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Abstract

Plant traits such as leaf carbon content and leaf mass are essential variables in the
study of biodiversity and climate change. However, conventional field sampling can-
not feasibly cover trait variation at ecologically meaningful spatial scales. Machine
learning represents a valuable solution for plant trait prediction across ecosystems,
leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction
from hyperspectral data is challenged by label scarcity and substantial domain
shifts (e.g. across sensors, ecological distributions), requiring robust cross-domain
methods. Here, we present GreenHyperSpectra, a pretraining dataset encompass-
ing real-world cross-sensor and cross-ecosystem samples designed to benchmark
trait prediction with semi- and self-supervised methods. We adopt an evaluation
framework encompassing in-distribution and out-of-distribution scenarios. We
successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output
regression models that outperform the state-of-the-art supervised baseline. Our
empirical analyses demonstrate substantial improvements in learning spectral rep-
resentations for trait prediction, establishing a comprehensive methodological
framework to catalyze research at the intersection of representation learning and
plant functional traits assessment. We also share the dataset!, code and pretrained
model objects for this study here.

1 Introduction

Plant functional traits are a fundamental component of biodiversity assessment, offering insights
into plant productivity, ecological interactions, resilience, and adaptation to environmental change
[17, 48, 97, 126]. Leaf traits such as leaf mass per area, as well as chlorophyll, nitrogen, and carbon
content, are key to understanding plant growth dynamics and ecosystem processes such as carbon
cycling and productivity [7, 9, 28, 83, 127, 128]. The monitoring of these traits is thus crucial for
understanding ecosystem function and guiding biodiversity conservation strategies [18, 75, 125].
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Initiatives such as the Intergovernmental
Science-Policy Platform on Biodiversity and
Ecosystem Services (IPBES; [38, 62]) have
raised global awareness around the urgent need
for monitoring functional traits and their diver-
sity across spatial scales. However, we still
lack efficient tools to track these functional
traits in space and time. Hyperspectral remote
sensing from airborne and satellite systems has
emerged as a promising tool to bridge this gap,
enabling non-destructive, scalable, and repeat-
able reflectance measurements that can be used
to predict these traits [8, 24, 65, 93, 111]. Hy-
perspectral sensors measure radiation reflected
from the ground across hundreds of narrow, con-
tiguous spectral bands, spanning the visible to
shortwave infrared (VNIR + SWIR) domains.
These measurements are informative for trait
prediction, as they are directly influenced by the
chemical and structural characteristics of plant
leaves and canopies [64]. Plant trait prediction from hyperspectral data is inherently a regression
problem, and was initially often explored with Partial Least Squares Regression (PLSR, [50]) to link
hyperspectral observations to individual traits [42, 92, 57, 109]. However, non-parametric machine
learning methods, in particular deep learning, have recently been explored to offer greater flexibility
in modeling complex, non-linear trait-spectral relationships and trait-trait interactions [24, 105, 54].
In this context, trait prediction is framed as a multi-output regression task within a multi-task learning
framework, where the outputs, representing multiple plant traits, are inherently correlated.

Semi/self-
supervised
learning

Figure 1: Overview of the semi/self-supervised
framework for multi-trait regression task.

Trait prediction poses fundamental machine learning challenges including heterogeneous target
distributions requiring specialized multi-task methods [24], extreme label scarcity, and significant
distributional biases (e.g. spatial, Figure 2). Current supervised approaches demonstrate limited
cross-domain generalization due to training on sparse, non-representative datasets [29, 76]. Hy-
perspectral data further compound these challenges exhibiting substantial covariate shifts across
acquisition conditions, sensor configurations and resolutions, radiometric calibrations and variable
input modalities. To address these limitations, we introduce GreenHyperSpectra, a large spectral
dataset designed to improve representation robustness against domain adaptation challenges while
being collected from multiple ecosystems, instruments, spatial resolutions, and acquisition conditions.
This dataset enables semi- and self-supervised learning applications, which take advantage of vast
unlabeled spectral data, providing extensive coverage and variability to facilitate benchmarking.

Our contributions include: ‘1 Building GreenHyperSpectra, a dataset for pretraining consisting of
cross-domain samples and substantially expanding available datasets for representation learning; ‘2
framing a suite of semi- and self-supervised methods for multi-output regression with one dimensional
(1D) hyperspectral data; ‘3 comparing these methods with fully supervised baseline, highlighting the
superior performance of the former, particularly in scenarios with limited labeled data; ‘4 Testing
how well such methods generalize across variable inputs, representing the diversity of sensor settings
(full-range (VNIR+SWIR) vs. half-range (VNIR-only), see Figure 1).

2 Related work

Despite increasing hyperspectral data availability, plant trait prediction is still largely constrained by
the lack of large annotated datasets [29, 104]. Trait labels are costly and time-consuming to obtain,
often requiring field sampling and laboratory analysis [27, 6]. Available datasets lack harmonization
and often differ in sampling strategy, measurement assumptions and protocols. As a result, most
labeled datasets are geographically and ecologically limited, with sparse coverage across space and
time, as well as across ecosystems and acquisition conditions. To address this, previous studies
explored synthetic datasets generated from Radiative Transfer Models (RTMs, [44]) that simulate
canopy spectral responses under diverse conditions. In this context, it motivated hybrid approaches
that combine RTM-based simulations with machine learning [30, 70, 73, 99, 114, 119].



However, several comparisons reveal important

limitations, with models trained on real, multi- &%

site datasets consistently outperforming those AT we .
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ing a persistent domain gap between simulated
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In this regard, there is a need of large-scale unla-
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[45, 117, 12]. However, most of these initia-
tives are built from a single sensor type, restrict- Figure 2: Spatial coverage of the datasets. Points
ing spectral diversity and limiting generaliza- represent sample locations of GreenHyperSpectra
tion to new acquisition conditions. Moreover, compared to the existing labeled dataset. GreenHy-
these datasets often consist of full hyperspectral ~perSpectra data span diverse vegetation type and
imagery, where spatially contiguous pixels are  acquisition conditions.
subject to spatial autocorrelation. This spatial
redundancy reduces the spectral variability necessary for training models that generalize well in
trait prediction task, which depend on spectral rather than spatial information [103]. They also
typically include a broad mix of land cover types, including non-vegetated surfaces. This introduces

inefficiencies, as vegetated pixels must be sampled through additional preprocessing.

Large-scale unlabeled datasets have been leveraged for self-supervised learning to improve natural
image representations [23, 4, 72] as well as in remote sensing with multispectral data [106, 46, 124,
98, 10, 5, 107]. Semi- and self-supervised learning techniques are increasingly being explored to
exploit hyperspectral data for image classification, segmentation, and super-resolution [2, 80, 120].
These methods are designed to better learn the spectral representation of hyperspectral remote sensing
data to reduce the need for reference labels. Approaches such as masked autoencoders (MAE)
[26, 60, 81, 87, 103], contrastive learning frameworks [22, 47, 55], generative networks (GAN)
[3, 56, 69, 85, 130, 134], and autoencoders (AE) [1, 49, 103, 131] have been successfully applied for
land cover classification. Whereas most attempts at trait prediction using hyperspectral data relied
on fully supervised pipelines, notably PLSR [92, 96, 109, 121], Gaussian Process Regression (GPR)
[99, 115, 113], ANN [88] and deep learning methods [24, 78, 95], they are cardinally constrained by
label scarcity, hampering their ability to reliably generalize across ecosystems, sensor platforms, and
acquisition conditions. Applying semi- and self-supervised methods to trait prediction remains largely
unexplored and offers a compelling direction for investigation. Recent semi- and self-supervised
applications in trait prediction include vision transformers for nitrogen estimation from simulated
data [49] and Long short-term memory (LSTM) models for chlorophyll prediction with limited
spectral bands [132] (i.e. VNIR-only). While semi- and self-supervised methods show promise for
trait prediction, existing models remain constrained to single traits. Moreover, existing models are
typically limited to specific sensor configurations and experimental conditions, limiting generalization
across sensor modalities (e.g. full-range vs. half-range spectrometers), acquisition geometries, and
vegetation types. This underscores the need for flexible approaches that can handle heterogeneous
inputs while supporting transferable predictions in diverse real-world ecological scenarios. To the
best of our knowledge, no semi- or self-supervised method addresses trait prediction via multi-output
regression.

3 The GreenHyperSpectra dataset

We introduce a large-scale, multi-source hyperspectral dataset comprising over 140, 000 vegetation
canopy surface reflectance spectra captured across diverse continents, ecosystems, sensor platforms,
spatial resolutions, and measurement geometries. Unlike existing benchmarks of hyperspectral data
limited to single sensors or narrow ecological domains, our dataset features a substantially larger
pretraining spectral dataset supporting semi- and self-supervised learning approaches.

Acquisition platforms and sensor diversity. We curated spectral data from multiple instruments
across three primary platforms: proximal, airborne, and spaceborne (Figure 2). All data were
processed to the level of at-surface reflectance. Proximal measurements were obtained using field



spectrometers such as the ASD FieldSpec and SVC HR-1024i, typically positioned in a close range in
nadir orientation to record top-of-canopy reflectance. Airborne data were acquired using high-spectral
resolution sensors, including the AVIRIS-Next Generation, AVIRIS-Classic, NEON Airborne Obser-
vation Platform (AOP) and Specim AISAFenix instruments, which cover landscape-level vegetation
scenes with variable viewing geometries and meter-scale spatial resolutions. Spaceborne acquisitions
were collected from missions such as PRISMA, Hyperion, EMIT, and EnMAP, offering a larger scale
observations at 30-60 m resolution with varying viewing ge-

ometry. Table 1 summarizes the platforms, spectral properties, ~_Platform GSD _ Spectral res. _ #Samples
and scene-level characteristics associated with each acquisition  Proximal <I'm I-4nm 5620
Airborne 1-20 m 3-7nm 96699

(more .dgtaﬂ.s see Appepdix A). The prg-processing of spectra ¢ chome 30.60m  6.120m 36059
harmoinization is described in Appendix A.

Table 1: Specifications of spec-
troscopy instruments with different
platforms.

The multi-platform nature of our dataset introduces valuable
reflectance signal variability through differences in spatial and
spectral resolution, sun-sensor geometry, scene heterogeneity,
background conditions and pre-processing from radiance to reflectance. This variability, often lacking
in single-platform or synthetic datasets, is essential to develop generalizable models capable of scaling
across diverse remote sensing contexts [24]. While satellite-based datasets such as SpectralEarth [12]
provide temporally rich but sensor-specific imagery, our dataset uniquely incorporates multi-sensor
observations across spaceborne, airborne, and proximal platforms.

