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Abstract

We focus on the human-humanoid interaction problem
optionally with an object. We propose a new task named
online full-body motion reaction synthesis, which generates
humanoid reactions based on the human actor’s motions.
The previous work only focuses on human interaction with-
out objects and generates body reactions without hand. Be-
sides, they also do not consider the task as an online setting,
which means the reactor can only see the current informa-
tion and cannot perceive the future actions of the actor. To
support the task of online full-body motion reaction syn-
thesis, we construct two datasets named HHI and CoChair
and propose a unified method. Specifically, we encode the
motion of human actors and objects from an interaction-
centric view through a social affordance representation.
Then we leverage a social affordance forecasting scheme
to enable the reactor to predict based on the imagined fu-
ture. We also use SE(3)-Equivariant Neural Networks to
learn the local frame to canonicalize the social affordance.
Experiments demonstrate that our approach effectively gen-
erates high-quality reactions on HHI and CoChair. Fur-
thermore, we also validate our method on existing human
interaction datasets Interhuman and Chi3D in real-time at
25 fps. Website: https://yunzeliu.github.io/iHuman/

1. Introduction

In various applications including VR/AR, games, and
human-robot interaction, there is a strong demand for gen-
erating reactive humanoid characters or robots based on the
actions of human actors. Such a reaction needs to occur
in real-time, dynamically responding to the movements of
the human actor. Furthermore, in many cases, these inter-
actions involve objects (e.g., a human and a humanoid col-
laboratively carrying a chair) and call for an emphasis on
the precise movements of humanoid hands in addition to

the overall body motion. Addressing the challenge of syn-
thesizing humanoid1 reactions in these contexts can signifi-
cantly enhance the social experience of humans interacting
with humanoids.

Previous research on humanoid motion synthesis has
mainly focused on single humanoid movements [4, 15, 19,
23, 40, 49, 56] or interactions with objects [13, 51, 54, 55,
57, 59]. Some recent studies [31, 49], have explored the
synthesis of social interactions between two humanoids.
However, these studies have limitations. Firstly, they pri-
marily focus on the offline generation between two hu-
manoids, which is not suitable for the asymmetric reac-
tion synthesis setting where the humanoid continuously re-
sponds to the dynamic human actor in an online manner.
Secondly, they overlook the fact that humans often interact
with objects. Thirdly, recent studies [31, 49] do not con-
sider synthesizing full-body motions involving both body
and hand motions, which are crucial for various interac-
tions such as handshakes or collaborations. Therefore, syn-
thesizing full-body humanoid reactions online considering
both human actors and the possible objects goes beyond the
scope of existing works, presenting three major challenges:
1) representing complex motions of a human actor and op-
tionally an object, 2) interpreting the human actor’s inten-
tions for prompt reactions by the humanoid, and 3) support-
ing detailed reactions involving both coarse-grained body
movements and fine-grained hand movements.

To address the challenges mentioned, we draw inspira-
tion from affordance learning. Our approach involves en-
coding the motion of the human actor (possibly with an ob-
ject) as a social affordance representation, capturing sup-
ported and expected social interactions at both the body and
hand levels. Subsequently, we learn the humanoid’s reac-
tion based on the social affordance representation. We in-
troduce an online social affordance forecasting scheme to

1In this paper, we use human to denote real people initiating interac-
tions and humanoid to indicate the virtual character reacting in response.
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Figure 1. We propose a new task named online full-body motion reaction synthesis optionally with an object. We construct two datasets
HHI and CoChair to support the task. We propose Social Affordance Forecasting and Canonicalization techniques to generate realistic
reactions and establish benchmarks.

enable the humanoid to react promptly. Furthermore, we
employ a canonicalization technique to simplify the distri-
bution of social affordance and facilitate learning.

