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ABSTRACT

Small-scale Vision–Language Models (SVLMs) are exceptionally well-suited for
proprietary tasks. Equipping them with thinking capabilities is a critical step to
enhance their performance and reliability in these specific domains. However,
existing training paradigms, including Supervised Fine-Tuning (SFT) and Rein-
forcement Learning with Verifiable Reward (RLVR), impose substantial demands
on the base VLM, exceeding the capacity of SVLMs. Consequently, directly ap-
plying these paradigms to SVLMs fails to instill the desired thinking abilities. A
natural solution is to combine SFT and RLVR, leveraging their complementar-
ity to reduce the dependence on model capacity. Yet the core challenge lies in
managing the inherent trade-off: excessive reliance on SFT can force the model
to memorize pseudo thinking traces, while over-emphasizing RLVR can lead to
unstable exploration (i.e., advantage collapse). To address this, we propose DyME,
a novel training paradigm that Dynamically selects between Memorization (via
SFT) and Exploration (via RLVR) at each optimization step. By ensuring that
every update contributes to the trade-off, DyME serves as a robust, standalone
strategy that stabilizes SVLM learning. Complementing this paradigm, we further
introduce a synergistic Visual Supervision mechanism (comprising a visual checker
and refiner) designed to inject dynamically enhanced, image-grounded guidance
during optimization. Extensive experiments across diverse domains demonstrate
that DyME consistently achieves this balance, and thus delivers substantial per-
formance improvements on specialized tasks. These results establish DyME as
a practical and effective solution for empowering SVLMs with reliable thinking
capabilities.

1 INTRODUCTION

Equipping Vision–Language Models (VLMs) with thinking capabilities is a pivotal step that moves
them beyond recognition toward reasoning. Recent studies have advanced this goal through spe-
cialized training, achieving strong results on a spectrum of visual tasks, from recognition-intensive
applications like grounding (Lai et al., 2025; Shen et al., 2025; Peng et al., 2025; Liu et al., 2025; Xu
et al., 2024) to reasoning-intensive challenges such as chart understanding (Zhang et al., 2025a; Xia
et al., 2024) and geometric problem solving (Shen et al., 2025; Chen et al., 2025b; Xia et al., 2025).
While this progress is significant, the success of these approaches is contingent upon the base VLM
possessing strong foundational capabilities, namely, sufficient capacity and robust instruction adher-
ence (Yang et al., 2025a). In practice, only a handful of VLMs meet these prerequisites, presenting a
significant challenge for Small-scale VLMs (SVLMs) which struggle to develop thinking capabilities
under existing training paradigms.

To contextualize this limitation, we briefly review the two dominant paradigms, both of which are
primarily tailored for Large-scale VLMs (LVLMs). 1) Supervised Fine-Tuning (SFT) on Chain-of-
Thought (CoT) data (Xu et al., 2024; Li et al., 2024b; Xia et al., 2025; Gao et al., 2025): VLMs are
supervised to memorize predefined thinking patterns from large-scale CoT annotations. Since CoT
data are often verbose and contain much vision-irrelevant content, models must possess sufficient
capacity to absorb long textual content without compromising visual grounding (Marafioti et al.,
2025). This capability gap is illustrated in Fig. 1a: After SFT, LVLMs can generate grounded
thinking traces with accurate intermediate values (in green), while SVLMs cannot. 2) Reinforcement
Learning with Verifiable Reward (RLVR) (Zhang et al., 2025a; Chen et al., 2025b; Peng et al.,
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Which year shows a greater divergence of opinions about Brazil's
economy, 2010 or 2012? Output the thinking process and then give
the final answer in <answer> </answer> tag.

Pseudo thinking traces (fail)
SVLMs: vision compromised

To answer the question, we 
first locate the relevant years 
in the chart. Then, we extract
the values for each year.
Compare the differences, the
year with greater divergence is
2010. <answer>2010</answer>

Grounded thinking traces
LVLMs: vision preserved

We locate 2010 and 2012.
Then, extract 2010 has 62
and 36, 2012 has 65 and
35. Comparing 62 − 36 = 26
< 65 − 35 = 30, the year with
greater divergence is 2012.
<answer>2012</answer>

After CoT SFT training

2015 has the greatest divergence.

Which year has the most divergent
opinions about Brazil's economy? Output
the thinking process and then give the
final answer in <answer> </answer> tag.

During RLVR training

To answer the question, we examine the
chart and compare the value differences
for each year. In 2015, the values are 87
and 13, showing the most significant
divergence. <answer>2015</answer>

Advantage collapsing (fail)

Rapid Decline in Brazilians' 
Assessment of Economy

Large-scale VLM
Small-scale VLM SVLMs poorly follow instructions

(Input Image)

Thinking 
cpabilities

Constrained
exploration

Advantage
 collapse

Extent 1. Locate the year;
2. Extract the value;
3. Get the answer.
<answer>2012</answer>

... grounded value from 
the chart ... After thinking,
<answer>2012</answer>

2012 has the greatest div-
ergence. 
(no format answer)

(hard to achieve)

need to
memorize

Thinking
cpabilities

SFT

safe to
explore

RL

a) SFT and RL paradigms fail to enable SVLMs to think.

b) Two-stage training vs. DyME

Two-stage training

(numerous steps)

DyME training

SFT

RL

RL

RL

(single step)

Switcher

SFT

RL

Switcher

Figure 1: Training paradigms for enabling VLM thinking. The LVLM is Qwen2.5-VL-32B (Bai
et al., 2025) and the SVLM is SmolVLM-500M (Marafioti et al., 2025). (a) Existing paradigms are
effective for LVLMs but unsuitable for SVLMs. (b) The two-stage training paradigm (SFT → RL)
faces a challenging trade-off. Our proposed DyME dynamically balances this trade-off.

2025; Shen et al., 2025): on the other hand, promotes exploration of thinking patterns rather than
imitations. In this paradigm, VLMs are instructed to generate a thought process followed by a strictly
formatted answer (e.g., enclosed in tags). This format enables verifiable rewards to reinforce correct
generations and penalize incorrect ones. Owing to its reliance on instruction adherence, this approach
is practical primarily for strong VLMs that can reliably generate structured outputs.

35 40 45 50 55 60 65 70 75

Baseline

+CoT SFT

+RLVR

+Two-stage

+Ours

Baseline
+CoT SFT
+RLVR
+Two-stage
+Ours

Figure 2: Performance of SmolVLM-
500M (Marafioti et al., 2025) on
ChartQA (Masry et al., 2022). Ex-
isting paradigms degrade performance,
whereas DyME yields improvements.

Consequently, both established paradigms are inadequate
for instilling thinking in SVLMs. The extremely limited
capacity (e.g., under 1B parameters) of SVLMs renders
the SFT paradigm ineffective, as a high volume of tex-
tual information in CoT data can overwhelm the capac-
ity (Marafioti et al., 2025; Chen et al., 2025a). Moreover,
the limited instruction adherence of SVLMs frequently
results in unverifiable outputs (Chu et al., 2025; Guo et al.,
2025), precipitating advantage collapse during RLVR. We
quantitatively verify these limitations (cf., Fig. 2): both
SFT and RLVR paradigms indeed impair the performance.

Considering that SVLMs offer high efficiency and are
crucial for deployment on edge devices (Marafioti et al.,
2025), enabling them to think addresses a strong prac-
tical demand. Thinking enhances the reliability and
performance of vision tasks (Zhang et al., 2025a), and
task-specific SVLMs provide a compelling alternative to
LVLMs in resource-constrained settings. This motivates the development of a new training paradigm
that empowers SVLMs with thinking capabilities, at least for specialized tasks.

A promising solution is to fuse SFT and RLVR, as a well-calibrated trade-off can lower the high
demands on the base model (DeepSeek, Inc., 2025; Yan et al., 2025): SFT encourages the model to
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memorize verifiable thinking patterns to prevent advantage collapse, while RL forces exploration to
prevent rigid templates from overwhelming the model’s capacity. The central challenge, however, is
that SVLMs struggle to achieve this balance. Existing hybrid methods, like two-stage training (Chen
et al., 2025a; Chu et al., 2025) or annealed SFT losses1 (Zhang et al., 2025b), rely on a static trade-off
governed by hyperparameters set empirically. This rigidity is the critical flaw because the minimal
capacity of SVLMs means the window for a successful static balance is incredibly narrow, making
failure almost inevitable (cf. Fig.1b). Our repeated trials with two-stage training confirmed this issue,
with performance often falling below the baseline (cf. Fig.2).

