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Abstract

We investigate the task of generating textual
entailment (GTE). Different from prior works
on recognizing textual entailment, also known
as NLI, GTE requires the models with deeper
reasoning capabilities - generating entailment
from premises rather than making prediction
on given premises and the entailment. We ar-
gue that existing adapted datasets are limited
and inadequate to train and evaluate human-
like reasoning in the GTE. In this paper, we
propose a new large-scale benchmark, named
SEG , targeted for learning and evaluating mod-
els’ capabilities towards RTE. SEG consists of
15k instances with each containing a pair of
premise statements and a human-annotated en-
tailment. It is constructed by first retrieving
instances from a knowledge base, and then
augmenting each instance with several comple-
mentary instances by 7 manually crafted trans-
formations. We demonstrate that even exten-
sively fine-tuned pre-trained models perform
poorly on SEG . The best baseline can only gen-
erate valid textual entailment for 59.1% cases.
Further, to motivate future advances, we pro-
vide detailed analysis to show significant gaps
between baselines and human performance.

1 Introduction

Textual entailment is an important and routine part
of linguistic communication, whether in our daily
lives or scientific literature (Korman et al., 2018).
! Existing efforts focus on recognizing textual en-
tailment (entailment, contradiction and
neutral) between the premise and the hypoth-
esis, also known as natural language inference
(NLI) (Dagan et al., 2010; MacCartney and Man-
ning, 2008). Recent powerful pre-trained models
have achieved near human-level performance on
NLI task (Devlin et al., 2019; Liu et al., 2019). It
is time to challenge pre-trained models with more

'In this paper, “entailment” means “textual entailment” by
default.

Table 1: The performance of T5-large on generating textual
entailment task whose examples are constructed from existing
datasets. “t” denotes the datasets on multi-hop QA task, and
“%” denotes the datasets on explainable NLI task.

Dataset BLEU Human
RuleTaker' (Clark et al., 2020) 100.0  100%
e-SNLI* (Camburu et al., 2018) 47.50 86%
EntailmentBank (Dalvi et al., 2021)  47.57 84%
QASCT (Khot et al., 2020) 38.33 82%
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Figure 1: “P1” and “P2” denote the given two premises. “R”
denotes the reference entailment. “=-" denotes the output of
finetuned TS-large model. Black bold font indicates middle
items. Red bold font indicates the modifications. (I) is chosen
from the test data of adapted EntailmentBank (Dalvi et al.,
2021). @ @ @ modifies the input premises by hand.

difficult entailment tasks. Therefore, we would
ask whether pre-trained models can generate the
textual entailment from given premises?

To answer the above questions, we first adapt
existing entailment datasets (e.g., multip-hop ques-
tion answering datasets, explainable NLI datasets)
to the generative paradigm and then fine-tuned a
pre-trained model (e.g., TS5 (Raffel et al., 2019))
on these datasets. 2> Note that for simplicity, we
focus on single-step textual entailment generation
when given two premises. The preliminary results
are surprisingly good (Table 1). The accuracy of
human evaluation is above 80%. However, through
in-depth analysis, we observe two main limitations
to these datasets.

* The given premises always have valid entailment.

%Please refer to the Appendix A.1 for details.



If we make some perturbations to the premises
so that no entailment should be drawn, the model
will fail and output an incorrect entailment. As
shown in Figure 1 (D — @), when we trans-
form one premise to its negative form by adding
the word “not”, the model makes a mistake by
still drawing the same conclusion as before.

* The two premises share the middle term with ex-
actly the same lexical form.? If we modify the
lexical form of the middle term in one premise,
the model may fail because it does not capture the
semantic relationship between the original mid-
dle term and the modified middle term. As shown
in @ — @ (Figure 1), when “northern hemi-
sphere” is changed into “America”, the model
just replicates the second premise.

These limitations may reduce the difficulty for mod-
els to learn the ability of entailment generation,
or enable models to learn some shortcuts, so that
models can achieve a high accuracy. To push the
development of models in generating textual entail-
ment, it is necessary to introduce a more robust and
powerful dataset.

In this paper, we define the task of generating tex-
tual entailment (GTE), and build SEG (Single-step
textual Entailment Generation) to train and evalu-
ate the models’ ability towards this task. Overall,
SEG contains about 15k instances, and each con-
tains a pair of premise statements and a human-
annotated entailment if valid, or a no valid en-
tailment (NVE) if not. The dataset is constructed
by first retrieving instances from a natural knowl-
edge base, and then augmenting each instance with
several complementary instances by 7 manually
crafted transformations. These complementary in-
stances are more helpful to train and evaluate the
human-like reasoning ability of the models, i.e., to
make valid entailment by distinguishing those lexi-
cally subtle but semantically important differences.
In summary, our contributions include:

* We formally define the task of generating tex-
tual entailment and build S£G , a more robust
and powerful dataset collected from natural cor-
pus and complementary transformations, and
checked by human annotators, which can help

*Here, the middle term is the term appearing in both
premises. It acts as an intermediary connecting given premises
to draw conclusions. Formal definition can be referred in (Smi-
ley, 1973).

