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Abstract

We investigate the task of generating textual001
entailment (GTE). Different from prior works002
on recognizing textual entailment, also known003
as NLI, GTE requires the models with deeper004
reasoning capabilities - generating entailment005
from premises rather than making prediction006
on given premises and the entailment. We ar-007
gue that existing adapted datasets are limited008
and inadequate to train and evaluate human-009
like reasoning in the GTE. In this paper, we010
propose a new large-scale benchmark, named011
SEG , targeted for learning and evaluating mod-012
els’ capabilities towards RTE. SEG consists of013
15k instances with each containing a pair of014
premise statements and a human-annotated en-015
tailment. It is constructed by first retrieving016
instances from a knowledge base, and then017
augmenting each instance with several comple-018
mentary instances by 7 manually crafted trans-019
formations. We demonstrate that even exten-020
sively fine-tuned pre-trained models perform021
poorly on SEG . The best baseline can only gen-022
erate valid textual entailment for 59.1% cases.023
Further, to motivate future advances, we pro-024
vide detailed analysis to show significant gaps025
between baselines and human performance.026

1 Introduction027

Textual entailment is an important and routine part028

of linguistic communication, whether in our daily029

lives or scientific literature (Korman et al., 2018).030
1 Existing efforts focus on recognizing textual en-031

tailment (entailment, contradiction and032

neutral) between the premise and the hypoth-033

esis, also known as natural language inference034

(NLI) (Dagan et al., 2010; MacCartney and Man-035

ning, 2008). Recent powerful pre-trained models036

have achieved near human-level performance on037

NLI task (Devlin et al., 2019; Liu et al., 2019). It038

is time to challenge pre-trained models with more039

1In this paper, “entailment” means “textual entailment” by
default.

Table 1: The performance of T5-large on generating textual
entailment task whose examples are constructed from existing
datasets. “†” denotes the datasets on multi-hop QA task, and
“‡” denotes the datasets on explainable NLI task.

Dataset BLEU Human
RuleTaker† (Clark et al., 2020) 100.0 100%
e-SNLI‡ (Camburu et al., 2018) 47.50 86%
EntailmentBank† (Dalvi et al., 2021) 47.57 84%
QASC† (Khot et al., 2020) 38.33 82%

EntailmentBank, QASC
RuleTaker, e-SNLI Transform to “no valid conclusion” 

by adding “not’’
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[P1] It is winter in the northern 
hemisphere.

[P2] Florida is located in the
northern hemisphere.

[R] It is winter in Florida.
⇒ It is winter in Florida. ①

[P1] It is winter in the northern 
hemisphere.

[P2] Florida is not located in the 
northern hemisphere.

[R] No valid conclusion.
⇒ It is winter in Florida. ②

[P1] It is winter in the northern 
hemisphere.

[P2] Florida is not located in the 
America.

[R] No valid conclusion.
⇒ Florida is not located in America.

③[P1] It is winter in the northern
hemisphere.

[P2] Florida is located in 
America.

[R] It is winter in Florida.
⇒ Florida is located in America.

④

Transform to “no valid conclusion” 
by adding “not’’

Transform
 the m

iddle term
 

to its hyponym

Figure 1: “P1” and “P2” denote the given two premises. “R”
denotes the reference entailment. “⇒” denotes the output of
finetuned T5-large model. Black bold font indicates middle
items. Red bold font indicates the modifications. 1© is chosen
from the test data of adapted EntailmentBank (Dalvi et al.,
2021). 2© 3© 4© modifies the input premises by hand.

difficult entailment tasks. Therefore, we would 040

ask whether pre-trained models can generate the 041

textual entailment from given premises? 042

To answer the above questions, we first adapt 043

existing entailment datasets (e.g., multip-hop ques- 044

tion answering datasets, explainable NLI datasets) 045

to the generative paradigm and then fine-tuned a 046

pre-trained model (e.g., T5 (Raffel et al., 2019)) 047

on these datasets. 2 Note that for simplicity, we 048

focus on single-step textual entailment generation 049

when given two premises. The preliminary results 050

are surprisingly good (Table 1). The accuracy of 051

human evaluation is above 80%. However, through 052

in-depth analysis, we observe two main limitations 053

to these datasets. 054

• The given premises always have valid entailment. 055

2Please refer to the Appendix A.1 for details.
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If we make some perturbations to the premises056