SVLMs therefore require a more intelligent paradigm to navigate this trade-off. To this end, we
propose DyME (Dynamic Memorize–Explore), which integrates SFT and RLVR through a dynamic
switching mechanism. As illustrated in Fig. 1b, DyME assesses the model’s generation at each step
and adapts its training mode accordingly. When the model fails to follow instructions, it switches to a
memorization mode (SFT) to guarantee stable optimization signals. Conversely, for valid generations,
it engages an exploration mode (RLVR) to encourage diverse and grounded thinking. This state-driven
approach ensures memorization and exploration are always complementary, dynamically maintaining
the delicate trade-off. While this dynamic switching alone guarantees training stability, we further
maximize the model’s potential by incorporating a synergistic Visual Supervision mechanism. This
module facilitates an adaptive interaction: the CoT ground-truth guides the scoring of exploration
(via a visual checker), while successful exploration traces dynamically refine the CoT ground-truth
(via a visual refiner).

The aforementioned design makes DyME a highly effective paradigm for empowering thinking in
SVLMs for specific tasks. We validate this across three diverse domains, ranging from recognition-
intensive tasks (medical VQA) to reasoning-intensive challenges (chart understanding and geometric
problem solving). Remarkably, using only a few thousand training samples, DyME achieves sub-
stantial performance gains, enabling it to match or even surpass several LVLMs. Our primary
contributions are as follows:

1. We propose DyME, the first training paradigm that equips SVLMs with thinking capabilities,
substantially reducing reliance on the base VLM’s initial capacity.

2. Through dynamic switching and synergistic supervision, DyME alleviates pseudo thinking traces
and advantage collapse in SVLMs, yielding image-grounded thinking and consistent performance
improvements.

3. We demonstrate the effectiveness and practicality of DyME across three diverse domains, each
consistently showing substantial performance gains with only a few thousand training samples.

2 RELATED WORK

Vision-Language Models. Modern VLMs, such as LLaVA (Liu et al., 2024a) and Qwen-VL (Bai
et al., 2023), have demonstrated remarkable capabilities across a wide array of vision tasks. How-
ever, their substantial parameter counts and computational demands restrict their use in resource-
constrained environments like edge devices. This has motivated a growing interest in SVLMs
designed for efficiency (Zhou et al., 2024; Marafioti et al., 2025; Korrapati, 2024). Although works
like TinyLLaVA (Zhou et al., 2024) and SmolVLM (Marafioti et al., 2025) have shown that carefully
designed SVLMs can achieve competitive performance, they exhibit a critical weakness. Recent
studies highlight that their performance degrades significantly on tasks requiring complex, multi-step
instruction following, indicating a gap in their compositional understanding and general reasoning
abilities (Albalak et al., 2022; Ghosh et al., 2024).

Empowering Thinking Capabilities in VLMs. Recent advances in LLM thinking (e.g., GPT-
o1 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025)) have motivated efforts to equip VLMs with
similar capabilities via dedicated training paradigms.

SFT on CoT data (Xu et al., 2024; Xia et al., 2024; 2025; Gao et al., 2025; Yang et al., 2025b).
This paradigm leverages large-scale CoT supervision to teach models to memorize and generalize
thinking patterns. Multimodal-CoT (Zhang et al., 2023) was an early attempt using fused visual–text
inputs, but its small scale data limited genuine thinking. Subsequent works highlight the role of scale:
G-LLaVA (Gao et al., 2025) constructs 170K geometry-specific CoT samples; ChartVLM (Xia et al.,

1See the supplementary material for further comparison.
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2024) compiles a large chart corpus; and LLaVA-CoT (Xu et al., 2024) as well as R1-OneVision (Yang
et al., 2025b) curate diverse, structured CoT data through large-scale prompt engineering. These
approaches face long inputs, requiring large VLMs that can process rich textual information while
preserving visual grounding (Marafioti et al., 2025; Zhai et al., 2023).

RL with Verifiable Reward (RLVR) (Zhang et al., 2025a; Chen et al., 2025b; Peng et al., 2025; Shen
et al., 2025; Liu et al., 2025). RLVR adopts a distinct paradigm that elicits thinking through
autonomous exploration with minimal external supervision. The popularly used algorithm is Group
Relative Policy Optimization (GRPO), introduced by DeepSeek-Math (Shao et al., 2024), which
exploits models’ ability to produce structured outputs that separate thinking from final answers. It
leverages rule-verifiable data to optimize high-scoring generations, while light SFT is employed
for cold-start when the output structure is unclear. This paradigm has been extended to VLMs in
several works. R1-V (Chen et al., 2025b) applies GRPO to VLMs, enabling thinking in tasks such as
counting and geometry. LMM-R1 (Peng et al., 2025) introduces a two-stage pipeline that transfers
textual thinking into multimodal learning. VisualRFT (Liu et al., 2025) and R1-VL (Zhang et al.,
2025a) incorporate vision-specific rewards to guide fine-grained, visually grounded optimization.
Since GRPO depends on models’ initial structured thinking ability, these methods typically build on
strong VLMs, such as the Qwen-VL series (Bai et al., 2025).

Hybrid Training Paradigms (Chu et al., 2025; Yan et al., 2025; Zhang et al., 2025b). To harness the
complementary strengths of SFT and RL, researchers have also investigated hybrid paradigms. A
common approach is a two-stage training process (Chu et al., 2025) that first uses SFT to teach the
model the desired output format, followed by RL for exploration. Although intuitive, this method is
highly sensitive to the amount of SFT, a parameter that is particularly challenging to tune for SVLMs,
as these smaller models can easily become trapped in suboptimal states. Alternative strategies attempt
to continuously blend SFT with RL, for instance, by incorporating SFT as an annealed auxiliary
loss (Zhang et al., 2025b) or by managing its influence with an empirical shaping function (Yan et al.,
2025). However, all these strategies ultimately rely on an empirically determined balance between
the two paradigms. This rigidity represents a critical flaw when applied to SVLMs. The absence of
adaptive control over the SFT weight renders these methods brittle and unreliable.

Thus, existing paradigms are not directly transferable to SVLMs due to their inherent limitations
in model capacity and instruction-following ability. This highlights the need for a novel training
paradigm that imposes minimal requirements on the base VLM.

3 APPROACH

3.1 PRELIMINARIES

We first briefly recap the two training paradigms (SFT and RLVR) that underlie our method. Let
D = {(xi, yi)}Ni=1 be the training set, where x denotes the input (e.g. an image-instruction pair) and
y the desired output. The model defines a conditional distribution pθ(y | x) with parameters θ.

Supervised Fine-Tuning (SFT). For each training pair (x, y) in D, SFT updates the model by
minimizing the negative log-likelihood (cross-entropy) of the desired output y under the conditional
distribution pθ(y | x):

LSFT(θ) = −E(x,y)∼D
[
log pθ(y | x)

]
. (1)

This teacher-forcing loss allows models to memorize extensive training examples, compelling the
model to absorb this knowledge.

Group Relative Policy Optimization (GRPO). GRPO is an RL algorithm that explores open-ended
generation by comparing candidate outputs within a group. For each input x, the policy pθ samples a
set {ỹk}Kk=1; a reward function ra(ỹ

k) is computed based on the correctness of the output answer,
and each sample’s advantage A is measured relative to the other group members:

A(ỹk) =
ra(ỹ

k) − r̄a
σ + ε

, r̄a = 1
K

K∑
j=1

ra(ỹ
j), σ =

√√√√ 1
K

K∑
j=1

(ra(ỹj)− r̄)2, (2)
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where ε is a small constant for numerical stability. The policy then updates its parameters by
minimizing the following loss, regularised by a KL constraint:

LGRPO(θ) = −Ex∼D Eỹ∼pθ

[
min

(
rθ(x, ỹ)A(ỹ), clip

(
rθ(x, ỹ); 1− ϵ, 1 + ϵ

)
A(ỹ)

)]
+ β DKL

[
pθ(· |x) ∥ pref(· |x)

]
, where rθ(x, ỹ) =

pθ(ỹ | x)
pold(ỹ | x)

. (3)

The clip and KL terms work together to keep each update close to safe regions of the parameter space:
the clip gate limits step size around the rollout policy pold, while the KL term (βDKL) tethers the
policy to the reference pref (typically the initial model).

Gradient Compatibility of SFT and GRPO. Below, we reveal that the optimization objectives of
SFT and GRPO are formally equivalent, with the former targeting the ground-truth data distribution
and the latter an internal one.