Specifically, our method handles a sequential input data
stream comprising the human actor’s pose at each time
step. When objects are involved, the input also includes
a stream of 6D-transforming 3D shapes. To unify the in-
put with and without objects, we introduce the concept of
“affordance carrier”, which can be either the real object in
human-object-humanoid interactions or just the reactor in a
rest state in human-humanoid interaction. Centering around
the affordance carrier, we propose a social affordance rep-
resentation encompassing the actor’s motion, the carrier’s
dynamic geometry, and the actor-carrier relationship up un-
til each time step. In an online setup, the humanoid reac-
tor can only access present and past observations, restrict-
ing its social affordance to short-sighted information and
making prompt reactions challenging. To overcome this,
we first propose a social affordance forecasting scheme to
enable the reactor to imagine the future and react accord-

ingly. However, we find directly predicting the reaction
based on the forecasted social affordance representation not
satisfactory enough. It is because the actor’s motion ex-
hibits diverse patterns, complicating the social affordance
and increasing the learning difficulty. To address this, we
observe that the patterns of the actor’s motion become more
compact when viewed from the carrier’s local coordinate
system. We, therefore, learn such local frames to canoni-
calize the social affordance through SE(3)-Equivariant net-
work design. Finally, we learn to predict the humanoid’s
online reaction through a 4D motion transformer.

To validate the effectiveness of our design and also to
address the lack of large-scale full-body reaction-synthesis
benchmarks, we have gathered two large-scale full-body
social interaction datasets named HHI and CoChair. HHI
covers a diverse range of human-human interactions with a
clear actor and reactor while CoChair focuses on human-
object-human interaction. Our method consistently out-
performs previous methods in all metrics. Moreover, our
method can provide more reasonable and prompt full-body



reactions and better collaboration with human actors. We
also validate our method on previous datasets Interhuman
and Chi3D.

The key contributions of this paper are threefold: i) we
propose a new task named online full-body motion reac-
tion synthesis optionally with an object and establish bench-
marks; ii) we propose a unified solution to reaction synthe-
sis with or without objects by social affordance canonical-
ization and forecasting, significantly outperforming base-
lines; iii) we construct two datasets HHI and CoChair to
support the research on full-body reaction synthesis tasks.

2. Related Work
Human Motion Generation. Human motion generation
is to generate human motion conditioned on different sig-
nals. A line of works[4, 9, 11, 19, 33, 39, 49, 52] propose to
generate human motion conditioned on action label. Some
works[1, 15, 20, 23, 25, 40, 56] directly generate human
motion conditioned on text description. There are some
works[26, 28, 30] that generate human motion conditioned
on music and speech. Recently, some works[31, 44, 46, 49]
have started to focus the human-human interaction synthe-
sis. [31] propose a new dataset with natural language de-
scriptions and design a diffusion model to generate human-
human interaction. However, this method cannot be di-
rectly applied to reaction synthesis because it uses CLIP[41]
branch to extract text features. [49] presents a GAN-
based Transformer for action-conditioned motion genera-
tion. However, it cannot generate full-body motions and
handle the presence of objects.
Human Reaction Generation. We focus on motion gener-
ation conditioned on another human motion. Human reac-
tion generation is conditioned on the actor’s motion and re-
quires the reactor to provide a reasonable response, which is
very important in the fields of VR/AR and humanoid robots.
[12] propose a Transformer network with both temporal and
spatial attention to generate reactions. [6] propose to pre-
dict human intent in Human–Human interactions. How-
ever, they are only concerned with the generation of body
motions and cannot generate hand motions. At the same
time, they only focus on the interaction between humans
and cannot generate reasonable reactions in the presence of
objects. In addition, reaction synthesis should be in an on-
line setting, meaning that the reactor cannot observe future
information, which is also not discussed in previous work.
There is no dataset providing full-body human-human inter-
action and human-object-human interaction with clear actor
and reactor, so in this paper, we first construct two datasets
and propose a novel method to generate realistic reactions.
Human Motion Prediction Human motion prediction [8,
14, 22, 29, 36, 37, 45, 45, 47, 58] is a traditional task
widespread attention. A line of works predicts human mo-
tions in an encoding-decoding way [7, 16, 34, 42, 50]. Some

