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Abstract

For humans and robots to collaborate more in001
the real world, robots need to understand hu-002
man intentions from the different manner of003
their behaviors. In our study, we focus on the004
meaning of adverbs which describe human mo-005
tions. We propose a topic model, Hierarchi-006
cal Dirichlet Process-Spectral Mixture Latent007
Dirichlet Allocation, which concurrently learns008
the relationship between those human motions009
and those adverbs by capturing the frequency010
kernels that represent motion characteristics011
and the shared topics of adverbs that depict012
such motions. We trained the model on datasets013
we made from movies about “walking” and014
“dancing”, and found that our model outper-015
forms representative neural network models in016
terms of perplexity score. We also demonstrate017
our model’s ability to determine the adverbs for018
a given motion and confirmed that the model019
predicts more appropriate adverbs.020

1 Introduction021

With technological innovations in artificial intel-022

ligence, the widespread use of household robots023

that collaborate with humans to assist them in024

their daily lives is becoming a reality. In order025

to collaborate with humans, it is important for026

robots to share and understand their experiences027

through language, because language is the most028

convenient communication tool capable of con-029

veying human experience and knowledge. With030

this background, research on language use by031

robots in the real world has been actively stud-032

ied (Taniguchi et al., 2019; Tellex et al., 2020;033

Kalinowska et al., 2023; Karamcheti et al., 2023).034

Significantly, within this domain, Large-scale lan-035

guage models (LLMs) such as OpenAI’s ChatGPT1036

and Google’s PaLM (Chowdhery et al., 2022) are037

also used to control robots. ChatGPT is used to exe-038

cute various types of robotics tasks (Vemprala et al.,039

2023), and PaLM-SayCan (Ahn et al., 2022) and040

1https://chat.openai.com.

PALM-E (Driess et al., 2023) have been developed 041

based on PaLM (Chowdhery et al., 2022). Singh 042

et al. (2023) and Huang et al. (2022) have pro- 043

posed methodologies for generating task plans for 044

robots that employ LLM. Their approach conveys 045

robot’s motion plans through a chain-of-thought 046

framework (Wei et al., 2022). Though it is good 047

at describing in language the general plan of ac- 048

tion of a robot in accomplishing a specific task, 049

the language description does not capture the pre- 050

cise correspondence between nuanced expressions 051

and the actual robot behaviors in the real world. 052

Furthermore, the focus of their studies is not on 053

the verbal representation of the behaviors of the 054

observed object by a robot, but on the robot’s ac- 055

tion plan. On the other hand, research is being 056

conducted to elucidate the relationship between 057

motions and the natural language that describes 058

them. Bidirectional conversion models from natu- 059

ral language descriptions to motions, or vice versa, 060

using sequence-to-sequence (Seq2seq) (Sutskever 061

et al., 2014) learning have been proposed by Ya- 062

mada et al. (2018); Plappert et al. (2018); Ito et al. 063

(2022). Though these models can achieve bidirec- 064

tional conversion between language and motion 065

sequences, the relation between motions and lan- 066

guage is learned as sequence patterns and lacks in 067

learning the correspondence between the manner of 068

motions and the language that represent them. Fur- 069

thermore, in the conventional research the focus has 070

predominantly revolved around finite motions, such 071

as “take” and “put”, which were preconceived by 072

humans, thereby neglecting the pursuit of method- 073

ologies that facilitate the adaptable modulation of 074

multiple motions contingent upon contextual cues. 075

For the advancement of robotics, it becomes imper- 076

ative to comprehensively and statistically grasp the 077

repertoire of “motions” that humans genuinely ex- 078

hibit, as well as discern the variations in individual 079

characteristics and contextual nuances associated 080

with those “motions”. These insights should be 081
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aptly assimilated within the robotic systems. Build-082

