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Abstract

The need to use a short time step is a key limit on the speed of molecular dy-
namics (MD) simulations. Simulations governed by classical potentials are often
accelerated by using a multiple-time-step (MTS) integrator that evaluates certain
potential energy terms that vary more slowly than others less frequently. This
approach is enabled by the simple but limiting analytic forms of classical potentials.
Machine learning interatomic potentials (MLIPs), in particular recent equivariant
neural networks, are much more broadly applicable than classical potentials and
can faithfully reproduce the expensive but accurate reference electronic structure
calculations used to train them. They still, however, require the use of a single
short time step, as they lack the inherent term-by-term scale separation of classical
potentials. This work introduces a method to learn a scale separation in complex
interatomic interactions by co-training two MLIPs. Initially, a small and efficient
model is trained to reproduce short-time-scale interactions. Subsequently, a large
and expressive model is trained jointly to capture the remaining interactions not
captured by the small model. When running MD, the MTS integrator then evaluates
the smaller model for every time step and the larger model less frequently, acceler-
ating simulation. Compared to a conventionally trained MLIP, our approach can
achieve a significant speedup (~3x in our experiments) without a loss of accuracy
on the potential energy or simulation-derived quantities.

1 Introduction

The interatomic potential energy that governs the dynamics of a system of atoms has long been both
understood and modeled as a combination of atomic interactions of various strengths and scales. In
a system containing a comparatively stiff molecule in a soft fluid, for example, the intramolecular
forces are much stronger than the intermolecular forces from the solvent. Classical potentials, such as
the popular optimized potentials for liquid simulations (OPLS, [1, 2]), explicitly define the potential
as such a sum over simple analytic terms:

E(r) = Ebonds(r) + Eangles(r) + Edihedrals(r) + Enb(r)



where r denotes the atom positions; Ebonds(r), Eangles(r), and Edihedrals(r) are intramolecular
(or “bonded”) bond, angle, and torsional potentials; and Enb denotes the nonbonded, including
intermolecular potential term. Rigid interactions such as bond vibrations, governed by Ebonds, occur
at fast time scales, while the nonbonded interactions Enb are slower and smoother. Due to the
greater number of atoms involved in nonbonded interactions, however, the computational expense of
calculating the Enb term can be meaningfully larger.

Essentially, the intramolecular and intermolecular nonbonded forces are of different scales. While
the intramolecular forces require a short time step, integrating the intermolecular forces at the same
step size is often overkill. To harness this separation of both scales and computational cost, multiple-
time-step (MTS) integrators [3–7] integrate the fast-evolving terms with a short time step and the
slow-evolving terms with a long time step. MTS integrators are theoretically principled and have
been widely used in various classical MD workflows [8–12], usually bringing a speedup of two to
four times.

The approximations and limited functional forms of classical potentials are not sufficient for many
applications. Ab initio molecular dynamics (AIMD) simulations—governed by a potential energy
surface computed with electronic structure methods such as Density Functional Theory (DFT)—are
widely used but suffer from dramatic computational limitations on time- and length-scale due to the
expense and unfavorable scaling of the electronic structure calculations. The application of MTS
schemes to AIMD has been limited by the difficulties in decomposing the ab initio potential into
components of separate scales in the absence of a simple analytical form [13, 14].

Machine learning interatomic potentials (MLIPs) [15–48] are increasingly used to run MD simulations
orders of magnitude cheaper than AIMD while preserving near-AIMD accuracy. MLIPs also largely
avoid classical potentials’ assumption of an explicit discrete covalent bond topology, which greatly
broadens their applicability, notably in materials science and reactive simulations. While MLIPs have
enabled many previously impractical or impossible simulations, further improvements in the speed
and cost of MLIP-driven MD are extremely valuable. MTS methods remain largely unexplored for
MLIPs: although recent research [49] has combined an infrequently evaluated MLIP with a classical
potential evaluated at every time step, a methodology for machine learning a scale-separated potential
model from data is, to the best of our knowledge, lacking in the literature. This work presents an
approach for learning complementary scale-separated MLIPs from data, yielding a ~3x speedup in
MD simulations using MTS integration.

