZOuT 1)u (T, Tu—1)p(dTu—1) ,
s+2
fiipgr o (A) = /1A($s) p(dzr) H G ju (s Tum1)p(d@u1)qgr G (@or, 25)p(das)

Therefore,

t+1
Yo:T Yyo:T ~Yo:T Yo:T Yo:T Yyo:T
quoq; T |:ht 0 Lp(Xt—l’Xt):| (lu’%  Hy o 9) {H QLp u— 1u} o t— 1|tht,0,tp :

e,/ sl

13
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Using the backward variational kernels satisfy a Doeblin condition, see (Douc et al., {2014, Section 6.1.3),
so that

Egvo.r [hi’%Tw(Xt—l,Xt)] *Iluy” ﬂi“ws\lcvp(yo:T)S*tOSC( Z?:fﬁuthfjg;),

@, s|T

where for all measurable functions f, osc(f) = sup, ,ex |f(z) — f(z')|. By Hl{and

osc( y?f 1|th?097;, <2H/ o )BT (21, ) p(day )

[ |t e At

Yo:T ,,Yo:T
< 2970700

‘ o0

< 2047

)

‘ o0

Noting that by HJ]

t+1
i = g e < QU TT QU KT lle = @'lla < (2722 @ A (KT lle = ¢z
=T

concludes the proof. O

Proposition B.3. Assume that hold. Then,

820,60, 0,9, yo.r) < w3(yor) | — @' lly + walyor) 160 =0l

where Y
q 0 T(XO T) q 9:€:T(X0:T)
Ay 079/3@790,ay0:T = |E v log —— —— | —E_vor IOgL‘D-,— ’
( L ® O (Xor) “hor o' 0:rr(Xo:T)
with
T
K3 (yo.r) = V4T (19@;0 Ty T T) and  r4(yo.r) = 997 (0% ’ Z ¢y’ el T) ’
t=1

Yyo:T Yo:t—1 Yo:T yo T ;
and where ¢i;", ¢33, 37 and cgy" are defined in .

Proof. By definition,

Yo:T
g0 (Xor) a0 0.0 (Xor)
Ao(0.0. 0,0 yor) = |B o |log —20TZ0T) | g og —el 00T
2( a4 yO.T) q¢9>§T[ & gooq.ﬂﬂT(XO:T) q“’(l)*?;:T & g?,g:T\T(XOﬁT)
Yo:T X . y(};T_ X .
<By | logtetron) o a5or(Xor) ||
#1,0T 9,0:T|T(X0:T) 9/,'0:T|T(X0:T)

T
< ZEQ T thoequ Xt—l’Xt) - htyfg?:w (Xt—lth)

B
where hfoéTcp, 1 <t < T, are defined in equation [1| For ¢t < T and all x;_1, ;s € X,

P (e, @) = BE (e, w0)| < [log @l (o0, mie1) = log 07y ()|

‘logbe L m(xt,xt,l) — logbg?;’lllt(xt,xt,l)’ .

Using HI| and HA]

. Yyo:T Yo:T
By, (0B o 1) o2y )|

)

< (ﬁ?ﬁ’”)r"/M@M(dxdx’)‘logqqyffm( ') —log iy (x,2')

< (Pl — ¢l -
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Similarly,

Yo:t—1 Yo:t—1
Eqi‘/’igT Hlog be’tfl‘t(xtv xtfl) - IOg b@/’t,”t(xta xtfl) H

Yo:t—1

< (19'7_{_(”)2/)\4_ ® Ay (dzda’) 01T, @) —log by =y (2, 2)|

< @700, -

For t = T, it remains to bound E vo.r [| log ¢ (X7) — log ¢ 7 (X7)| + [log ¢’ (X1) — log dg 7 (X
which is straightforward by using H@ and HA4]

Proposition B.4. Assume that and Hf hold. Then, there exists ¢ > 0 such that ,

sup |log L¥°=T(0)’
0co

<cI.

w()é*

Proof. For all § € ©, and all yg.r € YT, with the convention pg(yo|y—1) = pe(yo),

T
log L™ (6) = €47 (6) = > log po(yi|yoe—1) -
t=0

As po(yo) = [ x(dzo)gg° (x0), by o-_c—(yo) < po(yo) < oyci(yo). Forall t >0,

Po(Yelont—1) = / B (e 1) M1, da)gl (1)

)],
O

so that by o_c—(y) < po(yt|lyot—1) < o1c4(y). Using the second point in H@ and the triangular

inequality concludes the proof.

