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ABSTRACT

Continual learning requires models to train continuously across consecutive tasks
without forgetting. Most existing methods utilize linear classifiers, which strug-
gle to maintain a stable classification space while learning new tasks. Inspired
by the success of Kolmogorov-Arnold Networks (KAN) in preserving learning
stability during simple continual regression tasks, we set out to explore their po-
tential in more complex continual learning scenarios. In this paper, we introduce
the Kolmogorov-Arnold Classifier (KAC), a novel classifier developed for con-
tinual learning based on the KAN structure. We delve into the impact of KAN’s
spline functions and introduce Radial Basis Functions (RBF) for improved com-
patibility with continual learning. We replace linear classifiers with KAC in sev-
eral recent approaches and conduct experiments across various continual learning
benchmarks, all of which demonstrate performance improvements, highlighting
the effectiveness and robustness of KAC in continual learning.

1 INTRODUCTION

Deep learning models are typically trained on a fixed dataset in a single session, achieving im-
pressive performance on various static tasks. In contrast, real-world scenarios continuously evolve,
necessitating models that can learn incrementally from a data stream. However, in such scenar-
ios, these models often encounter a significant challenge known as catastrophic forgetting (French,
1999). Continual learning (De Lange et al., 2022; Belouadah et al., 2021; Parisi et al., 2019; Go-
lab & Özsu, 2003) investigates how to effectively train models in such dynamic environments with
sequential data exposure, aiming to adapt and avoid forgetting over time.

Class incremental learning (CIL) (Rebuffi et al., 2017), as a key challenge in continual learning,
has garnered extensive research interest. It involves the continuous introduction of new classes with
ongoing tasks, requiring the model to conduct classification on all encountered classes after training
on new tasks. Most CIL methods retain exemplars and employ techniques, such as knowledge distil-
lation (Rebuffi et al., 2017; Douillard et al., 2020; Wen et al., 2024) or dynamic architectures (Chen
& Chang, 2023; Douillard et al., 2022; Yan et al., 2021; Kim et al., 2024b), to mitigate forgetting.
With the rise of pre-trained models, numerous studies (McDonnell et al., 2024; Zhang et al., 2023)
have explored their applications in CIL, achieving impressive results. Among these, prompt-based
approaches (Wang et al., 2022d;c; Smith et al., 2023; Gao et al., 2024b) have attracted considerable
attention.

Among existing methods, McDonnell et al. (2024); Goswami et al. (2024); Yu et al. (2020) focused
on feature space design through carefully crafted classifiers and training or inference strategies,
achieving excellent performance. These studies demonstrate that a well-structured feature space can
effectively mitigate forgetting because a stable distribution is crucial for continual classification tasks
while the design of classifiers is essential for constructing the feature space and reducing forgetting
in continuous tasks. However, most existing approaches (Gao et al., 2024b; Zhou et al., 2024; Smith
et al., 2023) utilize linear classifiers or nearest class mean classifiers (NCM) (Rebuffi et al., 2017),
with limited research focused on developing a specific classifier for CIL to effectively mitigate
catastrophic forgetting. Therefore, designing an efficient classifier that replaces the existing simple
classifiers and enhances current approaches will significantly advance the development of CIL.

Recently, a novel model architecture, Kolmogorov–Arnold Networks (KAN) (Liu et al., 2024) ,
has been proposed, demonstrating natural effectiveness in continual learning. The authors compare
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Figure 1: Brief comparison between conventional linear classifier and our Kolmogorov-Arnold
classifier. The solid lines represent activated weights, while the dashed ones represent suppressed
weights. Conventional linear classifiers activate each weight equally across all tasks, whereas our
Kolmogorov-Arnold Classifier learns class-specific learnable activations for each channel across all
categories, minimizing forgetting caused by irrelevant weight changes.

KAN with Multi-Layer Perceptrons (MLP) (Hornik et al., 1989) on a toy continual 1D regression
problem, which requires the model to fit 5 Gaussian peaks sequentially. KAN exhibits superior
performance, effectively mitigating catastrophic forgetting, attributed to the locality of splines and
inherent local plasticity. This locality allows KAN to identify relevant regions for re-organization
while maintaining stability in other areas during sequential tasks (Liu et al., 2024). These findings
motivate us to explore the applications of KAN in more challenging CIL tasks.