works carefully designed loss constraints [3, 21, 27] to gen-
erate diversity and realistic human motions. Without multi-
stage training,[10] propose a human motion diffusion model
to predict human motion in a masked completion fashion.
Besides, [51] propose to predict human motion with the ob-
ject as an HOI sequence and use interaction diffusion and
interaction correction to predict the future state of human
and object. In this paper, we focus on human-human and
human-object-human interactions. We propose to use a mo-
tion forecasting module to improve the ability of the reactor,
thus relying on both human motion prediction and human-
object interaction prediction methods.

3. Constructed HHI and CoChair Datasets

To support our proposed task, we propose two datasets
named HHI and CoChair. HHI is the first large-scale dataset
with diverse interactions for whole-body reaction synthe-
sis. It not only provides motion capture of the whole body
but also designs interaction with clear initiators. Com-
pared to the challenging free-form interaction provided by
Interhuman, our dataset has explicit categories of interac-
tive actions, which facilitates the evaluation of generated
results. Compared to datasets such as SBU, K3HI, and
Chi3D which fully or partially use image-based methods to
estimate human poses, our dataset is completely captured
by motion capture devices and meticulously annotated by
human experts, which can provide higher-quality motions.
CoChair is the first large-scale dataset for human-object-
human collaborative carrying. It not only has clear motion
initiators but also diverse object geometries and different
carrying patterns. Compared to other datasets, we support a
more challenging setting that involves not only human inter-
action but also the interaction between humans and objects.
For more information on the dataset construction, annota-
tion, visualization, and additional details, please refer to the
supplementary materials.

4. Method

Our goal is to generate motions for the humanoid to interact
or collaborate with the human in social scenarios or collab-
orative tasks, which requires the humanoid to not only un-
derstand the human’s intentions and motions but also com-
prehend the state of the environment or objects. In this Sec-
tion, we elaborate on the method in detail. We first intro-
duce the concept of social affordance carrier in Section 4.1
and carrier-centric representation in Section 4.2. We also
introduce an online social affordance forecasting scheme to
enable the humanoid to react promptly in Section 4.3. Then
we introduce the social affordance canonicalization tech-
nique to simplify the distribution of social affordance and
facilitate learning in Section 4.4. Finally, we introduce the
4D motion transformer and objective function for the entire



Dataset Object Full-body Actor&Reactor Mocap Motions Verbs Duration

SBU[53] - - - - 282 8 0.16h
K3HI[5] - - - - 312 8 0.21h
NTU120[32] - - - - 739 26 0.47h
You2me[38] - - - - 42 4 1.4h
Chi3D[18] - - - √∖ 373 8 0.41h
InterHuman[31] - - - ✓ 6022 5656 6.56h

HHI (Ours) - ✓ ✓ ✓ 5000 30 5.55h
CoChair (Ours) ✓ ✓ ✓ ✓ 3000 5 2.78h

Table 1. Dataset comparisons. We compare our iHuman dataset with existing multi-human interaction datasets. Object refers to human-
object-human interaction. Whole-body refers to whole-body motion capture. Actor&Reactor refers to whether there is an obvious
initiator of the action. Motions is the total number of motion clips. Verbs is the number of interaction categories.

framework in Section 4.5.