The gradient of the SFT loss is straightforward:

∇θLSFT(θ) = −E(x,y)∼D [∇θ log pθ(y | x)] . (4)

Similarly, the GRPO gradient (ignoring clipping and any KL-penalty) can be written as

∇θLGRPO(θ) = −E x∼D,
ỹ∼pold(·|x)

[
rθ(x, ỹ)A(ỹ)∇θ log pθ(ỹ | x)

]
. (5)

This comparison shows that the SFT gradient is a special case of the GRPO gradient, obtained when
the ground-truth sample is used with unit advantage. This equivalence enables a unified loss that
balances external imitation (SFT) with internal refinement (GRPO). Achieving this fusion requires
dynamically weighting the two signals (§3.2) and ensuring stylistic consistency between external
ground-truth and self-generated outputs (§3.3).

3.2 DYNAMIC MEMORIZE–EXPLORE (DYME)

To realize this complementarity, we propose the Dynamic Memorize–Explore (DyME) paradigm,
which adaptively switches between SFT and GRPO at each training step. In the following, we first
outline the overall pipeline and then elaborate on the optimization procedures for each mode.

Overall. As shown in Fig. 3a, each training step begins with an input x = (I, q), where I is the image
and q is an instruction. The policy SVLM pθ generates K responses {ỹk}Kk=1. Each response is
parsed into a thinking trace and a final answer, which is then verified for correctness using predefined
rules. The verification results fall into two categories: either all responses are incorrect (including
those that fail to parse), or at least one is correct. The decision rule: if at least one response is
correct, the model proceeds with GRPO-based exploration; otherwise, it falls back to SFT-based
memorization. Formally, the training mode is switched as:

mode(x) =
{

GRPO, if maxk ra(ỹ
k) = 1,

SFT, otherwise,
(6)

where ra(ỹ
k) ∈ {0, 1} indicates whether ỹk passes rule-based verification. Though simple, this

decision rule is highly effective. When all responses are incorrect, the answer rewards are essentially
all zero and the normalized advantages become dominated by noise, making GRPO updates for a
small SVLM unstable. In this regime, falling back to SFT provides a low-variance, ground-truth
guided gradient. Conversely, the appearance of at least one correct response indicates that the current
policy has already discovered a feasible solution for this input, so GRPO can safely exploit the
relative advantages to drive exploration.

GRPO Mode. DyME introduces a key refinement to the original GRPO: beyond the answer reward
ra, it incorporates an auxiliary reward rt for thinking traces. This reward is computed by evaluating
the generated traces against expected thinking patterns (e.g., via token-level F1 score ground-truth
comparison), promoting structured thinking.

Given these rewards, we update the policy using a modified GRPO objective. Unlike the standard
formulation (Eqs. 2 & 3), we omit the KL penalty and clipping terms, as the dynamic integration of
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(a) The pipeline for DyME.
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(b) Visual refiner and checker.

Figure 3: Workflow and module components of DyME. At each training step, DyME dynamically
switches between memorization (via SFT) and exploration (via GRPO) modes based on its generations.
Visual supervision is introduced through the visual refiner and visual checker. The refiner enhances
the targets for memorization by incorporating richer visual elements (green), while the checker
rewards the thinking context generated based on their visual relevance.

SFT already stabilizes training. This avoids overly conservative updates and yields a cleaner gradient
form, enabling smoother alignment between SFT and GRPO:

L̃GRPO(θ) = −Ex∼D Eỹ∼pθ(·|x) [rθ(x, ỹ)A(ỹ)] , (7)

where A(ỹk) is the group-normalized advantage calculated from the combined answer (ra) and
thinking (rt) rewards, and rθ(x, ỹ

k) = pθ(ỹ|x)
pold(ỹ|x) is the importance sampling ratio.

SFT Mode. When training falls back to SFT, the model is optimized toward the ground-truth response
y using the standard supervised loss (Eq. 1). This ensures that whenever the model fails to explore
effectively, it receives a stable, ground-truth-guided gradient update to correct its behavior.

DyME Objective. The final loss dynamically combines the two objectives based on response correct-
ness:

LDyME(θ) = 1

[
max

k
ra(ỹ

k) = 1

]
· L̃GRPO(θ) +

(
1− 1

[
max

k
ra(ỹ

k) = 1

])
· LSFT(θ), (8)

where 1[·] is the indicator function, returning 1 if the condition holds, 0 otherwise.

3.3 VISION SUPERVISION

DyME with Visual Supervision. While the aforementioned Pure DyME (using standard rt and
static ground-truth) already guarantees training stability through its dynamic switching mechanism,
we can further exploit this dynamic nature to maximize performance. Specifically, the switching
mechanism allows us to tailor the supervision signals at each optimization step: refining the reward
during exploration and enhancing the ground-truth during memorization. To this end, we introduce a
checker–refiner framework (cf. Fig. 3b), which constitutes the Full DyME.

This framework reorganizes the ground-truth to adhere to a predefined structure, crucially transform-
ing it into a grounded thinking trace. The refiner restructures the external ground-truth into structured,
visually grounded responses, while the checker evaluates self-generated outputs for their structural
organization and coverage of visual content. We refer to the resulting supervision signals collectively
as vision supervision. The implementation is carried out via LLM-based prompt engineering.

Visual Facts Ic are central to realizing vision supervision. They are defined as fine-grained visual
components extracted from each image, including objects, attributes, and states. These elements play
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a dual role: they provide evidence for evaluating generations against the image and serve as building
blocks for constructing complete ground-truth responses.

Visual Checker. The visual checker evaluates responses along two dimensions: (i) whether the output
contains sufficient correct visual elements compared to Ic, and (ii) whether it aligns stylistically with
provided examples. These examples may be manually defined or extracted from the SFT ground-truth.

Visual Refiner. The refiner produces visually grounded responses for SFT by leveraging the model’s
validated explorations. High-scoring traces identified by the visual checker are stored in a dynamic
example pool. An LLM then draws from this pool to generate ground-truth responses, integrating
structural templates with visual facts from Ic and referencing the collected examples.

In essence, the acquisition of Visual Facts, the evaluation by the Visual Checker, and the synthesis by
the Visual Refiner are all implemented via structured prompt engineering using Qwen2.5-14B. Please
refer to the Supplementary Materials for the full prompts used in our pipeline.

4 EXPERIMENTS

To rigorously evaluate DyME, we structure our experiments into two parts: (1) Algorithmic Val-
idation, where we evaluate “Pure DyME” in a controlled setting using offline data to isolate the
contribution of our dynamic switching mechanism; and (2) System Effectiveness, where we evaluate
the full DyME pipeline (with Visual Supervision) across diverse domains to demonstrate its practical
capability in empowering SVLMs.

4.1 PART I: ALGORITHMIC VALIDATION (PURE DYME)

Setup. Since SVLMs lack intrinsic reasoning capabilities and cannot autonomously discover complex
reasoning paths, pre-constructed CoT data is a mandatory prerequisite for all training paradigms. We
therefore evaluated all methods on ChartQA (Masry et al., 2022) using LLaVA-OV-S (Li et al., 2024a),
the 0.5B variant, with three pre-constructed CoT datasets of varying qualities: Low (Undesigned)
containing unstructured traces (∼80 words); Medium (Standard) consisting of semi-structured
traces (∼89 words) from Qwen2.5-14B; and High (Premium) comprising highly structured traces
(∼142 words) from GPT-4o. Following established protocols (Liu et al., 2023; Masry et al., 2022),
we report relaxed correctness, which allows a 5% tolerance for numerical answers.

We present a threefold evaluation to validate data robustness, design optimality, and generalization:

(1) Robustness to Data Quality. Table 1 (a) demonstrated DyME’s superiority. On Low quality data,
Pure DyME (61.9%) significantly outperforms the unstable Two-stage baseline (57.6%). Remarkably,
using only Medium data, it surpasses the SFT baseline trained on premium High (GPT-4o) data
(61.6%). This confirms that DyME acts as a robust student, effectively maximizing data efficiency.

(2) Optimality of Binary Switching. To validate our binary design, we compared it against three
alternative switching heuristics in Table 1 (b): (i) Reward Thresholding, which switches to RL only
if the batch average reward exceeds a threshold t; (ii) SFT Annealing, which applies a weighted
SFT loss alongside RL at every step; and (iii) SFT Budget, which performs focused SFT updates on
accumulated failure cases (hard mining).