In this paper, we present the Kolmogorov-Arnold Classifier (KAC), a plug-and-play classifier for
Continual Learning based on the KAN architecture. Leveraging the Kolmogorov-Arnold represen-
tation theorem (Kolmogorov, 1961), we incorporate learnable activation functions on the edges of
the classifiers. We find that the conventional KAN with B-spline functions struggles with high-
dimensional data, leading to inadequate model plasticity, which may weaken the models’ plasticity
when directly introduced as a classifier. This limitation forces models to undergo excessive updates
when learning new tasks, resulting in significant forgetting.

To address this, we explore spline functions and identify Radial Basis Functions (RBF) as an effec-
tive alternative for continual learning. By utilizing RBF in our KAC, we enhance the model’s ability
to adapt CIL while minimizing forgetting. Thanks to these learnable spline activations, the KAC
allows the model to select specific activation ranges of interest for each channel while preserving
the distribution of other parts, and RBF makes it more compatible with CIL. As shown in Fig. 1b,
these learnable activations help the model select interesting parts of each channel and activate them
for determination rather than activating all edges like a simple linear classifier in Fig. 1a. This brings
notable benefits to class incremental learning. When new tasks arrive, the learnable activation func-
tions assist the model in selecting relevant parts of each channel for updating. This prevents the
drift of irrelevant features during the training process for the new tasks. Meanwhile, the deactivated
portions of the old tasks remain unaffected by these updates, reducing the forgetting of old tasks.

To demonstrate the superiority of KAC, we conduct experiments on several prompt-based continual
learning approaches, which are built upon a pre-trained backbone where the classifiers play a key
role in these approaches. The models employing our method achieve significant improvement across
various CIL scenarios on multiple datasets by simply replacing the linear classifier with our KAC
without making any other modifications or hyperparameter adjustments. Additionally, experiments
conducted in the Domain Incremental Learning (DIL) (Wang et al., 2022b) setting reveal that our
method can also improve performance, demonstrating its effectiveness and robustness.

Our main contributions can be summarised as follows:

• We explore the application of Kolmogorov-Arnold Networks (KAN) in continual learning
and analyze its weaknesses when employed in continual learning and how to enhance its
compatibility with such tasks.
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• We introduce the Kolmogorov-Arnold Classifier (KAC), a novel continual classifier based
on the KAN structure with Radial Basis Functions (RBF) as its basis functions. KAC
enhances the stability and plasticity of CIL approaches.

• We integrate our KAC into various approaches and validate their performance across mul-
tiple continual learning benchmarks. The results demonstrate that KAC can effectively
reduce forgetting in these methods.

2 RELATED WORK

Class Incremental Learning aims to learn a sequence of classification tasks sequentially, where
the number of classes increases with each task. The primary challenge in it is catastrophic for-
getting(McCloskey & Cohen, 1989). Several studies work on it and they can be broadly cate-
gorized into three main strategies: regularization-based, structure-based, and replay-based meth-
ods. Regularization-based methods reduce forgetting by employing knowledge distillation tech-
niques(Wen et al., 2024; Yang et al., 2022; Douillard et al., 2020) or imposing constraints on key
model parameters(Kang et al., 2022; Kirkpatrick et al., 2017). Structure-based methods(Chen &
Chang, 2023; Wang et al., 2022a; Douillard et al., 2022) mitigate forgetting through dynamic net-
work architectures. Replay-based methods retain a small portion of old data(Jeeveswaran et al.,
2023; Rebuffi et al., 2017) or use auxiliary models(Kim et al., 2024a; Gao & Liu, 2023; Shin et al.,
2017) to generate synthetic data, which are combined with new-class data to update the model.

CIL with Pre-trained Models have demonstrated their competitive performance in Class Incre-
mental Learning due to their strong transferability. Techniques such as LAE (Gao et al., 2023) and
SLCA (Zhang et al., 2023) enhance model adaptation through EMA-based updates and dynamic
classifier adjustments. RanPAC (McDonnell et al., 2024) employs random projection to improve
continual learning, while EASE (Zhou et al., 2024) focuses on optimizing task-specific, expandable
adapters to enhance knowledge retention.