2 Preliminaries

MD simulation involves integrating a Newtonian equation of motion r̈ = d2r/dt2 = m−1F (r) with
atomic positions r, masses m, and forces F . The forces are obtained by differentiating the potential
energy of a molecular system E(r) with respect to the atomic positions r: F (r) = −∂E/∂r.

Allegro [37] is an E(3)-equivariant [50] neural network MLIP architecture for predicting E(r) that
enforces strictly local interactions while achieving state-of-the-art performance. Its strict locality
enables efficient parallel scaling across GPUs to reach larger length- and time-scales [51]. In Allegro,
every pair of atoms within a chosen fixed cutoff distance r are considered neighbors. For each ordered
pair of neighboring atoms i and j, an Allegro model produces a learnable, E(3)-invariant, many-body
final latent representation xij of the geometry of i, j, and all other neighbors of i. An edge energy
Eij is then predicted from it via the output block, a multi-layer perception MLPout without bias; the
sum over edge energies gives the total potential energy:

EML(r) =
∑

(i,j):||ri−rj ||≤r

Eij =
∑

(i,j):||ri−rj ||≤r

MLPout(x
ij) (1)

An Allegro model’s predicted EML(r) is trained to reproduce the potential energy and forces from a
reference method such as DFT using a loss function like:

L = λE

∥∥∥∥EML − E

N

∥∥∥∥2 + λF
1

3N

∥∥∥∥−∂EML

∂r
− F

∥∥∥∥2 (2)

where λE and λF are loss coefficients for energy and forces and N is the number of atoms. For
complete details on Allegro and its training see [37].
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MTS Integrators accelerate MD simulations by propagating different parts of the dynamics with
different time steps suited to their respective characteristic time scales. In this paper, we focus on the
reversible reference system propagator algorithms (rRESPA [5, 52]), an MTS integrator popular for
its rigorous derivation, time-reversibility, and symplectic properties. We show the rRESPA algorithm
in Algorithm 1 and refer interested readers to [5] for detailed derivations.

Algorithm 1 An integration step of the MTS integrator (rRESPA)

1: Input: Inner time step ∆t, number of inner time steps per outer time step Ninner, short-range
force Fs, long-range force Fl, atom masses m, initial positions r, initial velocities ṙ

2: ṙ ← ṙ + 1
2 (Ninner∆t) ·m−1Fl(r)

3: for step i = 1, . . . , Ninner do
4: ṙ ← ṙ + 1

2∆t ·m−1Fs(r)
5: r ← r + ṙ∆t
6: ṙ ← ṙ + 1

2∆t ·m−1Fs(r)
7: end for
8: ṙ ← ṙ + 1

2 (Ninner∆t) ·m−1Fl(r)

3 Learning Scale Separation

To achieve scale separation and harness the MTS integrator, we need to enable efficient calculation of
stiff and fast-evolving force terms. Meanwhile, we still need to capture the smooth and slow-evolving
force terms so that the overall machine learning potential remains accurate. For many molecular
systems of interest, short-range interactions, such as covalent bonds, are strong and induce stiff
motions, while long-range interactions, such as non-bonded interactions, can be integrated with a
longer time step.

The above observation motivates separating scales by combining MLIPs with different receptive
fields. Allegro’s unique combination of the leading accuracy of equivariant techniques with strict
locality particularly lends itself to such a scale separation scheme. We train two models:

• Inner model (Einner): An efficient model with fewer parameters and interaction layers and
a small radial cutoff that captures short-time-scale interactions.

• Outer model (Eouter): An expressive model with a larger number of parameters and
interaction layers and a larger radial cutoff that fits the remaining interactions not learned by
the inner model.

We let the two models jointly predict the potential energy: EML(r) = Einner(r)+Eouter(r). Training
the two models together from scratch, however, may not induce scale separation: the outer model
has sufficient capacity to learn the entire reference potential energy surface, and so the short-range
interactions may not be attributed to the inner model. To avoid such degeneracy, at the beginning
of training, we first freeze all parameters in the outer model to let the inner model fit the force and
energy within its capacity. We then later start training the outer model with a zero-initialization over
its output block MLPout. This zero initialization ensures Eouter

ij = 0 and ∂Eouter
ij /∂r = 0 for all

atom pairs (i, j), preventing the initial noise of the outer model from interfering with the interactions
already learned by the inner model. Zero-initialization has been widely used in previous works for
finetuning pretrained models [53]. The training procedure is presented in Algorithm 2. We refer to
our scale-separated Allegro model as MTS-Allegro.