4.1. Social Affordance Carrier

Social affordance carrier refers to the entity having poten-
tially rich contact with the human actor. Specifically, we
use either the sparse point cloud of the interaction object
or vertices from SMPL-X humanoid template mesh as the
carrier since a human actor interacts with them either di-
rectly or indirectly. This is shown in the beginning of Fig.2.
Encoding the human actor motion, the carrier motion, and
the contact relationship between the human actor and the
carrier simultaneously from the carrier’s local point of view
would form an interaction-centric representation describing
the social affordance of the scene. To be more specific, we
denote a sequence with L frames as s = [s1, s2, . . . , sL],
where si consists of human actor hi and Carrier ci. Human
actor hi ∈ RJ×Dh is defined by J joints(22 for the body and
32 for both hands) with a Dh-dimensional representation at
each joint, which is joint position and its velocity. Carrier
ci ∈ RN×3 is defined by the position of N object points
or humanoid vertices from SMPL-X in the world coordi-
nate system. We denote the humanoid reactor sequence as
sr = [s1r, s

2
r, . . . , s

L
r ]. Given the sequence of human actor

and carrier s, our goal is to predict a reasonable humanoid
reactor sequence sr.

4.2. Social Affordance Representation

We define the social affordance representation centered on
the carrier as shown at the top center of Fig.2. Specifically,
given a carrier, we use a Graph Neural Network(GNN) to
encode each human pose and concatenate it with each car-
rier’s points to obtain a carrier-centric representation. With
this representation, we propose a social affordance that con-
tains the motion of the human actor, the carrier’s dynamic
geometry, and the actor-carrier relationship up until each
time step. The advantage of the social affordance represen-
tation is that it tightly associates the local region of the car-
rier with the human actor’s motion, forming a strong repre-
sentation for network learning. Note that the carrier-centric

representation refers to the spatial representation based on
the current time step, while the social affordance represen-
tation refers to the spatiotemporal representation from the
initial time step to the current time step.
Carrier-centric actor representation. Given a human ac-
tor hi and a carrier ci at time step i, we first define the
carrier-centric actor representation Ri as a collection of
point-wise vectors on a set {xi

j}Nj=1 of N points from carrier
c. Note that this is a dense interaction representation for a
single time step.

Ri(hi, ci) = {Concat(xi
j , ϵθ(h

i))}Nj=1, (1)

where Ri is carrier-centric actor representation, xi
j is the

position of the point or joints from the carrier at time step
i, hi is the human actor at time step i and ϵθ is the GNN
network to encode human actor’s pose to an embedding.
Concat means the concatenation operation.
Social Affordance Representation. Given the carrier-
centric actor representation at each time step, we define
the social affordance representation Ai as a collection of
{Rt}it=1 up until each time step. Note that the social affor-
dance representation is a data stream from the beginning to
a certain time step.

Ai = {Rt}it=1 = {{Concat(xt
j , ϵθ(h

t
j))}Nj=1}it=1, (2)

where Ai refers to the social affordance representation at
time step i and Rt refers to carrier-centric actor representa-
tion at time step i.

4.3. Social Affordance Forecasting with Human
Motion Forecasting Module

The definition reveals that Social Affordance Representa-
tions vary in length over time, hindering network learning.
We propose to employ Social Affordance Forecasting to
transform these representations into a fixed length for each
time step.



Figure 2. Social Affordance Representation and Canonicalization. Given a sequence, we first select a social affordance carrier and
build the carrier-centric representation. Then we can compute the social affordance representation. Here, the carrier-centric representation
refers to the spatial representation based on the current time step, while the social affordance representation refers to the spatiotemporal
representation from the initial time step to the current time step. It is worth noting that the social affordance representation varies in
duration at different time steps. Therefore, we use Social Affordance Forecasting to transform these representations into a fixed length
for each time step which is described in Section 4.3. We propose to learn the local frame for carrier and canonicalize social affordance to
simplify the distribution. Then a motion encoder and decoder are used to generate reactions which are described in Section 4.5.

Additionally, Social Affordance Forecasting is to antic-
ipate human actors’ behavior so that the humanoid reactor
can provide more reasonable responses. In real situations,
the humanoid reactor can only observe the historical mo-
tions of the human actor. The humanoid reactor should have
the ability to predict the motions of the human actor to better
plan its motions. For example, when someone raises their
hand and walks towards you, you might instinctively think
they are going to shake hands with you and be prepared for
a handshake. Here, we introduce how to enable the reactor
to make motion forecasting during prediction.