Benefiting from parameter-efficient tuning in NLP, prompt-based methods have achieved promising
results in Class Incremental Learning. These approaches utilize adaptive prompts to guide frozen
transformer models, facilitating efficient task-specific learning without modifying encoder parame-
ters. Techniques like L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), S-Prompts (Wang
et al., 2022b), CODA-Prompt (Smith et al., 2023), HiDe-Prompt (Wang et al., 2024), and CPrompt
(Gao et al., 2024a) introduce diverse prompt selection strategies to improve task learning, knowledge
retention, and model robustness.

Kolmogorov-Arnold Networks (KAN) (Li, 2024) is a novel network architecture based on the
Kolmogorov-Arnold representation theorem (Kolmogorov, 1961). It represents multivariate func-
tions as combinations of multiple univariate functions and uses nonlinear spline functions for ap-
proximation. Some explorations focus on how to apply KAN to solve scientific problems (Koenig
et al., 2024; Bozorgasl & Chen, 2024; Howard et al., 2024), while others seek various basis functions
to enhance performance (Aghaei, 2024; Bozorgasl & Chen, 2024; Li, 2024). Many works (Bresson
et al., 2024; De Carlo et al., 2024; Genet & Inzirillo, 2024; Malashin & Mikhalkova, 2024) ap-
ply KAN across various fields and investigate how to effectively leverage its advantages in these
domains. These studies encourage us to explore the application of KAN in continual learning.

3 METHOD

3.1 PRELIMINARIES

Class Incremental Learning. In Class Incremental Learning (CIL), a model needs to learn classes
step by step. At each step t, the model needs to learn the classes specific to that step, denoted
as Yt, with only access to the current dataset Dt = {(xi

t, y
i
t)}

nt
i=1, where xi

t represents an input
image and yit is its corresponding label. A key challenge in CIL is how to maintain the stability of
the model to avoid catastrophic forgetting (French, 1999) while learning new tasks. With a model
consisting of a backbone F , and a classifier h ∈ Rn×C , where n denotes the embedding dimension
and C represents the total number of learned classes, the model is tasked with predicting the class
label y = h(F (x)) ∈ Y for test samples from new classes as well as samples from previously
encountered tasks.

3
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Figure 2: Comparison of the accuracy curves of three recent approaches with different classifiers in
the ImageNet-R 20-step scenario. The x-axis represents the increasing number of tasks, while the
y-axis shows the corresponding test accuracy at each step. The Baseline indicates performance with
a conventional linear classifier, while the other curves represent results with ablated KAN classifiers
and our Kolmogorov-Arnold Classifier.

Kolmogorov–Arnold Networks. Kolmogorov–Arnold Networks (KAN) (Liu et al., 2024) is
a novel model architecture that serves as a promising alternative to multi-layer perceptrons
(MLPs) (Haykin, 1998; Hornik et al., 1989). While MLPs rely on the Universal Approximation
Theorem (UAT) (Hornik et al., 1989), KANs are inspired by the Kolmogorov-Arnold representation
Theorem (KAT) (Kolmogorov, 1961). KAT posits that any multivariate continuous function f(x)
defined on a bounded domain can be expressed as a finite composition of univariate continuous
functions through addition. The Kolmogorov-Arnold representation theorem can be written as:

f(x) = f(x1, x2, ..., xn) =

2n+1∑
q=1

Φq

( n∑
p=1

ϕq,p(xp)
)
, (1)

in which Φq and ϕq,p are univariate functions for each variable. KAN parametrizes the ϕq,p and Φq

as B-spline curves, with learnable coefficients of local B-spline basis functions B(x) (Qin, 1998).
In practice, a residual connection, consisting of a linear function with activation b(x) = silu(x) =
x/(1 + e−x), is linearly combined with the B-spline curve spline(x) =

∑
i ωiBi(x) to form the

final ϕ:

ϕ(x) = ωbb(x) + ωsspline(x), (2)

where the ωb and ωs represent the linear functions that control the overall magnitude of the activation
function. Consequently, a KAN layer can be expressed as:

xl+1 =


ϕl,1,1(.) ϕl,1,2(.) · · · ϕl,1,nl

(.)
ϕl,2,1(.) ϕl,2,2(.) · · · ϕl,2,nl

(.)
...