Results: Reward Thresholding proves brittle, collapsing at suboptimal thresholds (t = 0.5, 52.4%).
SFT Annealing incurs a heavy computational tax (+25%) due to the auxiliary SFT gradient calculation.
SFT Budget yields inferior results (59.6%) as overwhelming the model with concentrated failures
destabilizes learning. In contrast, DyME’s binary switch is parameter-free, efficient, and empirically
optimal (64.9%).

(3) Mechanism Generality. Going beyond the primary setup, while DyME is primarily tailored
for SVLMs, we verify the universality of its core switching mechanism (see Supplementary). In
the text-only domain, it boosts the small-scale Qwen2.5-0.5B on GSM8K (Cobbe et al., 2021) to
55.3% (+5.8% over GRPO), confirming DyME is an effective paradigm for empowering thinking in
small-parameter models regardless of modality. Moreover, the paradigm scales effectively: on the
stronger Qwen2.5-VL-7B, it further improves ChartQA performance to 89.6% (+2.3%).
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Table 1: Algorithmic Validation of Pure DyME. (a) DyME outperforms SFT and Two-stage variants
(w/ and w/o KL penalty) across all data qualities. (b) The binary switch is more robust and efficient
than soft or hard-mining alternatives (evaluated on Medium data).

(a) Robustness across Data Quality (b) Switching Strategy Ablation
Method Low Medium High Strategy Hyperparam. Acc. Cost
SFT 50.5 57.8 61.6 Reward Threshold t = 0.5/0.8/0.9 52.4/64.1/63.4 None
Two-stage 57.6 59.9 54.5 SFT Annealing Cosine 64.0 +25%
Two-stage (w/ KL) 55.4 60.8 62.7 SFT Budget Hard Mining 59.6 Budget-dep.
Pure DyME 61.9 64.9 68.5 Binary Switch (Ours) – 64.9 Baseline

4.2 PART II: SYSTEM EFFECTIVENESS (FULL DYME)

Having validated the algorithmic core, we now evaluate the Full DyME pipeline, augmented with
Visual Supervision, across three diverse domains: Medical VQA, Chart Understanding, and Geometry.
Each followed the evaluation protocols of prior work (Zong et al., 2024).

Setup & Source of Ic. Unlike Part I, here we activate the Visual Supervision module to enable
the full online loop. Crucially, to demonstrate DyME’s capability to bootstrap from raw signals,
we utilize the “Undesigned” CoT data (defined in §4.1) derived from SLAKE (Liu et al., 2021),
ChartQA (Masry et al., 2022), and Geo170K (Gao et al., 2025) as the common training source for
all methods. Acquiring the necessary visual facts (Ic) is a fully automated process: we leverage
standard domain tools (e.g., BiomedGPT (Zhang et al., 2024a) for medical, DePlot (Liu et al., 2023)
for charts) or prompt generalist LLMs (e.g., Qwen2.5 (Team, 2024)) to parse images into structured
textual descriptions. The automated pipeline and prompts are included in the supplementary.

Evaluation Protocol. We used official train-test splits for SLAKE (Accuracy/Recall) and ChartQA
(Relaxed correctness). For Geometry, since Geo170K (Gao et al., 2025) provides no test set, we
evaluated Accuracy on MathVerse (Zhang et al., 2024b), consistent with Zong et al. (2024).

4.2.1 MAIN RESULTS

Figure 4: Training rewards. GRPO
and two-stage training suffer from severe
advantage collapse.

DyME vs. Existing Training Paradigms. The comprehen-
sive results in Table 2 show that DyME consistently deliv-
ers substantial gains. Notably, after training with DyME,
SmolVLM improves from 49.9 to 55.6 (+5.7), LLaVA-
OV-S from 50.7 to 55.4 (+4.7), and InternVL2-S from
56.3 to 58.1 (+1.8). In contrast, existing paradigms tend
to degrade performance (e.g., SFT lowers SmolVLM to
44.1), validating our analysis that SFT yields pseudo think-
ing traces and GRPO faces advantage collapse (cf. Fig. 4).

DyME effectively mitigates these issues. It promotes
grounded traces that are concise yet informative (cf.
Fig. 5), aligning well with the limited capacity of SVLMs.
Importantly, DyME places minimal demands on the base
model: even SmolVLM (0.5B) achieves substantial gains,
and it still delivers improvements (+2.6%) on extensively
pretrained models like InternVL2-S. We further corrobo-
rated these findings through manual inspection, as detailed
in the Supplementary Material.

Matching the Efficacy of GPT-4o Supervision with Open-Source Models. Comparing results
between Part I and Part II reveals a crucial finding: LLaVA-OV-S trained with the full DyME
pipeline (using the accessible Qwen2.5-14B) achieves 67.5% (Table 2). This effectively matches the
performance of Pure DyME trained on expensive GPT-4o data (68.5%, cf. Table 1). This proves that
full DyME allows open-source supervision to achieve training outcomes comparable to those derived
from top-tier proprietary models, eliminating the need for expensive data annotation.

DyME-trained SVLMs Can Be Competitive with LVLMs. We ensured fairness by exposing all
baselines to our training data. As shown in Table 2, SVLMs trained with DyME can surpass stronger
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Table 2: Comparisons across three domains: medical VQA, chart understanding, and geometry
solving. The evaluation follows the VLMEvalKit framework (Duan et al., 2024). For SVLMs, existing
training paradigms degrade their performance, whereas DyME consistently brings improvements. The
best performance achieved by each SVLM is highlighted in bold, with the relative improvement also
indicated. Notably, after being trained with DyME, SVLMs achieve performance comparable to that
of MoVA (underlined).

Model ViT LLM Medical Chart Geometry Avg.

LVLMs
LLaVA-Med (Li et al., 2023) CLIP-ViT-L/14 Vicuna-7B 64.3 – – –
Cambrian-1 (Tong et al., 2024) Hybrid-3B Llama3-8B – 72.6 22.0 –
LLaVA-1.5 (Liu et al., 2024a) CLIP-ViT-L/14 Vicuna-7B 69.4 17.8 – –
LLaVA-1.6 (Liu et al., 2024b) CLIP-ViT-L/14 Vicuna-7B 78.2 49.2 13.4 47.0
MoVA (Zong et al., 2024) Hybrid-3B Vicuna-7B 74.5 68.3 19.7 54.2
LLaVA-OV-L (Li et al., 2024a) SigLIP-SO400M Qwen2-7B 75.7 80.9 24.5 60.4
InternVL2-L (Chen et al., 2024) InternViT-300M InternLM2.5-7B 80.2 82.1 37.3 66.5

SVLMs
SmolVLM (Marafioti et al., 2025) SigLIP-93M SmolLM2-360M 72.1 63.2 14.6 49.9

+ CoT SFT SigLIP-93M SmolLM2-360M 60.1 57.7 14.5 44.1
+ GRPO SigLIP-93M SmolLM2-360M 61.1 53.8 17.1 44.0
+ Two-stage SigLIP-93M SmolLM2-360M 59.4 60.1 16.7 45.4
+ DyME SigLIP-93M SmolLM2-360M 78.1

(+6.0%)
69.7

(+6.5%)
18.9

(+4.3%)
55.6

(+5.7%)

LLaVA-OV-S (Li et al., 2024a) SigLIP-400M Qwen2-0.5B 74.9 61.4 15.9 50.7
+ Two-stage SigLIP-400M Qwen2-0.5B 74.5 52.9 16.5 48.0
+ DyME SigLIP-400M Qwen2-0.5B 78.3

(+3.4%)
67.5

(+6.1%)
20.4

(+4.5%)
55.4

(+4.7%)

InternVL2-S (Chen et al., 2024) InternViT-300M Qwen2-0.5B 78.3 71.9 18.7 56.3
+ Two-stage InternViT-300M Qwen2-0.5B 73.6 55.7 17.1 48.8
+ DyME InternViT-300M Qwen2-0.5B 80.0

(+1.7%)
74.5

(+2.6%)
19.8

(+1.1%)
58.1

(+1.8%)

LVLMs like MoVA (54.2) on these specialized domains, with SmolVLM reaching 55.6 and LLaVA-
OV-S 55.4. As a result, DyME-trained SVLMs become reliable options for task-specific applications
on resource-constrained edge devices.

4.2.2 ABLATION STUDY

To dissect the source of these gains, we conducted an ablation study to analyze the contribution of
DyME’s four core components within the full pipeline: the memorization mode, exploration mode,
visual refiner, and visual checker. Table 3 shows the performance impact.

Table 3: Ablation study. Model: LLaVA-OV-S.