“Data will be released upon the publication of this paper.

to train and evaluate the human-like reasoning
ability of models.

* We evaluate several state-of-the-art NLP genera-
tive models on SZG . > The best generator models
can only generate valid textual entailment 59.1%
of times. Further, to motivate future advances,
we provide detailed analysis to show significant
gaps between baselines and human performance.

2 Generating Textual Entailment

In this section, we first give the formal definition of
textual entailment based on (Korman et al., 2018),
and then describe the task of generating textual
entailment (GTE).

Definition 1 The entailing and entailed texts are
premise (P) and hypothesis (H), respectively. P
textually entails H if and only if, typically, a hu-
man reading P would be justified in inferring the
proposition expressed by H from the proposition
expressed by P.

Textual entailment in NLP is a directional rela-
tion between text fragments. The relation holds
whenever the truth of one text fragment follows
from another text. Textual entailment is not the
same as pure logical entailment — it is a more re-
laxed definition. Another popular definition is that
a human reading P would infer that H is most
likely true (Dagan et al., 2010). For the detailed
discussions of these two definitions please refer to
(Korman et al., 2018).

In this work, we explore textual entailment in
a generative paradigm. Specifically, given the
premises that contains only two premises P1 and
P2, the GTE task requires to generate the single-
step textual entailment. Note that entailment must
be based on two premises, neither of which alone
can infer the entailment. For simplicity, we fo-
cus on the more basic settings: two premises and
single-step. Even with this basic settings, there is
still a huge gap between current models and hu-
man performance (see Section 5). More complex
scenarios can be leave for future work, such as
multi-premises, multi-step and multi-entailment.

3 SEG: Data Collection and Analysis

SEG is a carefully designed benchmark for generat-
ing textual entailment, consisting of 15k instances
in total, and each contains a pair of premise state-
ments, and a human-annotated entailment if valid,

SIn this paper, generative model refers to the seq2seq
model (e.g., T5, BART) or auto-regressive model (e.g., GPT2).
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P1: If heat energy of a liquid is decreasing then that liquid can freeze.
P2: The temperature of the liquid will fall.

= The liquid can freeze.

Figure 2: Dataset collection workflow, consisting of two stages: 1) collecting premises from a natural knowledge base
named WorldTree, where knowledge is organized in tables, and 2) for those instances with valid conclusions, collecting from
complementary transformations. During each stage, we hire workers to annotate and check the validation of entailments.

or a no valid entailment (NVE) if not. Overall,
data collection procedure consists of two stages
(Figure 2). To break the two limitations of adapted
existing datasets mentioned in Section 1, we first
retrieve two statements from knowledge base (KB)
as two premises, who share the middle term with
exactly the same lexical forms (Section 3.1). Then
we construct several complementary instances by
manually designing 7 transformations, which re-
quires that the model can make valid entailment by
distinguishing those subtle but semantically impor-
tant lexical differences (Section 3.2). Furthermore,
during human annotation, we design strict strate-
gies to control the quality of annotation (Section
3.3). Finally we provide a detailed analysis of the
proposed SEG (Section 3.4).

3.1 Stage 1: Collecting from Knowledge Base

In this section, we first describe the adopted KB.
Then, we detail how to collect instances based
on the KB, which follows the collection order of
P1 — middle term — P2 — entailment. All
steps are automatical, except for the collection of
entailment, which requires human annotation.

Knowledge Base WorldTree (Xie et al., 2020),
a natural KB, is adapted as our source corpus.
WorldTree provides a tablestore of sentences in
terms of science and general knowledge. Each ta-
ble is organized by a particular kind of relation

(e.g.,"if-then” relation in Figure 2), ® and columns
of the table represent various roles or arguments to
the specific relation.

Collecting P1 Given the WorldTree, we first ran-
domly select a cerain table, and then randomly
choose a sentence as P1 from the table.

Collecting Middle Term After obtaining a P1
in the table, we carefully select certain columns
from a sentence in WorldTree as the middle term.
The selection guideline is through human-designed
templates listed in Appendix A.2.

Collecting P2 Given a P1 and a middle term,
we use elasticsearch to retrieve P2 from the whole
WorldTree. The retrieved candidates are then fil-
tered based on the relevance scores (> 7) returned
by the search engine. Finally, we keep at most 3
candidates as P2.