so that no entailment should be drawn, the model057

will fail and output an incorrect entailment. As058

shown in Figure 1 ( 1© → 2©), when we trans-059

form one premise to its negative form by adding060

the word “not”, the model makes a mistake by061

still drawing the same conclusion as before.062

• The two premises share the middle term with ex-063

actly the same lexical form.3 If we modify the064

lexical form of the middle term in one premise,065

the model may fail because it does not capture the066

semantic relationship between the original mid-067

dle term and the modified middle term. As shown068

in 1© → 3© (Figure 1), when “northern hemi-069

sphere” is changed into “America”, the model070

just replicates the second premise.071

These limitations may reduce the difficulty for mod-072

els to learn the ability of entailment generation,073

or enable models to learn some shortcuts, so that074

models can achieve a high accuracy. To push the075

development of models in generating textual entail-076

ment, it is necessary to introduce a more robust and077

powerful dataset.078

In this paper, we define the task of generating tex-079

tual entailment (GTE), and build SEG (Single-step080

textual Entailment Generation) to train and evalu-081

ate the models’ ability towards this task. Overall,082

SEG contains about 15k instances, and each con-083

tains a pair of premise statements and a human-084

annotated entailment if valid, or a no valid en-085

tailment (NVE) if not. The dataset is constructed086

by first retrieving instances from a natural knowl-087

edge base, and then augmenting each instance with088

several complementary instances by 7 manually089

crafted transformations. These complementary in-090

stances are more helpful to train and evaluate the091

human-like reasoning ability of the models, i.e., to092

make valid entailment by distinguishing those lexi-093

cally subtle but semantically important differences.094

In summary, our contributions include: 4095

• We formally define the task of generating tex-096

tual entailment and build SEG , a more robust097

and powerful dataset collected from natural cor-098

pus and complementary transformations, and099

checked by human annotators, which can help100

3Here, the middle term is the term appearing in both
premises. It acts as an intermediary connecting given premises
to draw conclusions. Formal definition can be referred in (Smi-
ley, 1973).

4Data will be released upon the publication of this paper.

to train and evaluate the human-like reasoning 101

ability of models. 102

• We evaluate several state-of-the-art NLP genera- 103

tive models on SEG . 5 The best generator models 104

can only generate valid textual entailment 59.1% 105

of times. Further, to motivate future advances, 106

we provide detailed analysis to show significant 107

gaps between baselines and human performance. 108

2 Generating Textual Entailment 109

In this section, we first give the formal definition of 110

textual entailment based on (Korman et al., 2018), 111

and then describe the task of generating textual 112

entailment (GTE). 113

Definition 1 The entailing and entailed texts are 114

premise (P ) and hypothesis (H), respectively. P 115

textually entails H if and only if, typically, a hu- 116

man reading P would be justified in inferring the 117

proposition expressed by H from the proposition 118

expressed by P . 119

Textual entailment in NLP is a directional rela- 120

tion between text fragments. The relation holds 121

whenever the truth of one text fragment follows 122

from another text. Textual entailment is not the 123

same as pure logical entailment – it is a more re- 124

laxed definition. Another popular definition is that 125

a human reading P would infer that H is most 126

likely true (Dagan et al., 2010). For the detailed 127

discussions of these two definitions please refer to 128

(Korman et al., 2018). 129

In this work, we explore textual entailment in 130

a generative paradigm. Specifically, given the 131

premises that contains only two premises P1 and 132

P2, the GTE task requires to generate the single- 133

step textual entailment. Note that entailment must 134

be based on two premises, neither of which alone 135

can infer the entailment. For simplicity, we fo- 136

cus on the more basic settings: two premises and 137

single-step. Even with this basic settings, there is 138

still a huge gap between current models and hu- 139

man performance (see Section 5). More complex 140

scenarios can be leave for future work, such as 141

multi-premises, multi-step and multi-entailment. 142

3 SEG : Data Collection and Analysis 143

SEG is a carefully designed benchmark for generat- 144

ing textual entailment, consisting of 15k instances 145

in total, and each contains a pair of premise state- 146

ments, and a human-annotated entailment if valid, 147

5In this paper, generative model refers to the seq2seq
model (e.g., T5, BART) or auto-regressive model (e.g., GPT2).

2



THING SCOPE ACTION SCOPE AGENT QUANTIFIER ACTION ADJ/QUANTIFIER

If heat energy of a liquid is decreasing then that liquid can freeze

If an experiment is repeated then the results are more likely to be correct

If fossils of an animal are found in a place then that animal used to live in that place

IF-THEN Table

Synonym The temperature of the liquid will fall. ⇒ The liquid can freeze.

Antonym The temperature of the liquid will increase. ⇒ The liquid can freeze.

Hypernym The temperature of the object will decrease. ⇒ No valid conclusion.

Hyponymy The temperature of the raindrop will decrease. ⇒ The raindrop can freeze.

Paraphrase The liquid’s temperature will decrease. ⇒ The liquid can freeze.

Negation The temperature of the liquid will not decrease. ⇒ No valid conclusion.

DoubleNegation The temperature of the liquid will not increase. ⇒ No valid conclusion.

Natural KB

Premise1, Premise2

Complementary
Examples

Same Conclusion
Different Conclusion
No valid Conclusion

The temperature of the liquid will decreaseelasticsearch

P1: If heat energy of a liquid is decreasing then that liquid can freeze.
P2: The temperature of the liquid will fall.
⇒ The liquid can freeze.