Spatial and temporal coverage. The dataset includes samples from diverse biomes, with acquisi-
tions spanning from 1992 to 2024, capturing broad ecological and climatic variability across a wide
range of environments. Figure 2 maps the global spatial distribution of GreenHyperSpectra and a pool
of previously aggregated datasets for plant trait prediction (see details in § 4 ). While the compiled
labeled dataset is spatially limited, GreenHyperSpectra encompasses substantially broader spatial
coverage and environmental heterogeneity, better representing real-world remote sensing operational
conditions (more details in Appendix A).

4 Benchmarking methods and protocols

Trait-annotated dataset. For benchmarking different semi- and self-supervised methods, we use
an existing aggregated dataset [24] comprising 7, 900 canopy reflectance spectra with co-located mea-
surements of seven functional plant traits: leaf mass per area (Cm) [g/cm?], leaf protein content (Cp)
[g/cm?], equivalent water thickness (Cw) [cm], leaf total chlorophyll (Cab)[ug/cm?], carotenoids
(Car)[pg/cm?] and anthocyanins (Anth) [pg/cm?] content, and leaf area index (LAI) [m?/m?]. Trait
values were obtained either through direct field measurements or via community-weighted means
assigned at the pixel level based on ground-measured species composition. For the analysis, we treat
Cp and nitrogen as equivalent due to their strong correlation, while acknowledging that they are not
strictly the same. Additionally, we introduce a derived trait, carbon-based constituents (cbc), which is
computed as the difference between Cm and Cp. These data were aggregated from 50 experiments
and campaigns [51, 133, 21, 13, 82, 31, 15, 25, 14, 110, 66, 19, 40, 39, 123, 118, 121, 59, 77, 53,
52, 96, 32], covering diverse vegetation types such as forests, croplands, tundra, and pastures. Trait
values were harmonized by converting mass-based traits to area-based units [67]. The pre-processing
of the spectra is similar to that described in Appendix A. This aggregated labeled dataset serves as
the reference to train and evaluate the regression models. To enhance training stability and better
capture inter-trait correlations, we applied box-cox transformation [11] to the trait values [24] for all
methods.

Data splitting and evaluation protocol. To ensure consistent representation of all contributing data
sources during training, we divide GreenHyperSpectra into 20 non-overlapping subsets. In each split,
the proportion of samples from any given data source matches that dataset’s overall contribution to
the full merged dataset. This stratified splitting strategy maintains the natural diversity of vegetation
types, sensors, and acquisition conditions, while preventing bias from individual sources by creating
consistent and representative subsets suitable for semi- and self-supervised methods. For the labeled
dataset, we define standardized train and validation splits using a 80/20 hold-out strategy. The 80%
portion is combined with the pretraining spectral dataset for calibration, while the remaining 20% is
fixed for all experiments and used to evaluate all methods. For out of distribution (OOD) evaluation
experiments (detailed in §5), we perform cross validation across the 50 labeled datasets. Specifically,
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Figure 3: Overview of the semi- and self-supervised frameworks. (3a) The semi-supervised
regression GAN framework (SR-GAN): the generator maps a random noise z to synthetic samples &,
while the discriminator processes @ fake samples (Zgake), @ unlabeled real samples (Zynp), and (3)
labeled real data samples (1) with associated traits (y), optimizing fake (Lyae ), unlabeled (Lyqb),
and labeled (L) losses respectively. (3b) The RTM-based autoencoder (RTM-AE) predicts traits
from labeled embeddings while reconstructing spectra (x — 2, (Lrecon))- (3¢). The 1D masked
autoencoder framework (1D-MAE) reconstructs masked spectra through tokenization, (Lyecon); the
learned representations are then used for trait prediction (Ly,). Abbreviations: xg,.: generated fake
spectra from the generator; xy,: unlabeled sample from GreenHyperSpectra; xj,: spectra sample
from the labeled data; L,,,: unlabeled loss; Lj,: labeled 1oss; Liecon: reconstruction 1oss; Lie:
feature contrasting loss; RTM: radiative transfer model; AE: autoencoder; MAE: masked autoencoder.

from the 50 annotated sub-datasets, we hold out five datasets at a time for testing. The remaining
datasets are used for training, with their data further split into 80% for training and 20% for validation.

Supervised baseline method. We consider a supervised CNN-based method [24, 70] as a baseline,
selected for its state-of-the-art performance in multi-trait plant prediction from a sparse annotated
dataset. It is built upon EfficientNet-BO [100] specifically framed for 1D feature extraction. The
network employs multi-output regression to simultaneously predict the seven plant traits, a strategy
that demonstrably outperforms single-trait modeling approaches [24, 89].

Semi-supervised regression generative adversarial network (SR-GAN). We frame the SR-GAN
framework [71] to address hyperspectral plant trait prediction. Our implementation employs a 1D
convolutional GAN architecture designed specifically for spectral data processing. In this setup, the
generator learns to produce synthetic reflectance spectra, while the discriminator simultaneously
performs trait regression and learns discriminative feature representations. The training objective
is formulated as a composite loss that encourages the discriminator to pull real spectral samples
closer in the feature space, while pushing representations of generated (synthetic) samples further
apart. This contrastive learning approach allows the model to leverage unlabeled data by learning



0.70
0.65
0.60
0.55

0.50

0.6 g

== e —3 0.6
i N /
0.4 / 0.5 ﬁ/ 0.4

0.3

Coefficient of determination (R?)

anth Average Over Traits !
0.6 i
" e ) )
— 0.61 e s | ——=e—— Supervised (Baseline)
0.4 — P — ol
4 _Z } ——®— SR-GAN
o« 0.51
0.2 |~ | RTM-AE
0.0 0.41 i ——e—— MAE_LinearProbing
i
-0.2 | ——=o—— MAE_FineTuning
20 40 60 80 100 20 40 60 80 100 |

Percentage of labeled samples (%)

Figure 4: Evaluation of trait prediction with variable-size labeled sets. Validation performance
(R?) as a function of labeled data percentage used for training. The average R? performance across
all traits is indicated by the dashed box. The higher R2, the better. For trait abbreviations, see Sec. 4.

informative spectral embeddings. The overall architecture of the SR-GAN framework is illustrated in
Figure 3a and detailed formulations of the loss components are provided in Appendix B.1.

Radiative transfer model based autoencoder (RTM-AE). We introduce a version of the au-
toencoder framework proposed by [94], which replaces the decoder with a non-learnable RTM
module to reconstruct spectra, thereby integrating physical constraints into the modeling process.
Specifically, our implementation employs PROSAIL-PRO [43], constraining the latent space to corre-
spond directly to plant traits. PROSAIL-PRO is an RTM that combines the leaf reflectance model
(PROSPECT,[63]) with the canopy reflectance model (4SAIL,[112]). PROSPECT simulates leaf
reflectance and transmittance based on biochemical composition and internal structure, while 4SAIL
models the propagation of light through a vegetation canopy. Together, they simulate canopy spectral
reflectance in the 400-2500 nm range using inputs such as chlorophyll content, leaf area index,
and leaf angle. As previously mentioned regarding the gap between RTM-simulated and real-world
spectra (§ 2), we address the inherent discrepancies between RTM-generated and observed spectra,
primarily resulting from simplified geometric assumptions within the model, by implementing a
learnable correction layer that refines the simulated output [94]. Our enhanced framework introduces
three key improvements over the original design [94]: (1) incorporation of PROSAIL-PRO, (2)
application of a supervised loss component targeting trait predictions, and (3) implementation of a
composite reconstruction loss combining cosine similarity and mean absolute error to capture both
spectral shape characteristics and amplitude information. The overall architecture is illustrated in
Figure 3b and the specifications are detailed in Appendix B.2 .

Masked autoencoder (MAE). We adopt a MAE framework, originally designed for land cover clas-
sification [103], to predict plant traits with hyperspectral data. The model leverages self-supervised
learning by reconstructing randomly masked spectral regions, enabling the extraction of meaningful
representations from unlabeled hyperspectral signatures. Similarly to the RTM-AE, our adaptation
incorporates a modified reconstruction objective that combines cosine similarity and mean squared
error (MSE) with appropriate weighting, allowing the model to capture both spectral shape character-
istics and amplitude information. For downstream trait prediction, we attach a multi-output regression
head to the latent features and fine-tune the model using labeled data. The overall architecture is
illustrated in Figure 3c and ablation studies for the MAE architecture are provided in Appendix B.3.

5 Experimental settings

This section describes experimental setups used to benchmark and evaluate the performance of models
trained on semi- and self-supervised learning fashion for multi-trait plant prediction detailed in § 4.
Our experimental framework is structured into four principal components to test the capabilities of



models across a range of scenarios reflecting critical use cases: comprehensive benchmarking using
full-range (FR) spectra, benchmarking with half-range (HR) spectra, and assessment of OOD gener-
alization capabilities, along with an ablation study on the design of the MAE models. Throughout
these experiments, we maintain standardized data splits for both labeled and unlabeled datasets as
described in § 4. Complete specifications regarding model hyperparameters, optimization settings,
and implementation details are provided in Appendix B.

Full-range trait prediction. We assess all benchmark models using the full-range spectra spanning
400-2450 nm (1721 bands), encompassing visible through shortwave infrared wavelengths. Results
are presented in § 6 with Table 2.

Sample sensitivity analysis. We examine the impact of label availability by simulating different
levels of supervision and varying the amount of labeled data used for training from 20% to 100% while
maintaining a consistent unlabeled dataset. Complementing this approach, we conduct experiments
varying the quantity of unlabeled training data while maintaining fixed labeled data proportions to
determine how unlabeled data volume influences model performance; note that in these experiments,
we use only a subset of the full GreenHyperSpectra dataset (80, 000 samples). Results are presented
in § 6, with Figure 4 and 5.

Half-range trait prediction. A common constraint faced with satellite-based Earth observations is
that many sensors do not cover the full spectrum. To evaluate model performance in this scenario, we
replicate our benchmark procedure using only the half-range spectral subset spanning 400-900nm
(500 bands). All models are trained on this spectral subset. Additionally, we implement an evaluation
for the MAE architecture, where a model pretrained on full-range spectra is applied to half-range
spectra inputs (this is possible only for the MAE models as the masking procedure means that they
can accommodate variable input sizes). Results are presented in § 6 and Table 3.