The t observed motions of human actor and carrier are
noted as s1:M =

[
s1; s2; . . . ; sM

]
. Therefore, the problem

of online reaction synthesis is modeled as predicting sr
M

given s1:M . Given the observed motion s1:M , the objective
of the motion forecasting problem is to predict the following
motions sM+1:L =

[
sM+1; sM+2; . . . ; sL

]
.

We use a motion forecasting module to predict the
human actor’s motion and the object’s motion(if avail-
able). For the human-humanoid interaction setting, we use
HumanMAC[10] as the forecasting module. For the human-
object-humanoid interaction setting, we build our motion
forecasting module based on InterDiff[51] and add a prior
that human-object contact is stable to simplify the difficulty
in predicting the object’s motion. Finally, with the predicted
result, we can obtain the forecasted carrier-centric actor rep-
resentation {Rt}Lt=L−M , we define the Fix-length Social
Affordance Representation Ai

f as:

Ai
f = {Rt}Lt=1 = {{Concat(xt

j , ϵθ(h
t
j))}Nj=1}Lt=1, (3)

where Ai
f refers to the Fix-length social Affordance Repre-

sentation at time step i.

4.4. Social Affordance Canonicalization with SE(3)-
Equivariant Local Frame Learning

We find directly predicting the reaction based on the fore-
casted Social Affordance Representation is not satisfied.
It is because the actor’s motion exhibits diverse patterns,
complicating the social affordance and increasing the learn-
ing difficulty. To address this, we observe that the pat-
terns within the actor’s motion become more compact when
viewed from the carrier’s local coordinate system. We aim
to learn a local frame that can transform correspondingly
with the rigid transformation of the carrier, to canonicalize
Social Affordance into a local coordinate system, thereby
simplifying the distribution of the interaction patterns. The
process of learning such local frames requires the use of
SE(3)-Equivariant Neural Network to ensure that the local
frame rigidly transforms together with the carrier. There-
fore, we present a Social Affordance Canonicalization strat-
egy enabled by SE(3)-Equivariant local frame learning as
shown in the bottom center of Fig.2.
Learning Local Frames for Carrier using SE(3)-
Equivariant Neural Network. The local frame, defining
a new coordinate system, is determined by the point-wise
orientation of its local region as shown in the right of Fig.2.
We believe that a local frame can reflect the geometric infor-
mation of the carrier and can reflect the contact information
between the carrier’s local area and the human actor. Please
refer to [24] for more details on SE(3)-Equivariant Local
Frame Learning.

Let c denote the carrier and {xj}Nj=1 as each point from
carriers. Let H and V denote per-point invariant scalar fea-



tures and equivariant vector features of c, respectively.
We use c,Hin,Vin to denote the carrier, invariant scalar,

and equivariant vector features, where Hin,Vin are all ze-
ros to ensure strict SE(3) equivariance. We pass the car-
rier to an Equivariant network that aims to extract invari-
ant and equivariant features, denoted as EquivLayer. Our
EquivLayer is adapted from the GVP-GNN layer[24].

(Hout,Vout)← EquivLayer(c,Hin,Vin). (4)

Since EquivLayer is equivariant at all the layers, and the
inputs Hin,Vin are invariant and equivariant features, the
output Hout,Vout of each layer are also invariant and equiv-
ariant features, respectively.

To obtain local frames of each point from invariant and
equivariant features, we use another set of equivariant net-
works adapted from the GVP layers[24]. We use FrameNet
to denote the network.

Vout ← FrameNet(Hout,Vout), (5)

where each frames will be constructed from the equivariant
features Vout = (vout,1, · · · , vout,N )(vout,j ∈ R2×3).