✓ ✗Quality Check

Figure 2: Dataset collection workflow, consisting of two stages: 1) collecting premises from a natural knowledge base
named WorldTree, where knowledge is organized in tables, and 2) for those instances with valid conclusions, collecting from
complementary transformations. During each stage, we hire workers to annotate and check the validation of entailments.

or a no valid entailment (NVE) if not. Overall,148

data collection procedure consists of two stages149

(Figure 2). To break the two limitations of adapted150

existing datasets mentioned in Section 1, we first151

retrieve two statements from knowledge base (KB)152

as two premises, who share the middle term with153

exactly the same lexical forms (Section 3.1). Then154

we construct several complementary instances by155

manually designing 7 transformations, which re-156

quires that the model can make valid entailment by157

distinguishing those subtle but semantically impor-158

tant lexical differences (Section 3.2). Furthermore,159

during human annotation, we design strict strate-160

gies to control the quality of annotation (Section161

3.3). Finally we provide a detailed analysis of the162

proposed SEG (Section 3.4).163

3.1 Stage 1: Collecting from Knowledge Base164

In this section, we first describe the adopted KB.165

Then, we detail how to collect instances based166

on the KB, which follows the collection order of167

P1 → middle term → P2 → entailment. All168

steps are automatical, except for the collection of169

entailment, which requires human annotation.170

Knowledge Base WorldTree (Xie et al., 2020),171

a natural KB, is adapted as our source corpus.172

WorldTree provides a tablestore of sentences in173

terms of science and general knowledge. Each ta-174

ble is organized by a particular kind of relation175

(e.g.,“if-then” relation in Figure 2), 6 and columns 176

of the table represent various roles or arguments to 177

the specific relation. 178

Collecting P1 Given the WorldTree, we first ran- 179

domly select a cerain table, and then randomly 180

choose a sentence as P1 from the table. 181

Collecting Middle Term After obtaining a P1 182

in the table, we carefully select certain columns 183

from a sentence in WorldTree as the middle term. 184

The selection guideline is through human-designed 185

templates listed in Appendix A.2. 186

Collecting P2 Given a P1 and a middle term, 187

we use elasticsearch to retrieve P2 from the whole 188

WorldTree. The retrieved candidates are then fil- 189

tered based on the relevance scores (≥ 7) returned 190

by the search engine. Finally, we keep at most 3 191

candidates as P2. 192

Collecting Entailment After obtaining P1 and 193

P2, we work with an annotation service provider 194

to annotate entailments for first-staged premises. 195

Details are shown in Section 3.3. 196

3.2 Stage 2: Collecting from Complementary 197

Transformations 198

After stage 1, we observe that despite the collec- 199

tion of instances with no valid entailment, there 200

are middle terms with the same lexical form. To 201

6There are 81 kinds of relations in total.
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Table 2: Descriptions of the functions of different transformations. “∆Lexical” and “∆Semantic” denote the change of lexical
and semantic caused by a certain transformation.

Transformation Functions ∆Lexical ∆Semantic

Synonym Require to focus on semantic associations instead of shallow word overlap. small small

Antonym & Negation Require to capture small perturbations, which may flip the entailments to NVE. small big

Hypernym & Hyponym Require an extra monotonicity inference step to draw a new conclusion. small small

Paraphrase Require to focus on semantic associations instead of sentence structure. big small

DoubleNegation Require to judge whether a double negative forms a positive. small big