DyME Variant Medical Chart Geometry Average
DyME (full) 78.3 67.5 20.4 55.4

w/o memorization 63.2 53.4 15.0 43.9 (20.6%↓)

w/o exploration 75.5 61.3 14.5 50.4 (9.0%↓)

w/o visual refiner 75.6 62.3 16.8 51.6 (6.9%↓)

w/o visual checker 76.9 64.3 17.1 52.8 (4.7%↓)

Dynamic Switching Mechanism. The results
confirm that Memorization and Exploration are
symbiotic. Disabling memorization causes a
catastrophic drop (55.4 → 43.9), effectively re-
verting to unconstrained, unstable exploration.
Conversely, removing exploration (50.4) re-
stricts the model to the static imitation of sub-
optimal data. As shown in Fig. 4, their dynamic
interplay prevents the advantage collapse ob-
served in baselines, ensuring optimization stability throughout the learning process.

Visual Supervision. Removing the visual checker and refiner drops performance by 4.7% and
6.9%, respectively. This validates the pivotal role of visual supervision in bootstrapping from noisy,
undesigned data. Given the limited capacity of SVLMs, they are easily prone to hallucination when
trained on low-quality traces. The visual components act as a dynamic denoiser, ensuring that raw,
imperfect data is filtered and refined into grounded visual facts (Ic) before optimization, thus enabling
robust learning even from weak supervision.
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Given AB // CD, angle 1 = 50.0, 
then what the degree of angle 2?

Extraction: 
AB is parallel to CD, 
angle 1 = 50°.
Calculation: 
angle 2 = 180° - angle 1 
= 180° - 50° = 130°.
Conclusion: 
The degree of angle 2 is 130°.
Answer: 130°

The difference between the
values of 2017 and 2016 is
19000.

What is the difference between
the values of 2017 and 2016?

Extraction: 
data is value 36700 for 2017 
and 29000 for 2016
Calculation: 
36700 - 29000 = 7700
Conclusion: 
The difference between the 
2017 and 2016 values is 7700.
Answer: 7700

(Original)

(DyME)

Angle 2 is equal to angle 3,
angle 2 is also 50 degrees.(Input Image)

Figure 5: Showcases on chart understanding and geometry solving. We use LLaVA-OV-S
to demonstrate the results. The SVLM originally produces hallucinated answers (red), while the
DyME-trained model generates structured thinking traces (green) that incorporate grounded values,
effectively improving the performance.

4.3 TRAINING EFFICIENCY & DISCUSSION

We analyze the computational efficiency and performance trade-offs associated with different config-
urations of DyME. The comparative results are detailed in Table 4.

Table 4: Cost-Benefit Analysis. Time
measured in sec/step. Run on 8x H800.

Method Ext. Model Time Acc.

GRPO (Baseline) Qwen2.5-14B† 14.8s 60.8
Pure DyME Qwen2.5-14B† 14.0s 64.9
Pure DyME GPT-4o† 19.1s 68.5
Full DyME Qwen2.5-7B 21.2s 66.8
Full DyME Qwen2.5-14B 23.4s 67.5
† Used for offline data construction only.

Computational Efficiency vs. Data Cost. The frame-
work offers two distinct operating regimes catering to
different resource profiles. Pure DyME represents the
high-efficiency regime: when offline CoT data is pre-
constructed, it maintains training throughput comparable
to standard GRPO (∼14s/step) while delivering superior
performance. In contrast, Full DyME (with Visual Supervi-
sion) prioritizes data autonomy. While the online interac-
tion introduces a computational overhead (∼1.6× training
time), it enables the model to bootstrap high-performance
reasoning solely from open-source models, bypassing the
dependency on expensive, proprietary data annotation (e.g., GPT-4o).

Sensitivity to External Model Capacity. For Full DyME, we further examine the impact of the
external helper’s size on system performance. As shown in Table 4, replacing the Qwen2.5-14B
helper with the smaller 7B variant results in a negligible performance variation (67.5% → 66.8%).
This indicates that our structured prompt engineering effectively decomposes complex reasoning
tasks, allowing even smaller external models to provide sufficient guidance for SVLMs without
necessitating heavy-weight models.

Applicability of Visual Supervision. The effectiveness of the Visual Supervision module relies on
the explicit extraction of Visual Facts (Ic). This process creates specific applicability boundaries. For
domains involving abstract semantics (e.g., irony in memes) or unstructured perception (e.g., dense
crowds), converting holistic visual signals into discrete text may result in information loss. In such
scenarios, reverting to the Pure DyME paradigm serves as a more robust alternative.

5 CONCLUSION

In this work, we introduced DyME, a novel training paradigm designed to empower thinking capa-
bilities within SVLMs. At its core, DyME combines memorization (via SFT) mode and exploration
(via RLVR) mode through a dynamic switching mechanism. Our experiments demonstrate that this
approach not only resolves the critical trade-off between these two modes but also yields substantial
performance gains on a wide spectrum of vision tasks, from recognition-intensive to reasoning-
intensive scenarios. The success of DyME is attributed to its carefully designed components: the
dynamic switching mechanism addresses pseudo thinking traces and advantage collapse, while the
visual checker and refiner provide coordinated, high-quality visual supervision. It imposes minimal
requirements on the base VLM, making it broadly applicable to a wide range of models, including
extremely lightweight SVLMs. Therefore, DyME serves as the practical solution for empowering
SVLMs to think.
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6 LLM USAGE

In accordance with the ICLR 2026 policy on LLMs, no text in this manuscript was generated by an
LLM. As part of our experimental setup, we used Qwen2.5-14B to generate synthetic CoT training
data; this use did not involve any aspect of manuscript preparation.

7 REPRODUCIBILITY

We release our code, datasets, and experiment logs at https://anonymous.4open.science/
r/2276-rebuttal-F215.

REFERENCES

Alon Albalak, Akshat Shrivastava, Chinnadhurai Sankar, Adithya Sagar, and Mike Ross. Data-
efficiency with a single gpu: An exploration of transfer methods for small language models. arXiv
preprint arXiv:2210.03871, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, localization,
text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL technical report. arXiv
preprint arXiv:2502.13923, 2025.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang Xie.
SFT or RL? an early investigation into training R1-like reasoning large vision-language models.
arXiv preprint arXiv:2504.11468, 2025a.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-V: Reinforcing super generalization
ability in vision-language models with less than $3. https://github.com/Deep-Agent/
R1-V, 2025b. Accessed: 2025-02-02.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek, Inc. DeepSeek-R1 Release. https://api-docs.deepseek.com/news/
news250120, January 2025. Accessed: Jun. 21, 2025.

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
Zang, Pan Zhang, Jiaqi Wang, et al. VLMEvalKit: An open-source toolkit for evaluating large
multi-modality models. In ACM MM, 2024.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
Jianhua Han, Hang Xu, Zhenguo Li, et al. G-LLaVA: Solving geometric problem with multi-modal
large language model. In ICLR, 2025.

Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, and Aman Chadha. Exploring the
frontier of vision-language models: A survey of current methodologies and future directions. arXiv
preprint arXiv:2404.07214, 2024.

11

https://anonymous.4open.science/r/2276-rebuttal-F215
https://anonymous.4open.science/r/2276-rebuttal-F215
https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
https://api-docs.deepseek.com/news/news250120
https://api-docs.deepseek.com/news/news250120


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Vik Korrapati. Moondream. https://moondream.ai/, 2024. Accessed: 2025-03-27.

Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-R1: Reinforce-
ment learning for generalizable medical reasoning in vision-language models. arXiv preprint
arXiv:2503.13939, 2025.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
Naumann, Hoifung Poon, and Jianfeng Gao. LLaVA-Med: Training a large language-and-vision
assistant for biomedicine in one day. Advances in Neural Information Processing Systems, 36:
28541–28564, 2023.

Zhuowan Li, Bhavan Jasani, Peng Tang, and Shabnam Ghadar. Synthesize step-by-step: Tools
templates and LLMs as data generators for reasoning-based chart VQA. In CVPR, 2024b.

Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. SLAKE: A semantically-
labeled knowledge-enhanced dataset for medical visual question answering. In ISBI, 2021.