Collecting Entailment After obtaining P1 and
P2, we work with an annotation service provider
to annotate entailments for first-staged premises.
Details are shown in Section 3.3.

3.2 Stage 2: Collecting from Complementary
Transformations

After stage 1, we observe that despite the collec-
tion of instances with no valid entailment, there
are middle terms with the same lexical form. To

SThere are 81 kinds of relations in total.



Table 2: Descriptions of the functions of different transformations. “ALexical” and “ASemantic” denote the change of lexical

and semantic caused by a certain transformation.

Transformation Functions ALexical ASemantic
Synonym Require to focus on semantic associations instead of shallow word overlap. small small
Antonym & Negation ~ Require to capture small perturbations, which may flip the entailments to NVE. small big
Hypernym & Hyponym Require an extra monotonicity inference step to draw a new conclusion. small small
Paraphrase Require to focus on semantic associations instead of sentence structure. big small
DoubleNegation Require to judge whether a double negative forms a positive. small big

eliminate this obvious shortcut, we make careful
transformations for each instance with valid en-
tailment to obtain complementary instances. The
criterion for the transformation is to perturb the
original instance (only two premises) in two dimen-
sions lexical and semantic, e.g., similar lexical and
similar semantic, similar lexical and different se-
mantic, different lexical and similar semantic. By
constructing complementary instances, it can help
to train and evaluate the human-like reasoning abil-
ity of the models, i.e., to generate valid entailment
by distinguishing those lexically subtle but semanti-
cally important differences. Next, we describe how
to collect premises from transformations automati-
cally, and how to annotate entailment manually.

Collecting Premises from Transformations To
construct complimentary instances, we design 7
transformations to cover the diversity on lexical and
semantic (Table 2), including synonym, antonym,
negation, hypernym, hyponym, paraphrase, double
negation. It is possible to design more transforma-
tions or to combine them, and we leave it as future
work. Details on how we apply these transforma-
tions can be referred in Appendix A.3.

Collecting Entailment  After obtaining premises
through transformations, We take the same proce-
dure as in the stage 1 to collect the entailment.

3.3 Ethics and Quality Control

Before official annotation, we first conduct a trail
phase for all candidate workers to fully understand
the task and test their entailment ability. And we
selected 80 qualified workers, both of them can
achieve 80% accuracy on the trial data. Then we
conduct a training session for selected workers to
further enhance their science knowledge and basic
inference skills needed in our data. All workers are
categorized into two teams: a team of entailment
constructors and a team of entailment checkers.
The annotation process consists of two steps: 1)
a construction step to write entailments given two

premises, and 2) a double-round checking step for
quality control.

Construction During construction stage, each in-
stances with two premises are shown to three ran-
dom workers. Workers need to write an entailment
sentence if a valid entailment can be generated, oth-
erwise give “NVE” label. Entailments are required
to be: 1) derived from both premises instead of
none or only one of them, and 2) fluent and no
syntax errors.

First-Round Checking Afterwards, an instance
with two premises and three candidate entailments
is exposed to five checkers for first-round checking.
Each checker should make an approval/disapproval
decision for the annotation according to the two
criterions mentioned in the construction stage. A
candidate entailment is regarded as accepted only
if at least 4 checkers approved the entailment an-
notation. Otherwise, a rejected entailment is sent
back to the construction step for revision. Finally
for each instances, we have three valid candidate
entailments.

Second-Round Checking Instances with three
candidate entailments after first-round checking are
further fed into another two checkers for a second-
round checking step. Here the two checkers focus
on whether the two premises can necessarily draw
a one-and-only entailment. If multiple entailments
with completely different semantics can be derived
from the two premises, the instance is abandoned.
Finally the two checkers reach a decision by dis-
cussion, to choose an entailment from the three
candidates as the gold entailment.

We paid RMB¥1 per constructor per instance for
construction step, RMB¥0.96 per checker per in-
stance for first-round checking, and RMB¥0.8 per
checker per instance for second-round checking’.

"Workers consist of both part-time and full-time employ-
ees, where we ensure full-time employees work at most
8 hours per day. And the local minimum hourly wage is
RMB¥23 per hour.



Table 3: Dataset statistics. “#Total” denotes the number of
instances constructed in each stage or under each transforma-
tions. “#Pos” and “#Neg” denote the number of instances with
and without valid entailments respectively. “%Pos” denotes
the ratio of instances with valid entailments.