eliminate this obvious shortcut, we make careful202

transformations for each instance with valid en-203

tailment to obtain complementary instances. The204

criterion for the transformation is to perturb the205

original instance (only two premises) in two dimen-206

sions lexical and semantic, e.g., similar lexical and207

similar semantic, similar lexical and different se-208

mantic, different lexical and similar semantic. By209

constructing complementary instances, it can help210

to train and evaluate the human-like reasoning abil-211

ity of the models, i.e., to generate valid entailment212

by distinguishing those lexically subtle but semanti-213

cally important differences. Next, we describe how214

to collect premises from transformations automati-215

cally, and how to annotate entailment manually.216

Collecting Premises from Transformations To217

construct complimentary instances, we design 7218

transformations to cover the diversity on lexical and219

semantic (Table 2), including synonym, antonym,220

negation, hypernym, hyponym, paraphrase, double221

negation. It is possible to design more transforma-222

tions or to combine them, and we leave it as future223

work. Details on how we apply these transforma-224

tions can be referred in Appendix A.3.225

Collecting Entailment After obtaining premises226

through transformations, We take the same proce-227

dure as in the stage 1 to collect the entailment.228

3.3 Ethics and Quality Control229

Before official annotation, we first conduct a trail230

phase for all candidate workers to fully understand231

the task and test their entailment ability. And we232

selected 80 qualified workers, both of them can233

achieve 80% accuracy on the trial data. Then we234

conduct a training session for selected workers to235

further enhance their science knowledge and basic236

inference skills needed in our data. All workers are237

categorized into two teams: a team of entailment238

constructors and a team of entailment checkers.239

The annotation process consists of two steps: 1)240

a construction step to write entailments given two241

premises, and 2) a double-round checking step for 242

quality control. 243

Construction During construction stage, each in- 244

stances with two premises are shown to three ran- 245

dom workers. Workers need to write an entailment 246

sentence if a valid entailment can be generated, oth- 247

erwise give “NVE” label. Entailments are required 248

to be: 1) derived from both premises instead of 249

none or only one of them, and 2) fluent and no 250

syntax errors. 251

First-Round Checking Afterwards, an instance 252

with two premises and three candidate entailments 253

is exposed to five checkers for first-round checking. 254

Each checker should make an approval/disapproval 255

decision for the annotation according to the two 256

criterions mentioned in the construction stage. A 257

candidate entailment is regarded as accepted only 258

if at least 4 checkers approved the entailment an- 259

notation. Otherwise, a rejected entailment is sent 260

back to the construction step for revision. Finally 261

for each instances, we have three valid candidate 262

entailments. 263

Second-Round Checking Instances with three 264

candidate entailments after first-round checking are 265

further fed into another two checkers for a second- 266

round checking step. Here the two checkers focus 267

on whether the two premises can necessarily draw 268

a one-and-only entailment. If multiple entailments 269

with completely different semantics can be derived 270

from the two premises, the instance is abandoned. 271

Finally the two checkers reach a decision by dis- 272

cussion, to choose an entailment from the three 273

candidates as the gold entailment. 274

We paid RMB¥1 per constructor per instance for 275

construction step, RMB¥0.96 per checker per in- 276

stance for first-round checking, and RMB¥0.8 per 277

checker per instance for second-round checking7. 278

7Workers consist of both part-time and full-time employ-
ees, where we ensure full-time employees work at most
8 hours per day. And the local minimum hourly wage is
RMB¥23 per hour.
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Table 3: Dataset statistics. “#Total” denotes the number of
instances constructed in each stage or under each transforma-
tions. “#Pos” and “#Neg” denote the number of instances with
and without valid entailments respectively. “%Pos” denotes
the ratio of instances with valid entailments.

#Total #Pos #Neg %Pos
Stage 1 6, 677 3, 140 3, 537 0.47

Synonym 1, 309 979 330 0.748
Antonym 1, 181 299 882 0.253

Hypernym 999 241 758 0.241
Hyponymy 1, 189 712 477 0.599
Paraphase 1, 362 1, 155 207 0.848
Negation 1, 067 430 637 0.403

DoubleNegation 1, 197 455 742 0.38
Stage 2 8, 304 4, 430 3, 874 0.467
Overall 14, 981 7, 570 7, 411 0.495

For the construction step, a worker can produce 3279

entailments during two minutes. And averagely it280

costs a checker 30 seconds in the first-round check-281

ing and 20 seconds in the second-round checking.282

During the process of collecting SEG , all of the283

natural corpus we used are sourced from publically284

available resources8.285

3.4 Dataset Statistics286

Overall SEG has 14, 981 instances. Summary statis-287

tics are shown in Table 3. In the first stage, the288

numbers of examples with and without valid en-289

tailments are comparable, validating the efficiency290

of our method to identify textual entailment from291

natural knowledge base. In the second stage, exam-292

ples under different transformations are unbalanced293

across labels, as denoted by “%Pos”. Transforma-294

tions in terms of “Synonym”, “Hyponymy” and295

“Paraphase” tend to keep the labels of examples296

unchanged while others flip the labels. The dataset297

is further split into training, validation and testing298

sets with 12648, 1826, 3708 examples respectively.299

Examples transformed from the same original in-300

stance are guaranteed in the same split.301

4 Experimental Settings302

We design experiments to benchmark state-of-the-303

art NLP generative models on the proposed gen-304

erating textual entailment dataset SEG . We intro-305

duce different tasks (Sec 4.1) to evaluate models306

from different perspectives under several automatic307

evaluation metrics (Sec 4.2), and also propose an308

ensemble metric for better evaluation.309

8WorldTree corpus can be downloaded at http://
cognitiveai.org/explanationbank/, and during
transformation we use WordNet(database and associated tools
can be downloaded at https://wordnet.princeton.
edu/download)

4.1 Task Definition 310

Since instances in SEG are annotated with either 311

“NVE” labels or valid entailments, we define three 312

tasks to evaluate models from different perspec- 313

tives. For all of the three tasks, the inputs are con- 314

catenation of two premises. 315

Task 1: Classification Since nearly half of sam- 316

ples in SEG are with no valid entailments, this task 317

aims to evaluate the ability of models to distinguish 318

whether two premises can generate valid entail- 319

ments. Given two premises, the output is a binary 320

label, “yes” for premises having valid entailments 321

and “no” otherwise. 322

Task 2: Generation For samples with valid en- 323

tailments, this task aims to evaluate the quality 324

of model-generating entailments. Consider sam- 325

ples with valid entailments in SEG , the output is 326

to generate the textual entailment from given two 327

premises. 328

Task 3: Multi-task This task aims to evaluate 329

whether models can perform classification and gen- 330

eration tasks simultaneously. The outputs of this 331

task can be either a short phase “no valid entail- 332

ment” indicating “NVE”, or any valid entailments 333

derived from premises. 334

4.2 Evaluation Metrics 335

We adopt different evaluation metrics for classifi- 336

cation and generation tasks. 337

For classification task, besides standard accuracy, 338

we introduce two new metrics, pairwise accuracy 339

and group accuracy. Pairwise accuracy evaluates 340

a pair of predictions as accurate if both predic- 341

tions of the original and a transformed instance 342

are correct. Similarly, group accuracy evaluates 343

as accurate if predictions of the original and all 344

its transformed instances, which form a group, are 345

correct. 346

For generation task, we consider the following 347

automatic metrics: BLEU (Papineni et al., 2002), 348

ROUGE (Lin, 2004), BERTScore (Zhang et al., 349

2019), SentenceBERT (Reimers and Gurevych, 350

2019) and BLEURT (Sellam et al., 2020). For 351

BLEURT, we also consider a finetuned version 352

BLEURT†9. We show the agreement of these met- 353

rics with human ratings in Table 4. As the table 354

9To finetune BLEURT, we annotate 1, 000 pairs of refer-
ence and candidate textual entailments for their validations
(valid ones score “1” and invalid ones score “−1” ). Among
them, 800 pairs are used for finetuning and 200 for testing
correlations with human ratings.
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Table 4: Pearson correlation τ with human ratings of dif-
ferent metrics of text generation. BEURT† denotes BLEURT
finetuned on human ratings.