We orthonormalize the two vectors vout,j,1, vout,j,2 for
each point to get uj,1,uj,2 using the Gram-Schmidt method
and the third direction can be derived. Then we get the local
frame F = {F}Nj=1 = {uj,1,uj,2,uj,1 × uj,2}Nj=1 ∈ R3×3.
Since Vout is rotation equivariant, the constructed frames
are also rotation equivariant. We refer to the whole module
to generate local frames as Equiv-FrameNet:

F← Equiv-FrameNet(c,Hin,Vin), (6)

where F = {Fj}Nj=1 denotes the local frames of each point
from the carrier.

For a local region, the equivariant network can output
any orientation while ensuring equivariance. We expect the
network to learn an orientation that is optimal for down-
stream tasks and can be generalized across carriers.
Social Affordance Canonicalization. We propose a So-
cial Affordance Canonicalization technique to simplify the
distribution. We will explain in detail how to canonicalize
social affordance using learned local frame F.

Since we have learned an equivariant local frame F for
every point from the carrier, instead of directly encoding
the human actor’s pose using GNN in a unified world coor-
dinate system, we first transform the motions of the human
actor into each learning frame(a new coordinate system of
each point from the carrier. Next, we encode the human
actor’s pose in these new frames respectively using GNN
to obtain a frame-aware dense object-centric HOI represen-
tation. This can be seen as binding an ‘observer’ to each
point on the carrier, and each ‘observer’ encodes the actor’s
motions from a first-person view. The advantage is that it

tightly associates the object’s motion with the actor’s mo-
tion, simplifying the distribution of social affordance and
facilitating network learning.

Given a human actor hi and a carrier ci at time step i, we
define the canonical carrier-centric actor representation Ri

c

as:

Ri
c(h

i, ci) = {Concat(xi
j , ϵθ(F

i
j (h

i
j)))}Nj=1, (7)

where F i
j is the local frame of point j at time step i, F i

j (h
i
j)

is the transformed human actor’s pose in learned frame F i
j .

Based upon canonical carrier-centric actor representation
Ri

c and the Social Affordance Forecasting process, we de-
fine the forecasted canonical social affordance representa-
tion Ai

c as:

Ai
fc = {Rt}Lt=1 = {{Concat(xt

j , ϵθ(F
i
j (h

i
j))))}Nj=1}Lt=1,

(8)

where Ai
fc refers to the forecasted canonical Social Affor-

dance Representation at time step i and F i
j is the local frame

of point j at time step i.

4.5. Network and Objective Design

Our network consists of a GNN and a 4D Transformer
autoencoder. The GNN[43] transforms the human ac-
tor pose into a feature, efficiently modeling the relative
motion between different joints. The 4D Transformer
autoencoder[48] is composed of a motion encoder and a
motion decoder. The motion encoder takes the forecasted
canonical Social Affordance as input and generates a latent
embedding of it. The motion decoder uses the latent embed-
ding as a condition and takes the previously taken motions
of the reactor as input to generate new reaction motions au-
toregressively.

Specifically, given a sequence s, we can compute the
Afc, and we can obtain the motions of the reactor sr by
a 4D Transformer network.

ŝr = 4DNet(Afc), (9)

where 4DNet denotes the whole 4D backbone to generate
the motions of the humanoid reactor.

We use two loss functions to train our model. The first
one is the sequence loss which compares the generated po-
sition of joints with the ground truth using the Mean Square
Error. The second one is the velocities of each joint.

Loss = MSE(sr − ŝr) +MSE(dsr − ˆdsr), (10)

where sr refers to the GT position of each joint and dsr
refers to the velocities.