OOD evaluation. To assess each model’s robustness to real-world distribution shifts, we perform
a cross-dataset evaluation as described in § 4. We compute a macro-level performance metric
by aggregating predictions across all held-out datasets. This setup reflects practical challenges in
ecological monitoring applications, where spectral variability arises from differences in acquisition
conditions, sensor platforms, or environmental contexts. Additionally, this approach ensures a broader
coverage of trait value ranges, which often remain underrepresented when test sets are randomly
sampled. Due to computational constraints, we conduct this evaluation using a single training run. To
reduce the sensitivity of R? to unbalanced number of samples across the 50 aggregated datasets, we
compute the macro-average over five random subsamples within each dataset, each constrained to the
maximum number of 30 samples allowed per set, and report the mean and standard deviation of the
resulting metrics. Results are presented in § 6 and Table 4.

Ablation studies on MAE. We conduct comprehensive ablation experiments across several dimen-
sions to consistently evaluate design trade-offs of the MAE models in spectral representation learning.
First, we explore architectural complexity through a grid search spanning transformer configurations
with varying numbers of layers {6, 8,10} and attention heads {4, 8, 16}. We select the configuration
demonstrating optimal performance on the downstream trait prediction task for subsequent experi-
ments. Considering this optimal architecture, we investigate alternative loss formulations for spectral
reconstruction. Beyond conventional MSE, we examine hybrid approaches which incorporate cosine
similarity loss weighted by a coefficient « € {1,0.1,0.01,0} to enhance capture of spectral shape
specificity. Finally, we assess the effect of token granularity by varying patch sizes (10, 20, 40, and
430) used during spectral masking and reconstruction in the full-range scenario. These targeted
ablations informed the final MAE configuration used in our other benchmark evaluations. All results
of the aforementioned ablation studies are presented in Tables 16, 17 and 18 in Appendix B.3.

Evaluation metrics. For each experimental setting, we report the performance metrics averaged
across three random seeds to measure the variability related to stochastic training effects. Our
evaluation framework employs two complementary metrics: the coefficient of determination (R?) and
the normalized root mean square error (nRMSE). The nRMSE (in %) is computed by normalizing
the root mean square error by the range of the traits observations (1-99% quantile), providing a
scale-invariant measure of prediction error.
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Figure 5: Evaluation of trait prediction with variable-size unlabeled sets. Validation performance
(R?) as a function of the percentage of unlabeled data used for training. The average R? performance
is indicated by the dashed box. The higher R2, the better. For trait abbreviations, see Sec. 4.

cab cw cm LAI cp cbe car anth average
R* (1)
Supervised 0.517 0012y 0.621 0009  0.667 £0.005)  0.561 ooy  0.651 0002)  0.679 0006  0.544 2018y  0.454 0.020)  0.587 =0.010)
SR_GAN 0.574 (x0.008) 0.572 0.013) 0.669 (+0.008) 0.538 (+0.005) 0.558 (+0.005) 0.704 (x0.004) 0.578 (+0.006) 0.541 @ 0.041) 0.592 o011
RTM_AE 0.584 0023  0.658 z0.01)  0.679 0021y  0.552 00299  0.671 0015  0.689 o021y  0.566 0038  0.337 0125  0.592 0035
MAE_FR_LP  0.462 (0.002) 0.514 (0.009) 0.577 0.010) 0.470 (= 0.007) 0.464 (0.007) 0.611 0.008) 0.412 (0.002) 0.217 0.015) 0.466 (= 0.008)
MAE_FR_FT  0.515 x0.026) 0.634 0.014) 0.716 (= 0.027) 0.615 (x0.016) 0.676 (x 0.010) 0.727 (x0.034) 0.649 (= 0.012) 0.598 (+0.025) 0.641 (+0.020)
nRMSE ({)
Supervised 17.341 o221y 13.103 01500 10.671 x0083) 17.487 0218) 10.229 z0.021)  10.634 0.099) 13.647 0274) 16.465 (+0333)  13.697 0.175)
SR_GAN 16.277 o161y 13918 x0208) 10.658 x0.127) 17.829 =0.091) 11.565 x0074) 10.258 0076) 13.123 z0.095) 15.084 0662 13.589 (0.187)
RTM_AE 16.096 0437y 12.443 zo0201) 10.492 03500 17.556 0.573) 9.989 z0224)  10.495 03500 13.297 z0.596) 18.091 &1.761) 13.557 0.561)

MAE_FR_LP  18.297 +0.034) 14.830 0.135) 12.052 x0.146) 19.094 (x0.133) 12.746 =0.080) 11.747 @0.1200 15.501 00300 19.727 (x0.185)  15.499 0.108)
MAE_FR_FT 17.374 (x0456) 12.861 z0256) 9.856 (x0462) 16.285 (x0.333)  9.916 (x0.155 9.833 z0.599) 11.975 20202y 14.117 (+0.438) 12.777 (+0.363)

Table 2: Evaluation of trait prediction with full-range (FR) samples. Trait-wise performance
(mean + standard deviation) includes R? (1) and nRMSE (|) metrics. Competing methods
are: fully supervised baseline (‘Supervised’); MAE with full-range training and linear probing
(‘MAE_FR_LP’); MAE with full-range training and fine-tuning (‘MAE_FR_FT’); RTM-based au-
toencoder (‘RTM_AE’); and semi-supervised regression GAN (‘SR-GAN’). In RTM-AE, cbc is not
directly predicted but is derived from cm and cp estimates (cm — cp). We bold and underline best and
second best scores respectively. Trait abbreviations are detailed in Sec. 4.

6 Results and discussions

Labeled and unlabeled data regimes. To assess each model’s sensitivity to the quantity of
annotated samples, we analyze R? as a function of the proportion of available labeled and unlabeled
data, as shown in Figures 4 and 5 respectively. The corresponding trends for nRMSE are presented in
Appendix D. We observed that models leveraging unlabeled data through semi- and self-supervised
methods consistently outperformed the fully supervised baseline, particularly in low-data regimes
(20—40% labeled data). Notably, semi- and self-supervised methods achieved higher average R?
and lower nRMSE scores across most traits as labeled data availability decreased (Fig. 4). This
demonstrates that access to a large set of unlabeled spectra through GreenHyperSpectra substantially
enhances model performance, leading to improved trait prediction accuracy. Interestingly, varying
the size of the dataset for pretraining did not substantially impact performance. This suggests that the
stratified splitting protocol (§ 4), ensuring consistent coverage across spectral sources, vegetation
types, and acquisition conditions, plays a critical role in efficiently exploiting the available unlabeled
data, even when subsampled.



cab cw cm LAI cp cbe car anth average

R* (1)
Sup_HR 0.277 0.105) 0.072 = 0.032) 0.197 (= 0.082) 0.048 0.110) 0.197 (= 0.080) 0.219 = 0.074) 0.126 (0.135) 0.166 (= 0.052) 0.163 (= 0.084)
SR-GAN_HR 0.496 0017 0.336 00060  0.356 z0011)  0.428 0010)  0.371 o010)  0.381 0008)  0.455 0015  0.598 x0.0200  0.427 x0012)
RTM-AE_HR 0.582 (x0.024) 0.450 (= 0.014) 0.472 0.031) 0.541 0.019) 0.546 (+0.019) 0.471 0.043) 0.491 0.029) 0.538 (+0.010) 0.511 0.023)
MAE_FR_HR_LP  0.466 (+0.008) 0.220 ( 0.009) 0.271 (x0.006) 0.378 (x0.004) 0.253 (0.008) 0.274 (0.003) 0.434 (+0.004) 0.234 (+0.013) 0.316 = 0.007)
MAE_FR_HR_FT  0.578 0.011) 0.553 (x0.009) 0.655 (x0.012) 0.540 0.012) 0.612 (x0.022) 0.642 (= 0.009) 0.512 =z 0.018) 0.433 (+0.032) 0.566 (= 0.015)
MAE_HR_LP 0.493 (= 0.004) 0.221 0.014) 0.247 x0.007) 0.435 0.003) 0.280 (= 0.006) 0.279 (= 0.003) 0.375 0.010) 0.376 0.019) 0.338 (= 0.008)
MAE_HR_FT 0.518 (0.038) 0.392 (= 0.045) 0.397 (0.028) 0.567 x0.016) 0.478 (0.057) 0.402 (= 0.048) 0.418 (x0.034) 0.547 (= 0.056) 0.465 (= 0.040)
nRMSE (/)
Sup_HR 21.177 1575  20.501 £0333) 16.560 =0831) 25.575 1465 15.479 0757 16.601 z0.774) 18.856 (+1.492) 20.346 z0.634) 19.387 (0982
SR-GAN_HR 17.706 0297  17.339 0073y 14.869 0.31)  20.007 0.175)  13.809 0.108) 14.827 x0092) 14914 zo211) 14.133 03s5) 15.950 0.180)
RTM-AE_HR 16.125 0460) 15.772 0199 13.460 #0395) 17.777 03700 11.725 x0242) 13.698 0558 14.415 z0413) 15.155 0.163)  14.766 (0.350)

MAE_FR_HR_LP 17742 z0.140) 17242 x0.102)  16.930 0065) 19.352 £0056) 18.377 £0.095) 17.136 (20040)  15.197 z0052) 19.545 z0.165)  17.690 (= 0.089)
MAE_FR_HR_FT 15771 z0.202) 13.055 z0.126) 11.652 (x0.205) 16.647 0.213) 13.242 (x0370) 12.037 01549 14.109 z0.255 16.805 20469) 14.165 (x0.249)
MAE_HR_LP 17.768 = 0.070) 18.769 0.163)  16.072 z0.071)  19.729 z0050) 14.764 0065 15.995 0036 15.976 0.125 17.609 z0262) 17.085 (0.106)
MAE_HR_FT 17.313 z0692) 16.578 z0621) 14.381 x0337) 17.263 z0314) 12.561 z0692) 14.563 (x0589) 15.415 0453 14.973 0948) 15.381 (z0.581)

Table 3: Evaluation of trait prediction with half-range (HR) samples. Trait-wise performance
(mean # standard deviation) includes R? (1) and nRMSE () metrics. Competing methods are:
supervised baseline with HR settings (‘Sup_HR’); semi-supervised SR-GAN with HR settings
(‘SR-GAN_HR’); RTM-based autoencoder with HR settings (‘RTM-AE_HR’); MAE pretrained on
full-range and fine-tuned with linear probing (‘MAE_FR_HR_LP’); MAE pretrained on full-range
and fine-tuned (‘MAE_FR_HR_FT’); MAE pretrained on HR and fine-tuned with linear probing
(‘MAE_HR_LP’); and MAE pretrained on HR and fine-tuned (‘MAE_HR_FT’). In RTM-AE, cbc is
not directly predicted but is derived from cm and cp estimates (cm — cp). We bold and underline best
and second best scores respectively. Trait abbreviations are detailed in Sec. 4.