4 Experiments

Our experiments consider an ab initio water system [54]. This dataset contains 1593 reference
calculations of bulk liquid water at the revPBE0-D3 level of accuracy. Each structure contains 192
atoms (64 water molecules). We randomly sample 1000 structures for training, 100 structures for
validation, and the rest for testing1. Both the Allegro model and the outer model of MTS-Allegro have

1These structures are not sampled under an equilibrium condition such as NVE or NVT ensembles.

3



Algorithm 2 Learning MLIPs at multiple scales

1: Input: Inner model Einner and outer model Eouter, inner training number of epoch Minner, total
training number of epoch M

2: Output: Trained models Einner and Eouter

3: Zero-initialize the outer model’s output layer: MLPout of Eouter

4: for epoch i = 1, . . . ,Minner do
5: train EML = Einner through the loss defined in Equation (2)
6: end for
7: for epoch i = Minner + 1, . . . ,M do
8: train EML = Einner + Eouter through the loss defined in Equation (2)
9: end for

Table 1: Energy and Force prediction mean absolute error (MAE) and root mean square error (RMSE).
Allegro MTS-Allegro MTS-Allegro, inner

Energy MAE [meV/Atom] 2.4 1.6 12.5
Forces MAE [meV/Å] 40.3 35.5 72.5

Forces RMSE [meV/Å] 77.4 76.9 118.3

two interaction layers, a 6 Å cutoff, and the same parameter count; the inner model of MTS-Allegro
has one interaction layer, a 4 Å cutoff, and half the width in each layer compared to the outer model.
Detailed hyperparameters are included in Appendix A.

We compare the accuracy in recovering the reference potential and various simulation-derived quanti-
ties between (1) our proposed MTS-Allegro model with rRESPA integration, (2) a conventionally
trained Allegro model with standard Velocity Verlet integration, and (3) the inner model of MTS-
Allegro alone with Velocity Verlet integration. We use a time step of 0.5 fs for Velocity Verlet
integration and the inner loop of MTS integration, which is standard for water simulations [55–57].
For MTS-Allegro, we experiment with outer time steps of [1.0, 2.0, 3.0, 4.0] fs, corresponding to [2x,
4x, 6x, 8x] multiples of the inner time step.

Force and energy prediction accuracy. We report the force and energy prediction errors in Table 1.
The MTS-Allegro model has a very similar performance to a conventionally trained Allegro model.
Unsurprisingly, the inner model of MTS-Allegro alone obtains higher errors due to its limited
receptive field and capacity.

Structure and dynamics. To investigate MTS-Allegro’s ability to reproduce structural and dynamical
observables, we simulate the water system in a canonical (NVT) ensemble (constant volume and
temperature) at 300 K and compute the element-wise radial distribution functions (RDFs, structural)
and the mean squared displacement (MSD, dynamical). We simulate for 400 picoseconds (ps)
and remove the first 50 ps for equilibration when computing the observables. All models remain
stable throughout the entire simulation. Figure 1 (a-d) shows the RDFs and MSD (in log-log space)
for Allegro, the inner model of MTS-Allegro, and MTS-Allegro under different outer step sizes.
MTS-Allegro simulations with 2x to 8x outer time steps all achieve excellent agreement with Allegro
on the RDFs and MSD, while the inner model alone produces erroneous dynamics and observables
due to its limited capacity and, thereby, accuracy in recovering the potential.

Energy conservation under the microcanonical ensemble. For a correct MD simulation in the
microcanonical (NVE) ensemble, the total energy (sum of potential and kinetic energies) should
remain constant over time. To evaluate the energy conservation property of the MLIPs, we initialize
the water system using a structure from the test dataset and a temperature of 300 K, run energy
minimization, and then simulate for 100 ps in the NVE ensemble. Figure 1 (e) shows the drift of total
energy from the first frame (after removing the first 20 ps for equilibration). We observe that Allegro
and MTS-Allegro with 2x and 4x outer time steps are energy-conserving. MTS-Allegro with 6x and
8x outer time steps yield drifts of 0.12 meV/(atom·ps) and 0.18 meV/(atom·ps), respectively.
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Figure 1: (a-c) O-O, H-H, and H-O RDFs of NVT simulations. (d) MSD of NVT simulations. (e)
Total energy drift of NVE simulations. In the legend, MTS-Allegro is shortened for “MTS” along
with the outer-inner time step ratio.
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Figure 2: (a) Relative speedup factor compared to Allegro (1x in the plot). (b) Average relative
frame-to-frame force difference in 0.5 fs time step Velocity Verlet MD for different models. (c)
Average norm of forces for different models.