Fangyu Liu, Julian Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee,
Mandar Joshi, Wenhu Chen, Nigel Collier, and Yasemin Altun. DePlot: One-shot visual language
reasoning by plot-to-table translation. In Findings of the ACL, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In CVPR, 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
LLaVA-NeXT: Improved reasoning, OCR, and world knowledge, January 2024b. URL https:
//llava-vl.github.io/blog/2024-01-30-llava-next/.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-RFT: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.
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Empowering Small VLMs to Think with Dynamic Memorization
and Exploration

Supplementary Material

In the supplementary materials, we report:

• LLM instructions used for constructing vision supervision (§S1);
• Detailed experimental setup and additional experimental results (§S2);
• Showcases of SVLMs trained via DyME performing on medical VQA, chart understanding,

and geometry problem solving (§S3);

S1 LLM INSTRUCTIONS FOR VISION SUPERVISION

The instructions for constructing Ic, the visual refiner, and the visual checker are listed as follows.

S1.1 INSTRUCTIONS FOR EXTRACTING VISUAL ELEMENTS

Ic is primarily derived from two sources: ground truth captions, and the outputs from specialized
tools such as the chart-parsing model Deplot. Prompt S1 is employed to extract visual elements from
sentences.

1 Based on the provided sentence <C>, extract all the visual elements.
Organize them into a structured format that can be directly converted
into a Python list.

2

3 Note: visual elements are all the things that can be seen in a sentence -
tangible, perceivable items, places, people, colors, shapes,

movements, etc.
4

5 Here are some examples:
6 C: A small black cat is sitting on a wooden table under the bright

sunlight.
7 Output: [
8 {"object": "cat", "attributes": ["small", "black"], "action": "

sitting"},
9 {"object": "table", "attributes": ["wooden"]},

10 {"environment": "sunlight", "attributes": ["bright"]}
11 ]
12

13 C: The old castle stands on a rocky hill surrounded by mist.
14 Output: [
15 {"object": "castle", "attributes": ["old"], "position": "stands"},
16 {"object": "hill", "attributes": ["rocky"]},
17 {"environment": "mist"}
18 ]
19

20 Now, following the examples above, please extract the visual element from
the sentence without providing any explanation or comments.

21

22 C: {%s}
23 Your Output:

Prompt S1: Automated Visual Elements Extraction

S1.2 INSTRUCTIONS FOR EXTRACTING VISUAL FACT (A-OKVQA)

For general scenes requiring commonsense reasoning (e.g., A-OKVQA), we leverage Qwen2.5-VL-
7B to automatically generate Visual Facts (Ic). Prompt S2 is designed to extract visual information
step-by-step across 7 distinct dimensions to ensure comprehensive coverage.

1
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1 You are a helpful assistant that analyzes images and provides visual
facts.

2 Your response MUST be a single, valid JSON object.
3 The JSON object should contain:
4 1. "description": A detailed and accurate description of the image.
5 2. "objects": A list of key objects, including their name, attributes,

and approximate position in the image.
6

7 Example format:
8 {
9 "description": "A person riding a bicycle on a city street.... (

detailed description here)",
10 "objects": [
11 {"name": "person", "attributes": ["wearing helmet", "blue shirt"], "

position": "center"},
12 {"name": "bicycle", "attributes": ["red", "mountain bike"], "position

": "center"},
13 {"name": "street", "attributes": ["asphalt", "wet"], "position": "

bottom"}
14 ]
15

16 Analyze the attached image and provide the visual facts in the required
JSON format.

17 For context, the user will be asked this question about the image (do not
answer the question, just use it for context):

18 "{question}"
19 }

Prompt S2: Automated Visual Fact Extraction for General Scenes

S1.3 INSTRUCTIONS FOR VISUAL REFINER

The visual refiner primarily takes thinking templates from a template pool and Ic as input to construct
the ground truth for SFT. The templates are extracted from example outputs.

1 Given:
2 <IC>: the data of an image
3 <Q>: a question
4 <A>: a reference answer
5 <T>: a writing template
6

7 Goal:
8 Transform the visual information in <IC> into a textualized data

description and incorporate it into a smooth, natural explanation
that reasons why the correct answer to <Q> is <A>, using the format
and tone defined by <T>.

9

10 Example:
11 <IC>: [
12 {"object": "bar", "attributes": ["˜120k", "Q4"], "label": "Product A"},
13 {"object": "bar", "attributes": ["˜150k", "Q4"], "label": "Product B"},
14 {"object": "bar", "attributes": ["˜90k", "Q4"], "label": "Product C"},
15 {"title": "Quarterly Revenue"}
16 ]
17 <Q>: Which product has the highest revenue in Q4?
18 <A>: product b
19 <T>:
20 [Extraction] Extract the relevant data points from <IC> that are

needed to answer <Q>.
21 [Calculation] Analyze and compare the extracted data to determine the

correct result.
22 [Conclusion] Based on the analysis, state why <A> is the correct

answer to <Q>.

2
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23

24 <Output>:
25 [Extraction] The image shows a chart comparing three items-Product A,

Product B, and Product C-in Q4. The bar heights indicate their
revenues: Product A at about 120k, Product B at about 150k, and
Product C at about 90k.

26 [Calculation] Comparing these values, Product B’s revenue (150k) is
greater than both Product A’s (120k) and Product C’s (90k).

27 [Conclusion] Since Product B has the highest revenue among the three,
the correct answer to the question "Which product has the

highest revenue in Q4?" is product b.
28

29 Now, according to the requirements and the examples above, convert my
input into the target reasoning text. Please give me the result
directly without any explanation or description.

30

31 <IC>: %s
32 <Q>: %s
33 <A>: %s
34 <T>: %s
35 <Output>:

Prompt S3: Ground-truth construction for Chart Understanding SFT

Prompts for the other domains follow a similar design.

S1.4 INSTRUCTIONS FOR VISUAL CHECKER

The visual checker is primarily responsible for scoring the thinking trace of responses generated in
the GRPO process. It evaluates these traces with reference to exemplars, based on their fluency and
the degree to which the mentioned visual elements align with Ic. Prompts for the other domains
follow a similar design.

1 Given
2 <IC>: the data of an image
3 <Q>: a question
4 <A>: a reference answer
5 <R>: a reasoning text
6

7 Goal:
8 Assess whether <R> correctly and reasonably uses visible data in <IC> to

justify that the correct answer to <Q> is <A>. Rate the quality as
low / medium / high according to:

9 (a) low: Does not use data from <IC> at all, or the language is not
fluent/natural, or it fails to indicate the answer to <Q> is <A>.

10 (b) medium: Uses data from <IC> and is written fluently, but the
reasoning is overly brief or insufficiently clear.

11 (c) high: Uses data from <IC> and is written fluently; the reasoning
progresses step by step with depth, each step is correct and
reasonable; the data from <IC> appears exactly where it should;
overall, the reasoning text provides very strong support that the
answer to <Q> is <A>.

12

13 Example:
14 <IC>: [
15 {"object": "bar", "attributes": ["˜120k", "Q4"], "label": "Product A"},
16 {"object": "bar", "attributes": ["˜150k", "Q4"], "label": "Product B"},
17 {"object": "bar", "attributes": ["˜90k", "Q4"], "label": "Product C"},
18 {"title": "Quarterly Revenue"}
19 ]
20 <Q>: Which product has the highest revenue in Q4?
21 <A>: product b
22 <R>:
23 [Extraction] Reads Q4 bar heights: A ˜120k, B ˜150k, C ˜90k.

3
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24 [Calculation] Compares values: B > A and B > C.
25 [Conclusion] Therefore, Product B is highest, matching the answer "

product b".
26

27 <Output>: medium
28

29 According to the requirements and examples above, score the input into
three categories. Please give me the result directly without any
explanation or description.

30

31 <IC>: %s
32 <Q>: %s
33 <A>: %s
34 <R>: %s
35 <Output>:

Prompt S4: Scoring generations during GRPO for Chart Understanding

S2 EXPERIMENTAL DETAILS AND EXTRA RESULTS

S2.1 TRAINING AND TEST SETTING

First, we provide the statistical information for the training and testing phases of our experiments
in the Tab. S1. The training dataset for each domain consists of only a few thousand samples. In
addition, Fig. S2 visualizes a comparison between the ground-truth responses produced by the refiner
and the original ground-truth, showing that the refined versions are noticeably more structured and
place greater emphasis on intermediate values.

Table S1: Training and testing setup. DyME empowers thinking capabilities based on small training
sets.

Domain Training set #Training samples Source of Ic Testset

Medical VQA SLAKE-Train 4,919 BiomedGPT SLAKE-Test
Chart Understanding ChartQA-Train 4,576 DePlot ChartQA-Test
Geometry Solving Geo170K 6,417 Collected MathVerse

S2.2 EXTRA RESULTS

We also report additional experimental content, including the discussion on training strategies and
data organization formats, as well as a comparative analysis with other similar methods that integrate
SFT and RL.