ing upon the aforementioned, we shall address this083

challenge by casting our focus on adverbs, while084

establishing correspondence between motions and085

adverbs that represent them.086

Limited research has been conducted thus far087

to delve into the semantic comprehension of ad-088

verbs. Notable instances within this domain in-089

clude the Three-Stream Hybrid Model (Pang et al.,090

2018), which employs Long Short-Term Mem-091

ory (LSTM) (Hochreiter and Schmidhuber, 1997)092

and inceptionV3 (Szegedy et al., 2016) to acquire093

knowledge related to adverbs. Additionally, Action094

Modifiers (Doughty et al., 2020), which employ095

an I3D network (Carreira and Zisserman, 2017)096

and scaled dot-product attention (Vaswani et al.,097

2017) to discern the impact of adverbs on motion098

sequences. These models employ image features099

derived from videos, such as RGB and optical100

flow (Simonyan and Zisserman, 2014), as repre-101

sentations of motions. However, these represen-102

tations fail to capture the intrinsic essence of the103

motions themselves; these models models are capa-104

ble of classify videos annotated adverbs by learn-105

ing RGB or optical flow, but they are unable to106

discern the component of motions denoted by the107

adverb. Therefore, unlike conventional research ap-108

proaches, in this study, we focus on the frequency109

components that make up human motion and at-110

tempt to express the motion by those components.111

By doing so, we aim to enable the robot to under-112

stand the meaning of adverbs related to motions113

such as “cut roughly”, etc.114

2 Joint Topic Model of Motions and115

Adverbs116

We propose a new topic model, Hierarchical Dirich-117

let Process-Spectral Mixture Latent Dirichlet Allo-118

cation (HDP-SMLDA) to capture the relationship119

between the frequency components of human mo-120

tions and the adverbs that describe motions .121

The model makes it statistically possible to es-122

tablish a correspondence between adverbs and nu-123

ances associated with motions.124

This enables the control of robot actions through125

verbal instructions, such as “handle with more cau-126

tion” or “cut roughly”, and it is also possible to127

make the robot understand human intentions due128

to slightly different manner of movement. On the129

contrary, from the perspective of natural language130

processing, it has been impossible to express the131

actual meaning behind words like “freely” or “flexi-132

bly”. However, the integration with robotics makes 133

it possible for the first time to represent their mean- 134

ing, allowing not only the description of actions 135

through language but also the generation of actions 136

from language cues. 137

2.1 Human Motion Representation 138

Since human motion is represented as a smooth 139

trajectory, we use a Gaussian process (GP) (Ras- 140

mussen and Williams, 2006), which is defined as 141

a distribution over functions, to describe the mo- 142

tions. In a GP, the kernel function k(x, x′), which 143

determines the similarity between two data points 144

(x, x′), is applied to the data set to compute the co- 145

variance matrix and estimate the predictive distribu- 146

tion. The choice of kernel function is an important 147

factor that affects the behavior and performance of 148

the GP model. GP models are primarily used for re- 149

gression and classification, fundamental techniques 150

that are also widely used by the natural language 151

processing community (Cohn et al., 2014). 152

2.2 Frequency components in a motion 153

Wilson et al. (Wilson and Adams, 2013) introduced 154

a technique known as the Spectral Mixture kernel 155

(SM kernel), which enables automatic learning of 156

a mixed kernel from data by considering a com- 157

bined Gaussian distribution in the Fourier domain. 158

This approach surpasses the limitation of utilizing 159

pre-existing bases or their combinations in Gaus- 160

sian processes. As a fundamental component of 161

the Gaussian process, we consider a radial basis 162

function k(τ) that solely depends on τ = x − x′. 163

According to Bochner’s theorem (Bochner et al., 164

1959; Stein, 1999), any k(τ) can be expressed in 165

the following equation: 166

k(x, x′) = k(τ) =

∫
R
e2πis

Tτψds. (1) 167

As k(τ) is considered equivalent to probability den- 168

sity ψ(s) in the frequency domain, we consider a 169

mixture of Gaussian distributions for ψ(s). Each 170

component of the Gaussian distributions is equiva- 171

lent to considering the following basis function in 172

the original domain: 173

k(τ |σ, µ) = exp(−2π2τ2v2) cos (2πτµ). (2) 174

Thus, we are considering a mixture of M basis 175

functions as the basis. Here, µqm and vqm represent 176

the mean and variance, respectively, of the q-th 177

dimension of the input X in the m-th basis: 178
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Figure 1: Nonlinear dimensionality reduction of mo-
tions achieved through GPLVM. The trajectories corre-
sponding to three distinct walking motions (a)-(c) are
portrayed in the latent space of three dimensions (thus,
we set Q = 3 in Equation 3), denoted as X .