Proposition B.5. Assume that and Hf hold. Then, there exists B > 0 such that

YOT)

Y
KL (QU

HSUpee@,web,X

Proof. For all € ©, p € ®, yo.r € YT,

_ 0.7 (Xor
o) = Ea, [1 Ml S B, [ e 0]

Yo:T
KL ( ©,0:T
6,0: T|T t=1

where théT(P, 1 <t < T, are defined in equation [I} By forall1 <t <T,

hyu T

g, [P e X0 < @202 0 A ([,

).

t@tp

which concludes the proof by H]

C Technical results

O

Lemma C.1. Assume that and b@ hold. For all € ©, allt > 0, all yo.; € YT, positive measurable

function h,
o-n—(gg'h)

S @Zotf (h) < ‘7+77+(99 h‘) )
orcr(ye) ’

N —c—(yt)
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Proof. At time 0, we have ®3% (dzo) o< x(dzo)gy° (zo) so that by H1E2)

71-095"0) _ o gy < 195" N)
orcr(yo) — P T o_c(wo)
Similarly,
(I)g?it (dz¢) o< gy* () /<I>§‘,’gt_’f (dwy—1)Me(w—1,day),
so that by H] and
o-n-(95'h) _ BU (1) < o11+(g5'h)
orep(y) — 0 T ooee-(y)

Lemma C.2. Assume that P@ and I—@ hold. Then, for all 0, 0’ € ©,t > 1,

Yo:t __ FYo:t
et - a2

. < Li(yor) |0 — €)= ,

where

1
L )= t—s GYs—1 & gYs . Ys
t(yo:t) ) > e c(ys){ac(ysl)m@u(g ®g¥ - M) +n (G )},
withe=1—0_/o4.

Proof. The proof follows the same lines as the proof of (De Castro et all [2017, Proposition 2.1),
which was in the setting of a discrete state space. For ¢ > 0, note that ®}%'(dz;) =
98" (1) [ % (dwp 1) Mo (w1, dxr) [co,1(yor) where cor(yo) = [ g5 (x0) P’ (da—1) Mp(zi—1, day).
Consider the forward kernel at time t defined, for all @ € ©, all y, € Y, z € R?, and probability mea-
sure v by

vy ma(a’ @)g} (@)y(da’)
F9,t’y( )_ fmg(xﬂm”)ggt(x”)v(dx’)u(dm”) :

Therefore, 4% = F . ®;"'" ' and for all 6,6’ € ©,
Yot _ Yot — Yt Yo:t—1 _ 1Y Yo:t—1
Pyt — Pyt = Fyi Py y — Fyly @iy

t—1
— Yt HY0:t—1 Yt Yo:t—1
- E At,s(ys:t) + Fe,t(be’,tfl - FG',t(I)Q’,tfl 5
s=0

where

— Yt . Ys+1l pYs Yois-1 _ Yt | pYs+1 §Yo:s
At s(Yst) = F07t ’ FH,erlFO,sq)G’,sfl Fe,t Fe,s+1‘1>9',s

with the convention F}%®p, ' | = ®4°. Consider also the backward function 87" and the forward smooth-

st
ing kernel Fg'ttg defined by

Boait ' (@s) = /Ma(xmdxsﬂ)ggm(xsﬂ)"'Me(xtfhdxt)ggt (t) »

gﬁﬂ:t (xs)me (xs—la xs)ggs (xs)

Fyt s—1,4s) = .
975“(1( 1 I) f ys+1:t($)M9((E3,1,dl’)ggs(x)

st

Following for instance (Cappé et al.l |2005, Chapter 4), we can write for all probability measure =,

Yt . Ys+1 _ Ys+1:6 Yt
F0,t Fe,s+17 = VO,SItFe,sH\t F07t|t )
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where g ¢ o Bg;lt“'y Therefore,

t—1
Yot Yoo _ Ys Ys Yt Gy Ye gy
q)ﬁ?tt - CI)O’O’; - Z (70 0’ s\t 9 s+1|t F9 tﬁl 70 0’ s|t 9 s+1|t Fg tTtl) + thtq)gi); 11 Fg/t q)e?; 11 )
s=0
where g g 51 X B ;ﬁ "Fy @Z?; L and g .o 51 X By ;Ttl "®y;. Note that by 1 for all measurable sets A,
o [ (A2 ) La() 8% ()gh (2)
FH s|15(z5—17 A) 2 — Ys+1:t Ys ’
O+ J 4 (dz) s|t ()gg" (2)

so that

. Ys+ Ys+1
HW@ it 0s+1\t Fe,t|t Yo.07 s/t F as+1\t Fg i

with e =1 — o_/o4. This yields

o <€l H'}/Qﬁ’,s\t - :79,0’75\t||tv '