Metric BLEU ROUGE-1 ROUGE-2 BERTScore
τ 0.393 0.487 0.447 0.448

Metric SentenceBERT BLEURT BLEURT† Ensemble
τ 0.518 0.571 0.653 0.707

shows, most automatic metrics have weak corre-355

lations with human ratings. This may be because356

most metrics mainly focus on textual similarity357

rather than logical validation. Finetuning BLEURT358

on human ratings can improve correlations. In-359

spired by this, we further train a model-based (MLP360

classifier used here) metric, denoted as the ensem-361

ble metric, by combining the above metrics as input362

features to predict human judgments. The ensem-363

ble metric exhibits the best correlation with human364

judgments as shown in Table 4. Once we get the365

ensemble metric, we can use it to evaluate the val-366

idation of the generated entailments. We define367

standard validation as the fraction of valid entail-368

ments among all generated ones. Similar to pair-369

wise/group accuracy, we also introduce pairwise370

validation and group validation for generation371

task, which evaluate as valid if all generated entail-372

ments in a pair or group are valid.373

Baselines We consider the following generative374

models as the baselines: LSTM (Hochreiter and375

Schmidhuber, 1997), GPT2-large (Radford et al.,376

2019), BART-large (Lewis et al., 2019) and T5-377

large (Raffel et al., 2019). Details on training these378

models are listed in Appendix A.4.379

5 Results380

5.1 Classification Task381

Table 5 shows the performance of baseline models382

on classification task. Overall, all models achieve383

mediocre performance in terms of standard ac-384

curacy while the pairwise and group accuracy is385

low. This indicates that the models can infer each386

premise independently with confidence, but on the387

other hand struggle to give consistent judgements388

for the complementary instances.389

For the comparison of different models, T5 and390

BART achieve the highest performance of most391

metrics among all baselines. T5 has a higher recall392

rate while BART has a higher precision rate. This393

indicates that T5 tends to predict that the given394

premises have valid entailments while BART tends395

to be the opposite.396

Table 5: Performance(%) of baseline models on classifica-
tion task. “Standard” denotes standard accuracy. “Pairwise”
and “Group” denote pairwise and group accuracy respectively.

Model Standard Pairwise Group Precision Recall F1-score
T5 72.4 55.1 35.7 69.8 79.2 74.2

BART 73.7 53.9 35.0 75.0 71.4 73.2
GPT2 70.0 47.1 27.8 70.3 69.8 70.0
LSTM 64.8 41.1 24.5 66.4 60.3 63.2

5.2 Generation Task 397

Table 6 shows the performance of baseline models 398

on the generation task. Overall, pre-trained mod- 399

els achieve mediocre performance in terms of the 400

validation metric, while LSTM can barely generate 401

valid entailments. On the whole, T5 model outper- 402

forms others models. In 66% cases, it can generate 403

valid entailments. In 42.3% cases, it can generate 404

valid entailments for both the original and trans- 405

formed examples. BART performs worst among 406

three pre-trained models. We find that BART tends 407

to duplicate one premise as the conclusion. This 408

may be related to the objective of reconstructing 409

the input during the model pre-training. In terms 410

of different evaluation metrics, even though the en- 411

tailments generated by LSTM are almost invalid, 412

the score of BLEU still achieves 31.0. The same 413

applies to metrics like ROUGE. This implies that 414

the absolute values of these metrics are not very 415

meaningful for this task. 416

5.3 Multi-Task 417

Under this task, we investigate whether the baseline 418

generative models can perform classification and 419

generation tasks simultaneously. Table 7 shows the 420

performance of baseline models on this task. 421

The experimental results show that the perfor- 422

mance of the baselines is poor under this task. The 423

accuracy on the multi-task declines compared with 424

that on classification task, indicating that it is chal- 425

lenging for the models to perform the classification 426

and generation task simultaneously. Among all 427

models, the best generator model can only achieve 428

59.1% in terms of validation, which means that 429

even SOTA pre-trained models can only generate 430

valid textual entailment 59.1% of times. 431

5.4 Ablation Studies 432

Performance under Different Transformations 433

We report the performance of models under differ- 434

ent transformations in Figure 3 (denoted by “ F ” 435

and “ F ” for classification and generation task 436

respectively). 437
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Table 6: Performance of baseline models on generation task. “Human” denotes human evaluation on 100 random samples.
“Group”/“Pairwise” denote group/pairwise validation respectively. “BLEURT†” denotes BLEURT finetuned on human ratings.