#Total #Pos #Neg  %Pos

Stagel 6,677 3,140 3,537 0.47
Synonym 1,309 979 330 0.748
Antonym 1,181 299 882 0.253
Hypernym 999 241 758 0.241
Hyponymy 1,189 712 477 0.599
Paraphase 1,362 1,155 207 0.848
Negation 1,067 430 637 0.403
DoubleNegation 1,197 455 742 0.38
Stage2 8,304 4,430 3,874 0.467
Overall 14,981 7,570 7,411 0.495

For the construction step, a worker can produce 3
entailments during two minutes. And averagely it
costs a checker 30 seconds in the first-round check-
ing and 20 seconds in the second-round checking.
During the process of collecting SEG , all of the
natural corpus we used are sourced from publically

available resources®.

3.4 Dataset Statistics

Overall SEG has 14, 981 instances. Summary statis-
tics are shown in Table 3. In the first stage, the
numbers of examples with and without valid en-
tailments are comparable, validating the efficiency
of our method to identify textual entailment from
natural knowledge base. In the second stage, exam-
ples under different transformations are unbalanced
across labels, as denoted by “%Pos”. Transforma-
tions in terms of “Synonym”, “Hyponymy” and
“Paraphase” tend to keep the labels of examples
unchanged while others flip the labels. The dataset
is further split into training, validation and testing
sets with 12648, 1826, 3708 examples respectively.
Examples transformed from the same original in-
stance are guaranteed in the same split.

4 Experimental Settings

We design experiments to benchmark state-of-the-
art NLP generative models on the proposed gen-
erating textual entailment dataset SEG . We intro-
duce different tasks (Sec 4.1) to evaluate models
from different perspectives under several automatic
evaluation metrics (Sec 4.2), and also propose an
ensemble metric for better evaluation.

8WorldTree corpus can be downloaded at http://
cognitiveai.org/explanationbank/, and during
transformation we use WordNet(database and associated tools
can be downloaded at https://wordnet .princeton.
edu/download)

4.1 Task Definition

Since instances in SEG are annotated with either
“NVE” labels or valid entailments, we define three
tasks to evaluate models from different perspec-
tives. For all of the three tasks, the inputs are con-
catenation of two premises.

Task 1: Classification Since nearly half of sam-
ples in SEG are with no valid entailments, this task
aims to evaluate the ability of models to distinguish
whether two premises can generate valid entail-
ments. Given two premises, the output is a binary
label, “yes” for premises having valid entailments
and “no” otherwise.

Task 2: Generation For samples with valid en-
tailments, this task aims to evaluate the quality
of model-generating entailments. Consider sam-
ples with valid entailments in SEG , the output is
to generate the textual entailment from given two
premises.

Task 3: Multi-task This task aims to evaluate
whether models can perform classification and gen-
eration tasks simultaneously. The outputs of this
task can be either a short phase “no valid entail-
ment” indicating “NVE”, or any valid entailments
derived from premises.

4.2 Evaluation Metrics

We adopt different evaluation metrics for classifi-
cation and generation tasks.

For classification task, besides standard accuracy,
we introduce two new metrics, pairwise accuracy
and group accuracy. Pairwise accuracy evaluates
a pair of predictions as accurate if both predic-
tions of the original and a transformed instance
are correct. Similarly, group accuracy evaluates
as accurate if predictions of the original and all
its transformed instances, which form a group, are
correct.

For generation task, we consider the following
automatic metrics: BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), BERTScore (Zhang et al.,
2019), SentenceBERT (Reimers and Gurevych,
2019) and BLEURT (Sellam et al., 2020). For
BLEURT, we also consider a finetuned version
BLEURT'®. We show the agreement of these met-
rics with human ratings in Table 4. As the table

To finetune BLEURT, we annotate 1,000 pairs of refer-
ence and candidate textual entailments for their validations
(valid ones score “1” and invalid ones score “—1"" ). Among
them, 800 pairs are used for finetuning and 200 for testing
correlations with human ratings.
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Table 4: Pearson correlation 7 with human ratings of dif-
ferent metrics of text generation. BEURT' denotes BLEURT
finetuned on human ratings.

Table 5: Performance(%) of baseline models on classifica-
tion task. “Standard” denotes standard accuracy. “Pairwise”
and “Group” denote pairwise and group accuracy respectively.