(a) (b)

(c)
Figure 2: The motions depicted in Figure 1 were ana-
lyzed using the SM kernel. The vertical and horizontal
axes respectively represent the probability density and
mean of the estimated four Gaussian distributions (thus,
we set M = 4 in Equation 3).

k(τ) =

M∑
m=1

wm cos (2πτTµm)

Q∏
q=1

exp(−2π2τ2q v
q
m).

(3)179

The weights parameter w, mean µ, and variance v180

can be learned through hyperparameter optimiza-181

tion of Gaussian processes. We employ this method182

to extract M frequency components (represented183

by the mean µ) that are expected to be relevant184

to adverbs from the three-dimensional latent vari-185

able X obtained through GPLVM for each motion.186

These components are then used as observed values187

that capture the characteristics of the motions. It188

is worth noting that while the trajectory in X can189

be directly Fourier transformed, doing so would190

not allow us to distinguish between the function191

passing through particular points (the phase of the192

function) and the features of the function itself.193

2.3 Hierarchical Dirichlet Process-Spectral194

Mixture LDA195

The extracted frequency components from the mo-196

tions are assumed to be associated with the adverbs197

assigned to those motions. By employing Gaussian-198

Multinomial LDA (GM-LDA) (Blei and Jordan,199

Figure 3: The graphical model of HDP-SMLDA. K+

represents the variable number of topics. At each it-
eration of training, the hyperparameter α is estimated
based on the size of the dataset, ensuring flexibility in
the model.

2003), we can cluster the frequency components 200

and adverbs simultaneously into topics, thereby 201

identifying frequency components that are likely 202

to co-occur with a given adverb. It is important to 203

note that GM-LDA requires the number of topics 204

K to be known in advance. However, the num- 205

ber of topics is typically unknown, and assuming 206

prior knowledge of this parameter is a significant 207

limitation. To address this issue, we propose the Hi- 208

erarchical Dirichlet Process Spectral Mixture LDA 209

(HDP-SMLDA), which automatically estimates the 210

number of topics from the data by incorporating a 211

hierarchical Dirichlet process into GM-LDA. The 212

graphical model, as depicted in Figure 3, considers 213

Q as the number of dimensions of the frequency 214

components. In our study, we set Q = 3 because 215

the data processed by GPLVM is three-dimensional. 216

The number of kernel mixtures M in the Spectral 217

Mixture (SM) kernel discussed in the previous sec- 218

tion is denoted as Md in this model. Adverbs are 219

sampled from a categorical distribution, while the 220

frequency component is treated as continuous data, 221

assuming a Gaussian distribution as the prior distri- 222

bution. Let us assume the existence of a potential 223

topic distribution θd for each motion d. The dimen- 224

sionality of the topics, denoted as K, is variable, 225

allowing for flexibility. The generation process of 226

the adverb wdn (n = 1, . . . , Nd) and the frequency 227

component xdm (d = 1, . . . , D; m = 1, . . . ,Md) 228

associated with the motions is outlined as follows: 229

1. Draw G0 ∼ DP(γ,H). 230

2. For d = 1 . . . D, 231

– Draw θd ∼ DP(α,G0). 232

3. For n = 1 . . . Nd, 233

– Draw zdn ∼ θd 234

– Draw wdn ∼ ϕzdn . 235

4. For m = 1 . . .Md, 236

– Draw ydm ∼ θd 237

– Draw xdm ∼ N (µydm , σ
2
ydm

). 238
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In the generative process, ϕk represents the categor-239

ical distribution of the adverb corresponding to the240

k-th topic, while N (µk, σ
2
k) denotes the Gaussian241

distribution of the frequency component associated242

with the same topic. The topic distribution θ is243

calculated based on the information from both the244

adverbs and frequency components. This topic dis-245

tribution is then utilized to assign topics to each246

adverb and frequency component iteratively for247

each motion d.248

Sampling Topics of Adverbs and Frequencies249

We employ collapsed Gibbs sampling (Griffiths250

and Steyvers, 2004) as the learning algorithm for251

estimating the topic distribution of adverbs and252

frequencies in the HDP-SMLDA.253

Sampling topics of adverbs Let T represents254

the set of table assignments and ℓ denotes the ta-255

ble number. According to the Chinese restaurant256

process (Teh et al., 2006), the topic zdn assigned257

to the adverb wdn is determined by sampling the258

occupied table Tdn using the following formula.259

Here, ℓused and ℓnew correspond to existing and260

new tables, Lk and L represent the number of ta-261

bles assigned to topic k and the total number of262

tables, respectively, and V signifies the number of263

vocabularies:264

p(tdn = ℓ|W ,T\dn,Z,Y , α, γ, η)265

∝
{
p(tdn = ℓused)|W ,T\dn,Z,Y , α, γ, η)