Full and half range spectra analyses. Trait-specific results, reported with ?? and nRMSE scores,
are summarized in Tables 2 and 3 for the full- and half-range experiments, respectively. Among all
competing methods, the fine-tuned MAE (MAE-FR-FT) outperformed all other methods on most traits
when trained and tested on full-range spectra, recording the highest R? values and lowest nRMSE
scores. Compared to the fully supervised baseline, MAE-FR-FT led to an average improvement
of 9% in R? and 6% in nRMSE. These results underscore the effectiveness of MAEs in learning
meaningful spectral representations through masked spectral reconstruction. Pretrained MAE models
also exhibited strong cross-spectral generalization, performing competitively on half-range data even
when pretrained on full-range spectra and applied to half-range data (MAE-FR-HR-FT). It indicates a
good feature transferability and adaptability across heterogeneous sensor configurations, particularly
valuable for operational deployment with multi-source data streams.

The RTM-AE model, which introduces physical interpretability into the learned latent space, under-
performed compared to MAE but consistently achieved the second best results for both full- and
half-range experiments. It demonstrates that aligning latent representations with RTMs to enforce
physically-constrained embeddings yields promising performance while simultaneously enhancing
model explainability through semantically meaningful feature disentanglement and physics-informed
representation learning.

To further assess robustness of the approaches under sensor noise such as illumination differences,
or sensor-specific signal-to-noise characteristics, we additionally evaluated models’ performances
under additive Gaussian noise at inference time (details in Tables 26-30). Zero-mean noise with
standard deviations of 0.01, 0.03, and 0.05 was added across all spectral bands. Results show that
MAE-FR-FT and RTM-AE are substantially more robust than the supervised baseline and GAN.
For instance, at ¢ = 0.05, MAE-FR-FT retains an R? of 0.331 compared to the baseline dropping
to —0.065, and both MAE-FR-FT and RTM-AE exhibit smaller increases in nRMSE under spectral
corruption, highlighting their resilience.

In the half-range setting, semi- and self-supervised methods also clearly outperformed the supervised
baseline. Gains ranged between 100-200% in R? and 8-27% in nRMSE, reinforcing the value
of leveraging spectral variability from GreenHyperSpectra even under reduced spectral coverage
(Figures 12 and 13).

OOD evaluation. As shown in Table 4, the fine-tuned MAE (MAE-FR-FT) had the highest
performance over all other methods across traits, achieving a slight improvement in R? relative to the
supervised baseline (0.31 vs. 0.24), along with the lowest average nRMSE. Since many traits are not



cab cw cm LAI cp cbe car anth average

R (1)
Supervised 0.362 (+0.048) 0.193 (0.053) 0.446 (+0.049) 0.074 =0.031) 0.183 = 0.041) 0.449 (+0.052) 0.181 (0.045) 0.055 (+0.079 0.243 (+0.050)
SR_GAN 0.300 (20.023) 0.350 (x0.032) 0.507 #0029  -0.199 o111y 0.273 z0.037) 0.548 (+0.026) 0.221 £ 0.064) 0.197 = 0.175) 0.275 £0.062)
RTM_AE 0.272 0.033) 0.193 (= 0.09) 0.453 (= 0.067) 0.019 =0.054) 0.192 z00s6)  -0.075 z0.008)  0.266 (x0.056) 0.067 (+0.252) 0.173 0.078)

MAE_FR_LP  0.116 (x0.028) 0.298 (0.028) 0.442 (+0.039) 0.182 (+0.059) 0.211 0.032) 0.478 (+0.044) 0.232 (0.020 0.142 +0.153) 0.263 (0.050)
MAE_FR_FT  0.271 (+0.030) 0.28 (x0.102) 0.575 <0041y 0.229 @004 0.275 x0.068)  0.582 x0.044)  0.165 z0044)  0.112 @o0239)  0.311 (x0.076)

nRMSE ({)
Supervised 19.173 o0.695) 25223 2 13.109)  14.238 x0496) 22984 2 0475) 17.072 20669) 14.818 05600 19.185 z0581)  23.159 = 1.644)  19.482 (+2278)
SR_GAN 20.098 +0373) 22.394 x10712) 13.445 o404 26.075 @ 1.018) 16.108 (x0662) 13.438 x0578) 18.698 (x0.568) 21.360 (+3.59%) 18.952 (+2239)
RTM-AE 20.493 0443  25.137 @ 1300n  14.138 0616  23.652 +0668) 16.978 x0.802)  20.742 @0.741)  18.155 (06700 22.874 +3780)  20.271 & 2.59)

MAE_FR_LP 22.589 (x0406) 23.406 x11.682) 14.296 (x0474) 21.585 x0763) 16.781 06770 14.440 z0641) 18.582 x0322) 22.147 3725 19.228 (+2336)
MAE_FR_FT 20.505 +0334) 24.018 13502) 12.466 x0.425) 20.842 (x0.548) 16.069 (x0.860) 12.907 z0.426) 19.371 (z0414) 22.422 x4a.166) 18.575 (+2.584)

Table 4: Cross-dataset generalization performance. Models are trained on labeled data from all but
five datasets (see Sec 4), and evaluated on held-out datasets to assess OOD generalization. Trait-wise
performance includes R? (1) and nRMSE (/) metrics. In RTM-AE, cbc is not directly predicted but
is derived from cm and cp estimates (cm — cp). We bold and underline best and second best scores
respectively.

associated to single-band features but instead arise from complex interactions across multiple regions
of the spectrum, MAE provides a strong prior: it enforces the learning of localized correlations and
long-range dependencies within hyperspectral signals, by reconstructing both across adjacent tokens
and distant tokens. This prior knowledge facilitates better generalization and more efficient fine-
tuning with MAE-FR-FT for the downstream regression. However, this prior alone is not sufficient.
When only linear probing is applied (MAE-FR-LP), the model retains general spectral trends leading
to underperformance. The necessity of fine-tuning becomes evident in our feature attribution analysis
(Fig. 15), where we compared gradient amplitudes across spectral bands for MAE-FR-LP, last block
fine-tuning, and full fine-tuning MAE-FR-FT models. While MAE-FR-LP exhibited diffuse and
noisy attributions across broad spectral regions, fine-tuning progressively reduced gradient variance,
yielding sharper and more interpretable feature importance profiles. This indicates that fine-tuning
allows the pretrained prior to be refined toward trait-relevant spectral dependencies, transforming
general correlations into targeted representations that drive improved predictive performance.

Other competing methods, such as SR-GAN and RTM-AE, provided modest gains over the supervised
baseline. The corresponding scatter plot of the observed and predicted trait values from the different
methods is presented in Fig. 14 in the Appendix.

7 Conclusions and perspectives

In this study, we introduce GreenHyperSpectra, a large-scale cross-sensor and cross-ecosystem
spectral dataset designed to train machine learning models for plant trait prediction from hyperspectral
data. Leveraging GreenHyperSpectra as a pretraining resource, we demonstrated that models using
MAE consistently outperformed all other benchmarked methods, including the fully supervised
baseline, across a variety of settings. The adaptability of MAE models enables their application
to multi-scale remote sensing platforms, including drone, airborne, and satellite imagery, paving
the way to investigate how learned spectral features, derived from a heterogeneous spectral dataset,
generalize across varying spatial resolutions. MAEs also serve as a strong foundation for advanced
transfer learning architectures aimed at improving predictive performance. While we explore default
sensor configurations (VNIR+SWIR and VNIR), extending pretrained encoders to other spectral
ranges remains open for future work. The MAE architecture shows promise for cross-domain
adaptation across heterogeneous sensing modalities through fine-tuning strategies. We contribute
towards global pretraining datasets for spectral embeddings while highlighting critical biases affecting
generalization. Despite improvements, run-to-run variance reveals challenges in learning stable
representations from various ecological data distributions. Future research should expand multi-
domain spectral datasets across biomes and sensing conditions to enhance transferability and address
geographical and ecosystem-level biases in annotated data. Nevertheless, our pretrained models from
GreenHyperSpectra will remain valuable as labeled data from underrepresented regions increases.
This study confirms that semi- and self-supervised methods with large-scale pretraining are essential
for advancing ecosystem monitoring.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We submit the code and data URL on the OpenReview platform.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Key training details, including model architecture, loss functions, data splits
and major modifications, are summarized in the main text. Comprehensive descriptions of
training procedures and hyperparameters are provided in Appendix B.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluate all models using three random seeds and report the mean and
standard deviation of the performance metrics (i.e. R, nRMSE) to reflect variability due to
random initialization. This is stated in the main text and reflected in relevant figures and
tables (e.g. Figures 5 and 4). For the cross-dataset OOD evaluation, we report results from
a single run due to computational constraints; however, we attempt to account for variability
through controlled random sampling, as detailed in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on compute resources in Appendix B, in-
cluding the type of GPUs, model-specific runtime estimates, and the number of trainable
parameters per method (see Table 19).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS ethical guidelines and ensured that the paper
complies with them.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive societal impacts of our work in Section 1 and 7.
While we did not identify any clear negative impacts, we remain open to addressing potential
concerns if raised during the review process.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and models presented in this paper do not pose risks of misuse.
All datasets are derived from publicly available, non-sensitive sources, and the models are
focused on ecological applications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets used in this work are publicly available and properly credited in
the paper. For each source included in GreenHyperSpectra, we provide citation information,
access links in Table 7.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The GreenHyperSpectra dataset introduced in this paper is documented in
detail in Appendix A. The appendix includes information about data sources, sensor speci-
fications, geographic and temporal coverage, preprocessing steps, and licensing terms for
each included dataset. The asset is composed entirely of publicly available data, contains no
personal or sensitive information, and respects the original licenses of the sources.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods and experiments presented in this paper do not involve the
use of large language models (LLMs).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table of figures:

Figure

Description

1

Teaser illustration of the proposed semi-/self-supervised frameworks for multi-trait
regression.

Comparison of GreenHyperSpectra and the labeled dataset, highlighting broader cover-
age in vegetation types and sensor diversity.

3a, 3b and 3¢

Overview of the SR-GAN, RTM-AE, and MAE architectures for trait prediction.

4

Effect of increasing labeled data volume on R? performance.

5

Effect of increasing unlabeled pretraining data volume on R? performance.

6, 7,8 and 9

Dataset characteristics, focusing on spectral variability.

10and 11

Complementary results to Figs. 4 and 5: nRMSE performance trends with increasing
labeled and unlabeled data.