Speedup. Figure 2 (a) shows the relative speedup of MTS-Allegro compared to Allegro at two system
sizes as measured in MD simulation2. MTS-Allegro with a 4x outer time step, which preserves
simulation-derived quantities and maintains energy conservation, achieves an MD speedup of 2.6x
for a system size of 192 atoms and 2.9x for a system size of 1536 atoms. MTS-Allegro 6x and 8x,
which obtain a further speedup, remain reliably stable in our experiments and faithfully reproduce
RDFs and MSDs but do not maintain energy conservation. Such larger outer time step simulations
may still find use in preliminary or other calculations whose requirements are less stringent.

Analysis of scale separation. We investigate how well MTS-Allegro separates scales by inspecting
the time-smoothness and strength of the learned interactions. Figure 2 (b) shows the average
relative frame-to-frame force difference (defined as Et [∥Ft+∆τ − Ft∥ /∥Ft∥] for each component)
in 0.5 fs time step Velocity Verlet MD for different models. Compared to the conventional Allegro
model and the inner model, the outer model of MTS-Allegro outputs forces with a much lower
Et [∥Ft+∆τ − Ft∥ /∥Ft∥] for all ∆τ , indicating that it learns interactions that change much more
slowly in time. Figure 2 (c) shows the average force norm (defined as Et [∥Ft∥]) of different models.
The outer model learns interactions that are much weaker in magnitude than Allegro and the inner
model of MTS-Allegro. Weak and slow-varying interactions are exactly what allows for a longer
time step. This analysis confirms the effectiveness of MTS-Allegro in learning scale separation.

2All simulations were run in LAMMPS [12] using pair_allegro on a single NVIDIA Tesla V100-PCIe
32GB GPU. The speed of Allegro is 0.51 and 0.072 ns/day for 192 and 1536 atoms, respectively.
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5 Conclusion

We have developed a method to accelerate MLIP-driven MD simulations by learning a scale separation
and using an MTS integrator. In an ab initio water system, our approach achieves around three times
speedup without loss in accuracy on the potential energy or simulation-derived quantities. MTS
integrators can also be used with more than two levels, and learning finer-grained scale separations
with more than two MLIPs is a direction for future work. It is also possible to co-train different model
architectures, such as kernel-based methods [18] and message-passing MLIPs [36], for accuracy-
speed trade-offs. The presented technique promises a direction for significant practical speed gains
when running MLIP-driven MD, including in large and complex systems.
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A Supplementary Information

Table 2: Hyperparameters for Allegro and the outer model of MTS-Allegro.
Hyperparameter Value

two body MLP latent dimensions [128, 256, 512, 1024]

latent MLP latent dimensions [1024, 1024, 1024]

number of interaction layers 2

radius cutoff 6 Å
maximum rotation order (lmax) 2

atom embedding multiplicity 32

Table 3: Hyperparameters for the inner model of MTS-Allegro.
Hyperparameter Value

two body MLP latent dimensions [64, 128, 256, 512]

latent MLP latent dimensions [512, 512, 512]

number of interaction layers 1

radius cutoff 4 Å
maximum rotation order (lmax) 2

atom embedding multiplicity 32

Table 4: Hyperparameters for training. Both Allegro and Allegro-MTS use the same set of training
hyperparameters (while Minner is only applicable to Allegro-MTS).

Hyperparameter Value

batch size 1

optimizer Adam
initial learning rate 0.005

learning rate scheduler ReduceLROnPlateau
learning rate patience 5 epochs

learning rate factor 0.5

early stopping learning rate 10−6

λE 1

λF 2

inner only epochs (Minner in Algorithm 2) 20 epochs
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