Specifically, we first demonstrate the importance of constructing vision supervision, which proves
essential for training SVLMs to produce grounded thinking traces (1). We then examine the impact of
structured versus open-ended output formats on thinking performance (2). Furthermore, to validate
our earlier observation that SVLMs are prone to converging to local optima, we present performance
across different training epochs, showing that SFT training saturates after only one epoch (3). We
provide a detailed comparison with alternative methods that integrate SFT and RL (4). Finally, we
extend our evaluation to stronger base models and pure textual domains (5), and validate the quality
of generated thinking traces through human evaluation (6).

(1) Intermediate values matter. As shown in Table S2, we report the effect of applying two-stage
training with visual supervision on SmolVLM and LLaVA-OV-S. Incorporating visual supervision
significantly improves the best performance achieved during training, despite certain instabilities,
thereby validating its critical role for SVLMs. This effect is further illustrated in Fig. S2, where
visual supervision compels SVLMs to generate intermediate reasoning enriched with visual elements,
which make a clear contribution to the final answer.
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Figure S1: Relative off-policy influence during training. Each curve is normalized to its initial
value for comparability. DyME measures SFT/(SFT+RL) (raw in lighter tone, Gaussian-smoothed
in darker tone), CHORD-µ tracks the global weight µ(t), and LUFFY adopts a policy-shaping proxy
E[f(πθ(a))] with f(x) = x

x+γ . All methods reveal the shift from off-policy guidance to on-policy
optimization, albeit with distinct decay dynamics.

Table S2: Two-stage training on
ChartQA. Rel-corr denotes the
relaxed-correctness metric. Ic indicates
whether an explicit image-content field
is supervised (✓ yes; ✗ no).

Model Ic Rel-corr
SmolVLM ✓ 64.32
SmolVLM ✗ 60.09
LLaVA-OV-S ✓ 63.62
LLaVA-OV-S ✗ 52.90

(2) Structured thinking alleviates the learning burden
of SVLMs. Table S3 reports the performance gap be-
tween training with structured thinking ground-truth and
with unconstrained ground-truth. While open-ended explo-
ration is often beneficial for LVLMs, the limited capacity
of SVLMs makes unconstrained exploration less effective,
as it tends to be aimless and increases the learning burden.
Given that SVLMs are designed for task-specific rather
than general-purpose scenarios, employing tailored think-
ing templates for each task proves more suitable and yields
better performance. For instance, SmolVLM achieves
60.10 vs. 59.24 on ChartQA and 59.38 vs.56.13 on Med-
ical VQA, with LLaVA-OV-S exhibiting similar gains.

Table S3: Effect of templated output across models and tasks. ✓denotes fixed-template output,
whereas ✗ denotes free-form generation.

Model Template Chart Medical

SmolVLM ✓ 60.10 59.38
SmolVLM ✗ 59.24 56.13
LLaVA-OV-S ✓ 52.87 74.52
LLaVA-OV-S ✗ 50.86 72.64

(3) Comparison between annealed SFT loss and DyME. As shown in Fig. S1, we compare the
relative SFT (off-policy) influence across training steps for three approaches: DyME, CHORD (Zhang
et al., 2025b), and LUFFY (Yan et al., 2025). For DyME and CHORD, the curves represent the
normalized weight of the SFT loss at each step, while for LUFFY the curve reflects the trajectory of
SFT gradient shaping as a function of prediction probability (which generally correlates with training
steps). These curves highlight the dynamic nature of DyME. Because of the extremely limited capacity
of SVLMs, their learning patterns can shift significantly even between adjacent steps, leading to
rapid forgetting of previously acquired modes. Unlike CHORD, which relies on a smooth annealing
schedule that decays quickly and is ill-suited to such small models, DyME assigns weights directly
based on model outputs.

This produces a highly dynamic and irregular decay, better accommodating the instability of SVLMs.
LUFFY adopts a shaping function f(x) = x

x+γ (γ=0.1), which also induces a dynamic decay
with probability but remains heuristic and may not align well with the local-optimum tendency of
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SVLMs. Overall, DyME is explicitly tailored for SVLMs, whereas CHORD and LUFFY may be
more appropriate for stronger base models, reflecting complementary strengths.

Table S4: SVLM performance satu-
rates after a single training epoch.
Score is domain-specific: chart domain
uses Rel-corr, while the medical do-
main uses the average of accuracy and
recall values.

Model Domain Epoch Score

LLaVA-OV-S Chart
1 60.70
5 60.44

10 60.12

SmolVLM

Chart
1 60.22
5 63.21

10 62.22

Medical
1 71.73
5 71.80

10 72.05

(4) SVLMs converge rapidly. Table S4 shows that
SVLMs converge extremely quickly: performance after
only one epoch is comparable to, or even exceeds, that af-
ter ten epochs (e.g., LLaVA-OV-S achieves 60.70 vs. 60.12
on the Chart domain). This indicates that the very limited
capacity of SVLMs makes them prone to overfitting to
local optima. It also substantiates our earlier claim that
such rapid convergence leaves only a narrow window for
balancing SFT and RL, making it difficult to achieve the
trade-off through empirical hyperparameter tuning. Conse-
quently, static fusion methods are unsuitable for SVLMs.

To ensure a rigorous comparison, we further report the full
learning trajectories of baselines in Table S5. We evaluated
the Two-stage baseline (with and without KL penalty) and
SFT across multiple epochs (1, 3, 5, 10) to capture their
peak performance. The results confirm that even with
optimal stopping, the baselines consistently underperform
DyME, which achieves superior results in a single training
run without the need for epoch selection.

Table S5: Detailed learning trajectories demonstrating rigorous tuning. We report the perfor-
mance across multiple settings to show their full learning trajectories. Two-stage baselines include
variants with and without KL penalties to ensure optimal performance is captured.

Data Quality Method Performance across epochs (1, 3, 5, 10) Best perf.

Low

DyME (ours, pure) Report final score directly 61.9
SFT 43.1 → 47.9 → 50.0 → 50.5 50.5
Two-stage 57.6 → 52.7 → 50.8 → 50.7 57.6
Two-stage (w/ KL) 54.2 → 55.4 → 52.6 → 54.2 55.4

Medium

DyME (ours, pure) Report final score directly 64.9
SFT 53.6 → 56.5 → 57.8 → 56.4 57.8
Two-stage 59.9 → 52.8 → 53.0 → 53.1 59.9
Two-stage (w/ KL) 59.0 → 60.6 → 60.6 → 60.8 60.8

High

DyME (ours, pure) Report final score directly 68.5
SFT 58.2 → 59.1 → 61.0 → 61.6 61.6
Two-stage 51.6 → 54.0 → 54.5 → 54.4 54.5
Two-stage (w/ KL) 61.7 → 60.9 → 62.7 → 61.8 62.7

(5) Generality across complex reasoning and pure text.
To demonstrate the scalability of DyME, we applied it to two new domains without modifying the
core algorithm: Complex Scene & Physical Reasoning (A-OKVQA) and Pure Text Reasoning
(GSM8K).

• Complex Scene & Physical Reasoning (A-OKVQA): We addressed the challenge of open-ended
visual reasoning by testing on A-OKVQA. We used Qwen2.5-VL-7B to automatically generate
Visual Facts using the 7-step prompt defined in §S1.2 (e.g., “man, wearing a light blue and white
shirt...”). As shown in Table S6, DyME achieved a massive gain of +18.8% (54.2% → 73.0%),
proving that the method scales effortlessly to tasks requiring world knowledge and commonsense.

• Pure Text Reasoning (GSM8K): In pure text domains, the “Visual Fact” extraction step is naturally
skipped. On the GSM8K math benchmark, DyME improved Qwen2.5-0.5B from 49.5% to 55.3%,
demonstrating that the paradigm generalizes even when “vision” is absent.
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Table S6: Generality of DyME across New Domains. We demonstrate performance gains on
Complex Scenes (A-OKVQA), Pure Text (GSM8K), and with stronger base models (New LVLM).
Baselines for text use standard RL (GRPO).

Domain Task Base Model Method Baseline (%) DyME (%)

World Knowledge A-OKVQA LLaVA-OV-S Two-stage 54.2 73.0 (+18.8)
Pure Text GSM8K Qwen2.5-0.5B GRPO 49.5 55.3 (+5.8)
New LVLM ChartQA Qwen2.5-VL-7B SFT 87.3 89.6 (+2.3)

These results, combined with the ChartQA improvements on the stronger Qwen2.5-VL-7B model,
confirm that DyME is not limited by the extraction step. By leveraging off-the-shelf LVLMs to
automate visual fact generation, the framework is immediately applicable to diverse visual and textual
domains.

