

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EMPOWERING SMALL VLMs TO THINK WITH DY- NAMIC MEMORIZATION AND EXPLORATION

Anonymous authors

Paper under double-blind review

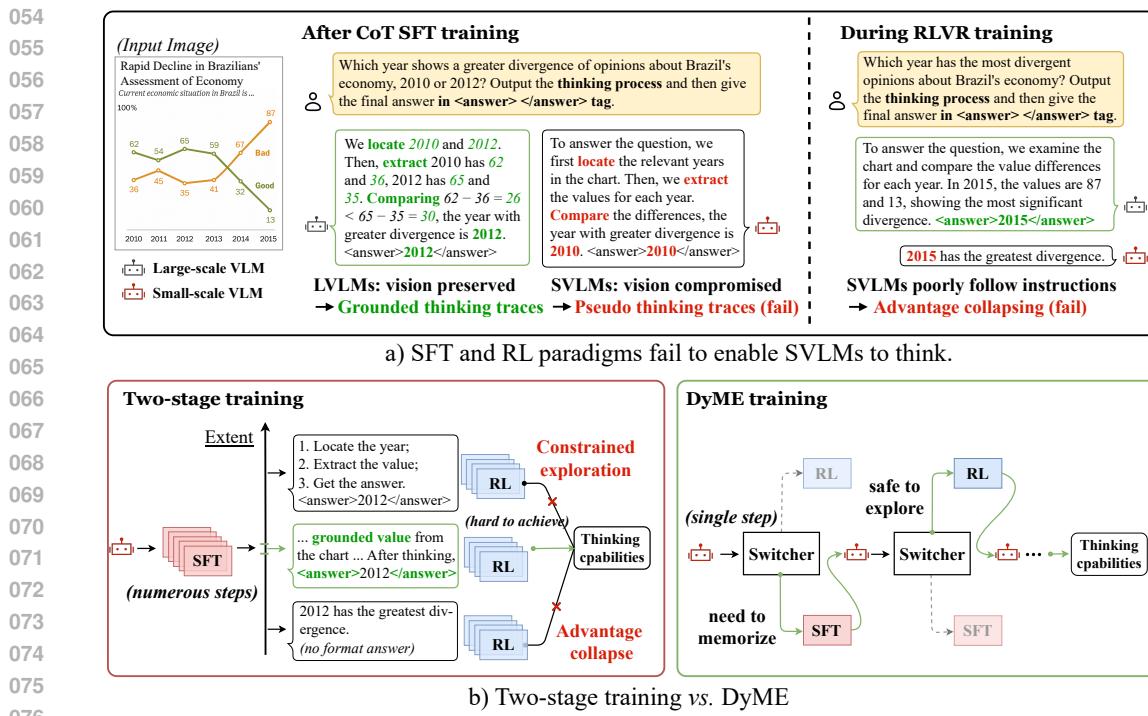
ABSTRACT

Small-scale Vision–Language Models (SVLMs) are exceptionally well-suited for proprietary tasks. Equipping them with thinking capabilities is a critical step to enhance their performance and reliability in these specific domains. However, existing training paradigms, including Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Reward (RLVR), impose substantial demands on the base VLM, exceeding the capacity of SVLMs. Consequently, directly applying these paradigms to SVLMs fails to instill the desired thinking abilities. A natural solution is to combine SFT and RLVR, leveraging their complementarity to reduce the dependence on model capacity. Yet the core challenge lies in managing the inherent trade-off: excessive reliance on SFT can force the model to memorize pseudo thinking traces, while over-emphasizing RLVR can lead to unstable exploration (*i.e.*, advantage collapse). To address this, we propose DyME, a novel training paradigm that **Dynamically** selects between **Memorization** (via SFT) and **Exploration** (via RLVR) at each optimization step. **By ensuring that every update contributes to the trade-off, DyME serves as a robust, standalone strategy that stabilizes SVLM learning.** Complementing this paradigm, we further introduce a synergistic *Visual Supervision* mechanism (comprising a visual checker and refiner) designed to **inject dynamically enhanced, image-grounded guidance during optimization**. Extensive experiments across diverse domains demonstrate that DyME consistently achieves this balance, and thus delivers substantial performance improvements on specialized tasks. These results establish DyME as a practical and effective solution for empowering SVLMs with reliable thinking capabilities.

1 INTRODUCTION

Equipping Vision–Language Models (VLMs) with thinking capabilities is a pivotal step that moves them beyond recognition toward reasoning. Recent studies have advanced this goal through specialized training, achieving strong results on a spectrum of visual tasks, from recognition-intensive applications like grounding (Lai et al., 2025; Shen et al., 2025; Peng et al., 2025; Liu et al., 2025; Xu et al., 2024) to reasoning-intensive challenges such as chart understanding (Zhang et al., 2025a; Xia et al., 2024) and geometric problem solving (Shen et al., 2025; Chen et al., 2025b; Xia et al., 2025). While this progress is significant, the success of these approaches is contingent upon the base VLM possessing strong foundational capabilities, namely, sufficient capacity and robust instruction adherence (Yang et al., 2025a). In practice, only a handful of VLMs meet these prerequisites, presenting a significant challenge for Small-scale VLMs (SVLMs) which struggle to develop thinking capabilities under existing training paradigms.

To contextualize this limitation, we briefly review the two dominant paradigms, both of which are primarily tailored for Large-scale VLMs (LVLMs). **1) Supervised Fine-Tuning (SFT) on Chain-of-Thought (CoT) data** (Xu et al., 2024; Li et al., 2024b; Xia et al., 2025; Gao et al., 2025): VLMs are supervised to memorize predefined thinking patterns from large-scale CoT annotations. Since CoT data are often verbose and contain much vision-irrelevant content, models must possess sufficient capacity to absorb long textual content without compromising visual grounding (Marafioti et al., 2025). This capability gap is illustrated in Fig. 1a: After SFT, LVLMs can generate grounded thinking traces with accurate intermediate values (in green), while SVLMs cannot. **2) Reinforcement Learning with Verifiable Reward (RLVR)** (Zhang et al., 2025a; Chen et al., 2025b; Peng et al.,



077
078
079
080

Figure 1: **Training paradigms for enabling VLM thinking.** The LVLM is Qwen2.5-VL-32B (Bai et al., 2025) and the SVLM is SmolVLM-500M (Marafioti et al., 2025). (a) Existing paradigms are effective for LVLMs but unsuitable for SVLMs. (b) The two-stage training paradigm (SFT → RL) faces a challenging trade-off. Our proposed DyME dynamically balances this trade-off.

083
084
085
086
087

2025; Shen et al., 2025): on the other hand, promotes exploration of thinking patterns rather than imitations. In this paradigm, VLMs are instructed to generate a thought process followed by a strictly formatted answer (e.g., enclosed in tags). This format enables verifiable rewards to reinforce correct generations and penalize incorrect ones. Owing to its reliance on instruction adherence, this approach is practical primarily for strong VLMs that can reliably generate structured outputs.

088
089
090
091
092
093
094
095
096
097
098

Consequently, both established paradigms are inadequate for instilling thinking in SVLMs. The extremely limited capacity (e.g., under 1B parameters) of SVLMs renders the SFT paradigm ineffective, as a high volume of textual information in CoT data can overwhelm the capacity (Marafioti et al., 2025; Chen et al., 2025a). Moreover, the limited instruction adherence of SVLMs frequently results in unverifiable outputs (Chu et al., 2025; Guo et al., 2025), precipitating advantage collapse during RLVR. We quantitatively verify these limitations (cf., Fig. 2): both SFT and RLVR paradigms indeed impair the performance.

099
100
101
102
103
104
105
106
107

Considering that SVLMs offer high efficiency and are crucial for deployment on edge devices (Marafioti et al., 2025), enabling them to think addresses a strong practical demand. Thinking enhances the reliability and performance of vision tasks (Zhang et al., 2025a), and task-specific SVLMs provide a compelling alternative to LVLMs in resource-constrained settings. This motivates the development of a new training paradigm that empowers SVLMs with thinking capabilities, at least for specialized tasks.

A promising solution is to fuse SFT and RLVR, as a well-calibrated **trade-off** can lower the high demands on the base model (DeepSeek, Inc., 2025; Yan et al., 2025): SFT encourages the model to

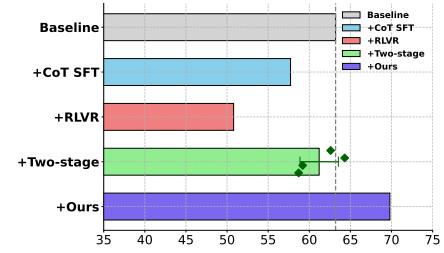


Figure 2: **Performance of SmolVLM-500M (Marafioti et al., 2025) on ChartQA (Masry et al., 2022).** Existing paradigms degrade performance, whereas DyME yields improvements.

memorize verifiable thinking patterns to prevent advantage collapse, while RL forces exploration to prevent rigid templates from overwhelming the model’s capacity. The central challenge, however, is that SVLMs struggle to achieve this balance. Existing hybrid methods, like two-stage training (Chen et al., 2025a; Chu et al., 2025) or annealed SFT losses¹ (Zhang et al., 2025b), rely on a static trade-off governed by hyperparameters set empirically. This rigidity is the critical flaw because the minimal capacity of SVLMs means the window for a successful static balance is incredibly narrow, making failure almost inevitable (*cf.* Fig. 1b). Our repeated trials with two-stage training confirmed this issue, with performance often falling below the baseline (*cf.* Fig. 2).

SVLMs therefore require a more intelligent paradigm to navigate this trade-off. To this end, we propose DyME (Dynamic Memorize–Explore), which integrates SFT and RLVR through a **dynamic** switching mechanism. As illustrated in Fig. 1b, DyME assesses the model’s generation at each step and adapts its training mode accordingly. When the model fails to follow instructions, it switches to a memorization mode (SFT) to guarantee stable optimization signals. Conversely, for valid generations, it engages an exploration mode (RLVR) to encourage diverse and grounded thinking. This state-driven approach ensures memorization and exploration are always complementary, dynamically maintaining the delicate trade-off. While this dynamic switching alone guarantees training stability, we further **maximize the model’s potential** by incorporating a synergistic *Visual Supervision* mechanism. This module facilitates an adaptive interaction: the CoT ground-truth guides the scoring of exploration (via a visual checker), while successful exploration traces dynamically refine the CoT ground-truth (via a visual refiner).

The aforementioned design makes DyME a highly effective paradigm for empowering thinking in SVLMs for specific tasks. We validate this across three diverse domains, ranging from recognition-intensive tasks (medical VQA) to reasoning-intensive challenges (chart understanding and geometric problem solving). Remarkably, using only a few thousand training samples, DyME achieves substantial performance gains, enabling it to match or even surpass several LVLMs. Our primary contributions are as follows:

1. We propose DyME, the first training paradigm that equips SVLMs with thinking capabilities, substantially reducing reliance on the base VLM’s initial capacity.
2. Through dynamic switching and synergistic supervision, DyME alleviates pseudo thinking traces and advantage collapse in SVLMs, yielding image-grounded thinking and consistent performance improvements.
3. We demonstrate the effectiveness and practicality of DyME across three diverse domains, each consistently showing substantial performance gains with only a few thousand training samples.