Model Human Standard Pairwise Group BLEU ROUGE-1 ROUGE-2 BERTScore SentenceBERT BLEURT BLEURT†

T5 72.0 66.9 50.8 42.3 55.4 79.9 65.3 0.875 0.910 0.762 0.469
BART 56.0 47.8 35.6 28.3 50.6 75.8 60.9 0.852 0.854 0.708 0.135
GPT 65.0 57.5 41.2 33.7 48.5 76.2 59.1 0.852 0.891 0.727 0.353

LSTM 15.0 11.6 8.0 4.8 31.0 57.9 39.4 0.738 0.640 0.512 −0.633

T5
Origin Synonym Antonym Hypernym Hyponymy Paraphrase Negation DoubleNegation
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Figure 3: Performance(%) of the baselines on the classification and generation task under different transformation. “ F ” and
“ F ” denotes models trained with complementary examples. “ H ” and “ H ” denotes models trained without complementary
examples. We show the performance changes brought by complementary examples under different transformations via stacked
bar. Performance changes of each transformation are indicated by the length of bars of different colors.

Table 7: The overall performance(%) of baseline models on
multi-task. The metric validation is evaluated on the whole
test set. A generated conclusion is evaluated as valid if both
the predicted category is correct and the conclusion is valid.

Model
Accuracy Validation

Human
Standard Pairwise Group Standard Pairwise Group

T5 65.4 48.5 28.8 54.9 30.6 16.0 55.0
BART 69.5 40.9 24.3 59.1 23.3 13.6 58.0
GPT 67.3 38.0 22.9 58.7 24.3 13.1 57.0

LSTM 60.6 24.3 14.2 50.6 8.3 5.9 51.0

Overall, the models perform well on the orig-438

inal and paraphased instances. For classification439

task, the models are poor at classifying instances440

under “Negation” transformation. T5 and GPT2441

can only achieve 50% classification accuracy on442

these examples, nearly the same as the random443

guess. What’s more, in terms of “Synonym” trans-444

formation, the baselines except T5 can only achieve445

about 60% accuracy. This implies that when we446

transform the middle terms of given premises into447

their synonyms, these models may fail to capture448

the semantic associations without word overlap.449

For generation task, the models perform poor un-450

der transformations, such as “Antonym” and “Dou-451

bleNegation”, with no more than 40% validation452

under these two transformations.453

Influence of complementary examples To inves- 454

tigate the influence of complementary examples 455

collected in stage 2, we train baseline models with- 456

out complementary examples, e.g. only with data 457

collected in the first stage. We then evaluate the 458

trained models on the classification and generation 459

task and report the performance (Table 8). 460

Table 8: Performance of baseline models trained on exam-
ples without complementary examples of the classification
(Accuracy) and generation task (Validation) respectively.

Accuracy Standard Pairwise Group
T5 68.7(3.6 ↓) 46.4(8.7 ↓) 26.2(9.4 ↓)

BART 69.8(4.0 ↓) 48.0(6.0 ↓) 26.9(8.2 ↓)
GPT 67.5(2.6 ↓) 39.8(7.4 ↓) 21.1(6.7 ↓)

LSTM 60.7(4.1 ↓) 32.9(8.2 ↓) 18.1(6.4 ↓)
Validation Standard Pairwise Group

T5 54.6(12.3 ↓) 40.4(10.4 ↓) 33.7(8.6 ↓)
BART 43.6(4.2 ↓) 29.1(6.5 ↓) 22.0(6.3 ↓)
GPT 55.8(1.8 ↓) 39.6(1.6 ↓) 30.0(3.7 ↓)

LSTM 5.7(5.9 ↓) 2.6(5.5 ↓) 1.5(3.2 ↓)

Overall, the performance of all models has de- 461

clined without training on complementary exam- 462

ples. For classification task, the group and pair- 463

wise accuracy decline more than the standard accu- 464

racy. But for generation task, all three metrics drop 465
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evenly. Among all models, GPT2 is least affected466

by complementary examples with validation scores467

decrease by only 1% ∼ 4%.468

We also report performance under different trans-469

formations of the classification and generation task470

respectively (denoted by “ H ” and “ H ” in Fig-471

ure 3). we further quantitatively compare the per-472

formance changes brought by complementary ex-473

amples under different transformations. We find474

that the complementary examples mostly benefit475

“Antonym” and “DoubleNegation” transformation476

across different models and benefit performance on477

original examples least.478

5.5 Transfer from Related Datasets479

In this section, we evaluate models transferred from480

other datasets to our test set. This experiment is481

conducted to show that whether inference abilities482

acquired from other dataset are sufficient to han-483

dle our test cases. We compare models trained484

on the following datasets: EntailmentBank (Dalvi485

et al., 2021), QASC (Khot et al., 2020), ParaP-486

attern (Bostrom et al., 2021), e-SNLI (Camburu487

et al., 2018) and RuleTaker (Clark et al., 2020).10488

We evaluate T5 model under the same setting with489

Generation Task. Specifically, we evaluate mod-490

els only on instances with valid entailments, based491

on the consideration that previous datasets don’t492

include the cases of “NVE”.493

All
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Figure 4: Validation of the T5 model trained on different
datasets under the generation task. “♣” denotes datasets built
on logic templates. “♠” denotes datasets built with human
annotations. “All” denotes the overall performance on the gen-
eration task, while other labels of x-axis denote performance
under different transformations.

