
Recurrent Hamiltonian Echo Learning Enables Biologically Plausible
Training of Recurrent Neural Networks

Motivation. Backpropagation-through-time (BPTT) is the best-known method for training recurrent
neural networks (RNNs), but it is widely regarded as biologically implausible because it requires a backward
phase separate from inference. Real-Time Recurrent Learning (RTRL) [1] computes exact gradients online
without an explicit backward pass; however, its memory cost scales as O(N3) in the number of units,
making it impractical at scale. This limitation has motivated approximate variants [2–4].

Background. Recurrent Hamiltonian Echo Learning (RHEL) [5] is a recent training framework for
Hamiltonian-based models with reversible dynamics. It exploits time-reversal symmetry: after a stan-
dard inference phase, the system is run backward in an “echo phase” where loss signals are injected into
the state. This echo phase reuses the same neural substrate and encodes gradients in trajectory deviations
rather than explicit Jacobians. The equivalence between RHEL and BPTT was established in [5].

Our Contributions. Our contributions are twofold: (i) theoretical : we show that applying RHEL in a
Hopfield-inspired Hamiltonian network yields a contrastive Hebbian learning rule; and (ii) empirical : we
demonstrate that such networks trained with RHEL achieve BPTT-level performance on temporal tasks
where existing biologically motivated methods fall short.

Hamiltonian Network. Building on previous extension of the continuous Hopfield model [6], we derive a
Hamiltonian-based RNN with symmetric connectivity (W = W⊤). The system has state variables (ϕ, π),
and nonlinearity ρ(·). The dynamics are governed by the Hamiltonian function: H(π, ϕ) = 1
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⊤Wρ(ϕ) + b⊤ρ(ϕ) + u⊤Bρ(ϕ) with bias b, input u, and input map B. Unlike equilibrium
propagation [6], which is restricted to static inputs, this reversible formulation in combination with RHEL
enables temporal credit assignment.

Learning Rule. RHEL yields the local contrastive Hebbian rule: ∆Wij ∝
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where superscript e denotes the echo phase. Each synapse only requires two local accumulators, recording
pre–post correlations during the inference and echo phases.

Benchmarks. We evaluate our RNN trained with RHEL on two temporal learning benchmarks: Heidelberg-
Digits [7], a spoken-digit classification dataset with mel-spectrogram inputs; and Copy-Paste [8], where the
network must recall 400 dt sequences of 3-bit patterns after a delay.

Method Heidelberg-Digits Copy-Paste

Truncated 90.27 ± 0.80 55.44 ± 6.14
Eprop 94.95 ± 1.34 77.77 ± 0.25
Ours/Rhel 97.61 ± 1.03 99.36 ± 0.02

Bptt 97.56 ± 0.62 99.46 ± 0.05

Table 1: Mean test accuracy ± std. over 5 seeds.

Figure 1: Cosine similarity with BPTT at epochs
0, 100, and 199. Shaded regions show the standard
error of the mean (s.e.m.) over 5 seeds. The y-axis
is broken for readability; the two panels use different
scales.

Performance. On compact architectures (64–128
units, <20K parameters), RHEL outperforms biologi-
cally motivated baselines such as e-prop [2] and trun-
cated BPTT (2-steps), while matching full BPTT accu-
racy (Table 1). On Copy-Paste, all effective methods
saturate near 100%, and RHEL achieves this while al-
ternatives fall short.

Gradient Alignment. We assess gradient fidelity by
measuring cosine similarity with BPTT updates during
training (Fig. 1). RHEL maintains the closest agree-
ment with BPTT among biologically plausible methods,
supporting its theoretical gradient equivalence and ex-
plaining its strong performance.

Further Work. Future directions include scaling
RHEL to larger networks, extending it to spiking mod-
els, and testing on more challenging sequential tasks.
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