2 RELATED WORK

Vision-Language Models. Modern VLMs, such as LLaVA (Liu et al., 2024a) and Qwen-VL (Bai et al., 2023), have demonstrated remarkable capabilities across a wide array of vision tasks. However, their substantial parameter counts and computational demands restrict their use in resource-constrained environments like edge devices. This has motivated a growing interest in SVLMs designed for efficiency (Zhou et al., 2024; Marafioti et al., 2025; Korrapati, 2024). Although works like TinyLLaVA (Zhou et al., 2024) and SmolVLM (Marafioti et al., 2025) have shown that carefully designed SVLMs can achieve competitive performance, they exhibit a critical weakness. Recent studies highlight that their performance degrades significantly on tasks requiring complex, multi-step instruction following, indicating a gap in their compositional understanding and general reasoning abilities (Albalak et al., 2022; Ghosh et al., 2024).

Empowering Thinking Capabilities in VLMs. Recent advances in LLM thinking (*e.g.*, GPT-01 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025)) have motivated efforts to equip VLMs with similar capabilities via dedicated training paradigms.

SFT on CoT data (Xu et al., 2024; Xia et al., 2024; 2025; Gao et al., 2025; Yang et al., 2025b). This paradigm leverages large-scale CoT supervision to teach models to memorize and generalize thinking patterns. Multimodal-CoT (Zhang et al., 2023) was an early attempt using fused visual–text inputs, but its small scale data limited genuine thinking. Subsequent works highlight the role of scale: G-LLaVA (Gao et al., 2025) constructs 170K geometry-specific CoT samples; ChartVLM (Xia et al.,

¹See the supplementary material for further comparison.

162 2024) compiles a large chart corpus; and LLaVA-CoT (Xu et al., 2024) as well as R1-OneVision (Yang
 163 et al., 2025b) curate diverse, structured CoT data through large-scale prompt engineering. These
 164 approaches face long inputs, requiring large VLMs that can process rich textual information while
 165 preserving visual grounding (Marafioti et al., 2025; Zhai et al., 2023).

166 *RL with Verifiable Reward (RLVR)* (Zhang et al., 2025a; Chen et al., 2025b; Peng et al., 2025; Shen
 167 et al., 2025; Liu et al., 2025). RLVR adopts a distinct paradigm that elicits thinking through
 168 autonomous exploration with minimal external supervision. The popularly used algorithm is Group
 169 Relative Policy Optimization (GRPO), introduced by DeepSeek-Math (Shao et al., 2024), which
 170 exploits models’ ability to produce structured outputs that separate thinking from final answers. It
 171 leverages rule-verifiable data to optimize high-scoring generations, while light SFT is employed
 172 for cold-start when the output structure is unclear. This paradigm has been extended to VLMs in
 173 several works. R1-V (Chen et al., 2025b) applies GRPO to VLMs, enabling thinking in tasks such as
 174 counting and geometry. LMM-R1 (Peng et al., 2025) introduces a two-stage pipeline that transfers
 175 textual thinking into multimodal learning. VisualRFT (Liu et al., 2025) and R1-VL (Zhang et al.,
 176 2025a) incorporate vision-specific rewards to guide fine-grained, visually grounded optimization.
 177 Since GRPO depends on models’ initial structured thinking ability, these methods typically build on
 178 strong VLMs, such as the Qwen-VL series (Bai et al., 2025).

179 *Hybrid Training Paradigms* (Chu et al., 2025; Yan et al., 2025; Zhang et al., 2025b). To harness the
 180 complementary strengths of SFT and RL, researchers have also investigated hybrid paradigms. A
 181 common approach is a two-stage training process (Chu et al., 2025) that first uses SFT to teach the
 182 model the desired output format, followed by RL for exploration. Although intuitive, this method is
 183 highly sensitive to the amount of SFT, a parameter that is particularly challenging to tune for SVLMs,
 184 as these smaller models can easily become trapped in suboptimal states. Alternative strategies attempt
 185 to continuously blend SFT with RL, for instance, by incorporating SFT as an annealed auxiliary
 186 loss (Zhang et al., 2025b) or by managing its influence with an empirical shaping function (Yan et al.,
 187 2025). However, all these strategies ultimately rely on an empirically determined balance between
 188 the two paradigms. This rigidity represents a critical flaw when applied to SVLMs. The absence of
 189 adaptive control over the SFT weight renders these methods brittle and unreliable.

190 Thus, existing paradigms are not directly transferable to SVLMs due to their inherent limitations
 191 in model capacity and instruction-following ability. This highlights the need for a novel training
 192 paradigm that imposes minimal requirements on the base VLM.

194 3 APPROACH

196 3.1 PRELIMINARIES

198 We first briefly recap the two training paradigms (SFT and RLVR) that underlie our method. Let
 199 $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ be the training set, where x denotes the input (e.g. an image-instruction pair) and
 200 y the desired output. The model defines a conditional distribution $p_\theta(y | x)$ with parameters θ .

201 **Supervised Fine-Tuning (SFT).** For each training pair (x, y) in \mathcal{D} , SFT updates the model by
 202 minimizing the negative log-likelihood (cross-entropy) of the desired output y under the conditional
 203 distribution $p_\theta(y | x)$:

$$205 \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(x, y) \sim \mathcal{D}} [\log p_\theta(y | x)]. \quad (1)$$

207 This teacher-forcing loss allows models to *memorize* extensive training examples, compelling the
 208 model to absorb this knowledge.

209 **Group Relative Policy Optimization (GRPO).** GRPO is an RL algorithm that *explores* open-ended
 210 generation by comparing candidate outputs within a group. For each input x , the policy p_θ samples a
 211 set $\{\tilde{y}^k\}_{k=1}^K$; a reward function $r_a(\tilde{y}^k)$ is computed based on the correctness of the output answer,
 212 and each sample’s advantage A is measured relative to the other group members:

$$214 A(\tilde{y}^k) = \frac{r_a(\tilde{y}^k) - \bar{r}_a}{\sigma + \varepsilon}, \quad \bar{r}_a = \frac{1}{K} \sum_{j=1}^K r_a(\tilde{y}^j), \quad \sigma = \sqrt{\frac{1}{K} \sum_{j=1}^K (r_a(\tilde{y}^j) - \bar{r}_a)^2}, \quad (2)$$

216 where ε is a small constant for numerical stability. The policy then updates its parameters by
 217 minimizing the following loss, regularised by a KL constraint:
 218

$$219 \quad \mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{\tilde{y} \sim p_\theta} \left[\min(r_\theta(x, \tilde{y}) A(\tilde{y}), \text{clip}(r_\theta(x, \tilde{y}); 1 - \epsilon, 1 + \epsilon) A(\tilde{y})) \right] \\ 220 \\ 221 \quad + \beta D_{\text{KL}}[p_\theta(\cdot | x) \| p_{\text{ref}}(\cdot | x)], \quad \text{where } r_\theta(x, \tilde{y}) = \frac{p_\theta(\tilde{y} | x)}{p_{\text{old}}(\tilde{y} | x)}. \quad (3)$$

223 The clip and KL terms work together to keep each update close to safe regions of the parameter space:
 224 the clip gate limits step size around the rollout policy p_{old} , while the KL term (βD_{KL}) tethers the
 225 policy to the reference p_{ref} (typically the initial model).

226 **Gradient Compatibility of SFT and GRPO.** Below, we reveal that the optimization objectives of
 227 SFT and GRPO are formally equivalent, with the former targeting the ground-truth data distribution
 228 and the latter an internal one.
 229

230 The gradient of the SFT loss is straightforward:

$$231 \quad \nabla_\theta \mathcal{L}_{\text{SFT}}(\theta) = -\mathbb{E}_{(x, y) \sim \mathcal{D}} [\nabla_\theta \log p_\theta(y | x)]. \quad (4)$$

233 Similarly, the GRPO gradient (ignoring clipping and any KL-penalty) can be written as

$$235 \quad \nabla_\theta \mathcal{L}_{\text{GRPO}}(\theta) = -\mathbb{E}_{\substack{x \sim \mathcal{D}, \\ \tilde{y} \sim p_{\text{old}}(\cdot | x)}} [r_\theta(x, \tilde{y}) A(\tilde{y}) \nabla_\theta \log p_\theta(\tilde{y} | x)]. \quad (5)$$

237 This comparison shows that the SFT gradient is a special case of the GRPO gradient, obtained when
 238 the ground-truth sample is used with unit advantage. This equivalence enables a unified loss that
 239 balances external imitation (SFT) with internal refinement (GRPO). Achieving this fusion requires
 240 dynamically weighting the two signals (§3.2) and ensuring stylistic consistency between external
 241 ground-truth and self-generated outputs (§3.3).

243 3.2 DYNAMIC MEMORIZIZE–EXPLORE (DyME)

245 To realize this complementarity, we propose the **Dynamic Memorize–Explore (DyME)** paradigm,
 246 which adaptively switches between SFT and GRPO at each training step. In the following, we first
 247 outline the overall pipeline and then elaborate on the optimization procedures for each mode.

248 **Overall.** As shown in Fig. 3a, each training step begins with an input $x = (I, q)$, where I is the image
 249 and q is an instruction. The policy SVLM p_θ generates K responses $\{\tilde{y}^k\}_{k=1}^K$. Each response is
 250 parsed into a thinking trace and a final answer, which is then verified for correctness using predefined
 251 rules. The verification results fall into two categories: either all responses are incorrect (including
 252 those that fail to parse), or at least one is correct. **The decision rule:** if at least one response is
 253 correct, the model proceeds with GRPO-based exploration; otherwise, it falls back to SFT-based
 254 memorization. Formally, the training mode is switched as:

$$255 \quad \text{mode}(x) = \begin{cases} \text{GRPO}, & \text{if } \max_k r_a(\tilde{y}^k) = 1, \\ 256 \quad \text{SFT}, & \text{otherwise,} \end{cases} \quad (6)$$

257 where $r_a(\tilde{y}^k) \in \{0, 1\}$ indicates whether \tilde{y}^k passes rule-based verification. Though simple, this
 258 decision rule is highly effective. When all responses are incorrect, the answer rewards are essentially
 259 all zero and the normalized advantages become dominated by noise, making GRPO updates for a
 260 small SVLM unstable. In this regime, falling back to SFT provides a low-variance, ground-truth
 261 guided gradient. Conversely, the appearance of at least one correct response indicates that the current
 262 policy has already discovered a feasible solution for this input, so GRPO can safely exploit the
 263 relative advantages to drive exploration.