...
. . .

...
ϕl,nl+1,1(.) ϕl,nl+1,2(.) · · · ϕl,nl+1,nl

(.)


︸ ︷︷ ︸

Φl

xl. (3)

The xl and xl+1 represent the input and output of a KAN layer, while ϕl is the 1D univariate function
matrix for each layer. The KAN networks are constructed by stacking multiple KAN layers.

3.2 CONVENTIONAL KAN LAYER IS NOT A GOOD CONTINUAL CLASSIFIER

In Liu et al. (2024), the authors present experimental results from a toy 1D regression task, demon-
strating that the locality of splines can inherently avoid catastrophic forgetting. This insight inspires
us to introduce KAN to CIL. A straightforward way to leverage the locality of KAN is directly utiliz-
ing a KAN layer to develop a continual classifier, replacing the linear classifier in CIL methods. To
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achieve this, we simply replace the linear classifier h(x) with a KAN layer that has an input dimen-
sion of d and an output dimension of C. We compared their performances across several baseline
methods. The experimental results are shown in Fig. 2, demonstrating that the simple substitution of
replacing the linear classifier with a KAN layer does not lead to any improvement, even achieving
worse performance.

We decompose the KAN layer into two parts: the residual connection b(x) and the B-spline curve
spline(x) and individually replace the linear classifier with these two components to investigate
why directly introducing the KAN layer increases forgetting. A surprising finding is that the B-
spline functions lead to a severe performance drop across all baselines.

To understand why the B-spline curve replacing the conventional linear classifier leads to severe
forgetting, we need to delve deeper into the differences between linear layers and splines. In high-
dimensional complex data, spline functions encounter the curse of dimensionality (COD) (Hammer,
1962); as the data dimensionality increases, the model struggles with data approximation (Köppen,
2002; Montanelli & Yang, 2020; He, 2023). This is because splines cannot effectively model the
compositional structure present in the data, while linear classifiers benefit from their fully con-
nected structure, allowing them to learn this structure effectively (He & Xu, 2023). Although KAN
networks mitigate COD through approximation theory (Liu et al., 2024) by stacking KAN layers,
approximating high-dimensional function remains a challenging problem for a single spline layer,
whereas it is relatively straightforward for conventional linear classifiers.

It is precisely the weak fitting ability of B-spline functions on high-dimensional data that leads to
severe forgetting when it is introduced into CIL. In CIL, a network typically consists of a backbone
F that encodes images to feature embeddings and a classification head h, which serves as a high-
dimensional projection mapping the embeddings to class probabilities. Most methods accommodate
new classes by adding classifiers while sharing the backbone across all tasks. The final logits l for
classification are always calculated as:

l = h(F (x)), h = [h1, h2, · · · , ht]. (4)

To prevent significant forgetting caused by changes in the backbone that affect the feature space, the
model must maintain stable backbone parameters during training on new tasks. Consequently, many
methods use regularization techniques to restrict changes in feature embeddings (Li & Hoiem, 2017;
Kim et al., 2024b; Wen et al., 2024; Yang et al., 2022). However, due to the limited approximation
capability of a single B-spline layer, the model requires more extensive updates to the backbone
parameters compared to conventional linear classifiers to achieve good performance on new tasks.
This extensive updating can severely disrupt the feature space, leading to pronounced forgetting.

Based on the above analysis, we believe that the weak fitting ability of a single B-spline function
prevents the model from leveraging the locality of the KAN layer. Therefore, we need to enhance the
spline function’s fitting ability to adapt the KAN structure to CIL tasks. Lin et al. (2017); Lai & Shen
(2021) indicates that, in specific senses, a shallow KAT-based layer can break the COD problem
when approximating high-dimensional functions through designed basis functions with particular
compositional structures, motivates us to explore the types of basis functions that are compatible
with CIL.