Figure 4 shows the validation of conclusions494

10Among them, RuleTaker and ParaPattern are datasets
constructed by filling logic templates. The other three datasets
are built with human involved.

generated by T5 trained on different datasets. As 495

the figure shows, performance varies widely across 496

datasets. T5 trained on RuleTaker and e-SNLI can 497

hardly transfer to our dataset. ParaPattern, consist- 498

ing of two logical types, substitution and contra- 499

position, is not enough to cover inference types 500

in our dataset. EntailmentBank and QASC show 501

higher transferability compared with the above 502

three datasets. However, they still have difficul- 503

ties in solving transformations of “Antonym” and 504

“DoubleNegation”. 505

6 Related Work 506

Camburu et al. (2018); Peng et al.; Rudinger et al. 507

(2020) built explanation generation datasets by ex- 508

tending SNLI (Bowman et al., 2015) with human- 509

annotated full-sentence explanations of the classi- 510

fication decisions. Rajani et al. (2019) collected 511

human explanations for commonsense reasoning 512

built on top of CommonsenseQA (Talmor et al., 513

2019) and introduced CoS-E. Bhagavatula et al. 514

(2020) formally proposed language-based abduc- 515

tive reasoning. They built the ART dataset by 516

crowdsourcing the plausible and implausible ex- 517

planation options for observations. Our formula- 518

tion is critically distinct from abductive reasoning. 519

ART requires reasoning about commonsense impli- 520

cations of observations, with less focus on logical 521

inference. However, we focus more on logical rea- 522

soning rather than commonsense reasoning, since 523

the knowledge required for inference is explicitly 524

provided in premises. 525

Combining multiple premises to form a conclu- 526

sion overlaps with the idea of multi-hop reason- 527

ing. In the context of textual question-answering 528

(QA), recent work has shown that deep models can 529

perform multi-hop reasoning by generating proof 530

graphs, with facts and rules expressed in natural 531

language (Clark et al., 2020; Dalvi et al., 2021; 532

Tafjord et al., 2020; Sun et al., 2021; Khot et al., 533

2020). Inspired by this, we dig further into the 534

basic and fundamental single-step inference and 535

build more complex reasoning scenarios to evalu- 536

ate pre-trained generative models. 537

7 Conclusion 538

We define the task of generating textual entailment 539

and build a challenging dataset SEG . For future 540

work, benchmarks can be built towards multi-hop 541

textual entailment generation to enable complex 542

reasoning capabilities in AI systems. 543
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A Appendix708