Metric BLEU ROUGE-1 ROUGE-2 BERTScore Model |Standard Pairwise Group |Precision Recall F1-score
T 0.393 0.487 0.447 0.448 T5 72.4 55.1 35.7| 69.8 79.2 742
Metric[SentenceBERT BLEURT BLEURT' Ensemble BART| 73.7 539 350 750 714 732
p 0518 0571 0.653 0707 GPT2| 70.0 471 278 | 703 69.8 70.0
- - - - LSTM| 64.8 41.1 245| 664 60.3 63.2

shows, most automatic metrics have weak corre-
lations with human ratings. This may be because
most metrics mainly focus on textual similarity
rather than logical validation. Finetuning BLEURT
on human ratings can improve correlations. In-
spired by this, we further train a model-based (MLP
classifier used here) metric, denoted as the ensem-
ble metric, by combining the above metrics as input
features to predict human judgments. The ensem-
ble metric exhibits the best correlation with human
judgments as shown in Table 4. Once we get the
ensemble metric, we can use it to evaluate the val-
idation of the generated entailments. We define
standard validation as the fraction of valid entail-
ments among all generated ones. Similar to pair-
wise/group accuracy, we also introduce pairwise
validation and group validation for generation
task, which evaluate as valid if all generated entail-
ments in a pair or group are valid.

Baselines We consider the following generative
models as the baselines: LSTM (Hochreiter and
Schmidhuber, 1997), GPT2-large (Radford et al.,
2019), BART-large (Lewis et al., 2019) and T5-
large (Raffel et al., 2019). Details on training these
models are listed in Appendix A.4.

5 Results

5.1 Classification Task

Table 5 shows the performance of baseline models
on classification task. Overall, all models achieve
mediocre performance in terms of standard ac-
curacy while the pairwise and group accuracy is
low. This indicates that the models can infer each
premise independently with confidence, but on the
other hand struggle to give consistent judgements
for the complementary instances.

For the comparison of different models, T5 and
BART achieve the highest performance of most
metrics among all baselines. T5 has a higher recall
rate while BART has a higher precision rate. This
indicates that TS tends to predict that the given
premises have valid entailments while BART tends
to be the opposite.

5.2 Generation Task

Table 6 shows the performance of baseline models
on the generation task. Overall, pre-trained mod-
els achieve mediocre performance in terms of the
validation metric, while LSTM can barely generate
valid entailments. On the whole, TS model outper-
forms others models. In 66% cases, it can generate
valid entailments. In 42.3% cases, it can generate
valid entailments for both the original and trans-
formed examples. BART performs worst among
three pre-trained models. We find that BART tends
to duplicate one premise as the conclusion. This
may be related to the objective of reconstructing
the input during the model pre-training. In terms
of different evaluation metrics, even though the en-
tailments generated by LSTM are almost invalid,
the score of BLEU still achieves 31.0. The same
applies to metrics like ROUGE. This implies that
the absolute values of these metrics are not very
meaningful for this task.

5.3 Multi-Task

Under this task, we investigate whether the baseline
generative models can perform classification and
generation tasks simultaneously. Table 7 shows the
performance of baseline models on this task.

The experimental results show that the perfor-
mance of the baselines is poor under this task. The
accuracy on the multi-task declines compared with
that on classification task, indicating that it is chal-
lenging for the models to perform the classification
and generation task simultaneously. Among all
models, the best generator model can only achieve
59.1% in terms of validation, which means that
even SOTA pre-trained models can only generate
valid textual entailment 59.1% of times.

5.4 Ablation Studies

Performance under Different Transformations
We report the performance of models under differ-
ent transformations in Figure 3 (denoted by “&”
and “<&" for classification and generation task
respectively).



Table 6: Performance of baseline models on generation task.

“Human” denotes human evaluation on 100 random samples.

“Group™/“Pairwise” denote group/pairwise validation respectively. “BLEURT'” denotes BLEURT finetuned on human ratings.

Model[Human Standard Pairwise Group|BLEU ROUGE-1 ROUGE-2 BERTScore SentenceBERT BLEURT BLEURT'
T5 72.0 66.9 50.8 42.3 | 554 79.9 65.3 0.875 0.910 0.762 0.469
BART| 56.0 47.8 35.6 28.3 | 50.6 75.8 60.9 0.852 0.854 0.708 0.135
GPT | 65.0 57.5 41.2  33.7 | 48.5 76.2 59.1 0.852 0.891 0.727 0.353
LSTM| 15.0 11.6 8.0 4.8 | 31.0 57.9 39.4 0.738 0.640 0.512  —0.633
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Figure 3: Performance(%) of the baselines on the classification and generation task under different transformation. “" and

“<&" denotes models trained with complementary examples. “-¥-" and “

” denotes models trained without complementary

examples. We show the performance changes brought by complementary examples under different transformations via stacked
bar. Performance changes of each transformation are indicated by the length of bars of different colors.

Table 7: The overall performance(%) of baseline models on
multi-task. The metric validation is evaluated on the whole
test set. A generated conclusion is evaluated as valid if both
the predicted category is correct and the conclusion is valid.