264 **GRPO Mode.** DyME introduces a key refinement to the original GRPO: beyond the answer reward
 265 r_a , it incorporates an auxiliary reward r_t for thinking traces. **This reward is computed by evaluating**
 266 **the generated traces against expected thinking patterns (e.g., via token-level F1 score ground-truth**
 267 **comparison), promoting structured thinking.**

269 Given these rewards, we update the policy using a modified GRPO objective. Unlike the standard
 formulation (Eqs. 2 & 3), we omit the KL penalty and clipping terms, as the dynamic integration of

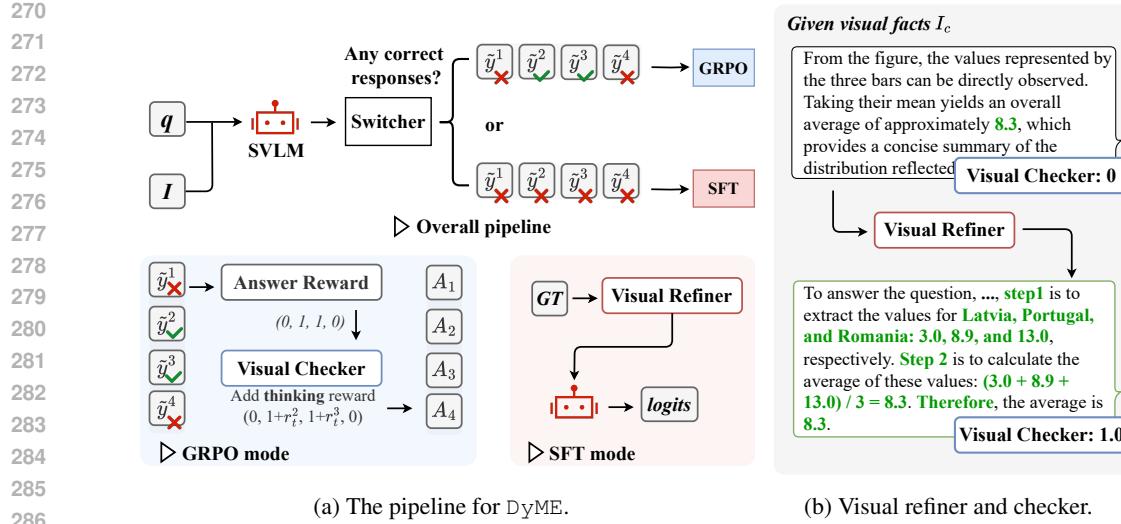


Figure 3: **Workflow and module components of DyME.** At each training step, DyME dynamically switches between memorization (via SFT) and exploration (via GRPO) modes based on its generations. Visual supervision is introduced through the visual refiner and visual checker. The refiner enhances the targets for memorization by incorporating richer visual elements (green), while the checker rewards the thinking context generated based on their visual relevance.

SFT already stabilizes training. This avoids overly conservative updates and yields a cleaner gradient form, enabling smoother alignment between SFT and GRPO:

$$\tilde{\mathcal{L}}_{\text{GRPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{\tilde{y} \sim p_\theta(\cdot|x)} [r_\theta(x, \tilde{y}) A(\tilde{y})], \quad (7)$$

where $A(\tilde{y}^k)$ is the group-normalized advantage calculated from the combined answer (r_a) and thinking (r_t) rewards, and $r_\theta(x, \tilde{y}^k) = \frac{p_\theta(\tilde{y}|x)}{p_{\text{old}}(\tilde{y}|x)}$ is the importance sampling ratio.

SFT Mode. When training falls back to SFT, the model is optimized toward the ground-truth response y using the standard supervised loss (Eq. 1). **This ensures that whenever the model fails to explore effectively, it receives a stable, ground-truth-guided gradient update to correct its behavior.**

DyME Objective. The final loss dynamically combines the two objectives based on response correctness:

$$\mathcal{L}_{\text{DyME}}(\theta) = \mathbb{1} \left[\max_k r_a(\tilde{y}^k) = 1 \right] \cdot \tilde{\mathcal{L}}_{\text{GRPO}}(\theta) + \left(1 - \mathbb{1} \left[\max_k r_a(\tilde{y}^k) = 1 \right] \right) \cdot \mathcal{L}_{\text{SFT}}(\theta), \quad (8)$$

where $\mathbb{1}[\cdot]$ is the indicator function, returning 1 if the condition holds, 0 otherwise.

3.3 VISION SUPERVISION

DyME with Visual Supervision. While the aforementioned **Pure DyME** (using standard r_t and static ground-truth) already guarantees training stability through its dynamic switching mechanism, we can further exploit this dynamic nature to maximize performance. Specifically, the switching mechanism allows us to tailor the supervision signals at each optimization step: refining the reward during exploration and enhancing the ground-truth during memorization. To this end, we introduce a *checker-refiner* framework (cf. Fig. 3b), which constitutes the **Full DyME**.

This framework reorganizes the ground-truth to adhere to a predefined structure, crucially transforming it into a grounded thinking trace. The refiner restructures the external ground-truth into structured, visually grounded responses, while the checker evaluates self-generated outputs for their structural organization and coverage of visual content. We refer to the resulting supervision signals collectively as *vision supervision*. The implementation is carried out via LLM-based prompt engineering.

Visual Facts I_c are central to realizing vision supervision. They are defined as fine-grained visual components extracted from each image, including objects, attributes, and states. These elements play

324 a dual role: they provide evidence for evaluating generations against the image and serve as building
 325 blocks for constructing complete ground-truth responses.
 326

327 **Visual Checker.** The visual checker evaluates responses along two dimensions: (i) whether the output
 328 contains sufficient correct visual elements compared to I_c , and (ii) whether it aligns stylistically with
 329 provided examples. These examples may be manually defined or extracted from the SFT ground-truth.
 330

331 **Visual Refiner.** The refiner produces visually grounded responses for SFT by leveraging the model’s
 332 validated explorations. High-scoring traces identified by the visual checker are stored in a dynamic
 333 example pool. An LLM then draws from this pool to generate ground-truth responses, integrating
 334 structural templates with visual facts from I_c and referencing the collected examples.
 335

336 In essence, the acquisition of Visual Facts, the evaluation by the Visual Checker, and the synthesis by
 337 the Visual Refiner are all implemented via structured prompt engineering using Qwen2.5-14B. Please
 338 refer to the Supplementary Materials for the full prompts used in our pipeline.
 339

340 4 EXPERIMENTS

341 To rigorously evaluate DyME, we structure our experiments into two parts: (1) **Algorithmic Val-**
 342 **idation**, where we evaluate “Pure DyME” in a controlled setting using offline data to isolate the
 343 contribution of our dynamic switching mechanism; and (2) **System Effectiveness**, where we evaluate
 344 the full DyME pipeline (with Visual Supervision) across diverse domains to demonstrate its practical
 345 capability in empowering SVLMs.
 346

347 4.1 PART I: ALGORITHMIC VALIDATION (PURE DYME)

348 **Setup.** Since SVLMs lack intrinsic reasoning capabilities and cannot autonomously discover complex
 349 reasoning paths, pre-constructed CoT data is a mandatory prerequisite for all training paradigms. We
 350 therefore evaluated all methods on ChartQA (Masry et al., 2022) using LLaVA-OV-S (Li et al., 2024a),
 351 the 0.5B variant, with three pre-constructed CoT datasets of varying qualities: **Low (Undesigned)**
 352 containing unstructured traces (~ 80 words); **Medium (Standard)** consisting of semi-structured
 353 traces (~ 89 words) from Qwen2.5-14B; and **High (Premium)** comprising highly structured traces
 354 (~ 142 words) from GPT-4o. Following established protocols (Liu et al., 2023; Masry et al., 2022),
 355 we report *relaxed correctness*, which allows a 5% tolerance for numerical answers.
 356

357 We present a threefold evaluation to validate data robustness, design optimality, and generalization:
 358

359 **(1) Robustness to Data Quality.** Table 1 (a) demonstrated DyME’s superiority. On *Low* quality data,
 360 Pure DyME (61.9%) significantly outperforms the unstable Two-stage baseline (57.6%). Remarkably,
 361 using only *Medium* data, it surpasses the SFT baseline trained on premium *High* (GPT-4o) data
 362 (61.6%). This confirms that DyME acts as a robust student, effectively maximizing data efficiency.
 363

364 **(2) Optimality of Binary Switching.** To validate our binary design, we compared it against three
 365 alternative switching heuristics in Table 1 (b): (i) *Reward Thresholding*, which switches to RL only
 366 if the batch average reward exceeds a threshold t ; (ii) *SFT Annealing*, which applies a weighted
 367 SFT loss alongside RL at every step; and (iii) *SFT Budget*, which performs focused SFT updates on
 368 accumulated failure cases (hard mining).
 369

370 **Results:** *Reward Thresholding* proves brittle, collapsing at suboptimal thresholds ($t = 0.5, 52.4\%$).
 371 *SFT Annealing* incurs a heavy computational tax (+25%) due to the auxiliary SFT gradient calculation.
 372 *SFT Budget* yields inferior results (59.6%) as overwhelming the model with concentrated failures
 373 destabilizes learning. In contrast, DyME’s binary switch is parameter-free, efficient, and empirically
 374 optimal (64.9%).
 375

376 **(3) Mechanism Generality.** Going beyond the primary setup, while DyME is primarily tailored
 377 for SVLMs, we verify the universality of its core switching mechanism (see Supplementary). In
 378 the text-only domain, it boosts the small-scale Qwen2.5-0.5B on GSM8K (Cobbe et al., 2021) to
 379 55.3% (+5.8% over GRPO), confirming DyME is an effective paradigm for empowering thinking in
 380 small-parameter models regardless of modality. Moreover, the paradigm scales effectively: on the
 381 stronger Qwen2.5-VL-7B, it further improves ChartQA performance to 89.6% (+2.3%).
 382

378 Table 1: **Algorithmic Validation of Pure DyME.** (a) DyME outperforms SFT and Two-stage variants
 379 (w/ and w/o KL penalty) across all data qualities. (b) The binary switch is more robust and efficient
 380 than soft or hard-mining alternatives (evaluated on Medium data).

(a) Robustness across Data Quality			(b) Switching Strategy Ablation				
Method	Low	Medium	High	Strategy	Hyperparam.	Acc.	Cost
SFT	50.5	57.8	61.6	Reward Threshold	$t = 0.5/0.8/0.9$	52.4/64.1/63.4	None
Two-stage	57.6	59.9	54.5	SFT Annealing	Cosine	64.0	+25%
Two-stage (w/ KL)	55.4	60.8	62.7	SFT Budget	Hard Mining	59.6	Budget-dep.
Pure DyME	61.9	64.9	68.5	Binary Switch (Ours)	–	64.9	Baseline

389 4.2 PART II: SYSTEM EFFECTIVENESS (FULL DyME)

390 Having validated the algorithmic core, we now evaluate the Full DyME pipeline, augmented with
 391 Visual Supervision, across three diverse domains: Medical VQA, Chart Understanding, and Geometry.
 392 Each followed the evaluation protocols of prior work (Zong et al., 2024).