12 and 13

Complementary results to Table 3: Heatmaps of R? and nRMSE across traits in the
half-range input settings to show the performance of MAE vs baseline.

14

Complementary results to Table 4: Observed vs. predicted plots, showing trait-wise
calibration in the OOD setting.

15

Feature importance of MAE-based downstream regression as a function of fine-tuning
depth (linear probing, final block, and full fine-tuning).

Table of tables:

Table 5: Summary of figures and their descriptions.

Table

Description

1

Summary of sensor and platform specifications in GreenHyperSpectra.

2

Trait-wise performance (R? and nRMSE) of all models under full-range input settings.

3

Trait-wise performance (R?> and nRMSE) of all models under half-range (VNIR) input
settings.

4

Trait-wise performance (R? and nRMSE) of all models under out-of-distribution (OOD)
settings.

7 and 8

Dataset details: spectral data characteristics and trait distribution across sources.

9 and 10

Architecture and hyperparameters of SR-GAN.

11,12 and 13

Architecture, hyperparameters, and RTM configuration of RTM-AE.

14 and 15

Architecture and hyperparameters of MAE.

16, 17 and 18

MAE ablation studies: effects of transformer depth, loss weighting, and token size on
trait prediction (R? and nRMSE).

19

Model size, runtime, and GPU usage across methods.

20, 21, 22, 23, 24 and 25

Complement to Table 4 and Fig. 14: OOD model performance when one vegetation
class is excluded from the test set.

26, 27, 28, 29 and 30

Robustness evaluation under additive Gaussian noise during inference, reported for all
models (R? and nRMSE).

Table 6: Summary of tables and their descriptions.
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A Details about the datasets

The data are publicly available here.

Spectral preprocessing. For standardized cross-instrument comparison, all reflectance spectra
were resampled to a uniform wavelength grid spanning the 400-2500 nm solar-reflective range.
Spectral measurements were linearly interpolated to an interval of 1 nm, resulting in 2101 bands per
sample. Regions of strong atmospheric water absorption, specifically 1351-1430 nm, 1801-2050 nm,
and 2451-2500 nm, were removed to minimize noise and signal loss. The remaining bands were
smoothed using a Savitzky-Golay filter with a 65 nm window [86]. After these steps, 1721 spectral
bands were retained for analysis, providing a high-quality input space for training and evaluation.
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Figure 6: Spectral reflectance across wavelengths. This plot shows the variation in canopy
reflectance within GreenHyperSpectra across different data sources, highlighting differences due to
acquisition conditions and sensor modalities. The colored ranges refer to the visible region.
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Figure 7: Sample distribution across vegetation types in GreenHyperSpectra. The plot shows the
number of samples in GreenHyperSpectra (blue) and the existing labeled (purple) for each vegetation
type, highlighting class imbalance and the relative scarcity of labeled data in certain categories. The
vegetation type information was retried from the ESA WORLDCOVER product
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Dataset Platform ‘ Sensor ‘ GSD #Bands Range (nm) ‘ Year #Samples ‘ Processing Land Cover Source
2 31 Link
DBI1[33]  proximal |ASD FieldSpec Pro | N/A 2151 350-2500 222; D Reflectance spectra desert, shrubland "
forest, shrubland:
DB2[36]  proximal | ASD FieldSpec FR | N/A 1063 352-2476 | 2000 792 | Reflectance spectra native-dominated Link
Hawaiian forest types
1995 226
) ) 1996 93 )
DB3[37]  proximal | ASD FieldSpec FR | N/A 1075 350-2498 1997 32 Reflectance spectra shrubland Link
1998 10
SpecEvo PSM3500 2013 6
DB4[90] proximal ASD F%eldspec 3 N/A 2151 350-2500 2013 7 Reflectance spectra Forest, Gra4Sand, Link
ASD Fieldspec 4 2013 49 Shrubland, Crops
SpecEvo_PSM3500 2014 60
DB5[129] proximal |SVCHR-1024i | 1m 2178 338-2516]2018 112 | Reflectance spectra tundra Link
DB6[101] proximal | ASD FieldSpec3 | N/A 2151 350-2500 | 2001 112 | Reflectance spectra urban vegetation Link
DB7[35] proximal | ASD FieldSpec Pro | N/A 210 400-2490 715 | Reflectance spectra crops, gradSand, Link
3 P P forest, shrubland
DBS[S8]  proximal | ASD FieldSpec3 | N/A 1075 350-2498 | 2001 37 | Reflectance spectra urban vegetation Link
. ASD FieldSpec o
DB9[68]  proximal ‘ 4 Hi-Res NG ‘ N/A 2151 350-2500 ‘ 87 ‘ Reflectance spectra - Link
DBI0[68] proximal | Beckman 5270 | NA 480 205-2976 | 19 | Reflectance spectra - Link
DBI11[41] proximal ‘ SVC HR-1024i ‘ 40 cm 995 346-2499 ‘ 133 ‘ Reflectance spectra aquatic vegetation Link
DBI2[108] proximal |SVCHR-1024i  |8cm 994 338-2515 | 34 | Reflectance spectra tundra Link
DBI3[91] proximal |SVCHR-1024i | N/A 2150 350-2500| 2015 44 | Reflectance spectra coastal, wetland Link
DB14[84] proximal ‘ ASD ‘ N/A 2101 400-2500 ‘ 2021 45 ‘ Reflectance spectra urban vegetation Link
DBI5[34] proximal | ADS FieldSpec Pro | N/A 2151 350-2500 | 2005 82 | Reflectance spectra shrubland, steppe Link
DBI6[129] proximal |SVCHR-1024i  |1m 994 338-2516 2017 1660 | Reflectance spectra tundra Link
DB17[102] proximal ‘ ASD FieldSpec 3 ‘ N/A 2151 350-2500 ‘ 2001 490 ‘ Reflectance spectra  coastal, forest, shrubland ~ Link
2013 341
DBI18[79] airborne | AVIRIS Classic 17-20m 244 365-2496 [2014 37 ACSR Urban, chaparral, Link
oak woodland, conifer forest
2016 31
DB19[68] airborne | AVIRIS [17-20m 224 365-2496 | 3| - Link
DB20[74] airborne | AisaFenix Im 360 400-2400 |2014 22889 ACSR Forest, Ecology, Link
Land Cover, Agriculture
! 2008 )
DB21[16] spaceborne | Hyperion 30m 220 400-2500 2009 25 ACSR forest Link
DB22[122] aitborne | NEON AOP [1m 426 380-2510]2018 10322 | ACSR - Link
DB23[61] airborne | Hyspex |- 368 417-2484 2018 9993 | ACSR crops Link
DB24[122] aitborne | NEON AOP [1m 426 380-2510]2019 16373 | ACSR - Link
DB25[116] spaceborne | PRISMA [30m 69 400-2500 | 2021 2155 | ACSR - Link
DB26[116] spaceborne | PRISMA [30m 63 400-2500]|2021 10000 | ACSR - -
DB27[45]  spaceborne | EAMAP [30m 224 418-2445 2022 1890 | ACSR - Link
DB28 airborne | NEON AOP [1m 426 380-2510|2022 3959 | ACSR - Link
DB29[84] airborne | AisaFenix [1m 420 382-2499 | 2021 31811 | ACSR urban vegetation Link
DB30[20] airborne | Aviris NG [20m 425 380-2510|2022 o1l | ACSR Mediterranean ecosystem  Link
DB31 spaceborne | EMIT [ 60 m 285 381-2492 2024 410] ACSR - Link?
2022- 1
DB32 spaceborne | ENAMAP 30m 224 418-2445 2004 6653 ACSR temperate forest EnMAP
2022- ) |
DB33 spaceborne | EAMAP 30m 224 418-2445 2024 1655 ACSR Mediterranean ecosystem  EnMAP
2022- : |
DB34 spaceborne | ENAMAP 30 m 224 418-2445 2004 2088 ACSR temperate gra4Sand EnMAP
2022- ) |
DB35 spaceborne | ENMAP 30m 224 418-2445 2004 4846 ACSR tropical forest EnMAP
2022- ) .
DB36 spaceborne | EAMAP 30m 224 418-2445 2004 6337 ACSR tropical savanna EnMAP

Table 7: Summary of data sources of GreenHyperSpectra. Technical detailed on the collected
spectra and their corresponding sources. GSD = Ground Sampling Distance. ACSR = Atmospheri-
cally corrected surface reflectance. 30
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Figure 8: t-SNE projection of reflectance spectra. Each subplot shows the projected spectral signa-
tures from a specific data source in GreenHyperSpectra, illustrating variability driven by differences
in sensors, biomes, or acquisition conditions. For each source, spectra from GreenHyperSpectra are
compared to those in the aggregated annotated dataset. Orange points represent labeled spectra, and
blue points denote unlabeled samples.

Figure 9: Spatial distribution of a subset from GreenHyperSpectra vs annotated data. Points
represent sample locations of the existing annotated data (left) and the GreenHyperSpectra subset
(right). This subset, comprising 80,000 samples, was selected from the full dataset to ensure broad
coverage of geographic regions and acquisition conditions. It is used for sample sensitivity analysis
to assess the impact of data quantity on model performance, while enabling computationally efficient
experimentation.

!Contains modified EnMAP data © DLR [2024]. See EnMAP Portal.
?Contains modified EMIT data, the original data used is licensed under the Apache License, Version 2.0.
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Table 8: Descriptive statistics for plant traits in the aggregated annotated dataset[24]. List of
traits and units: leaf mass per area (g/cm?) = Cm, leaf protein content (g/cm?) = Cp, equivalent
water thickness (cm) = Cw, leaf total chlorophyll content (11g/cm?) = Cab, leaf carotenoid content
(ug/cm?)= Car, leaf anthocyanin content (pg/cm?) = Anth, Leaf Area Index (m?/m?) = LAI and
carbon-based constituents (g/cm?)= cbc (Cm-Cp).

Trait Count Mean Std Min 25% 50% 75% Max

cab 2593 39.1234 14.2312 4.4483 28.2500 38.0042 49.0675 229.4975
cw 2782  0.0160  0.0166 0.0000  0.0096  0.0130  0.0184 0.5138
cm 4062  0.0101  0.0083 0.0000 0.0051 0.0080  0.0117 0.0682
LAI 1656  3.4927  1.7178 0.0633  2.1944  3.4691  4.7743 8.7700
cp 3031  0.0009  0.0005 0.0000  0.0006  0.0008  0.0011 0.0050
cbc 3031  0.0104  0.0086 0.0000  0.0056  0.0078  0.0123 0.0671
car 1873  8.6925  2.8232 1.1826  6.9679 85176 10.2998  40.4432
anth 644 12730 0.4095 0.5610 0.9491 1.2345 1.5226 29811
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B Details about Models

The code for accessing the dataset and benchmarking experiments can be found here. The trained
model objects are also available here

B.1 Semi-supervised regression generative adversarial network (SR-GAN)

To enable trait prediction from unlabeled hyperspectral spectra, we adopt a semi-supervised GAN
framework [71]. The generator GG learns to synthesize spectra that are indistinguishable from real
data by optimizing L, while the discriminator D learns both to distinguish real from fake spectra
and to regress plant trait values from real labeled data optimizing L4;s. . We adopt this notation for
D outputs: f is an intermediate feature extractor and D o f is final layer trait prediction. Dist(-, -)
denotes a distance metric (e.g., cosine or Euclidean).