Method FVD ↓ Diversity → Accuracy ↑ User Preference↑

HHI InterHuman[31] Chi3D[18] HHI InterHuman[31] Chi3D[18] HHI InterHuman Chi3D[18] HHI InterHuman[31] Chi3D[18]

Real 0.21 0.17 0.05 10.8 12.4 14.0 88.2 - 80.4 - - -

PGBIG[35] 56.7 87.2 67.2 13.9 17.1 17.8 34.1 - 61.6 4.4 1.0 8.3
SS-Transformer[2] 77.8 107.3 54.9 16.2 18.5 19.2 51.9 - 57.1 2.7 4.6 18.4

InterFormer[12] 54.3 73.1 20.8 14.1 14.2 14.8 77.9 - 62.2 6.0 2.1 13.7
InterGen-Revised[31] 19.8 25.7 17.7 11.6 13.3 14.2 80.2 - 71.9 19.7 41.7 15.4

Ours 13.3 14.7 12.8 11.1 13.3 14.1 85.4 - 77.6 67.2 50.6 44.2

Table 2. Quantitative results on HHI, InterHuman, and Chi3D. Our method consistently outperforms the previous method in all metrics.

Method FVD ↓ Diversity → Penetration depth↓ User Preference↑

Real 0.07 16.4 0.5 -

PGBIG[35] 47.6 14.8 7.2 3.5
SS-Transformer[2] 51.2 15.7 3.7 3.3

InterFormer[12] 44.2 15.5 4.2 6.4
InterGen-Revised[31] 26.7 17.4 2.2 28.0

Ours 7.8 16.9 0.9 58.8

Table 3. Quantitative results on CoChair dataset.

Method FVD ↓ Diversity → Accuracy ↑ User Preference↑

Real 0.21 10.8 88.2 -

w/o canonicalization 34.5 12.5 78.4 13.4
w/o forecasting 16.7 11.4 82.1 19.4
w global frame 28.4 8.9 79.6 20.1

Ours 13.3 11.1 85.4 47.1

Table 4. Ablation study to justify each design.

5. Experiment

5.1. Experiment Setting and Metric

We conduct experiments on CoChair, HHI, InterHuman[31]
and Chi3D[18]. For detailed data pre-processing, data splits
and baseline description, please refer to the supplemen-
tary materials. We use metrics commonly used in motion
generation for quantitative results including action recogni-
tion accuracy, FVD, and diversity. Classification Accuracy
measures how well our generated samples are classified by
a motion classifier. FVD computes the distance between
the ground truth and the generated data distribution. Di-
versity Score is the average deep feature distance between
all the samples. For the human-object-humanoid setting,
we also report the mean penetration depth(cm) when the
distance between objects and generated reaction grasps is
smaller than 0.2cm, which is commonly used for hand-
object interaction[54, 57]. For the user study, 30 partici-
pants are presented with five videos with a label/description.
Their task is to identify the most realistic one. Due to
the lower quality of all current methods compared to real
data, we decided not to include the real data. We utilize
a 4D motion encoder comprising a 4D convolution and a
Transformer[48] for feature extraction. We only train and
test the classifier on the reaction part of the interaction, so
the results are not influenced by the actor. Classifying hu-
man interactions solely based on reactor motions introduces
greater ambiguity and challenge, leading to relatively lower
accuracy in classification. Additionally, the definition of
motion classes is dataset-specific. Due to CoChair and In-
terHuman not having a clear motion category, we use the
feature extractor trained on the HHI dataset. We generate
1000 samples 10 times with different random seeds and re-
port the average number. For the user study, we generate
the reactions using baseline methods and ours. Users need
to choose which one they think is the most reasonable.