393 **Setup & Source of I_c .** Unlike Part I, here we activate the Visual Supervision module to enable
 394 the full online loop. Crucially, to demonstrate DyME’s capability to bootstrap from raw signals,
 395 we utilize the “Undesigned” CoT data (defined in §4.1) derived from SLAKE (Liu et al., 2021),
 396 ChartQA (Masry et al., 2022), and Geo170K (Gao et al., 2025) as the common training source for
 397 all methods. Acquiring the necessary visual facts (I_c) is a fully automated process: we leverage
 398 standard domain tools (e.g., BiomedGPT (Zhang et al., 2024a) for medical, DePlot (Liu et al., 2023)
 399 for charts) or prompt generalist LLMs (e.g., Qwen2.5 (Team, 2024)) to parse images into structured
 400 textual descriptions. The automated pipeline and prompts are included in the supplementary.
 401

402 **Evaluation Protocol.** We used official train-test splits for SLAKE (Accuracy/Recall) and ChartQA
 403 (Relaxed correctness). For Geometry, since Geo170K (Gao et al., 2025) provides no test set, we
 404 evaluated Accuracy on MathVerse (Zhang et al., 2024b), consistent with Zong et al. (2024).

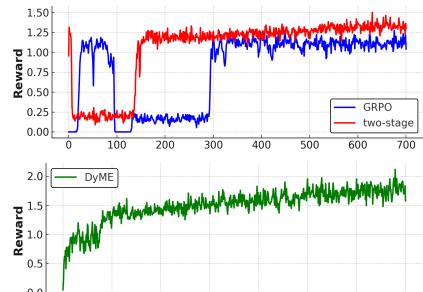
405 4.2.1 MAIN RESULTS

406 **DyME vs. Existing Training Paradigms.** The comprehensive results in Table 2 show that DyME
 407 consistently delivers substantial gains. Notably, after training with DyME,
 408 SmolVLM improves from 49.9 to 55.6 (+5.7), LLaVA-
 409 OV-S from 50.7 to 55.4 (+4.7), and InternVL2-S from
 410 56.3 to 58.1 (+1.8). In contrast, existing paradigms tend
 411 to degrade performance (e.g., SFT lowers SmolVLM to
 412 44.1), validating our analysis that SFT yields pseudo thinking
 413 traces and GRPO faces advantage collapse (cf. Fig. 4).
 414

415 DyME effectively mitigates these issues. It promotes
 416 grounded traces that are concise yet informative (cf.
 417 Fig. 5), aligning well with the limited capacity of SVLMs.
 418 Importantly, DyME places minimal demands on the base
 419 model: even SmolVLM (0.5B) achieves substantial gains,
 420 and it still delivers improvements (+2.6%) on extensively
 421 pretrained models like InternVL2-S. We further corroborated
 422 these findings through manual inspection, as detailed
 423 in the Supplementary Material.

424 **Matching the Efficacy of GPT-4o Supervision with Open-Source Models.** Comparing results
 425 between Part I and Part II reveals a crucial finding: LLaVA-OV-S trained with the full DyME
 426 pipeline (using the accessible Qwen2.5-14B) achieves 67.5% (Table 2). This effectively matches the
 427 performance of Pure DyME trained on expensive GPT-4o data (68.5%, cf. Table 1). This proves that
 428 full DyME allows open-source supervision to achieve training outcomes comparable to those derived
 429 from top-tier proprietary models, eliminating the need for expensive data annotation.

430 **DyME-trained SVLMs Can Be Competitive with LVLMs.** We ensured fairness by exposing all
 431 baselines to our training data. As shown in Table 2, SVLMs trained with DyME can surpass stronger



432 **Figure 4: Training rewards.** GRPO and two-stage training suffer from severe
 433 advantage collapse.

432
 433 **Table 2: Comparisons across three domains: medical VQA, chart understanding, and geometry**
 434 **solving.** The evaluation follows the VLMEvalKit framework (Duan et al., 2024). For SVLMs, existing
 435 training paradigms degrade their performance, whereas DyME consistently brings improvements. The
 436 best performance achieved by each SVLM is highlighted in bold, with the relative improvement also
 437 indicated. Notably, after being trained with DyME, SVLMs achieve performance comparable to that
 of MoVA (underlined).

439	Model	ViT	LLM	Medical	Chart	Geometry	Avg.
440 LVLMs							
441	LLaVA-Med (Li et al., 2023)	CLIP-ViT-L/14	Vicuna-7B	64.3	–	–	–
442	Cambrian-1 (Tong et al., 2024)	Hybrid-3B	Llama3-8B	–	72.6	22.0	–
443	LLaVA-1.5 (Liu et al., 2024a)	CLIP-ViT-L/14	Vicuna-7B	69.4	17.8	–	–
444	LLaVA-1.6 (Liu et al., 2024b)	CLIP-ViT-L/14	Vicuna-7B	78.2	49.2	13.4	47.0
445	MoVA (Zong et al., 2024)	Hybrid-3B	Vicuna-7B	74.5	68.3	19.7	<u>54.2</u>
446	LLaVA-OV-L (Li et al., 2024a)	SigLIP-SO400M	Qwen2-7B	75.7	80.9	24.5	60.4
447	InternVL2-L (Chen et al., 2024)	InternViT-300M	InternLM2.5-7B	80.2	82.1	37.3	66.5
448 SVLMs							
449	SmolVLM (Marafioti et al., 2025)	SigLIP-93M	SmolLM2-360M	72.1	63.2	14.6	49.9
450	+ CoT SFT	SigLIP-93M	SmolLM2-360M	60.1	57.7	14.5	44.1
451	+ GRPO	SigLIP-93M	SmolLM2-360M	61.1	53.8	17.1	44.0
452	+ Two-stage	SigLIP-93M	SmolLM2-360M	59.4	60.1	16.7	45.4
453	+ DyME	SigLIP-93M	SmolLM2-360M	78.1 (+6.0%)	69.7 (+6.5%)	18.9 (+4.3%)	55.6 (+5.7%)
454	LLaVA-OV-S (Li et al., 2024a)	SigLIP-400M	Qwen2-0.5B	74.9	61.4	15.9	50.7
455	+ Two-stage	SigLIP-400M	Qwen2-0.5B	74.5	52.9	16.5	48.0
456	+ DyME	SigLIP-400M	Qwen2-0.5B	78.3 (+3.4%)	67.5 (+6.1%)	20.4 (+4.5%)	55.4 (+4.7%)
457	InternVL2-S (Chen et al., 2024)	InternViT-300M	Qwen2-0.5B	78.3	71.9	18.7	56.3
458	+ Two-stage	InternViT-300M	Qwen2-0.5B	73.6	55.7	17.1	48.8
459	+ DyME	InternViT-300M	Qwen2-0.5B	80.0 (+1.7%)	74.5 (+2.6%)	19.8 (+1.1%)	58.1 (+1.8%)

461 LVLMs like MoVA (54.2) on these specialized domains, with SmolVLM reaching 55.6 and LLaVA-
 462 OV-S 55.4. As a result, DyME-trained SVLMs become reliable options for task-specific applications
 463 on resource-constrained edge devices.

466 4.2.2 ABLATION STUDY

468 To dissect the source of these gains, we conducted an ablation study to analyze the contribution of
 469 DyME’s four core components within the full pipeline: the memorization mode, exploration mode,
 470 visual refiner, and visual checker. Table 3 shows the performance impact.

471 **Dynamic Switching Mechanism.** The results
 472 confirm that Memorization and Exploration are
 473 symbiotic. Disabling memorization causes a
 474 catastrophic drop (55.4 → 43.9), effectively re-
 475 reverting to unconstrained, unstable exploration.
 476 Conversely, removing exploration (50.4) re-
 477 restricts the model to the static imitation of sub-
 478 optimal data. As shown in Fig. 4, their dynamic
 479 interplay prevents the advantage collapse ob-
 480 served in baselines, ensuring optimization stability throughout the learning process.

481 **Visual Supervision.** Removing the visual checker and refiner drops performance by 4.7% and
 482 6.9%, respectively. This validates the pivotal role of visual supervision in bootstrapping from noisy,
 483 undesigned data. Given the limited capacity of SVLMs, they are easily prone to hallucination when
 484 trained on low-quality traces. The visual components act as a dynamic denoiser, ensuring that raw,
 485 imperfect data is filtered and refined into grounded visual facts (I_c) before optimization, thus enabling
 robust learning even from weak supervision.

486 Table 3: **Ablation study.** Model: LLaVA-OV-S.

DyME Variant	Medical	Chart	Geometry	Average
DyME (full)	78.3	67.5	20.4	55.4
w/o memorization	63.2	53.4	15.0	43.9 (20.6% ↓)
w/o exploration	75.5	61.3	14.5	50.4 (9.0% ↓)
w/o visual refiner	75.6	62.3	16.8	51.6 (6.9% ↓)
w/o visual checker	76.9	64.3	17.1	52.8 (4.7% ↓)

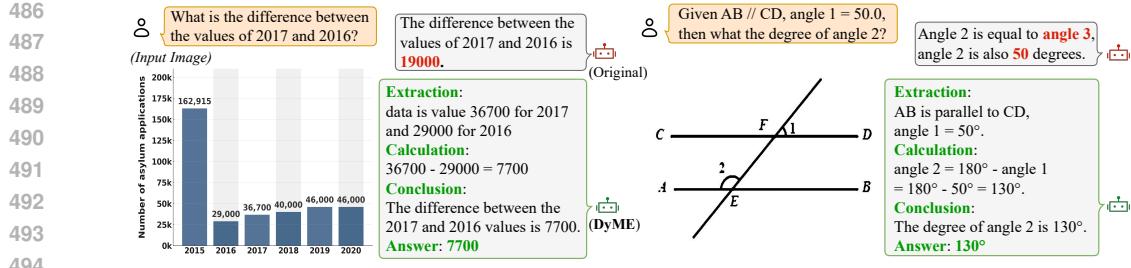


Figure 5: **Showcases on chart understanding and geometry solving.** We use LLaVA-OV-S to demonstrate the results. The SVLM originally produces hallucinated answers (red), while the DyME-trained model generates structured thinking traces (green) that incorporate grounded values, effectively improving the performance.

4.3 TRAINING EFFICIENCY & DISCUSSION

We analyze the computational efficiency and performance trade-offs associated with different configurations of DyME. The comparative results are detailed in Table 4.

Computational Efficiency vs. Data Cost. The framework offers two distinct operating regimes catering to different resource profiles. Pure DyME represents the high-efficiency regime: when offline CoT data is pre-constructed, it maintains training throughput comparable to standard GRPO (~ 14 s/step) while delivering superior performance. In contrast, Full DyME (with Visual Supervision) prioritizes data autonomy. While the online interaction introduces a computational overhead ($\sim 1.6 \times$ training time), it enables the model to bootstrap high-performance reasoning solely from open-source models, bypassing the dependency on expensive, proprietary data annotation (e.g., GPT-4o).

Sensitivity to External Model Capacity. For Full DyME, we further examine the impact of the external helper’s size on system performance. As shown in Table 4, replacing the Qwen2.5-14B helper with the smaller 7B variant results in a negligible performance variation (67.5% \rightarrow 66.8%). This indicates that our structured prompt engineering effectively decomposes complex reasoning tasks, allowing even smaller external models to provide sufficient guidance for SVLMs without necessitating heavy-weight models.

Applicability of Visual Supervision. The effectiveness of the Visual Supervision module relies on the explicit extraction of Visual Facts (I_c). This process creates specific applicability boundaries. For domains involving *abstract semantics* (e.g., irony in memes) or *unstructured perception* (e.g., dense crowds), converting holistic visual signals into discrete text may result in information loss. In such scenarios, reverting to the Pure DyME paradigm serves as a more robust alternative.