3.3 RADIAL BASIS FUNCTION IS GREAT FOR CLASS INCREMENTAL LEARNING

Several studies (McDonnell et al., 2024; Zhuang et al., 2023; Yu et al., 2020) assume that the clas-
sification space follows a Gaussian space and develop approaches based on this premise, achieving
excellent performance. It suggests that building a Gaussian classification space can help models
effectively learn new tasks while combating catastrophic forgetting. Can we find a kind of basis
function in this sense that allows a KAT-based layer function as a continual classifier, addressing the
COD problem and benefiting CIL? The answer is yes!

FastKAN (Li, 2024) proves that the B-splines basis function in KAN (Liu et al., 2024) can be
well replaced by Radial Basis Functions (RBF) (Buhmann, 2000; Orr et al., 1996). We find this
substitution brings more benefits to CIL when KAN is introduced as a continual classifier as shown

5
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later. A KAN layer with RBF is represented as:

f(x) =

n∑
p=1

Φp

N∑
i=1

ωp,iϕ(||xp − ci||), (5)

where ci represents a series of center points evenly distributed within a specific range, with N
denoting the total number of ci. And ϕ(x) is an RBF served as the basis functions whose value
solely depends on the distance between input x and center point ci. The term ωp,i denotes the
weight for each ϕ. A Gaussian function with covariance σi can be chosen as ϕ while it’s defined as:

ϕ(||xp − ci||) = exp
(
− (xp − ci)

2

2σ2
i

)
. (6)

While introducing the Gaussian RBF function as the basis function of KAN demonstrates faster
evaluation speeds and enhanced performance, as shown in Li (2024), an inherent Gaussian structure
is also established with it, which can serve as an effective compositional structure for CIL scenarios.

With a series of Gaussian distributions N centered at c = [c1, c2, · · · , cN ] assumed to be indepen-
dent, the activation function for each dimension is formed by combining N independent Gaussian
distributions, and the distribution of each dimension after activation can be represented as:

N∑
i=1

ωp,iϕ(||xp − ci||) ∼ ωp,1N (c1, σ1) + ωp,2N (c2, σ2) + · · ·+ ωp,NN (cN , σN )

= N
(
ωp,1c1 + · · ·+ ωp,NcN , ω2

p,1σ
2
1 + · · ·+ ω2

p,Nσ2
N

)
.

(7)

The second equation is based on the additivity of the Gaussian distribution (Lemons & Langevin,
2002). We can easily derive that, thanks to the introduction of Gaussian RBF functions, the features
of pth dimension in the KAN layer, after the activation function, follow a Gaussian distribution with
mean µp =

∑N
i=1 ωp,ici and variance σp =

∑N
i=1 ω

2
p,iσ

2
i . This results in the final prediction for

each class being represented as the sum of a set of Gaussian distributions, represented as:

f(x) =

n∑
p=1

Φp · exp
(
− (xp − µp)

2

2σ2
p

)
. (8)

When we simply define Φp as a learnable weight for each dimension, it is evident that the resulting
function form conforms to the Gaussian Process (GP) with first-order additive kernels defined in
Duvenaud et al. (2011). This structure is consistently easy to fit for classification tasks and possesses
a strong long-range structure to effectively address the COD problem when approximating high-
dimensional functions (Duvenaud et al., 2011). With functions like this serving as the basis functions
for continual classifiers, it not only projects each channel of the feature into a Gaussian space but
also allows the model to select an interested range for each channel tailored to different classes.

3.4 KOLMOGOROV–ARNOLD CLASSIFIER FOR CIL

The above analysis demonstrates that the KAN layer with RBF can benefit CIL, motivating us to
introduce our Kolmogorov-Arnold Classifier (KAC), which can be integrated into any CIL approach
by replacing the conventional linear classifier with it.