Model Accuracy Validation Human
Standard Pairwise Group|Standard Pairwise Group
T5 65.4 48.5 28.8 | 549 30.6 16.0 | 55.0
BART| 69.5 409 243 | 59.1 23.3 13.6 | 58.0
GPT | 67.3 38.0 229 | 58.7 24.3 13.1| 57.0
LSTM| 60.6 24.3 14.2 | 50.6 8.3 59 | 51.0

Overall, the models perform well on the orig-
inal and paraphased instances. For classification
task, the models are poor at classifying instances
under “Negation” transformation. TS5 and GPT2
can only achieve 50% classification accuracy on
these examples, nearly the same as the random
guess. What’s more, in terms of “Synonym” trans-
formation, the baselines except T5 can only achieve
about 60% accuracy. This implies that when we
transform the middle terms of given premises into
their synonyms, these models may fail to capture
the semantic associations without word overlap.
For generation task, the models perform poor un-
der transformations, such as “Antonym” and “Dou-
bleNegation”, with no more than 40% validation
under these two transformations.

Influence of complementary examples To inves-
tigate the influence of complementary examples
collected in stage 2, we train baseline models with-
out complementary examples, e.g. only with data
collected in the first stage. We then evaluate the
trained models on the classification and generation
task and report the performance (Table 8).

Table 8: Performance of baseline models trained on exam-
ples without complementary examples of the classification
(Accuracy) and generation task (Validation) respectively.

Accuracy Standard Pairwise Group
T5 68.7(3.6 1) 46.4(8.7])) 26.2(9.41))
BART 69.8(4.0)) 48.0(6.0])) 26.9(8.2))
GPT 67.5(2.61)) 39.8(7.4])) 21.1(6.7))
LSTM 60.7(4.1]) 32.9(8.2)) 18.1(6.4))

Validation Standard Pairwise Group
T5 54.6(12.3 |) 40.4(10.4 ) 33.7(8.6 )
BART 43.6(4.2]) 29.1(6.5])) 22.0(6.3))
GPT 55.8(1.8)) 39.6(1.6)) 30.0(3.7))
LSTM 5.7(5.9 1)) 2.6(5.5 1) 1.5(3.2 ))

Overall, the performance of all models has de-
clined without training on complementary exam-
ples. For classification task, the group and pair-
wise accuracy decline more than the standard accu-
racy. But for generation task, all three metrics drop



evenly. Among all models, GPT?2 is least affected
by complementary examples with validation scores
decrease by only 1% ~ 4%.

We also report performance under different trans-
formations of the classification and generation task
respectively (denoted by ““¥- and ““¥” in Fig-
ure 3). we further quantitatively compare the per-
formance changes brought by complementary ex-
amples under different transformations. We find
that the complementary examples mostly benefit
“Antonym” and “DoubleNegation” transformation
across different models and benefit performance on
original examples least.

5.5 Transfer from Related Datasets

In this section, we evaluate models transferred from
other datasets to our test set. This experiment is
conducted to show that whether inference abilities
acquired from other dataset are sufficient to han-
dle our test cases. We compare models trained
on the following datasets: EntailmentBank (Dalvi
et al., 2021), QASC (Khot et al., 2020), ParaP-
attern (Bostrom et al., 2021), e-SNLI (Camburu
et al., 2018) and RuleTaker (Clark et al., 2020).10
We evaluate TS model under the same setting with
Generation Task. Specifically, we evaluate mod-
els only on instances with valid entailments, based
on the consideration that previous datasets don’t
include the cases of “NVE”.

0.7 A

0.6

Validation

—— mys
EntailmentBank&

—&— QASCe
—&— ParaPattern®

—&— e-SNLIs
—&— RuleTaker®

Figure 4: Validation of the T5 model trained on different
datasets under the generation task. “&’” denotes datasets built
on logic templates. “#” denotes datasets built with human
annotations. “All” denotes the overall performance on the gen-
eration task, while other labels of x-axis denote performance
under different transformations.

Figure 4 shows the validation of conclusions
' Among them, RuleTaker and ParaPattern are datasets

constructed by filling logic templates. The other three datasets
are built with human involved.

generated by TS trained on different datasets. As
the figure shows, performance varies widely across
datasets. TS trained on RuleTaker and e-SNLI can
hardly transfer to our dataset. ParaPattern, consist-
ing of two logical types, substitution and contra-
position, is not enough to cover inference types
in our dataset. EntailmentBank and QASC show
higher transferability compared with the above
three datasets. However, they still have difficul-
ties in solving transformations of “Antonym” and
“DoubleNegation”.