A.1 Adapting Existing Datasets into709

Generative Textual Entailment710

Paradigm711

Single-step entailment generation scenario implic-712

itly exists across various tasks, such as multi-hop713

QA and explainable NLI.714

In the task of explainable NLI, e-SNLI (Cam-715

buru et al., 2018) extends the SNLI(MacCartney716

and Manning, 2008) dataset with additional human-717

annotated natural language explanations of the718

entailment relations. To adapt e-SNLI into719

generative paradigm, we extract premise and720

explanation as the pair of premises, and the721

hypothesis as the conclusion.722

In the task of multi-hop QA, RuleTaker(Clark723

et al., 2020) targets at generating the answer for724

a question by emulating deductive reasoning over725

facts and rules, which are expressed in natural lan-726

guage. Tafjord et al. (2020) augments RuleTaker by727

introducing logical implications of statements. We728

extract all 1-step implications derived from only729

two facts or rules. The facts or rules can730

be used as the premises and the implication as731

the conclusion. EntailmentBank (Dalvi et al., 2021)732

can be used to generate explanations in the form of733

multi-step entailment trees, namely a tree of entail-734

ment steps from facts, through intermediate con-735

clusions, to the final answer. The entailment736

steps are the data we need: deriving intermediate737

conclusions from given facts. QASC is a dataset738

for two-hop QA. It provides annotation for support-739

ing facts as well as their composition to answer740

a question. The annotated facts can be adapted741

into generative paradigm by using two facts742

as the premises, and the composed fact as the743

conclusion.744

A.2 Construct Premises based on WorldTree745

Corpus746

For each table in the WorldTree, we manually de-747

fine templates describing columns selected for re-748

trieving candidate premises. Each template defines749

two types of columns. The required columns con-750

taining content which must be satisfied when build-751

ing query for search, while the preferred columns752

are used as an additional ranking criterion when753

multiple sentences satisfying the required columns.754

In addition, we stem the words and remove stop-755

words in sentences before querying.756

A.3 Construct Complementary Examples 757

In this part, we first describe how we apply the first 758

four transformations on one premise. The first four 759

transformations are based on lexical replacement 760

of the middle term. To identify the middle term of 761

given premises, we first stem words and remove 762

stopwords in two premises. Then, we use the com- 763

mon words contained in both premises as the mid- 764

dle term. Next, for each word in the middle term, 765

we can replace it with its synonyms, antonyms, hy- 766

pernyms or hoponymys from WordNet. As there 767

are some cases where using WordNet for substitu- 768

tion leads to unnatural sentences due to the context 769

mismatch, we determine which "sense" (meaning) 770

of a word in the WordNet is activated before word 771

substitution. We adopt a BERT-based model (Yap 772

et al., 2020) to solve this word sense disambigua- 773

tion problem. To further ensure data quality, we 774

use a grammar error correction tool Gingerit 11 775

to correct spelling and grammar mistakes in the 776

perturbed premises. 777

For the latter three transformations, we use 778

TextFlint (Wang et al., 2021) to transform premises 779

to its paraphased, negative and double negative 780

forms and use Gingerit for grammar error correc- 781

tion. 782

The above effort are made to ensure the fluency 783

of the transformed premises. Though, annotators 784

are allowed to refuse to annotate certain samples 785

if they think the premises are not natural. The 786

proportion of rejected samples is limited to below 787

5%. 788

A.4 Experimental Details 789

We describe details on the training of baseline mod- 790

els here. For classification task, all baseline models 791

are fed with concatenation of two premises and 792

output labels of “yes/no”, indicating whether or 793

not the given premises entail any valid conclusions. 794

For generation task, LSTM, BART and T5 mod- 795

els are trained by taking the concatenation of two 796

premises as input and output conclusions. GPT2 797

is finetuned on data by concatenating the premises 798

and conclusions, to maximize a causal language 799

modeling objective . During inference, GPT2 takes 800

in two premises and generates the conclusion. 801

All implementations are based on Fairseq12. The 802

LSTM model consists of a 2-layer encoder and 2- 803

layer decoder with hidden size set to 512. All mod- 804

11https://gingerit.readthedocs.org
12https://github.com/pytorch/fairseq

11



els are train to maximize the cross entropy loss with805

label smoothing set to 0.1. The mini-batch size806

is 32. The training epoch is 10 for pretrain mod-807

els and 20 for LSTM. The models are optimized808

via Adafactor (Yap et al., 2020) with polynomial809

learning rate decay. The learning rate is 2e-5 for810

pretrained models and 1e-3 for LSTM. The beam811

size is set to 1 for GPT2 and 5 for other models.812

All models are train on 1 Tesla V100 GPU.813

A.5 Inference Types814

To understand the inference challenges in our815

dataset, we analyze model performance under dif-816

ferent inference types. We identify 6 challenging817

high-level categories of inference in our dataset818

and manually select 50 samples for each inference819

type. A T5-large model trained on multi-task is820

evaluated in terms of classification accuracy and821

generation validation. Table 9 shows the identified822

inference types and the performance of T5. More823

descriptions about these inference types and typical824

examples can be referred in Appendix A.5.825

Table 9: Standard accuracy and validation(%) of T5 under
different inference types.

Inference Types Accuracy Validation
Containment Relationship 0.78 0.66

Relational Inference 0.62 0.55
Modal Judgement 0.56 0.54

Cause-Effect 0.65 0.64
Hypothetical Inference 0.64 0.52
Monotonicity Inference 0.54 0.44

We identify six challenging high-level categories826

of inference in our dataset. Specifically, contain-827

ment relationship inference requires a determina-828

tion of the containment relationship of two objects.829

Relational inference requires relational judgments830

between two objects. Modal judgement refers to831

inference requiring a determination of the possibil-832

ity and necessity of events. Cause-effect inference833

requires to determine the response of an effect vari-834

able when a cause of the effect variable is changed.835

hypothetical inference Hypothetical inference re-836

quires to deduce from a specific rule, which is spec-837

ified as one of the given premise. Monotonicity838

inference requires to replace a phase with a more839

specific or general one to derive a valid conclusion.840

For further understanding of model behavior un-841

der different inference types, we list several typical842

cases and model outputs in Table 10.843
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Table 10: Typical cases of six inference types identified in our dataset SEG . We also provide conclusions generated
by T5 and human evaluations on these conclusions.

Containment
Relationship

premise1: index fossils are formed from species that existed for a relatively short time.
premise2: trilobite fossils are a kind of index fossil.
conclusion: trilobite fossils are formed from species that existed for a relatively short time. "
premise1: limestone is formed by water evaporating from a solution of water and minerals.
premise2: limestone is a kind of sedimentary rock.
conclusion: limestone is formed by water evaporating from a solution of water and minerals. %

Relational
Inference

premise1: magnesium is less dense than nickel.
premise2: silicate is less dense than nickel.
conclusion: magnesium and silicate are less dense than nickel. "
premise1: a law is more tested than a theory.
premise2: a theory is more tested than a hypothesis.
conclusion: no valid conclusion. %

Modal
Judgement

premise1: crops does not cause nutrients in the soil to increase.
premise2: a decrease in soil fertility has a negative impact on environment.
conclusion: no valid conclusion. "
premise1: elements are not impure substances.
premise2: a pure substance is made of only one kind of atom.
conclusion: no valid conclusion. %

Cause
Effect

premise1: using less resources usually causes money to be saved.
premise2: saving money has a positive impact on a person.
conclusion: using less resources has a positive impact on a person. "
premise1: using less resources usually does not cause money to be saved.
premise2: saving money has a positive impact on a person.
conclusion: no valid conclusion. %

Hypothetical
Inference

premise1: an atom is always neutral charged.
premise2: if an atom has neutral charge, then the atom will have same numbers of protons and electrons.
conclusion: the atom has same numbers of protons and electrons. "
premise1: if something is made of a material then that something contains that material.
premise2: a kit usually contains materials for assembling something.
conclusion: a kit usually contains materials for assembling something. %

Monotonicity
Inference

premise1: Montenegro is located in the northern geographic region.
premise2: if it is winter in the northern hemisphere then it is summer in the southern hemisphere.
conclusion: if it is winter in Montenegro then it is summer in the southern geographic region. %
premise1: Croatia is located in the northern, eastern hemisphere.
premise2: march is cold in temperature in northern hemisphere.
conclusion: no valid conclusion. %
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