An overview of the KAC is shown in Fig. 3. The KAC firstly regularizes the feature distribution with
a Layer Normalization LN , resulting in a normalized embedding LN (F (x)) = [x′

1, x
′
2, · · · , x′

n].
After that, it incorporates a KAN layer that includes N Gaussian Radial Basis Functions centered at
c = [c1, c2, · · · , cN ]. With the basis function ϕ is like defined in eq. 6, the logit l is then calculated
as:

l = KAC
(
F (x)

)
= diag

(
WC · Φ

(
LN

(
F(x)

))
·Wq

)
, (9)
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Figure 3: An overview of the pipeline of the proposed Kolmogorov-Arnold Classifier. For the input
feature embeddings, we first normalize them using a layer normalization, then pass them through a
set of RBFs that activate them to learnable Gaussian distributions. Finally, we weight all channels
with WC to obtain the decision space for each class. The right side shows the process of Gaussian
RBFs, which map univariate variables to different Gaussian distributions centered at various points
and weight these distributions with W c

q to derive the final activation distribution for each channel
across all classes. The output logits are sampled based on the channel values within the distribution
of each class. As tasks increase, new classes can be accommodated by simply expanding WC .

where diag(.) represents extracting the diagonal elements of a matrix and the Φ
(
LN

(
F (x)

))
is the

learnable Gaussian RBF like:

Φ
(
LN

(
F (x)

))
=


ϕ(||x′

1 − c1||) ϕ(||x′
1 − c2||) · · · ϕ(||x′

1 − cN ||)
ϕ(||x′

2 − c1||) ϕ(||x′
2 − c2||) · · · ϕ(||x′

2 − cN ||)
...

...
. . .

...
ϕ(||x′

n − c1||) ϕ(||x′
n − c2||) · · · ϕ(||x′

n − cN ||)

 , (10)

in which n is the dimensionality of the input embedding and WC ∈ RC×n is a learnable weight
matrix that serves as an output linear function to predict the probability for each class, corresponding
to the Φp in conventional KAN, while the Wq ∈ RN×C corresponds to the ϕp,q in conventional KAN
to serve as the univariate learnable activation for each channel for every class. In practice, the WC

and Wq can be consolidated into a single weight matrix W ∈ RC×(N×n), from which the final logit
is directly predicted using the basis functions ϕ. The KAC is then represented as:

KAC
(
F (x)

)
= W · reshape

(
Φ
(
LN

(
F(x)

)))
. (11)

The reshape(.) function flattens the N ×n matrix into a 1D vector to facilitate calculations with W .

In a CIL scenario, T tasks arrive sequentially with class counts [C1, C2, · · · , CT ]. KAC expands W
to accommodate new classes, similar to conventional classifiers (Smith et al., 2023). At the tth step,
there is an old classification matrix W t−1 ∈ R(N×n)×Cold , where Cold = C1 + C2 + · · · + Ct−1,
and a new matrix W t ∈ R(N×n)×Ct , with the final W after the tth step being the concatenation of
these two matrices.

4 EXPERIMENTS

4.1 BENCHMARKS & IMPLEMENTATIONS

Benchmarks. We evaluate the CIL scenario and further validate the robustness of our method in
Domain Incremental Learning (DIL) (Wang et al., 2022b). For CIL, we conduct experiments on
two commonly used datasets, ImageNet-R (Hendrycks et al., 2021) and CUB200 (Wah et al., 2011),
each containing 200 classes. Starting with 0 base classes, all classes are separated into 5, 10, 20,
and 40 steps to feed the model for training sequentially. For DIL, following Sprompt (Wang et al.,

7
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Table 1: Results on ImageNet-R dataset. We report the accuracy of the last task on CIL scenarios
of 5, 10, 20, and 40 steps and make comparisons on various approaches, evaluating the results with
a linear classifier (baseline) and with our KAC. It demonstrates that our KAC consistently improves
their performance, especially in long-sequence tasks.

Method 5 steps 10 steps 20 steps 40 steps

L2P 73.57 73.10 70.35 66.02
w KAC 73.56 (-0.01) 73.14 (+0.04) 72.11 (+1.76) 69.74 (+3.72)

DualPrompt 74.57 72.48 70.68 66.31
w KAC 76.37 (+1.80) 75.67 (+3.19) 74.68 (+4.00) 71.24 (+4.93)

CODAPrompt 77.62 77.01 74.40 69.34
w KAC 80.14 (+2.52) 79.24 (+2.23) 77.94 (+3.54) 74.31 (+4.97)

CPrompt 78.68 76.80 74.32 70.07
w KAC 79.08 (+0.40) 78.07 (+1.27) 75.73 (+1.41) 72.05 (+1.98)

2022b), we split the DomainNet (Peng et al., 2019) dataset into 6 domains, classifying a total of 345
categories across all tasks. All experiments are conducted in a non-exemplar setting, with no old
samples saved for new training.