5 CONCLUSION

In this work, we introduced DyME, a novel training paradigm designed to empower thinking capabilities within SVLMs. At its core, DyME combines memorization (via SFT) mode and exploration (via RLVR) mode through a dynamic switching mechanism. Our experiments demonstrate that this approach not only resolves the critical trade-off between these two modes but also yields substantial performance gains on a wide spectrum of vision tasks, from recognition-intensive to reasoning-intensive scenarios. The success of DyME is attributed to its carefully designed components: the dynamic switching mechanism addresses pseudo thinking traces and advantage collapse, while the visual checker and refiner provide coordinated, high-quality visual supervision. It imposes minimal requirements on the base VLM, making it broadly applicable to a wide range of models, including extremely lightweight SVLMs. Therefore, DyME serves as the practical solution for empowering SVLMs to think.

Table 4: **Cost-Benefit Analysis.** Time measured in sec/step. Run on 8x H800.

Method	Ext. Model	Time	Acc.
GRPO (Baseline)	Qwen2.5-14B [†]	14.8s	60.8
Pure DyME	Qwen2.5-14B [†]	14.0s	64.9
Pure DyME	GPT-4o [†]	19.1s	68.5
Full DyME	Qwen2.5-7B	21.2s	66.8
Full DyME	Qwen2.5-14B	23.4s	67.5

[†] Used for offline data construction only.

540

6 LLM USAGE

541
 542 In accordance with the ICLR 2026 policy on LLMs, no text in this manuscript was generated by an
 543 LLM. As part of our experimental setup, we used Qwen2.5-14B to generate synthetic CoT training
 544 data; this use did not involve any aspect of manuscript preparation.

545

7 REPRODUCIBILITY

546 We release our code, datasets, and experiment logs at <https://anonymous.4open.science/r/2276-rebuttal-F215>.

551

REFERENCES

552 Alon Albalak, Akshat Shrivastava, Chinnadhurai Sankar, Adithya Sagar, and Mike Ross. Data-
 553 efficiency with a single gpu: An exploration of transfer methods for small language models. *arXiv
 554 preprint arXiv:2210.03871*, 2022.

555 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
 556 and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, localization,
 557 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

558 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 559 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 560 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 561 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL technical report. *arXiv
 562 preprint arXiv:2502.13923*, 2025.

563 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie.
 564 SFT or RL? an early investigation into training R1-like reasoning large vision-language models.
 565 *arXiv preprint arXiv:2504.11468*, 2025a.

566 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-V: Reinforcing super generalization
 567 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025b. Accessed: 2025-02-02.

568 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 569 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
 570 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.

571 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 572 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
 573 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

574 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 575 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 576 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

577 DeepSeek, Inc. DeepSeek-R1 Release. <https://api-docs.deepseek.com/news/news250120>, January 2025. Accessed: Jun. 21, 2025.

578 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
 579 Zang, Pan Zhang, Jiaqi Wang, et al. VLMEvalKit: An open-source toolkit for evaluating large
 580 multi-modality models. In *ACM MM*, 2024.

581 Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
 582 Jianhua Han, Hang Xu, Zhenguo Li, et al. G-LLaVA: Solving geometric problem with multi-modal
 583 large language model. In *ICLR*, 2025.

584 Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, and Aman Chadha. Exploring the
 585 frontier of vision-language models: A survey of current methodologies and future directions. *arXiv
 586 preprint arXiv:2404.07214*, 2024.

- 594 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 595 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
 596 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 597
- 598 Vik Korrapati. Moondream. <https://moondream.ai/>, 2024. Accessed: 2025-03-27.
- 599 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-R1: Reinforce-
 600 ment learning for generalizable medical reasoning in vision-language models. *arXiv preprint*
 601 *arXiv:2503.13939*, 2025.
- 602
- 603 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 604 Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy visual task transfer. *arXiv preprint*
 605 *arXiv:2408.03326*, 2024a.
- 606 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
 607 Naumann, Hoifung Poon, and Jianfeng Gao. LLaVA-Med: Training a large language-and-vision
 608 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 609 28541–28564, 2023.
- 610 Zhuowan Li, Bhavan Jasani, Peng Tang, and Shabnam Ghadar. Synthesize step-by-step: Tools
 611 templates and LLMs as data generators for reasoning-based chart VQA. In *CVPR*, 2024b.
- 612
- 613 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. SLAKE: A semantically-
 614 labeled knowledge-enhanced dataset for medical visual question answering. In *ISBI*, 2021.
- 615
- 616 Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee,
 617 Mandar Joshi, Wenhui Chen, Nigel Collier, and Yasemin Altun. DePlot: One-shot visual language
 618 reasoning by plot-to-table translation. In *Findings of the ACL*, 2023.
- 619 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 620 tuning. In *CVPR*, 2024a.
- 621 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 622 LLaVA-NeXT: Improved reasoning, OCR, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
- 623
- 624 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 625 Wang. Visual-RFT: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
- 626
- 627 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Zakka,
 628 Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, et al. SmolVLM: Redefining small and
 629 efficient multimodal models. *arXiv preprint arXiv:2504.05299*, 2025.
- 630
- 631 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark
 632 for question answering about charts with visual and logical reasoning. In Smaranda Muresan,
 633 Preslav Nakov, and Aline Villavicencio (eds.), *Findings of the ACL*, May 2022.
- 634
- 635 OpenAI. Introducing OpenAI o1. <https://openai.com/o1/>, December 2024. Accessed: Jun.
 21, 2025.
- 636
- 637 Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 638 Xingzhong Xu, Xin Geng, and Xu Yang. LMM-R1: Empowering 3B LMMs with strong reasoning
 639 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.
- 640
- 641 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 642 Mingchuan Zhang, YK Li, Y Wu, et al. DeepSeekMath: Pushing the limits of mathematical
 643 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- 644
- 645 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 646 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. VLM-R1: A stable
 647 and generalizable R1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
- 648
- 649 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

- 648 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 649 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 650 open, vision-centric exploration of multimodal LLMs. *Advances in Neural Information Processing
 651 Systems*, 37:87310–87356, 2024.
- 652 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
 653 Min Dou, Botian Shi, et al. ChartX & ChartVLM: A versatile benchmark and foundation model
 654 for complicated chart reasoning. *arXiv preprint arXiv:2402.12185*, 2024.
- 655 Renqiu Xia, Mingsheng Li, Hancheng Ye, Wenjie Wu, Hongbin Zhou, Jiakang Yuan, Tianshuo Peng,
 656 Xinyu Cai, Xiangchao Yan, Bin Wang, et al. GeoX: Geometric problem solving through unified
 657 formalized vision-language pre-training. In *ICLR*, 2025.
- 658 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. LLaVA-CoT: Let vision
 659 language models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.
- 660 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 661 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.
- 662 Lele Yang, Muxi Diao, Kongming Liang, and Zhanyu Ma. GRPO for LLaVA. <https://github.com/PRIS-CV/GRPO-for-Llava>, 2025a.
- 663 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 664 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-OneVision: Advancing generalized multimodal
 665 reasoning through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025b.
- 666 Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, and Yi Ma. Investigating
 667 the catastrophic forgetting in multimodal large language model fine-tuning. In *CPAL*, 2023.
- 668 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.
 669 R1-VL: Learning to reason with multimodal large language models via step-wise group relative
 670 policy optimization. *arXiv preprint arXiv:2503.12937*, 2025a.
- 671 Kai Zhang, Rong Zhou, Eashan Adhikarla, Zhiling Yan, Yixin Liu, Jun Yu, Zhengliang Liu, Xun
 672 Chen, Brian D Davison, Hui Ren, et al. A generalist vision–language foundation model for diverse
 673 biomedical tasks. *Nature Medicine*, pp. 1–13, 2024a.
- 674 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
 675 Pan Lu, Kai-Wei Chang, Peng Gao, et al. MathVerse: Does your multi-modal llm truly see the
 676 diagrams in visual math problems? 2024b.
- 677 Wenhao Zhang, Yuexiang Xie, Yuchang Sun, Yanxi Chen, Guoyin Wang, Yaliang Li, Bolin Ding,
 678 and Jingren Zhou. On-policy RL meets off-policy experts: Harmonizing supervised fine-tuning
 679 and reinforcement learning via dynamic weighting. *arXiv preprint arXiv:2508.11408*, 2025b.
- 680 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 681 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.
- 682 Baichuan Zhou, Ying Hu, Xi Weng, Junlong Jia, Jie Luo, Xien Liu, Ji Wu, and Lei
 683 Huang. TinyLLaVA: A framework of small-scale large multimodal models. *arXiv preprint
 684 arXiv:2402.14289*, 2024.
- 685 Zhuofan Zong, Bingqi Ma, Dazhong Shen, Guanglu Song, Hao Shao, Dongzhi Jiang, Hongsheng Li,
 686 and Yu Liu. MoVA: Adapting mixture of vision experts to multimodal context. In *NeurIPS*, 2024.
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 Empowering Small VLMs to Think with Dynamic Memorization 703 and Exploration

704 705 Supplementary Material 706

707 In the supplementary materials, we report:

- 709 LLM instructions used for constructing vision supervision (§S1);
- 710 Detailed experimental setup and additional experimental results (§S2);
- 711 Showcases of SVLMs trained via DyME performing on medical VQA, chart understanding,
 712 and geometry problem solving (§S3);

714 S1 LLM INSTRUCTIONS FOR VISION SUPERVISION

716 The instructions for constructing I_c , the visual refiner, and the visual checker are listed as follows.

718 S1.1 INSTRUCTIONS FOR EXTRACTING VISUAL ELEMENTS

720 I_c is primarily derived from two sources: ground truth captions, and the outputs from specialized
 721 tools such as the chart-parsing model Deplot. Prompt S1 is employed to extract visual elements from
 722 sentences.

```

724 1 Based on the provided sentence <C>, extract all the visual elements.
725 2 Organize them into a structured format that can be directly converted
  into a Python list.
726 3 Note: visual elements are all the things that can be seen in a sentence -
  4 tangible, perceivable items, places, people, colors, shapes,
  movements, etc.
727 5 Here are some examples:
728 6 C: A small black cat is sitting on a wooden table under the bright
  7 sunlight.
  Output:
  8   {"object": "cat", "attributes": ["small", "black"], "action": "sitting"},
  9   {"object": "table", "attributes": ["wooden"]},
 10   {"environment": "sunlight", "attributes": ["bright"]}
 11 ]
 12
 13 C: The old castle stands on a rocky hill surrounded by mist.
 14 Output:
 15   {"object": "castle", "attributes": ["old"], "position": "stands"},
 16   {"object": "hill", "attributes": ["rocky"]},
 17   {"environment": "mist"}
 18 ]
 19
 20 Now, following the examples above, please extract the visual element from
  21 the sentence without providing any explanation or comments.
 22
 23 C: %s
  Your Output:

```

749 Prompt S1: Automated Visual Elements Extraction

751 S1.2 INSTRUCTIONS FOR EXTRACTING VISUAL FACT (A-OKVQA)

752 For general scenes requiring commonsense reasoning (e.g., A-OKVQA), we leverage Qwen2.5-VL-
 753 7B to automatically generate Visual Facts (I_c). Prompt S2 is designed to extract visual information
 754 step-by-step across 7 distinct dimensions to ensure comprehensive coverage.

```

756
757 1 You are a helpful assistant that analyzes images and provides visual
758  facts.
759 2 Your response MUST be a single, valid JSON object.
760 3 The JSON object should contain:
761 4 1. "description": A detailed and accurate description of the image.
762 5 2. "objects": A list of key objects, including their name, attributes,
763  and approximate position in the image.
764 6
765 7 Example format:
766 8 {
767 9     "description": "A person riding a bicycle on a city street.... (",
768 10     "detailed description here)",
769 11     "objects": [
770 12         {"name": "person", "attributes": ["wearing helmet", "blue shirt"], "position": "center"}, {"name": "bicycle", "attributes": ["red", "mountain bike"], "position": "center"}, {"name": "street", "attributes": ["asphalt", "wet"], "position": "bottom"}]
771 13
772 14
773 15
774 16 Analyze the attached image and provide the visual facts in the required
775 17 JSON format.
776 18 For context, the user will be asked this question about the image (do not
777 19 answer the question, just use it for context):
778 20     "{question}"
779 21

```

Prompt S2: Automated Visual Fact Extraction for General Scenes

S1.3 INSTRUCTIONS FOR VISUAL REFINER

The visual refiner primarily takes thinking templates from a template pool and I_c as input to construct the ground truth for SFT. The templates are extracted from example outputs.

```

780
781
782
783 Given:
784 <IC>: the data of an image
785 <Q>: a question
786 <A>: a reference answer
787 <T>: a writing template
788
789 Goal:
790 Transform the visual information in <IC> into a textualized data
791 description and incorporate it into a smooth, natural explanation
792 that reasons why the correct answer to <Q> is <A>, using the format
793 and tone defined by <T>.
794
795 Example:
796 <IC>: [
797     {"object": "bar", "attributes": ["~120k", "Q4"], "label": "Product A"}, {"object": "bar", "attributes": ["~150k", "Q4"], "label": "Product B"}, {"object": "bar", "attributes": ["~90k", "Q4"], "label": "Product C"}, {"title": "Quarterly Revenue"}]
798 <Q>: Which product has the highest revenue in Q4?
799 <A>: product b
800 <T>:
801     [Extraction] Extract the relevant data points from <IC> that are
802     needed to answer <Q>.
803     [Calculation] Analyze and compare the extracted data to determine the
804     correct result.
805     [Conclusion] Based on the analysis, state why <A> is the correct
806     answer to <Q>.
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

```

```

810 23
811 24 <Output>:
812 25 [Extraction] The image shows a chart comparing three items-Product A,
813 26 Product B, and Product C-in Q4. The bar heights indicate their
814 27 revenues: Product A at about 120k, Product B at about 150k, and
815 28 Product C at about 90k.
816 29 [Calculation] Comparing these values, Product B's revenue (150k) is
817 30 greater than both Product A's (120k) and Product C's (90k).
818 31 [Conclusion] Since Product B has the highest revenue among the three,
819 32 the correct answer to the question "Which product has the
820 33 highest revenue in Q4?" is product b.
821 34
822 35 Now, according to the requirements and the examples above, convert my
823 36 input into the target reasoning text. Please give me the result
824 37 directly without any explanation or description.
825 38
826 39 <IC>: %s
827 40 <Q>: %s
828 41 <A>: %s
829 42 <T>: %s
830 43 <Output>:

```

Prompt S3: Ground-truth construction for Chart Understanding SFT

Prompts for the other domains follow a similar design.

S1.4 INSTRUCTIONS FOR VISUAL CHECKER

The visual checker is primarily responsible for scoring the thinking trace of responses generated in the GRPO process. It evaluates these traces with reference to exemplars, based on their fluency and the degree to which the mentioned visual elements align with I_c . Prompts for the other domains follow a similar design.

```

839 1 Given
840 2 <IC>: the data of an image
841 3 <Q>: a question
842 4 <A>: a reference answer
843 5 <R>: a reasoning text
844 6
845 7 Goal:
846 8 Assess whether <R> correctly and reasonably uses visible data in <IC> to
847 9 justify that the correct answer to <Q> is <A>. Rate the quality as
848 10 low / medium / high according to:
849 11 (a) low: Does not use data from <IC> at all, or the language is not
850 12 fluent/natural, or it fails to indicate the answer to <Q> is <A>.
851 13 (b) medium: Uses data from <IC> and is written fluently, but the
852 14 reasoning is overly brief or insufficiently clear.
853 15 (c) high: Uses data from <IC> and is written fluently; the reasoning
854 16 progresses step by step with depth, each step is correct and
855 17 reasonable; the data from <IC> appears exactly where it should;
856 18 overall, the reasoning text provides very strong support that the
857 19 answer to <Q> is <A>.

```

Example:

```

858 20 <IC>: [
859 21   {"object": "bar", "attributes": ["~120k", "Q4"], "label": "Product A"},
860 22   {"object": "bar", "attributes": ["~150k", "Q4"], "label": "Product B"},
861 23   {"object": "bar", "attributes": ["~90k", "Q4"], "label": "Product C"},
862 24   {"title": "Quarterly Revenue"}
863 25 ]
864 26 <Q>: Which product has the highest revenue in Q4?
865 27 <A>: product b
866 28 <R>:
867 29   [Extraction] Reads Q4 bar heights: A ~120k, B ~150k, C ~90k.

```

```

864 24 [Calculation] Compares values: B > A and B > C.
865 25 [Conclusion] Therefore, Product B is highest, matching the answer "
866      product b".
867 26
868 27 <Output>: medium
869 28
870 29 According to the requirements and examples above, score the input into
871      three categories. Please give me the result directly without any
872      explanation or description.
873 30
874 31 <IC>: %s
875 32 <Q>: %s
876 33 <A>: %s
877 34 <R>: %s
878 35 <Output>:

```

Prompt S4: Scoring generations during GRPO for Chart Understanding

S2 EXPERIMENTAL DETAILS AND EXTRA RESULTS

S2.1 TRAINING AND TEST SETTING

First, we provide the statistical information for the training and testing phases of our experiments in the Tab. S1. The training dataset for each domain consists of only a few thousand samples. In addition, Fig. S2 visualizes a comparison between the ground-truth responses produced by the refiner and the original ground-truth, showing that the refined versions are noticeably more structured and place greater emphasis on intermediate values.

Table S1: **Training and testing setup.** DyME empowers thinking capabilities based on small training sets.

Domain	Training set	#Training samples	Source of I_c	Testset
Medical VQA	SLAKE-Train	4,919	BiomedGPT	SLAKE-Test
Chart Understanding	ChartQA-Train	4,576	DePlot	ChartQA-Test
Geometry Solving	Geo170K	6,417	Collected	MathVerse

S2.2 EXTRA RESULTS

We also report additional experimental content, including the discussion on training strategies and data organization formats, as well as a comparative analysis with other similar methods that integrate SFT and RL.

Specifically, we first demonstrate the importance of constructing vision supervision, which proves essential for training SVLMs to produce grounded thinking traces (1). We then examine the impact of structured versus open-ended output formats on thinking performance (2). Furthermore, to validate our earlier observation that SVLMs are prone to converging to local optima, we present performance across different training epochs, showing that SFT training saturates after only one epoch (3). We provide a detailed comparison with alternative methods that integrate SFT and RL (4). Finally, we extend our evaluation to stronger base models and pure textual domains (5), and validate the quality of generated thinking traces through human evaluation (6).

(1) Intermediate values matter. As shown in Table S2, we report the effect of applying two-stage training with visual supervision on SmoIVL and LLaVA-OV-S. Incorporating visual supervision significantly improves the best performance achieved during training, despite certain instabilities, thereby validating its critical role for SVLMs. This effect is further illustrated in Fig. S2, where visual supervision compels SVLMs to generate intermediate reasoning enriched with visual elements, which make a clear contribution to the final answer.

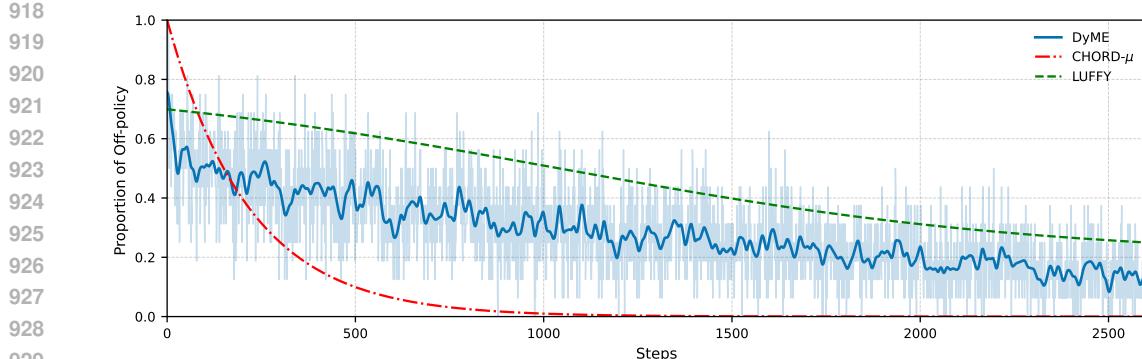


Figure S1: **Relative off-policy influence during training.** Each curve is normalized to its initial value for comparability. DyME measures $SFT/(SFT + RL)$ (raw in lighter tone, Gaussian-smoothed in darker tone), CHORD- μ tracks the global weight $\mu(t)$, and LUFFY adopts a policy-shaping proxy $\mathbb{E}[f(\pi_\theta(a))]$ with $f(x) = \frac{x}{x+\gamma}$. All methods reveal the shift from off-policy guidance to on-policy optimization, albeit with distinct decay dynamics.

(2) **Structured thinking alleviates the learning burden of SVLMs.** Table S3 reports the performance gap between training with structured thinking ground-truth and with unconstrained ground-truth. While open-ended exploration is often beneficial for LVLMs, the limited capacity of SVLMs makes unconstrained exploration less effective, as it tends to be aimless and increases the learning burden. Given that SVLMs are designed for task-specific rather than general-purpose scenarios, employing tailored thinking templates for each task proves more suitable and yields better performance. For instance, SmolVLM achieves 60.10 vs. 59.24 on ChartQA and 59.38 vs. 56.13 on Medical VQA, with LLaVA-OV-S exhibiting similar gains.

Table S3: **Effect of templated output across models and tasks.** ✓ denotes fixed-template output, whereas ✗ denotes free-form generation.