Limitations on Abstract Visuals. We acknowledge that the VS module may face challenges
in scenarios where “Visual Facts” are intrinsically difficult to define or extract, such as memes
(relying on irony or cultural context) or highly abstract non-commonsense reasoning. However,
our primary objective is to empower SVLMs for practical, real-world production tasks (e.g., chart
processing, medical diagnostics, geometric solving). In these structured and semi-structured domains
where SVLMs are most commonly deployed, Visual Facts are well-defined and DyME proves highly
effective.

(6) Human evaluation of CoT quality. Automatic metrics like relaxed accuracy do not fully
reflect the quality of the reasoning process. To verify whether DyME generates genuinely better
thinking traces, we conducted a human evaluation on 100 randomly sampled instances from ChartQA.
Annotators judged the validity of the generated CoT based on its logical coherence and grounding.
As shown in Table S7, DyME produces traces that are slightly more concise (shorter length) but
significantly more valid (validity rate ∼70%) compared to the Two-stage baseline (∼30-40%). This
confirms that DyME effectively mitigates the generation of “pseudo thinking traces” that plague
standard SFT/Two-stage training.

Table S7: Human evaluation of CoT quality on ChartQA.

Base Model Method Avg. CoT Length Human Eval (Valid %)

LLaVA-OV-S Two-stage ∼76.3 Words 31%
DyME ∼69.7 Words 68%

SmolVLM Two-stage ∼84.5 Words 40%
DyME ∼75.4 Words 72%

S3 SHOWCASES

Before presenting the model outputs, we first illustrate the data quality definitions used in our
Algorithmic Validation (Section 4.1 of the main paper). Table S8 showcases examples of Low
(Undesigned), Medium (Standard), and High (Premium) quality Chain-of-Thought supervision for
the same question. This visualizes the significant gap in structure and detail that DyME must bridge
when trained on non-premium data.

We present dialogue instances of SmolVLM, LLaVA-OV-S, and InternVL2-S, which were trained
with DyME in our experiments, on tasks in the domains of medical VQA, chart understanding, and
geometry. As shown in Fig S3 to Fig S5, all models trained with DyME demonstrate the ability to
generate effective thinking traces with accurate intermediate values (in green), which play a crucial
role in reaching the final correct answer.
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Medical (SLAKE).

Q: What is the MR weighting in
this image?
w/o refiner:
Based on signal variations typical
of this image, the most plausible
answer is T2.
w/ refiner:
Analysis: On T2, fluid is bright;
bone/air and fast flow are dark.
Extraction: In this axial slice,
intraluminal fluid is bright; vessels
low signal; ribs/wall dark.
Conclusion: Pattern matches T2.

Chart (ChartQA).

Q: What is the sum of making
progress, losing ground, and same
in 2011?
w/o refiner:
To answer the question, we first lo-
cate the relevant part of the chart
for 2011, then extract the values
for the three series and sum them
up to obtain 99.
w/ refiner:
Extraction: Read 2011 values:
Making progress = 45, Losing
ground = 29, Same = 25.
Calculation: 45 + 29 + 25 = 99.
Conclusion: The sum is 99.

Math (Geo170k).

Q: If angle 1 is 35◦, what is angle
2? Choices: A: 55◦, B: 135◦, C:
145◦, D: 155◦.
w/o refiner:
Since angle 1 is 35 degree, angle
2 is 180 - 35 = 145 degree us-
ing a supplementary relationship.
Choose C.
w/ refiner:
Extraction: Two parallel lines CD
and AB with a transversal; angle 1
is 35 degree, and angle 2 is on the
same side.
Calculation: Same-side interior an-
gles are supplementary, so angle 2
= 180 - 35 = 145 degree.
Conclusion: Answer: C.

Figure S2: Comparison of ground-truth responses before and after refinement. Compared to
the original ground-truth, the refiner injects richer visual elements and enforces a more structured
organization, thereby reducing the learning burden for SVLMs.

The thinking processes of these models are relatively fixed and template-based. This is a result of
our vision supervision module taking effect, as SVLMs should not be overly broad and general;
otherwise, their exploration can easily diverge instead of converging.
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Table S8: Showcase of chain-of-thought (CoT) supervision with different quality for ChartQA.

Type Content

Question When does the unfavorable view reach the peak?

High-quality
CoT

<SUMMARY> I inspect the line graph showing very unfavorable views of Pakistan in India over
time, and identify the year where the percentage peaks by locating the maximum point on the
curve. </SUMMARY>
<CAPTION> Line graph titled “Very unfavorable views of Pakistan increasing in India”. The
y-axis shows the share of respondents with a very unfavorable view (0–100%). The x-axis
shows years 2013–2017. Marked values: 54% (2013), 49% (2014), 51% (2015), 55% (2016),
and 64% (2017). The series exhibits an overall upward trend and peaks in 2017. </CAPTION>
<REASONING> The peak corresponds to the highest percentage on the y-axis. Among the
annotated years, 2017 has the largest value (64%), higher than 2013–2016. Therefore, the peak
occurs in 2017. </REASONING>
<CONCLUSION> 2017 </CONCLUSION>

Medium-quality
CoT

Goal: Determine the year when the unfavorable view reaches its maximum.
Observation: The values for each year are: 2013: 0, 2014: 0, 2015: 0, 2016: 55, and 2017: 64.
Reasoning: Comparing these values, the largest value is 64, which appears in 2017.
Conclusion: The unfavorable view reaches its peak in 2017.

Low-quality
CoT

I’m trying to figure out the year when the unfavorable view reaches its highest point. The values
stay low until 2016, where they rise to 55, and then climb further to 64 in 2017. This makes
2017 the year when the unfavorable view reaches its maximum.
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Table S9: Showcase of chain-of-thought (CoT) supervision for A-OKVQA.

Type Content

Question What is the man by the bags awaiting?

visual fact { ”description”: ”A man stands in the middle of a residential street, facing away from the
camera. He holds a red bag and pulls a wheeled black suitcase, with another black suitcase
placed nearby. Houses, parked cars, and trees line the background, suggesting he is waiting
to cross or be picked up.”, ”objects”: [ ”name”: ”man”, ”attributes”: [”light blue and white
shirt”, ”blue jeans”, ”carrying a red bag”, ”pulling a wheeled suitcase”], ”position”: ”center” ,
”name”: ”red bag”, ”attributes”: [”held by the man”], ”position”: ”left of the man” , ”name”:
”black suitcase”, ”attributes”: [”wheeled”, ”being pulled”], ”position”: ”near the man’s feet”
, ”name”: ”black suitcase”, ”attributes”: [”lying on the ground”], ”position”: ”near the man”
, ”name”: ”street”, ”attributes”: [”asphalt”, ”urban residential”], ”position”: ”foreground” ,
”name”: ”houses”, ”attributes”: [”residential homes”], ”position”: ”background left” , ”name”:
”parked cars”, ”attributes”: [”red SUV”, ”other vehicles”], ”position”: ”background center and
left” , ”name”: ”trees”, ”attributes”: [”green foliage”], ”position”: ”background right” ] }

CoT A train would not appear on a residential street, and the man’s luggage suggests he is waiting
for transportation rather than a delivery. The nearby skateboarder is not interacting with him,
leaving a cab as the most plausible option.
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(a) Showcase of Medical VQA

(b) Showcase of Chart Understanding

(c) Showcase of Geometry Solving

Figure S3: Showcases of SmolVLM. The SVLM originally produces hallucinated answers (red),
while the DyME-trained model generates structured thinking traces (green) that incorporate grounded
values, effectively improving the performance.
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(a) Showcase of Medical VQA

(b) Showcase of Chart Understanding

(c) Showcase of Geometry Solving

Figure S4: Showcases of InternVL2-S. The SVLM originally produces hallucinated answers (red),
while the DyME-trained model generates structured thinking traces (green) that incorporate grounded
values, effectively improving the performance.
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(a) Showcase of Chart Understanding

(b) Showcase of Medical VQA

(c) Showcase of Geometry Solving

Figure S5: Showcases of LLaVA-OV-S. The SVLM originally produces hallucinated answers (red),
while the DyME-trained model generates structured thinking traces (green) that incorporate grounded
values, effectively improving the performance.
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