Notations: xg,y.: generated fake spectra from the generator; xy,: unlabeled sample from GreenHy-
perSpectra; xy,: spectra sample from the labeled data;

Generator Matching Loss. The generator is trained to align the generated spectra with real spectra
in the latent feature space:

»Cgen = )\gen - Dist (f(xfake); f(xunlabeled)) ) (1)

where Age, controls the influence of the generator loss.

Labeled Supervised Loss. For labeled spectra xjype1eq With corresponding trait references y, we
define a standard supervised regression loss:

Liabeled = Mabeled - MSE(D o f(Z1apeled ) ¥) ()

where A\ppeleq 18 @ weighting coefficient, and MSE denotes the mean squared error between predicted
and true traits.

Unlabeled Matching Loss. To regularize the feature space, we encourage the feature representa-
tions f(-) extracted by D from labeled and unlabeled real spectra to be similar:

»Cunlabeled - )\unlabeled : )\srgan : DiSt (f(xlabeled)v f(xunlabeled)) ) (3)

where and Ayniabeled and Agrgan are scaling factors.

Fake Contrastive Loss. The discriminator is further trained to push away fake spectra Tgpxe = G(z)
from real ones in the feature space:

Leake = Afake - )\srgan - Dist (f(munlabeled)> f(xfa.ke)) y 4

where Ak Weights the contrastive term.
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Gradient Penalty. A gradient penalty is used to enforce Lipschitz continuity, stabilizing the training
of the discriminator:

Lop = Aop - Bz [maa(0, (V2 (@), — 1)%)]

&)

where Z is an interpolated sample between Ty and Tynapeled, and Agp is the penalty coefficient.

Total Losses.

The complete losses for the discriminator are defined as:

Laisc = Liabeled + Luntabeled + Leake + Lap,

(6)

Table 9: Architectural details of the convolutional GAN model used for spectral generation and trait

regression.

Network Layer Description
Input Latent vector z € R?
Fully Connected Linear: d — 64 x % reshaped to (64, %)

Generator Transposed Conv1D (64, %) — (64, S), kernel=16, stride=4, pad=6
Residual Stack Three residual blocks (dilations=1, 3, 9), LeakyReLU, skip connections
Output ConvlD ConvlD: (64, S) — (1,5), kernel=7, pad=3
Output Activation Tanh activation to constrain to [—1,1]
Input Spectral input x € R'*S
Conv1D Layer 1 SpectralNorm: (1, S) — (128, 5/2), kernel=3, stride=2, pad=1
BatchNorm + Activation ~ BatchNorm1D + LeakyReLU
Conv1D Layer 2 SpectralNorm: (128, .5/2) — (128,5/4)

Discriminator ~ Conv1D Layer 3 (output)  SpectralNorm: (128,.5/4) — (128, 5/8)
Adaptive Pooling AdaptiveAvgPool 1D (optional)
Flatten Flatten to (128 x S/8)
Dropout Dropout p = 0.4

Fully Connected (output)

Linear: 128 X S/8 — nyairs
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Table 10: Training hyperparameters for the SR-GAN. This table lists the default hyperparameters
and optimization settings used during training for both generator and discriminator components.

Parameter Value Description

input shape 1720 or 500 Number of spectral input bands
latent dim 100 Generator latent vector size

n_lb 8 Number of predicted plant traits
batch size 128 Samples per batch

n_epochs 300 Total training epochs

learning rate G le-4 Generator optimizer learning rate
learning rate D 4*1e-4 Discriminator optimizer learning rate

optimizers

weight decay

lambda_fk

lambda_un
labeled_loss_multiplier
matching_loss_multiplier
contrasting_loss_multiplier
srgan_loss_multiplier
gradient penalty on
gradient_penalty_multiplier
augmentation
contrasting_distance_function
matching_distance_function
labeled_loss_function

Adam (amsgrad=True)
le-4

1.0

10.0

1.0

1.0

1.0

1.0

True

10.0

True
CosineEmbeddingLoss
CosineEmbeddingLoss
Huber loss

Optimizer

L2 regularization

Generator adversarial loss weight
Unsupervised feature loss weight
Supervised regression loss weight
Real/fake match loss weight
Contrastive loss weight
Contrastive loss weight

Enable gradient penalty

Weight for GP term

Data augmentation

Real/fake separation

Real-real alignment

Regression loss for traits
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B.2 Model Architecture Description for RTM-AE

Table 11: Architecture of the RTM-AE model.

Module Layer Description
Input Spectral input zz € R**S
Fully Connected 1 S — 64, followed by LayerNorm and ReLU
Encoder Fully Connected 2 64 — 32, followed by LayerNorm and ReLLU
Fully Connected 3 32 — 16, followed by LayerNorm and ReLU
Trait Output Layer 16 — Nyraits
RTM Decoder Non-learnable Module PROSAIL-PRO: 7y — & € R1*2101

Fully Connected 1
Fully Connected 2
Output

Correction Block

2101 — 8404, followed by ReLU
8404 — 7 € RI*2101
Corrected reflectance spectrum in R

Table 12: Training hyperparameters for the RTM-AE. This table lists the default hyperparameters
and optimization settings used during training.

Parameter Value Description

input shape 1720 or 500 Number of spectral input bands

latent dimension 8 Number of biophysical traits (latent features)
output spectrum length 2101 Number of bands in RTM-simulated output
batch size 128 Number of samples per training batch
training epochs 300 Set during experimental runs

learning rate le-4 Learning rate used for the Adam optimizer
weight decay le-4 L2 regularization term

optimizer Adam (amsgrad=True) Optimizer used

reconstruction loss
label loss

gradient stabilization
RTM decoder

leaf model

canopy model

Cosine similarity + MAE
Huber loss

Enabled

PROSAIL-PRO
PROSPECTPro

SAIL

Match predicted vs. input spectra

Trait prediction loss on labeled samples
Replace gradients when || V|| < 1075
Fixed physics-based decoder

Leaf optical model

Canopy RTM model
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Table 13: Parameter configuration for the PROSAIL-PRO model [43]. This table presents the
default settings and corresponding notations for parameters used in the RTM block, which simulates
leaf and canopy reflectance based on the PROSPECT-PRO [63] and 4SAIL [112] models.

Model Variable Notation (unit) Range
Chlorophyll content Cab (ug/cm?) Variable
Carotenoid content Car (ug/cm?) Variable
Anthocyanin content Anth (ug/cm?) Variable

PROSPECTPRO Water. content Cw (g/m?) Var%able
Protein content Cp (g/m?) Variable
Carbon-based constituents CBC (g/m?)=Cm-Cp Variable
Brown pigment content Brown (-) 0.25
Structural coefficient Ns (-) 1.5
Leaf area index LAI (m?/m?) Variable
Average leaf inclination angle LIDF (Beta index) 5
Fraction of dry soil psoil 0.8

4SAIL Hotspot hspot 0.01
Viewing zenith angle tto (°) 0
Solar zenith angle tts (°) 30
Relative azimuth angle psi (°) 0
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B.3.1 Training description

B.3 Model Architecture Description for the 1D masked autoencoder (MAE)

Table 14: Architecture of the Masked Autoencoder (MAE)

Module Layer Description

Input Spectrum 1D spectral vector z € R'*5
Input Patch Embedding Tokens of size T via frozen ConviD, N = S/T

P Positional Embedding  Fixed 1D sin-cos embeddings

Masking Random masking of 75% of tokens

Transformer Blocks d blocks with h-head attention, MLP (4 x d)
Encoder Normalization LayerNorm

Output Latent representation € RV <4

Linear Projection Projects latent dim to decoder dimensions
Decoder Token Restoration Restore with mask tokens using ids_restore

Transformer Blocks d’ blocks with h'-head attention

Output Projection Linear: decoder dim — token size T’
Reconstruction  Spectrum Output Reconstructed full spectrum € R**S

Table 15: Training hyperparameters of the MAE. This table lists the default hyperparameters and
optimization settings used during training on the pretext task (spectra reconstruction).

Parameter Value Description

Input dimension (5) 1720 or 500 Number of spectral bands

Patch size (1) 10, 20, 40, 430 Token size (Ablation study)
Embedding dimension (d) 128 Latent dimension

Encoder depth (d) 4,6,8 Transformer blocks (Ablation study)
Encoder heads (h) 4,8,16 Attention heads (Ablation study)
Decoder depth (d’) 4 Decoder transformer depth
Decoder heads (h') 4 Decoder attention heads

Mask ratio 0.75 Fraction of masked tokens

Loss function WLoss * Cosine + MSE  Shape and amplitude combined loss
WLoss 1,0.1, 0.001, 0 Weight for cosine term

MLP ratio 4.0 MLP expansion factor

Attention dropout 0.0 Dropout in attention

Projection dropout 0.0 Dropout in projections

Optimizer AdamW With AMSGrad

Learning rate Se-4 Initial learning rate

Weight decay le-4 L2 regularization

Batch size 128 Samples per batch

Epochs 500 Total training epochs
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B.3.2 Ablation study results

Table 16: Ablation study on the effect of transformer depth and attention heads in the MAE
model. This table reports the B2 and nRMSE values for MAE models evaluated on the trait prediction
task, with varying transformer depths and numbers of attention heads. The highest R? scores and
lowest nRMSE values are highlighted.

Depth Heads Final Val R> Final Val nRMSE

6 4 0.4492 15.73
6 8 0.4090 16.31
6 16 0.4327 15.96
8 4 0.4351 15.90
8 8 0.4356 15.90
8 16 0.3937 16.44
10 4 0.4060 16.30
10 8 0.4092 16.28
10 16 0.4692 15.43

Table 17: Ablation study on the effect of cosine similarity loss weight in the MAE model. This
table presents the R? and nRMSE values for trait prediction as the cosine similarity loss weight (wioss)
is varied in the MAE objective. The highest R? scores and lowest nRMSE values are highlighted.