Implementation Details. To validate the effectiveness of KAC, we selected four prompt-based
CIL approaches L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), CODAPrompt (Smith
et al., 2023) and CPrompt (Gao et al., 2024b) as baselines, all of which have achieved superior per-
formance across various CIL benchmarks. These approaches leverage learnable prompts to extract
information from pre-trained backbones and classify the extracted embeddings using linear classi-
fiers. We directly replace their classifiers with KAC with their original hyperparameters to train the
model, allowing for a comparison of the differences between classifiers. We implement all compared
approaches with their official code and their original selected hyperparameters.

4.2 EXPERIMENTAL RESULTS

Experiments on ImageNet-R. Tab. 1 compares the accuracy of the last task between the baseline
methods and those with KAC in the ImageNet-R settings. Replacing the linear classifiers with KAC
leads to improvements across all methods, especially in challenging long-sequence scenarios, where
gains of 3 to 5 points are observed in most cases. It demonstrates that KAC effectively helps models
mitigate forgetting at each step. Furthermore, comparing CODAPrompt and CPrompt, we find that
while both perform similarly when using linear classifiers, CODAPrompt outperforms CPrompt
when switched to KAC. This indicates that the compatibility of KAC with different methods varies.

Table 2: Results on CUB200 dataset. The accuracy of the last task is reported. KAC delivers sig-
nificant improvements for all baselines, especially in long-sequence tasks, highlighting its superior
performance on fine-grained datasets.

Method 5 steps 10 steps 20 steps 40 steps

L2P 76.04 65.28 51.78 35.41
w KAC 83.80 (+7.76) 79.77 (+14.49) 70.13 (+18.35) 60.43 (+25.02)

DualPrompt 76.38 64.60 54.68 37.55
w KAC 85.03 (+8.65) 79.61 (+14.01) 71.91 (+17.23) 64.69 (+27.14)

CODAPrompt 78.73 71.87 58.00 37.81
w KAC 85.61 (+6.88) 82.59 (+10.72) 73.32 (+15.32) 64.56 (+26.75)

CPrompt 82.02 76.80 72.99 64.80
w KAC 83.08 (+1.06) 80.75 (+3.95) 78.54 (+5.55) 76.51 (+11.71)

Experiments on CUB200. Tab. 2 shows a comparison of the last accuracy of the last task in
the CUB200 settings, surprising improvements achieving 10 to 25 percent are observed in long-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Results on DomainNet. A Domain In-
cremental Learning experiment is conducted on it
with 6 incremental domains of 345 classes. We
report the average incremental accuracy and the
accuracy of the last task. The results show that
KAC can also work in DIL settings.

Method Linear

Avg Last

L2P 57.78 49.22
w KAC 59.79 (+2.01) 51.10 (+1.88)

DualPrompt 60.96 51.83
w KAC 62.06 (+1.10) 52.76 (+0.93)

CODAPrompt 61.61 53.12
w KAC 62.78 (+1.17) 53.54 (+0.42)

CPrompt 61.32 52.49
w KAC 62.13 (+0.81) 53.02 (+0.53)
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Figure 4: Activation maps for different classes
across different channels. The x-axis represents
50 randomly selected channels from feature em-
beddings, while the y-axis represents classes
from different tasks. The colors indicate vary-
ing levels of interest.

sequence scenarios. As CUB200 is a fine-grained bird classification dataset, we believe that KAC
will perform well with such fine-grained datasets.

Experiments on DomainNet. We conduct experiments on DomainNet for Domain Incremental
Learning, aiming to validate the ability of KAC to extend to other continual classification tasks.
As shown in Tab. 3, when all approaches are implemented with KAC, the performance achieves
an improvement of about 1 percent in average incremental accuracy and about 0.5 percent in last
accuracy, demonstrating the robustness of our KAC.

Visualization of activation maps. Fig. 4 illustrates how different classes activate distinct channels,
the differences in attention across different channels for various classes highlight the locality advan-
tage in mitigating catastrophic forgetting, while all the activations remain stable during incremental
tasks.