Yo:t Yo:t
H%t — Dy
tv

t—1
t—s = Yy Yo:t—1 Y Yo:t—1
SZE HW,Ots\t_70,9’,s|thV+ HFGtt(I)O’t 1~ Foly®o iy

s=0

For all bounded measurable functions h,

J Byit w) By (e h(e)p(des) [ Byt () @40 () h(as) p(das)
J 53172‘ s) Fey;@Z?; L (zs)p(day) T By (@)@ () pldy)

< 0ggr 1 (h) + 0gigr 5(h)

)

[70,0,516(R) — Fo,07,51¢ (R)| = ‘

where
JBEa () [F @) (ws) — F (@) ()| () p(das)

T By @) Oy (@ )u(d,) |

0,s|t
fﬂg?\t“ s) ;(I)h( p(ds) fﬁg?t“ Ts) Fgl‘bz?i b (@s) — Feyls ¢z?; 1 (xs)| p(das)
o W) T o PO e il
Note that for all z5 € X, by H]]

Sgr 1 (h) =

3.0 o(h) =

o_ /777 (dzs1)g5 " (To1) - - Mo (Te—1, 21) g () p(ds o) < 535?(%)

<oy / 1 (A2 ) gl @arn) - (@ e, 20) g2 () (A as ) |
so that

185551 "l

nszX ﬁg:ﬁt (-Ts)

a is—
<2 Bl 1P @ T — B @5 Tl

Fgor.a () + 0550 5 (h) < 2| ko || F5 @7 20 — Fr 27 T [l

For all bounded measurable function h,

s ih = B @570 < Ry + Ry

where
f mo(z', z) gy (z) — mgf(x’,x)gg,s(x))@Z?;;:ll(dx’)h(x)u(dx)
T ol gl @B (0 (4

)

Ry =

Jmo (@, &) gy (") g7 73 (da)h(@" ) p(da”) | ] [ (mo (', ) gy () — mo (2, &) ggi (2)) D7 275 (da) p(da”)
[ me (2!, 2")gh; (x”)q)g?:;:ll(dx’)u(dm”) Jmo(a, ") gy (x”)q)gf);;:ll(dx’)u(dx”)
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By H[}i3] and Lemma

o
R, < s

o_c—(ys) {G—C—tys_l)

The same upper bound can be obtained for Ry as

Ny @pu(g¥ "t @g¥ - M)+ 77+(Gy5)} 6 = 6"]l2][Alloc

‘f mo (@' g ()R (A hGalda) |

Jmeor (a2 gg: () @y =y (da') p(da”)

This yields

20'+

o_c_(ys) {U—C—](-ys—l)

which concludes the proof. O

(R T 0 ] [ Ny @ p(ght @g¥ - M)+ 77+(G‘”5)} 10— 0ll2 ,

D Checking assumptions

In this section, we provide additional assumptions on the state space model and on the variational family to
support that our assumptions can be verified.

A1 There exist constants 0 < o_ < o4 < oo such that for all x € X,
o_ <((z) <oy
and for all § € ©, x, 2’ € X,
o_ <mg(x,2') <o, .

For all yo.r € YT T, there exist 9" > 0 and ¥4”” > 0 such that for all ¢ € ®, ¢ >0, all z,2’ € X,

Yo:T Yyo.T / Yo.T
9T < q¢’t‘t+1(x,x ) <O

In addition, for all ¢ € ®, all yg.r € YT*1 and all = € X,

Yo: Yo: Yo:
9O < g () < P

Assumption is known as a strong-mixing assumption and allows to verify It is classical to obtain
quantitative bounds on approximation of joint smoothing distributions, see for instance |Olsson et al.| (2008));
Gloaguen et al.| (2022)). It typically requires the state space X to be compact. In settings where the bacwkard
variartional kernels are Gaussian and obtained with neural networks which are uniformly bounded with
respect to the time index and the observations, 94*" and 9¥*" do not depend on the observations.