Wiess  Final Val R?2  Final Val nRMSE

1 0.5018 14.96
0.1 0.4907 15.15
0.01 0.4233 16.08
0.001 0.4627 15.55
0 0.4698 15.42

Table 18: Ablation study on the effect of spectral token size in the MAE model. This table reports
the R? and nRMSE values for trait prediction as the spectral token (sequence) size is varied in the
MAE architecture. The highest R? scores and lowest nBRMSE values are highlighted.

Token Size Final Val B2 Final Val nRMSE

10 0.4542 15.68
20 0.5018 14.96
40 0.4744 15.35
430 0.2683 18.05
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C Resource requirements

Table 19: Comparison of methods by model size, runtime, and hardware usage. This table
summarizes the number of trainable parameters, average runtime, and GPU type used for each
method, providing insights into their computational efficiency and resource requirements.

Method # Trainable Parameters Run Time GPU
Supervised (EffNetB0) 6,998,280 ~11h Quadro RTX 8000
MAE (pretext task) Encoder: 2,006,912 ~20h Quadro RTX 8000
Decoder: 1,220,116
Total: 3,227,028
MAE (downstream Linear Probing) 1,288 ~15 min Quadro RTX 8000
MAE (downstream Fine Tuning) 1,607,196 ~15 min Quadro RTX 8000
SR-GAN Discriminator: 319,496 ~2.5d Quadro RTX 8000
Generator: 2,920,130
Total: 3,239,626
RTM-AE 35,437,289 ~16h NVIDIA L40S
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Figure 10: Evaluation of trait prediction with variable-size labeled sets. Validation performance
(nRMSE) as a function of the percentage of labeled data used for training. The average nRMSE
performance across all traits is indicated by the dashed box. Lower nRMSE values indicate better
predictive performance.
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Figure 11: Evaluation of trait prediction with variable-size unlabeled sets. Validation performance
(nRMSE) as a function of the percentage of labeled data used for training. The average nRMSE
performance across all traits is indicated by the dashed box. Lower nRMSE values indicate better
predictive performance.
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Figure 12: Trait-wise performance heatmaps in the half-range (HR) for MAE vs Baseline. The
heatmap displays the coefficient of determination (R?; higher is better). Each cell represents the
average performance across runs for a given trait-method combination.
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Figure 13: Trait-wise performance heatmaps in the half-range (HR) setting MAE vs Baseline.
The heatmap displays the normalized root mean square error (nRMSE; lower is better). Each cell
represents the average performance across runs for a given trait-method combination.
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Figure 14: Observed vs. predicted trait values in the cross-dataset OOD setup. Each subplot
corresponds to a specific trait (rows) and method (columns), comparing predicted values to reference
data. The black line indicates the 1:1 reference. R? and nRMSE values are reported in each plot to
quantify predictive performance.
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cab cw cm LAI cp cbe car anth Average

R (1)
Supervised 0.2836  0.1107 03728  0.1176  0.0795  0.3339  0.1784  0.0810 ~ 0.1947
SR_GAN 0.3108  0.3065 0.4931 -0.1324  0.1924  0.4810  0.0831  0.1022  0.2296
RTM_AE 0.1846  0.0577  0.4681  0.0790  0.0704 -0.1646  0.1902 -0.0186  0.1083

MAE_FR_LP 0.0542  0.1803  0.3857 0.1673  0.0100  0.4034  0.1864  0.0442  0.1789
MAR_FR_FT 02257 0.1337 05184  0.2239  0.2425  0.4837  0.2001  0.0967  0.2656

nRMSE (|)
Supervised  20.1711 304925 162647 23.4458 18.6372 17.3007 17.7155 203835 20.5514
SR_GAN 19.7855 269263 14.6236 26.5084 17.4572 152720 187152 20.1473 19.9294
RTM_AE 215192 313877 14.9780 23.9535 187291 22.8767 17.5886 21.4592 215615

MAE_FR_LP 23.1762 29.2746 16.0959 22.7759 19.3277 163739 17.6299 20.7873  20.6802
MAR_FR_FT 20.9691 30.0953 14.2528 21.9882 16.9061 15.2323 17.4806 20.2090 19.6417

Table 20: Cross-dataset generalization by vegetation type: Tundra. Unlike the overall OOD
results (Table 4), here we exclude samples from tundra during evaluation to assess its individual
impact on model generalization. Trait-wise performance is reported using 22 (1) and nRMSE (/).
We highlight the best and second-best scores in bold and underline, respectively.

cab cw cm LAI cp cbc car anth Average

R (1)
Supervised 0.3586  0.0432  0.1471 0.1229  -0.0927  0.1366  0.3344  0.0810  0.1414
SR_GAN 0.3645  0.2524  0.2372 -0.1402  0.0366  0.2824  -0.0012  0.1022  0.1417
RTM_AE 0.1744  -0.0311 0.1994  0.1343  -0.0779 -0.3144 0.2837 -0.0186  0.0437

MAE_FR_LP 0.0412  0.1122  0.1686  0.1624 -0.2675 0.2253  0.2823  0.0442  0.0961
MAE_FR_FT 0.2188  0.0491  0.3057 0.2248  0.0710  0.2927  0.3348  0.0967  0.1992

nRMSE (1)
Supervised ~ 18.8612 37.3976 18.4678 23.8133 229505 19.2217 17.0518 20.3835 22.2684
SR_GAN 18.7736  33.0584 17.4651 27.1220 21.5493 17.5235 209137 201473 22.0691
RTM_AE 21.3980 38.8223 17.8924 23.6594 22.7941 23.7159 17.6905 21.4592 23.4290

MAE_FR_LP 23.0604 36.0248 18.2334 23.2713 24.7179 18.2073 17.7073 20.7873 22.7512
MAE_FR_FT 20.8151 37.2836 16.6626 22.3877 21.1619 17.3969 17.0472 20.2090 21.6205

Table 21: Cross-dataset generalization by vegetation type: Forest. Unlike the overall OOD results
(Table 4), here we exclude samples from forest during evaluation to assess its individual impact on
model generalization. Trait-wise performance is reported using R2 (1) and nRMSE (/). We highlight
the best and second-best scores in bold and underline, respectively.
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cab cw cm LAI cp cbe car anth Average

R (1)
Supervised 02522  0.1019 03391 -0.0108 -0.1300 0.2478  0.1712  0.0810  0.1316
SR_GAN 0.2811  0.3282 04731 -0.0505 -0.0075 0.3965  0.0441  0.1022  0.1959
RTM_AE 0.2239  0.0859  0.4679 -0.1631 -0.1097 -0.2146  0.1450 -0.0186  0.0521

MAE_FR_LP 0.0786  0.2257 03792 -0.0207 -0.1404 0.3455 0.1641  0.0442  0.1345
MAR_FR_FT  0.2897 0.1377  0.5074  0.0678  0.0769  0.4326  0.1835 0.0967  0.2240

nRMSE ({)
Supervised ~ 20.3244 34.6730 16.6769 24.8992 20.4582 184717 17.4666 20.3835 21.6692
SR_GAN 19.9301 29.9879 14.8919 253229 193170 16.5456 187583 20.1473 20.6126
RTM_AE 207059 34.9801 14.9635 267101 202731 234729 17.7401 21.4592 22.5381

MAE_FR_LP 225613 32.1942 16.1629 25.0216 20.5521 17.2313 17.5413 20.7873 = 21.5065
MAR_FR_FT 19.8086 33.9740 14.3981 23.9122 18.4904 16.0433 17.3367 20.2090 20.5215

Table 22: Cross-dataset generalization by vegetation type: Crops. Unlike the overall OOD results
(Table 4), here we exclude samples from crops during evaluation to assess its individual impact on
model generalization. Trait-wise performance is reported using R? (1) and nRMSE (/). We highlight
the best and second-best scores in bold and underline, respectively.

cab cw cm LAI cp cbe car anth Average
R* (1)
Supervised 0.3099  0.1359  0.4383  0.1063 0.1549 0.4156  0.1811  0.0810  0.2279
SR_GAN 0.3318  0.3229  0.5161 -0.1941 0.2496  0.5148 0.0826  0.1022  0.2408
RTM_AE 0.2156  0.0706  0.5020  0.0455  0.1366  -0.1417 0.1872 -0.0186  0.1247

MAE_FR_LP 0.0860  0.2016  0.4433  0.1270  0.0973  0.4713  0.1868  0.0442  0.2072
MAR_FR_FT 0.2459  0.1419 05690  0.2074 03095 0.5471 0.2068  0.0967  0.2905

nRMSE (|)
Supervised  20.0381 31.1490 14.8665 23.4980 17.7968 15.6488 17.7263 203835 20.1384
SR_GAN 19.7169 27.5735 13.7989 27.0932 16.7698 142586 18.7612 20.1473 19.7649
RTM_AE 213638 323043 13.9977 24.2834 17.9880 21.8728 17.6592 21.4592 21.3661

MAE_FR_LP 23.0615 29.9417 14.7998 23.2242 18.3933 14.8854 17.6639 20.7873 20.3446
MAR_FR_FT 20.9468 31.0410 13.0228 22.1287 16.0873 13.7758 17.4458 20.2090 19.3322

Table 23: Cross-dataset generalization by vegetation type: Shrubland. Unlike the overall OOD
results (Table 4), here we exclude samples from shrubland during evaluation to assess its individual
impact on model generalization. Trait-wise performance is reported using R (1) and nRMSE (/).
We highlight the best and second-best scores in bold and underline, respectively.
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cab cw cm LAI cp cbe car anth  Average

R (1)
Supervised 0.1565  0.2080  0.3163  0.2771  0.0615  0.3349  0.1825 NaN  0.2195
SR_GAN 0.1989 03005 04212 -0.1232  0.1658  0.4556  0.1364 NaN  0.2222
RTM_AE 0.0098  0.0615 04207 03146  0.0452 -0.1678 0.2005 NaN 0.1264

MAE_FR_LP -0.1716 0.1244 03338  0.4612 -0.0172 03976  0.2543 NaN 0.1975
MAR_FR_FT 0.0393  0.2813  0.4818 0.4239 0.2123 0.4890 0.1801 NaN  0.3011

nRMSE (/)
Supervised ~ 21.9248 19.3998 16.7762 20.4917 18.6994 17.1365 20.1887 NaN 19.2310
SR_GAN 213651 182311 154364 255063 17.6296 155046 20.7497 NaN 19.2033
RTM_AE 237549 21.1173 154424 19.9577 18.8617 227073 19.9653 NaN 20.2581