Model	Template	Chart	Medical
SmolVLM	✓	60.10	59.38
SmolVLM	✗	59.24	56.13
LLaVA-OV-S	✓	52.87	74.52
LLaVA-OV-S	✗	50.86	72.64

(3) **Comparison between annealed SFT loss and DyME.** As shown in Fig. S1, we compare the relative SFT (off-policy) influence across training steps for three approaches: DyME, CHORD (Zhang et al., 2025b), and LUFFY (Yan et al., 2025). For DyME and CHORD, the curves represent the normalized weight of the SFT loss at each step, while for LUFFY the curve reflects the trajectory of SFT gradient shaping as a function of prediction probability (which generally correlates with training steps). These curves highlight the dynamic nature of DyME. Because of the extremely limited capacity of SVLMs, their learning patterns can shift significantly even between adjacent steps, leading to rapid forgetting of previously acquired modes. Unlike CHORD, which relies on a smooth annealing schedule that decays quickly and is ill-suited to such small models, DyME assigns weights directly based on model outputs.

This produces a highly dynamic and irregular decay, better accommodating the instability of SVLMs. LUFFY adopts a shaping function $f(x) = \frac{x}{x+\gamma}$ ($\gamma=0.1$), which also induces a dynamic decay with probability but remains heuristic and may not align well with the local-optimum tendency of

Table S2: **Two-stage training on ChartQA.** Rel-corr denotes the relaxed-correctness metric. I_c indicates whether an explicit image-content field is supervised (✓ yes; ✗ no).

Model	I_c	Rel-corr
SmolVLM	✓	64.32
SmolVLM	✗	60.09
LLaVA-OV-S	✓	63.62
LLaVA-OV-S	✗	52.90

SVLMs. Overall, DyME is explicitly tailored for SVLMs, whereas CHORD and LUFFY may be more appropriate for stronger base models, reflecting complementary strengths.

(4) SVLMs converge rapidly. Table S4 shows that SVLMs converge extremely quickly: performance after only one epoch is comparable to, or even exceeds, that after ten epochs (e.g., LLaVA-OV-S achieves 60.70 vs. 60.12 on the Chart domain). This indicates that the very limited capacity of SVLMs makes them prone to overfitting to local optima. It also substantiates our earlier claim that such rapid convergence leaves only a narrow window for balancing SFT and RL, making it difficult to achieve the trade-off through empirical hyperparameter tuning. Consequently, static fusion methods are unsuitable for SVLMs.

To ensure a rigorous comparison, we further report the full learning trajectories of baselines in Table S5. We evaluated the Two-stage baseline (with and without KL penalty) and SFT across multiple epochs (1, 3, 5, 10) to capture their peak performance. The results confirm that even with optimal stopping, the baselines consistently underperform DyME, which achieves superior results in a single training run without the need for epoch selection.

Table S4: **SVLM performance saturates after a single training epoch.** Score is domain-specific: chart domain uses `Rel-corr`, while the medical domain uses the average of accuracy and recall values.

Model	Domain	Epoch	Score
LLaVA-OV-S	Chart	1	60.70
		5	60.44
		10	60.12
SmolVLM	Chart	1	60.22
		5	63.21
		10	62.22
	Medical	1	71.73
		5	71.80
		10	72.05

Table S5: **Detailed learning trajectories demonstrating rigorous tuning.** We report the performance across multiple settings to show their full learning trajectories. Two-stage baselines include variants with and without KL penalties to ensure optimal performance is captured.

Data Quality	Method	Performance across epochs (1, 3, 5, 10)	Best perf.
Low	DyME (ours, pure)	<i>Report final score directly</i>	61.9
	SFT	43.1 → 47.9 → 50.0 → 50.5	50.5
	Two-stage	57.6 → 52.7 → 50.8 → 50.7	57.6
	Two-stage (w/ KL)	54.2 → 55.4 → 52.6 → 54.2	55.4
Medium	DyME (ours, pure)	<i>Report final score directly</i>	64.9
	SFT	53.6 → 56.5 → 57.8 → 56.4	57.8
	Two-stage	59.9 → 52.8 → 53.0 → 53.1	59.9
	Two-stage (w/ KL)	59.0 → 60.6 → 60.6 → 60.8	60.8
High	DyME (ours, pure)	<i>Report final score directly</i>	68.5
	SFT	58.2 → 59.1 → 61.0 → 61.6	61.6
	Two-stage	51.6 → 54.0 → 54.5 → 54.4	54.5
	Two-stage (w/ KL)	61.7 → 60.9 → 62.7 → 61.8	62.7

(5) Generality across complex reasoning and pure text.

To demonstrate the scalability of DyME, we applied it to two new domains without modifying the core algorithm: **Complex Scene & Physical Reasoning** (A-OKVQA) and **Pure Text Reasoning** (GSM8K).

- **Complex Scene & Physical Reasoning (A-OKVQA):** We addressed the challenge of open-ended visual reasoning by testing on A-OKVQA. We used Qwen2.5-VL-7B to automatically generate Visual Facts using the 7-step prompt defined in §S1.2 (e.g., “*man, wearing a light blue and white shirt...*”). As shown in Table S6, DyME achieved a massive gain of **+18.8%** (54.2% → 73.0%), proving that the method scales effortlessly to tasks requiring world knowledge and commonsense.
- **Pure Text Reasoning (GSM8K):** In pure text domains, the “Visual Fact” extraction step is naturally skipped. On the GSM8K math benchmark, DyME improved Qwen2.5-0.5B from 49.5% to **55.3%**, demonstrating that the paradigm generalizes even when “vision” is absent.

1026
 1027 Table S6: **Generality of DyME across New Domains.** We demonstrate performance gains on
 1028 Complex Scenes (A-OKVQA), Pure Text (GSM8K), and with stronger base models (New LVLM).
 1029 **Baselines** for text use standard RL (GRPO).

Domain	Task	Base Model	Method	Baseline (%)	DyME (%)
World Knowledge	A-OKVQA	LLaVA-OV-S	Two-stage	54.2	73.0 (+18.8)
Pure Text	GSM8K	Qwen2.5-0.5B	GRPO	49.5	55.3 (+5.8)
New LVLM	ChartQA	Qwen2.5-VL-7B	SFT	87.3	89.6 (+2.3)

1035
 1036
 1037 These results, combined with the ChartQA improvements on the stronger Qwen2.5-VL-7B model,
 1038 confirm that DyME is not limited by the extraction step. By leveraging off-the-shelf LVLMs to
 1039 automate visual fact generation, the framework is immediately applicable to diverse visual and textual
 1040 domains.

1041 **Limitations on Abstract Visuals.** We acknowledge that the VS module may face challenges
 1042 in scenarios where “Visual Facts” are intrinsically difficult to define or extract, such as memes
 1043 (relying on irony or cultural context) or highly abstract non-commonsense reasoning. However,
 1044 our primary objective is to empower SVLMs for practical, real-world production tasks (*e.g.*, chart
 1045 processing, medical diagnostics, geometric solving). In these structured and semi-structured domains
 1046 where SVLMs are most commonly deployed, Visual Facts are well-defined and DyME proves highly
 1047 effective.

1048 **(6) Human evaluation of CoT quality.** Automatic metrics like relaxed accuracy do not fully
 1049 reflect the quality of the reasoning process. To verify whether DyME generates genuinely better
 1050 thinking traces, we conducted a human evaluation on 100 randomly sampled instances from ChartQA.
 1051 Annotators judged the validity of the generated CoT based on its logical coherence and grounding.
 1052 As shown in Table S7, DyME produces traces that are slightly more concise (shorter length) but
 1053 significantly more valid (validity rate $\sim 70\%$) compared to the Two-stage baseline ($\sim 30\text{-}40\%$). This
 1054 confirms that DyME effectively mitigates the generation of “pseudo thinking traces” that plague
 1055 standard SFT/Two-stage training.

1056
 1057 Table S7: Human evaluation of CoT quality on ChartQA.

Base Model	Method	Avg. CoT Length	Human Eval (Valid %)
LLaVA-OV-S	Two-stage	~76.3 Words	31%
	DyME	~69.7 Words	68%
SmolVLM	Two-stage	~84.5 Words	40%
	DyME	~75.4 Words	72%

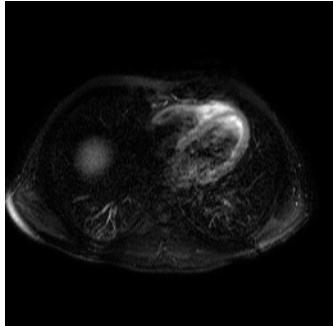
1068
 1069

S3 SHOWCASES

1070
 1071 Before presenting the model outputs, we first illustrate the data quality definitions used in our
 1072 Algorithmic Validation (Section 4.1 of the main paper). Table S8 showcases examples of Low
 1073 (Undesigned), Medium (Standard), and High (Premium) quality Chain-of-Thought supervision for
 1074 the same question. This visualizes the significant gap in structure and detail that DyME must bridge
 1075 when trained on non-premium data.

1076 We present dialogue instances of SmolVLM, LLaVA-OV-S, and InternVL2-S, which were trained
 1077 with DyME in our experiments, on tasks in the domains of medical VQA, chart understanding, and
 1078 geometry. As shown in Fig S3 to Fig S5, all models trained with DyME demonstrate the ability to
 1079 generate effective thinking traces with accurate intermediate values (in green), which play a crucial
 role in reaching the final correct answer.

1080

Medical (SLAKE).

Q: What is the MR weighting in this image?

w/o refiner:

Based on signal variations typical of this image, the most plausible answer is **T2**.

w/ refiner:

Analysis: On T2, **fluid** is bright; **bone/air** and fast flow are dark.

Extraction: In this **axial** slice, **intraluminal fluid** is bright; **vessels** low signal; **ribs/wall** dark.

Conclusion: Pattern matches **T2**.

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

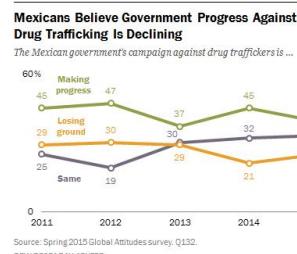
1129

1130

1131

1132

1133

Chart (ChartQA).

Q: What is the sum of *making progress*, *losing ground*, and *same* in 2011?

w/o refiner:

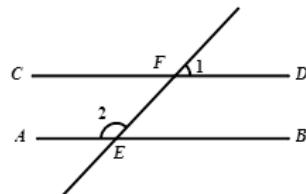
To answer the question, we first locate the relevant part of the chart for 2011, then extract the values for the three series and sum them up to obtain **99**.

w/ refiner:

Extraction: Read 2011 values: **Making progress = 45**, **Losing ground = 29**, **Same = 25**.

Calculation: $45 + 29 + 25 = 99$.

Conclusion: The sum is **99**.

Math (Geo170k).

Q: If angle 1 is 35° , what is angle 2? Choices: A: 55° , B: 135° , C: 145° , D: 155° .

w/o refiner:

Since angle 1 is 35 degree, angle 2 is $180 - 35 = 145$ degree using a supplementary relationship. Choose C.

w/ refiner:

Extraction: Two **parallel** lines CD and AB with a **transversal**; angle 1 is 35 degree, and angle 2 is on the **same side**.

Calculation: **Same-side interior angles are supplementary**, so angle 2 = $180 - 35 = 145$ degree.

Conclusion: Answer: **C**.