A2 For all y €Y, infgece [ gf(x)p(dz) = c_(y) > 0 and supyeg [ g4 (z)p(dz) = cy(y) < oo.

Lemma [D.I] Lemma [D.2] and Proposition [D.3] allow to obtain explicit constants in H4l We prove that
the functions h;’%fp are upper-bounded explicitly, and that ‘Z?{t and b??ifﬂ , are lower and upper-bounded
explicitly, in particular with respect to the observation sequence.

When the observation space is compact we can also obtain a uniform control with respect to the observations
of these quantities which is crucial to check Hp| and H}

Lemma D.1. Assume that and AZ hold. For all 8 € ©, allt >0, all yo.t, =+,

Yt Yt
-Gy Tt . 0+3Gp Tt
[’ ( ) Sczﬁ?é?t'(ﬂﬁt) < +36 ( )
o4 (Yt) o—c—(yt)
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Proof. At time 0, we have ¢y’ (x0) o< {(20)gs° (o) so that by A

U*ggo(x()) < d)yo (1‘0) < U+ggo(x0) )
orep(yo) — 00 ~ o-c—(y)
Similarly,
bt (1) Mgé’t(xt)/éz?;‘_‘f (dzg—1)me(zs—1, 2)p(dry)
so that by All] and
795 () _ e () < TN ()
orey(y) — 0 T oo_c(y)

Lemma D.2. Assume that and AZ hold. For all 0, all1 <t < T, all yo.r, 4—1, T4,

Uzggtil(xtfl) < pYoit—1 Uiggtil(mt*ﬁ

<by (@ xe1) <
O'_2~_C+(yt71) 0.t l‘t( bt ) 0'2_67(3/1571)

and for 1 <t <T —1,

1757 lloe < [log¥—(yo.)| V [log ¥ (yo.r)|

o2 c_(ye—1)g¥+—1 (ws— 2 ¥t (x,
+ sup |log (yQt 1)g" " (we-1) \/‘log o +(y2t 197 (z4-1)
zy_1€X 0+C+(yt—1) o2c(yi-1)
and
o_g¥T (x yT
||h§}0:9T<P||Oo < |log 29”7 | v |log 204" | + sup |log 9" (@r) V |log 719" (@)
’7 zpeX oycy(yr) o_c_(yr)

| o2c_(yr—1)g" " (xr_1) | oteqr(yr—1)g¥" " (xr-1)
+ sup |log 5 0 ) )
oro1EX oicy(yr—1) o2c_(yr-1)
where hyg.,, 1 <t <T, are defined in equation |Z|
Proof. By Lemma [C.1}
2 Yt—1 2 Yt—1
0-gy ' (x1-1) - oigy ' (w1-1)
T L) e (e m ) < T L
+C+(Ye-1) o_c—(Ye-1)
Since
pYost—1 (xt xt—l) _ Z?ifll (xtfl)me(xt*hxt)
LA J o855 (we)mo(we—1, m)p(da, 1)
we get

o%c (yi-1)gy " (x1-1) orcr(ye-1)gy (zi-1)
olcy(ye-1) o2c(Ye-1)

Now by equation [1} for 1 <t < T —1, h?’%fw(xt_l, x) = log q:‘;?f_l‘t(xt, x4_1) — log bg?t"_’f‘t(xt, x4_1) so that

Yo:t—1
S b@,tfllt(xt’ xtfl) S

h?,%,q;;(-rt—laxt)‘ < |log¥_(yo.7)| V |log I+ (yo.1)|

oc_(yi-1)gy " (xe-1)
oles(ye-1)

Uic+(yt—1)93t71 (z¢-1)

1
e o2c(yi-1)

V ‘log

which concludes the proof. In addition, using that

hyy (xr—1,27) = log QZ?¥,1|T($T, xrp_1) — log bZ?ipT:ﬂT(CUT»iCTA) + log ¢’ (z7) — log ¢ (v7)
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yields
o_ yr x o yr T
W (or1,0)] < 10820 (yorr)] V 1020 (yorr)| + [log T2 1) v\lo o9 (77)
oyci(yr) —c—(yr)
2 Yr—1 2 Yr—1
+ [log 0_C— (ygfl)gg (‘TTfl) v ’]0g U+C+(y72“71)90 (fol)
ofcy(yr-1) oZc(yr-1)