MAE_FR_LP 258392 20.3969 16.5597 17.6901 19.4682 16.3092 19.2815 NaN 19.3636
MAR_FR_FT 233975 18.4795 14.6050 18.2936 17.1319 15.0207 20.2180 NaN 18.1638

Table 24: Cross-dataset generalization by vegetation type: Grassland. Unlike the overall OOD
results (Table 4), here we exclude samples from grassland during evaluation to assess its individual
impact on model generalization. Trait-wise performance is reported using 22 (1) and nRMSE (/).
We highlight the best and second-best scores in bold and underline, respectively.

cab cw cm LAI cp cbe car anth Average

R (1)
Supervised 0.2861  0.1110 0.3663  0.1023  0.0663  0.3336  0.1836  0.0810  0.1913
SR_GAN 0.3143  0.3069 0.4736 -0.1479 0.1707 0.4667  0.0895  0.1022  0.2220
RTM_AE 0.1849  0.0567 04620 0.0720 0.0592 -0.1583 0.1924 -0.0186  0.1063

MAE_FR_LP 0.0545 0.1804 0.3809  0.1577 -0.0022 0.4005 0.1858  0.0442  0.1752
MAR_FR_FT 0.2283  0.1339  0.5162 0.2179  0.2266  0.4849  0.2077  0.0967  0.2640

nRMSE (1)
Supervised  20.1602 30.5654 16.0148 235725 189082 169249 17.6727 20.3835 20.5253
SR_GAN 19.7600 26.9896 14.5977 26.6337 17.8197 15.1402 18.6633 20.1473  19.9689
RTM_AE 21.5421 314855 147563 23.9671 189805 223141 17.5763 21.4592 215101

MAE_FR_LP 23.2023 29.3485 15.8300 22.8332 19.5902 16.0532 17.6486 20.7873 20.6617
MAR_FR_FT 20.9645 30.1712 13.9845 22.0142 17.2109 14.8817 17.4092 20.2090 19.6056

Table 25: Cross-dataset generalization by vegetation type: Mix. Unlike the overall OOD results
(Table 4), here we exclude samples from mix during evaluation to assess its individual impact on
model generalization. Trait-wise performance is reported using R? (1) and nRMSE (/). We highlight
the best and second-best scores in bold and underline, respectively.

Noise cab cw cm LAI cp cbe car anth Average
R (1)
0.01 0.552£0.010  0.602+0.021  0.677 £0.006  0.564 +0.030  0.659 +0.008  0.679 +0.008  0.588 +0.006  0.422+0.062  0.593 + 0.019
0.03 0.392+£0.072 0387 +0.095  0.426 +0.059  0.2854+0.094 0404 £0.118 0448 £0.065 0.374+0.101 0298 +0.032  0.377 + 0.079
0.05 -0.031 +£0.214  -0.123 £0.212  -0.011 £0.060 -0.181 +0.230 -0.083 +£0.173  0.009 £ 0.059  -0.127 £0.220  0.028 +0.045  -0.065 £ 0.152
nRMSE (})
0.01 16.704 £0.181 13.409 4 0.354 10.534 £0.100 17.332 4+ 0.620 10.165 £ 0.121  10.674 £0.127 12.975+0.093 16.935 £0.906 13.591 4 0.313

0.03 19.436 &= 1.164  16.617 £ 1.326  14.021 £0.727 22.154 £1.436 13.392 £ 1.361 13.983 +0.834 15.952 £ 1.323 18.669 4 0.422 16.778 £ 1.074
0.05 25244 £2.650 22.482+2.104 18.624 £0.555 2843442725 18.078 £1.438 18.753 4+0.563 21.385+£2.152 21.969 & 0.507 21.871 & 1.587

Table 26: Supervised: Noise robustness analysis. Model performance under different noise
intensities (0.01, 0.03, 0.05). Trait-wise R? (higher is better) and nRMSE (lower is better) are
reported as mean =+ standard deviation.
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Noise cab cw cm LAI cp cbe car anth Average

R (1)
0.01 0.539 £0.018  0.5444+0.006  0.630 £0.010  0.522£0.012  0.528£0.017  0.659 £0.007  0.533 4 0.009
0.03 0.329 £0.047  0.29240.031 0318 £0.060  0.375£0.025  0.264 £0.047  0.348 £0.096  0.283 + 0.054
0.05 -0.038 £0.164  -0.071 £0.122  -0.1954+0.300  0.065 4+ 0.212  -0.246 = 0.280 -0.196 £ 0.364  -0.080 £ 0.103

0.497 £0.012  0.556 & 0.011
0.108 £0.118 ~ 0.290 = 0.060
-0.468 £0.317  -0.154 £ 0.233

nRMSE ({)

001 169430323 14.367+0.097 11.272+0.147 18.143+0.236 11958 £0218 11.008 +0.115 13.810+0.133
0.03 20421 +0.708 17.887 +0.390 15294 + 0.664 20.773 +0.442  14.897 £0478 15.175+ 1.130  17.108 + 0.656
005 2536741969 21.970 & 1256 20.147 £2.468 252952775 1922042021 20449 +3018 20982 % 1.001

15.811 +0.185  14.164 £ 0.182
21.016 & 1.414  17.821 £ 0.735
26.895 +3.012 22.541 +2.190

Table 27: SR_GAN: Noise robustness analysis. Model performance under different noise intensities

(0.01, 0.03, 0.05). Trait-wise R? (higher is better) and nRMSE (lower is better) are reported as mean
=+ standard deviation.

Noise cab cw cm LAI cp cbe car anth Average

R (1)
0.01 0.576 £0.028  0.633 £ 0.020  0.659 £0.018  0.549 £0.029  0.654 £0.012  0.666 = 0.022  0.551 £ 0.040
0.03 0.527 £0.037  0.59540.004  0.620 £0.032  0.5154£0.043  0.602 +£0.015  0.636 £0.029  0.499 + 0.056
0.05 0377 £0.023  043940.082 0456 £0.054  0.457 £0.042 0456 £ 0.068  0.456 £0.066  0.350 & 0.055

0312 £0.140 ~ 0.575 4 0.038
0219 £0.164  0.527 4 0.048
-0.258 +0.880  0.342 £ 0.159

nRMSE (})
001 16245+0.531 12.89240346 10.817 +0.281 17.615+0.567 10246 +0.172 10.879 + 0350 13.536 £ 0.616
0.03 17153 £0.667 13.5434+0.066 11.411+0486 1830240782 10987 +0.214 11.356+ 0451 14.282 + 0.813
0.05  19.690 +0.362 15.899 4 1.198  13.647 +0.686 19.385+0.771 12.828 + 0.818 13.884 +0.863 16.284 + 0.692

18.420 £ 1.940  13.831 & 0.600
19.619 £2.134  14.582 + 0.702
24.058 £ 8.329  16.959 £ 1.715

Table 28: RTM_AE: Noise robustness analysis. Model performance under different noise intensities

(0.01, 0.03, 0.05). Trait-wise R? (higher is better) and nRMSE (lower is better) are reported as mean
=+ standard deviation.

Noise cab cw cm LAT cp cbe car anth Average
R (1)
0.01 0.518 £0.003  0.43240.005 0.587 +0.005 0416+ 0.006 0438 +£0.009 0.591 £0.006 0.4434+0.008 0.170 +0.017  0.449 + 0.007
0.03 0.153 £0.029  0.357+0.026  0.486 +£0.004  0.395+0.011  0.253+0.028 0476 £0.017  0.250 +£0.009  0.100 £0.025  0.309 & 0.019
0.05 -0.677 £ 0.039  0.084 4 0.066  0.387 +0.002  0.359 £ 0.018  0.043 £0.031  0.372+£0.018 -0.215+0.008  0.001 +0.030  0.044 + 0.027
nRMSE (})
0.01 16.858 £ 0.048 14.7124+0.058 12.747 £ 0.069 18.752+0.092 15.937 £0.133 12.861 £0.094 15.070 +0.107 20.346 +0.203 ~ 15.910 + 0.101

0.03 22348 4£0.391 15.658 £0.318 14.222 £0.053 19.085 £ 0.182  18.367 £0.349  14.551 +0.230 17.494 £ 0.107

21.187 £0.292  17.864 + 0.240
0.05 31.452 £ 0.367 18.672+£0.675 15.524 £0.029 19.645+0.280 20.783 £0.352 15.928 +0.236  22.266 + 0.076

22317 £0.338  20.823 + 0.294

Table 29: MAE_FR_LP: Noise robustness analysis. Model performance under different noise

intensities (0.01, 0.03, 0.05). Trait-wise R? (higher is better) and nRMSE (lower is better) are
reported as mean =+ standard deviation.

Noise cab cw cm LAI cp cbe car anth Average

R* (1)
0.01 0.583 £0.012  0.64540.024  0.787 £0.006  0.648 £0.014  0.667 +£0.026  0.781 £0.007  0.584 4 0.037
0.03 0.440 £0.028  0.536 +0.007  0.659 £0.009  0.530 £0.021  0.496 £ 0.035  0.647 £0.012  0.461 & 0.029
0.05 0242 £0.045 0.3884+0.023 0477 £0.008 0411 £0.014 0276+ 0.060  0.460 £0.009  0.258 4 0.027

0.447 £0.031  0.643 £ 0.020
0.264 £0.029  0.504 & 0.021
0.136 £0.073  0.331 4 0.032

nRMSE ({)

0.01 15.677 £0.227 11.628 £0.388  9.141 £0.121  14.564 £0.290 12.265 £0.478  9.401 £0.147  13.025 £ 0.575
0.03 18.163 £ 0.461  13.302 £0.099 11.571 £0.146 16.823 £0.378 15.083 £0.526 11.947 +0.200 14.830 £ 0.406
0.05 21.131 £0.621 15270 £0.291 14346 £0.105 18.836 £0.219 18.078 £0.748 14.772+0.123  17.400 £ 0.320

16.594 +0.462 12787 +0.336
19.154 £0.380  15.109 & 0.325
20.738 £ 0.879  17.571 £ 0.413

Table 30: MAE_FR_FT: Noise robustness analysis. Model performance under different noise

intensities (0.01, 0.03, 0.05). Trait-wise R? (higher is better) and nRMSE (lower is better) are
reported as mean =+ standard deviation.
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Figure 15: Feature importance of MAE-based downstream regression. Results are shown for
(top) linear probing (M AE_F R_LP), (middle) fine-tuning the last block (M AE_FR_9B_F'T),
and (bottom) full fine-tuning (M AE_F R_F'T). The blue lines indicate the importance scores across
spectral bands, while the orange line shows a reference of a vegetation spectra.
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