Figure S2: **Comparison of ground-truth responses before and after refinement.** Compared to the original ground-truth, the refiner injects richer visual elements and enforces a more structured organization, thereby reducing the learning burden for SVLMs.

The thinking processes of these models are relatively fixed and template-based. This is a result of our vision supervision module taking effect, as SVLMs should not be overly broad and general; otherwise, their exploration can easily diverge instead of converging.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144

1145 Table S8: Showcase of chain-of-thought (CoT) supervision with different quality for ChartQA.
 1146

Type	Content
Question	<p>When does the unfavorable view reach the peak?</p> <p>Very unfavorable views of Pakistan increasing in India</p> <p><i>Very unfavorable view of Pakistan</i></p> <p>100%</p> <p>Source: Spring 2017 Global Attitudes Survey. PEW RESEARCH CENTER</p>
High-quality CoT	<p><SUMMARY> I inspect the line graph showing very unfavorable views of Pakistan in India over time, and identify the year where the percentage peaks by locating the maximum point on the curve. </SUMMARY></p> <p><CAPTION> Line graph titled “Very unfavorable views of Pakistan increasing in India”. The y-axis shows the share of respondents with a very unfavorable view (0–100%). The x-axis shows years 2013–2017. Marked values: 54% (2013), 49% (2014), 51% (2015), 55% (2016), and 64% (2017). The series exhibits an overall upward trend and peaks in 2017. </CAPTION></p> <p><REASONING> The peak corresponds to the highest percentage on the y-axis. Among the annotated years, 2017 has the largest value (64%), higher than 2013–2016. Therefore, the peak occurs in 2017. </REASONING></p> <p><CONCLUSION> 2017 </CONCLUSION></p>
Medium-quality CoT	<p>Goal: Determine the year when the unfavorable view reaches its maximum.</p> <p>Observation: The values for each year are: 2013: 0, 2014: 0, 2015: 0, 2016: 55, and 2017: 64.</p> <p>Reasoning: Comparing these values, the largest value is 64, which appears in 2017.</p> <p>Conclusion: The unfavorable view reaches its peak in 2017.</p>
Low-quality CoT	<p>I'm trying to figure out the year when the unfavorable view reaches its highest point. The values stay low until 2016, where they rise to 55, and then climb further to 64 in 2017. This makes 2017 the year when the unfavorable view reaches its maximum.</p>

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

Table S9: [Showcase of chain-of-thought \(CoT\) supervision for A-OKVQA](#).

Type	Content
Question	What is the man by the bags awaiting?
visual fact	{ "description": "A man stands in the middle of a residential street, facing away from the camera. He holds a red bag and pulls a wheeled black suitcase, with another black suitcase placed nearby. Houses, parked cars, and trees line the background, suggesting he is waiting to cross or be picked up.", "objects": [{ "name": "man", "attributes": ["light blue and white shirt", "blue jeans", "carrying a red bag", "pulling a wheeled suitcase"] }, { "name": "red bag", "attributes": ["held by the man"] }, { "name": "black suitcase", "attributes": ["wheeled", "being pulled"] }], "position": "center", "name": "black suitcase", "attributes": ["wheeled", "being pulled"] }, "position": "near the man's feet", "name": "black suitcase", "attributes": ["lying on the ground"] }, "position": "near the man", "name": "street", "attributes": ["asphalt", "urban residential"] }, "position": "foreground", "name": "houses", "attributes": ["residential homes"] }, "position": "background left", "name": "parked cars", "attributes": ["red SUV", "other vehicles"] }, "position": "background center and left", "name": "trees", "attributes": ["green foliage"] }, "position": "background right"] }
CoT	A train would not appear on a residential street, and the man's luggage suggests he is waiting for transportation rather than a delivery. The nearby skateboarder is not interacting with him, leaving a cab as the most plausible option.

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

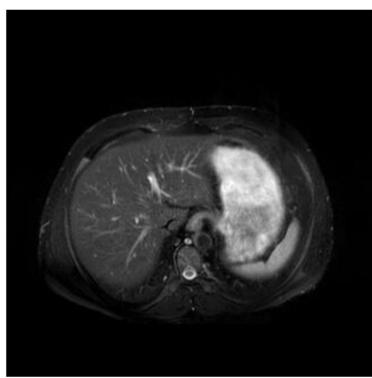
1293

1294

1295

What is the mr weighting in this image?

(Input Image)

The MR weighting in this image is **FLAIR**.

Analysis: Based on the knowledge that T2-weighted MRI images highlight tissues with high water content as dark and those with low water content as bright, we can infer the MR weighting used in the image.

Extraction: The image demonstrates the liver, spleen, and lung. The liver appears normal and is the largest organ visible. The spleen is also visible, and the lung is not present in the image.

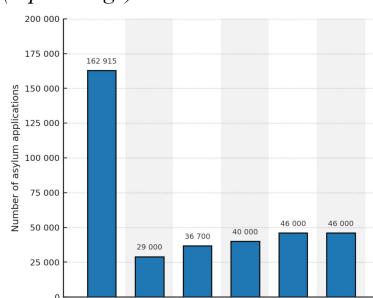
Conclusion: The MR weighting in this image is T2.

Answer: T2

(a) Showcase of Medical VQA

What is the difference between the values of 2017 and 2016?

(Input Image)

The difference between the values of 2017 and 2016 is **19000**.

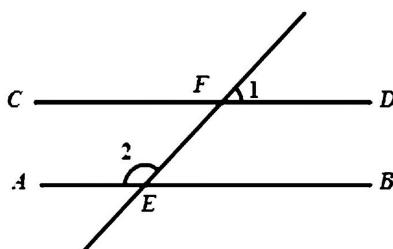
Extraction: data is value 36700 for 2017 and 29000 for 2016

Calculation: $36700 - 29000 = 7700$

Conclusion: The difference between the values of 2017 and 2016 is 7700.

Answer: 7700

(b) Showcase of Chart Understanding

Given $AB \parallel CD$, angle 1 = 50.0, then what the degree of angle 2?Angle 2 is equal to **angle 3**, angle 2 is also **50** degrees.

Extraction: AB is parallel to CD, angle 1 = 50° .

Calculation: $\text{angle } 2 = 180^\circ - \text{angle } 1 = 180^\circ - 50^\circ = 130^\circ$.

Conclusion: The degree of angle 2 is 130° .

Answer: 130°

(c) Showcase of Geometry Solving

Figure S3: **Showcases of SmolVLM.** The SVLM originally produces hallucinated answers (red), while the DyME-trained model generates structured thinking traces (green) that incorporate grounded values, effectively improving the performance.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

What diseases are included in the picture?

(Input Image)

The disease included in the picture is cardiomegaly **Atelectasis**.

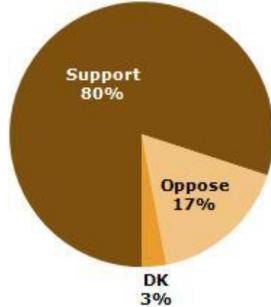
Analysis: Based on the knowledge that nodules in the lungs can indicate various respiratory diseases, including benign conditions, infections, or malignancies, it is crucial to identify and assess these abnormalities in medical images. **Extraction:** The image demonstrates a chest X-ray with visible nodules in both the right and left lungs. These nodules are indicative of abnormal growths or lesions within the lung tissue. **Conclusion:** The presence of nodules in both lungs indicates the disease included in the picture is a nodule.

Answer: Nodule

(a) Showcase of Medical VQA

What's the difference in value of biggest and smallest segment?

(Input Image)

The difference is **14%**.

Extraction: data is Support = 80%, Oppose = 17%, DK = 3%.

Calculation: $80\%-3\% = 77\%$

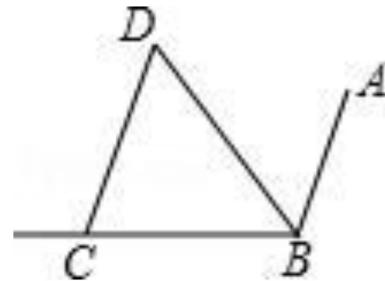
Conclusion: The sum of the values for girls who think it takes too much time and those who think it takes about the right time is 53.

Answer: 77%

(b) Showcase of Chart Understanding

As shown in the figure, BC and BA intersect at point B, BD bisects angle ABC, CD parallel AB, if angle BCD = 70.0, then the degree of angle CDB is

(Input Image)

The angle CBD is **75**.

Extraction: $CD \parallel AB$; BD bisects $\angle ABC$.

Calculation: $\angle ABC = 180^\circ - 70^\circ = 110^\circ$. $\angle CDB = \angle ADB = 70^\circ / 2 = 35^\circ$.

Conclusion: The degree of angle CDB is 55

Answer: 55

(c) Showcase of Geometry Solving

Figure S4: **Showcases of InternVL2-S.** The SVLM originally produces hallucinated answers (red), while the DyME-trained model generates structured thinking traces (green) that incorporate grounded values, effectively improving the performance.

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

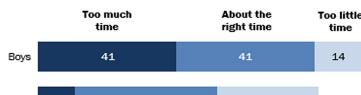
1403

What is the sum of the values for girls who think it takes too much time and those who think it takes about the right time?

(Input Image)

41% of teenage boys say they spend too much time playing video games

% of U.S. teens who say they spend ___ playing video games



Note: Respondents who do not play video games are not shown.
Source: Survey conducted March 7-April 10, 2018.

PEW RESEARCH CENTER

The sum of the values is 73.

Extraction: Value for girls | Too little time: 11 | About the right time: 42

Calculation: $11 + 42 = 53$

Conclusion: The sum of the values for girls who think it takes too much time and those who think it takes about the right time is 53.

Answer: 53

(a) Showcase of Chart Understanding

What diseases are included in the picture?

(Input Image)

The disease included in the picture is Mass.

Analysis: Based on the knowledge that cardiomegaly is characterized by an enlarged heart, which can be identified through chest X-rays.

Extraction: The image demonstrates an enlarged heart, which is a clear sign of cardiomegaly.

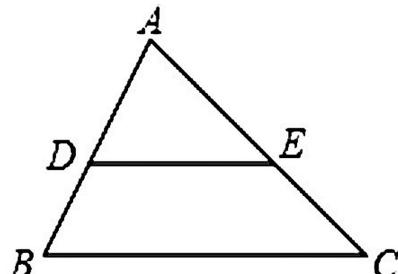
Conclusion: The disease included in the picture is cardiomegaly.

Answer: Cardiomegaly

(b) Showcase of Medical VQA

Given that $\angle A = 80^\circ$, $\angle B = 60^\circ$, and DE is parallel to BC, what is the measure of $\angle CED$?

(Input Image)



The angle CED is 40°.

Extraction: angle A = 80°, angle B = 60°, DE is parallel to BC.

Calculation: angle CED = angle A + angle B = $80^\circ + 60^\circ = 140^\circ$.

Conclusion: The measure of the angle CED is 140°.

Answer: 140°

(c) Showcase of Geometry Solving

Figure S5: **Showcases of LLaVA-OV-S.** The SVLM originally produces hallucinated answers (red), while the DyME-trained model generates structured thinking traces (green) that incorporate grounded values, effectively improving the performance.