6 Related Work

Camburu et al. (2018); Peng et al.; Rudinger et al.
(2020) built explanation generation datasets by ex-
tending SNLI (Bowman et al., 2015) with human-
annotated full-sentence explanations of the classi-
fication decisions. Rajani et al. (2019) collected
human explanations for commonsense reasoning
built on top of CommonsenseQA (Talmor et al.,
2019) and introduced CoS-E. Bhagavatula et al.
(2020) formally proposed language-based abduc-
tive reasoning. They built the ART dataset by
crowdsourcing the plausible and implausible ex-
planation options for observations. Our formula-
tion is critically distinct from abductive reasoning.
ART requires reasoning about commonsense impli-
cations of observations, with less focus on logical
inference. However, we focus more on logical rea-
soning rather than commonsense reasoning, since
the knowledge required for inference is explicitly
provided in premises.

Combining multiple premises to form a conclu-
sion overlaps with the idea of multi-hop reason-
ing. In the context of textual question-answering
(QA), recent work has shown that deep models can
perform multi-hop reasoning by generating proof
graphs, with facts and rules expressed in natural
language (Clark et al., 2020; Dalvi et al., 2021;
Tafjord et al., 2020; Sun et al., 2021; Khot et al.,
2020). Inspired by this, we dig further into the
basic and fundamental single-step inference and
build more complex reasoning scenarios to evalu-
ate pre-trained generative models.

7 Conclusion

We define the task of generating textual entailment
and build a challenging dataset SEG . For future
work, benchmarks can be built towards multi-hop
textual entailment generation to enable complex
reasoning capabilities in Al systems.
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A Appendix

A.1 Adapting Existing Datasets into
Generative Textual Entailment
Paradigm

Single-step entailment generation scenario implic-
itly exists across various tasks, such as multi-hop
QA and explainable NLI.

In the task of explainable NLI, e-SNLI (Cam-
buru et al., 2018) extends the SNLI(MacCartney
and Manning, 2008) dataset with additional human-
annotated natural language explanations of the
entailment relations. To adapt e-SNLI into
generative paradigm, we extract premise and
explanation as the pair of premises, and the
hypothesis as the conclusion.

In the task of multi-hop QA, RuleTaker(Clark
et al., 2020) targets at generating the answer for
a question by emulating deductive reasoning over
facts and rules, which are expressed in natural lan-
guage. Tafjord et al. (2020) augments RuleTaker by
introducing logical implications of statements. We
extract all 1-step implications derived from only
two facts or rules. The facts or rules can
be used as the premises and the implication as
the conclusion. EntailmentBank (Dalvi et al., 2021)
can be used to generate explanations in the form of
multi-step entailment trees, namely a tree of entail-
ment steps from facts, through intermediate con-
clusions, to the final answer. The entailment
steps are the data we need: deriving intermediate
conclusions from given facts. QASC is a dataset
for two-hop QA. It provides annotation for support-
ing facts as well as their composition to answer
a question. The annotated facts can be adapted
into generative paradigm by using two facts
as the premises, and the composed fact as the
conclusion.

A.2 Construct Premises based on WorldTree
Corpus

For each table in the WorldTree, we manually de-
fine templates describing columns selected for re-
trieving candidate premises. Each template defines
two types of columns. The required columns con-
taining content which must be satisfied when build-
ing query for search, while the preferred columns
are used as an additional ranking criterion when
multiple sentences satisfying the required columns.
In addition, we stem the words and remove stop-
words in sentences before querying.
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A.3 Construct Complementary Examples

In this part, we first describe how we apply the first
four transformations on one premise. The first four
transformations are based on lexical replacement
of the middle term. To identify the middle term of
given premises, we first stem words and remove
stopwords in two premises. Then, we use the com-
mon words contained in both premises as the mid-
dle term. Next, for each word in the middle term,
we can replace it with its synonyms, antonyms, hy-
pernyms or hoponymys from WordNet. As there
are some cases where using WordNet for substitu-
tion leads to unnatural sentences due to the context
mismatch, we determine which "sense" (meaning)
of a word in the WordNet is activated before word
substitution. We adopt a BERT-based model (Yap
et al., 2020) to solve this word sense disambigua-
tion problem. To further ensure data quality, we
use a grammar error correction tool Gingerit !!
to correct spelling and grammar mistakes in the
perturbed premises.

For the latter three transformations, we use
TextFlint (Wang et al., 2021) to transform premises
to its paraphased, negative and double negative
forms and use Gingerit for grammar error correc-
tion.

The above effort are made to ensure the fluency
of the transformed premises. Though, annotators
are allowed to refuse to annotate certain samples
if they think the premises are not natural. The
proportion of rejected samples is limited to below

5%.

A.4 Experimental Details

We describe details on the training of baseline mod-
els here. For classification task, all baseline models
are fed with concatenation of two premises and
output labels of “yes/no”, indicating whether or
not the given premises entail any valid conclusions.
For generation task, LSTM, BART and T5 mod-
els are trained by taking the concatenation of two
premises as input and output conclusions. GPT2
is finetuned on data by concatenating the premises
and conclusions, to maximize a causal language
modeling objective . During inference, GPT2 takes
in two premises and generates the conclusion.