4.3 ABLATION STUDY

Ablation on the number of basis functions. The number of basis functions N is a key hyperpa-
rameter of KAC. An excessive number of basis functions may lead to additional computations and
result in a significantly high dimensionality of W . Conversely, a small N may weaken the approx-
imation ability of KAC. To explore an appropriate value for N , we conduct an ablation study on it.
Fig. 5 shows the average incremental accuracy for four approaches using KAC with different num-
bers of basis functions in the 20 steps experiment on ImageNet-R. It indicates that simply increasing
the number of basis functions does not benefit mitigating forgetting. Most approaches exhibit better
performance when N = 4 or N = 8, encourages us to set N as 4 in our experiments.

The impact of structure over complexity. To demonstrate that the advantages of KAC lie in the
introduced KAN structure, not the additional computations, we replace the RBFs with an MLP layer,
setting its output dimension to N × n to align the number of parameters with KAC using RBFs,
allowing us to make a fair comparison between the two structure. Tab. 4 shows the performance
of replacing RBFs with the MLP structure implemented on CODAPrompt. Upon comparison, we
discover that whether the additional MLP structure is updated alongside the model or not, it does not
yield any positive effects. This indicates that the advantages of KAC stem from its KAN structure
rather than a simple increase in the dimensionality of the classification space.

5 CONCLUSIONS

In this paper, we explore the application of Kolmogorov-Arnold Networks (KAN) in continual
learning and develop a novel continual classifier, the Kolmogorov-Arnold Classifier (KAC) which
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Table 4: Ablation study on the structure of the
classifier. We replace the spline functions in KAC
with MLPs to validate the effectiveness of the
KAN structure. Here, w MLP represents the MLP
trained alongside the model, while w MLP (fixed)
represents the randomly initialized MLP projec-
tion without any updating. The experiments are
conducted in the 20 steps ImageNet-R scenario.

Avg Last

CODAPrompt 80.92 74.40
w KAC 83.59 77.94
w MLP 80.56 73.59

w MLP (fixed) 65.87 51.03

2 4 8 12 16 24 32

76

78

80

82

84

L2P
DualPrompt

CoDaPrompt
CPrompt

Figure 5: Ablation study on different numbers of
basis functions in the 20 steps ImageNet-R sce-
nario. The x-axis represents the number of basis
functions, while the y-axis indicates the average
incremental accuracy with varying numbers.

leverages KAN’s inherent locality capability to reduce feature shifts during the learning process
of new tasks. Analysis revealed that the poor approximation ability of the B-spline functions in
KAN on high-dimensional data forced the model backbone to generate more shifts to approximate
new classes. To address this issue, we introduce RBFs to replace the spline functions in KAN.
KAC demonstrates significant advantages across various continual learning approaches and scenar-
ios, showcasing its effectiveness and robustness. In the future, we will explore more possibilities of
KAN in continual learning, fully leveraging its inherent advantages.

Reproducibility Statement. To ensure the reproducibility of our work, all data follows a standard-
ized preprocessing pipeline, similar to the methods employed in CODAPrompt (Smith et al., 2023).
We will also release all code to facilitate easy reproduction of our approach.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alireza Afzal Aghaei. fkan: Fractional kolmogorov-arnold networks with trainable jacobi basis
functions. arXiv preprint arXiv:2406.07456, 2024. 3

Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremen-
tal learning algorithms for visual tasks. Neural Networks, 135:38–54, 2021. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2020.12.003. URL https://www.sciencedirect.
com/science/article/pii/S0893608020304202. 1

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024. 3

Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang,
and Michalis Vazirgiannis. Kagnns: Kolmogorov-arnold networks meet graph learning. arXiv
preprint arXiv:2406.18380, 2024. 3

Martin Dietrich Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000. 5

Xiuwei Chen and Xiaobin Chang. Dynamic residual classifier for class incremental learning. In
ICCV, pp. 18743–18752, 2023. 1, 3

Gianluca De Carlo, Andrea Mastropietro, and Aris Anagnostopoulos. Kolmogorov-arnold graph
neural networks. arXiv preprint arXiv:2406.18354, 2024. 3

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
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