5.2. Implementation Details

We train our model using a Nvidia A100 GPU. We use
the Adam optimizer with α=0.0001, β1=0.9, β2=0.98,
and ϵ=1×10−9. The batch sizes are set to 64 for Human
and CoChair, 128 for Interhuman, and 64 for CHI3D. We
train 2000 epochs for all datasets. We use the pre-trained
model provided by HumanMAC to forecast the actor’s mo-
tion which is trained on the large-scale single human mo-
tion dataset Human3.6M and use the pre-trained model pro-
vided by InterDiff to forecast the motion of actor and ob-
ject. For each prediction, we set the first frame of the reac-
tor as known and predict the following reaction in an auto-
regressive manner. We use the 22 body joints and 32 finger
joints as the default joints set which is also can re-target to
another skeleton easily. For the 4D Transformer used to pre-
dict reactor actions, we designed an encoder-decoder struc-
tured network based on P4Transformer[17] and PPTr[48].

5.3. Comparison to State-of-the-arts

For all baseline methods, we entirely used the author’s code
or made some modifications to adapt it to our task. The re-
sults on the CoChair dataset are shown in Tab.3. The FVD
and Diversity score of real data are computed by randomly
sampling 1000 real motions from the dataset and comparing
it with the whole dataset. Our method consistently outper-
forms the previous method in all metrics. We compared
the results with InterHuman and Fig.3, and we replace the
CLIP branch with a spatiotemporal transformer to encode
the actor’s motion. It can be seen that our method can
generate a more realistic and natural grasp(left) and col-
laboration(right). This indicates that through social affor-
dance canonicalization, our approach can simplify the fea-
ture space, thus generating more complex and delicate mo-
tions. Through social affordance forecasting, we can antic-
ipate the motions of human actors, thereby better planning
cooperation with humans. As for the human-humanoid in-



Figure 3. Visualization results on CoChair. Our method can provide a more reasonable grasp and better collaboration with the human actor.

Figure 4. Visualization results on HHI. Our method can generate more prompt reactions and can better capture hand motion.

teraction setting, the results are shown in Tab.2, our method
outperforms baselines in all metrics. Some visualization
results are shown in Fig.4. Compared with InterGen, our
method can generate prompt reaction(left), and can better
capture the local hand motions(right), while InterGen fails.

5.4. Ablation and Discussion

Ablation Study. To validate our method, we conducted ab-
lative experiments on the HHI dataset to verify the effective-
ness of each design as shown in Tab.4. Without canonical-
ization, our method drops significantly, indicating that the
use of social affordance canonicalization to simplify feature
space complexity is essential. Without social affordance
forecasting, our method lost the ability to predict human
actor motions, also leading to a performance drop. To ver-
ify the necessity of using the local frame, we also compared
the effect of using a global frame, and it can be seen that
our method is significantly superior. This also indicates that
using a local frame to describe local geometry and potential
contact is valuable.
Visualization of Learned Local Frame for Carrier. We
visualized the frames on the rest-posed humanoid carrier
as shown in Fig.5. It can be seen that the frames on the
spine are consistent, and the joint frames on the left and
right sides exhibit roughly symmetrical characteristics. We
also visualize the local frames, and it can be seen that the
frames on the chair legs are approximately the same and can
be generalized to different chairs.

Figure 5. Visualization results of a sampled learned local frame.
The local frames are roughly consistent across different chairs
which can generalized within category.

Computation Overhead. Our method, compared to
InterGen[31] on an 80G A100 graphics card, is more
memory-efficient (38.12G vs. 22.28G) and requires fewer
parameters (291.29M vs. 11.70M) due to the social affor-
dance canonicalization. And our FrameNet achieves this
with just 122B of parameters. It also provides real-time in-
ference at 25fps, surpassing InterGen’s 0.54fps.

Method Memory Parameter FPS

InterGen-Revised[31] 38.12G 291.29M 0.54fps
Ours 22.28G 11.70M 25fps

Table 5. Computation overhead of our method.

6. Conclusion
We introduce a new task, online full-body motion reaction
synthesis, aimed at generating humanoid reactions to hu-
man actors’ motions. We develop two datasets and propose
social affordance forecasting and canonicalization to pro-
duce realistic and natural humanoid reactions. Experiments
show our method’s efficacy in generating high-quality reac-
tions across our and existing datasets.
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