All implementations are based on Fairseq'?. The
LSTM model consists of a 2-layer encoder and 2-
layer decoder with hidden size set to 512. All mod-

"https://gingerit.readthedocs.org
Phttps://github.com/pytorch/fairseq



els are train to maximize the cross entropy loss with
label smoothing set to 0.1. The mini-batch size
is 32. The training epoch is 10 for pretrain mod-
els and 20 for LSTM. The models are optimized
via Adafactor (Yap et al., 2020) with polynomial
learning rate decay. The learning rate is 2e-5 for
pretrained models and le-3 for LSTM. The beam
size is set to 1 for GPT2 and 5 for other models.
All models are train on 1 Tesla V100 GPU.

A.5 Inference Types

To understand the inference challenges in our
dataset, we analyze model performance under dif-
ferent inference types. We identify 6 challenging
high-level categories of inference in our dataset
and manually select 50 samples for each inference
type. A T5-large model trained on multi-task is
evaluated in terms of classification accuracy and
generation validation. Table 9 shows the identified
inference types and the performance of T5. More
descriptions about these inference types and typical
examples can be referred in Appendix A.5.

Table 9: Standard accuracy and validation(%) of T5 under
different inference types.

Inference Types Accuracy Validation
Containment Relationship |  0.78 0.66
Relational Inference 0.62 0.55
Modal Judgement 0.56 0.54
Cause-Effect 0.65 0.64
Hypothetical Inference 0.64 0.52
Monotonicity Inference 0.54 0.44

We identify six challenging high-level categories
of inference in our dataset. Specifically, contain-
ment relationship inference requires a determina-
tion of the containment relationship of two objects.
Relational inference requires relational judgments
between two objects. Modal judgement refers to
inference requiring a determination of the possibil-
ity and necessity of events. Cause-effect inference
requires to determine the response of an effect vari-
able when a cause of the effect variable is changed.
hypothetical inference Hypothetical inference re-
quires to deduce from a specific rule, which is spec-
ified as one of the given premise. Monotonicity
inference requires to replace a phase with a more
specific or general one to derive a valid conclusion.

For further understanding of model behavior un-
der different inference types, we list several typical
cases and model outputs in Table 10.
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Table 10: Typical cases of six inference types identified in our dataset SEG . We also provide conclusions generated
by TS5 and human evaluations on these conclusions.

Containment
Relationship

premisel: index fossils are formed from species that existed for a relatively short time.
premise2: trilobite fossils are a kind of index fossil.

conclusion: trilobite fossils are formed from species that existed for a relatively short time. v

premisel: limestone is formed by water evaporating from a solution of water and minerals.
premise2: limestone is a kind of sedimentary rock.

conclusion: limestone is formed by water evaporating from a solution of water and minerals. X

Relational
Inference

premisel: magnesium is less dense than nickel.
premise2: silicate is less dense than nickel.
conclusion: magnesium and silicate are less dense than nickel. 4

premisel: a law is more tested than a theory.
premise2: a theory is more tested than a hypothesis.

conclusion: no valid conclusion. X

Modal
Judgement

premisel: crops does not cause nutrients in the soil to increase.
premise2: a decrease in soil fertility has a negative impact on environment.

conelusion: no valid conclusion. ¥’

premisel: elements are not impure substances.
premise2: a pure substance is made of only one kind of atom.

conelusion: no valid conclusion. X

Cause
Effect

premisel: using less resources usually causes money to be saved.
premise2: saving money has a positive impact on a person.

conclusion: using less resources has a positive impact on a person. 4

premisel: using less resources usually does not cause money to be saved.
premise2: saving money has a positive impact on a person.

conclusion: no valid conclusion. X

Hypothetical
Inference

premisel: an atom is always neutral charged.
premise2: if an atom has neutral charge, then the atom will have same numbers of protons and electrons.

conclusion: the atom has same numbers of protons and electrons. v

premisel: if something is made of a material then that something contains that material.
premise2: a kit usually contains materials for assembling something.

conclusion: a kit usually contains materials for assembling something. X

Monotonicity
Inference

premisel: Montenegro is located in the northern geographic region.
premise2: if it is winter in the northern hemisphere then it is summer in the southern hemisphere.

conclusion: if it is winter in Montenegro then it is summer in the southern geographic region. X

premisel: Croatia is located in the northern, eastern hemisphere.
premise2: march is cold in temperature in northern hemisphere.

conelusion: no valid conclusion. X
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