O

Proposition D.3. Assume that A@ and Ij@ hold. Then Iﬂ holds. More precisely, for all yo.p € YT +1

and all0 <t <T,
/)\(dm

where v{*" = supgeg ,ea (1157, s given in Lemma|D.Z . Forall 0,0 €©, p,¢o' € ®, 1 <t<T,

sup
0€0,pc®

yUT _ Yo7
ht9<p ‘H =i )

/>\ ® A(dZEdQS/) ‘lquZ?;iut(.T,l'/) - IOg qzo/:f_1|t($7x/> < C?lJOT ||§0 - (le2 I

by (a,2) = log by =y (w,2”) | < ey 10 =0l

/ A ® A(dada’)

/ (da) ’logqy”( ) —log g2 (x)| < o lle = ¢'lly

/ (dz) ‘logqﬁyOT( ) —log ¢y 1 (x)| < e (160 — o

where eyt = (00NN @ MK, Ay = 2oLl (- infaex g (@), 7 =

(W) TINEFT), and ¢i% = 201 c4 (yr) Lr(yo.r)/ (0 infrex g¥7 (2)).
Proof. For all p,o' € ®, 1 <t<T,

027 ') = g7y (0|

gy 2) N gy (@, a')

Yo:T

’loquOtT 1|t< ) log g ot 1|t(x’x/) <

)

so that by All]and HJ]
(logq@ Ll a) = logqi?;?,l|t(w7x’)) < (@) TP (2 2) e = ¢

an we can choose ¢/%" = (9*°7)" A ® A(E,)- Similarly, for all ¢, ¢" € @,

a7 @) = 5@

g7 () N agrp(x)

)

‘logqy”( ) —log gy (x )‘ <

so that by All]and HJ]
[log g0 (2) — log g% (2)| < (92°7) LK (@) oo — ]|
and we can choose ¢§%" = (92°7)T'A(K{*7"). For all 6,6’ € ©,1 <t < T,

Yo:t—1 Yo:t—1 /
‘bet 1|t z, ') — by 'y~ 1\t($’x)‘

‘logbz(’tt (@, 2) = log by~ lllt(:r,m’)‘ <

0.t 1|t 0 t—1|t

’byot 1 ) byOt 1 (x,:c’)) ’
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By Lemma

2
'logbyo' "z, ") —log b (z, ) o+ (be-1)

S byOf 1 (I,Z‘) byot 1 (Lx/)

)‘et 1t

0,t—1|t 0/ t—1|t m 0’ t—1|t
Then, noting that bg?;_‘ll‘t(x,x') = z?t”‘__ll (z"Ymeg(x',x)/co(x) where cy(x fd)zot’ T (@)me(a, x)pu(da’),
write
‘byOt 1 ) post—1 ( /) < ( zoz‘it:ll(x/) 39; 11( "))me(a’, x)
p z,r )| < :
0,t l\t 0/, t—1|¢t 00( )
B ) oma ', 2) — mar (&, 2)) | | @ (2,2) | o) — ()
co(x) cor () co(x)
By Al
o | BB )~ ot R
® Yt—1 (! inf Yi_1 0,t—1 — T/ t—1 )
gV (a")cp(x) — infgex g¥— (2)

and by Lemma we can choose cgt’t””l =201 Ly 1(yo:t—1)/(0— infrex g¥*~* (x)). For all 0,6" € O,

g g?;;(:c)‘

¢3%?( z) A dplp ()

)

log 647 (@) — log 647 ()| < |

By Lemma [D.]
o1 (Y1) |y, :
[log 63 (2) — log 647 (a)| < Fapre) o4t (@) — olp ()]
Therefore,
)\ d ‘1 Yo: T 1 Yo:T ‘ <9 04C+ (yT) H(Dyo:T — pYoT ,
/ z) |log ¢’ (x) — log ¢l (x)| < infoex 77 () 0.7 0.7,
and by Lemma we can choose ci% = 20 ¢y (yr)Lr(yo.r)/ (0 infrex g¥7 (). O

If the observation space is compact, under standard regularity assumptions, all upper bounds can be obtained
uniformly with respect to the observations. Therefore, holds as soon as the integrals under p, ny ® p
and Ay ® A4 are finite.
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