p(tdn = ℓnew)|W ,T\dn,Z,Y , α, γ, η)
266

∝


(Ndl\dn +

∑Q
q=1M

q
dl)
Nkwdn\dn + η

Nk\dn + ηV∑K
k=1

αLk
L+γ

Nkwdn\dn + η

Nk\dn + ηV
+

αγ

L+ γ

1

V
.

(4)

267

The following formula is employed to sample the268

topics assigned to the new table. Here, kused refers269

to existing topics, while knew represents new top-270

ics:271

p(zdl = k|W\dn,T,Z\dl, α, γ, β)272

∝
{
p(zdl = kused|W\dn,T,Z\dl, α, γ, β)

p(zdl = knew|W\dn,T,Z\dl, α, γ, β)
273

∝


Lk

Nkwdn
+ η

Nk\dn + ηV

γ
1

V

. (5)274

The hyperparameter η is iteratively updated us-275

ing the Fixed-Point Iteration method(Minka, 2003)276

based on the following equation: 277

η′ = η

∑K
k=1

∑V
v=1Ψ(Nkv + η)−KVΨ(η)

V
∑K

k=1Ψ(Nk + ηV )−KVΨ(ηV )
.

(6)

278

279

Sampling topics of frequencies The topic ydm 280

assigned to the frequency component xdm is sam- 281

pled using the following equation: 282

p(tdm = ℓ|W ,T\dm,Z,Y , α, γ, η) 283

∝
{
p(tdm = ℓused|W ,T\dm,Z,Y , α, γ, η)

p(tdm = ℓnew|W ,T\dm,Z,Y , α, γ, η)
284

∝


(Ndl +

∑Q
q=1M

q
dl\dm)f(x|µk, σ2k)∑K

k=1

αLk

L+ γ
f(x|µk, σ2k)

+
αγ

L+ γ
f(x|µknew , σ

2
knew

),

(7)

285

p(zdl = k|X\dm,T,Y\dl, α, γ, β) 286

∝
{
p(zdl = kused|X\dm,T,Y\dl, α, γ, β)

p(zdl = knew|X\dm,T,Y\dl, α, γ, β)
287

∝
{
Lkf(x|µk, σ2k)
γf(x|µknew , σ

2
knew

) .
(8) 288

The variance parameter σ2 of the Gaussian distri- 289

bution is learned as a fixed value. To ensure that 290

the Gaussian distribution is evenly distributed over 291

the data range, we calculate σ using the following 292

equation. This is done because the data typically 293

fall within the range of approximately −3σ to 3σ 294

when the mean is set to 0. Here, K+ represents the 295

number of topics at the current iteration: 296

σq =
max(Xq)−min(Xq)

6K+
. (9) 297

The mean parameter µ of the Gaussian distribution 298

is sampled from the posterior distribution given 299

by the following equation. Here, λ is defined as 300

λ = 1/σ2, where σ2 represents the variance of the 301

Gaussian distribution: 302

p(µ|Y) = N(µ|m, (βλ)−1) . (10) 303

Let us assume that β0 and m0 are the parameters 304

of the prior distribution, and they are defined as 305

follows: 306

β =M + β0, m =
1

β

(
M∑

m=1

xm + β0m0

)
.

(11)

307
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(a) 2D pose estimation (b) Depth estimation (c) 3D pose estimation (d) Direction normalization
(Cao et al., 2021) (Laina et al., 2016) (Martinez et al., 2017) (See text)

Figure 4: Through the four sequential procedural stages, three-dimensional human joint points data are extracted
from a two-dimensional video.

To estimate the mean µknew for the Gaussian dis-308

tribution associated with the new topic directly is309

not possible since there is no data belonging to the310

cluster. To address this, the mean is sampled from311

a Gaussian distribution using suitable parameters,312

allowing it to be learned to some extent, and then313

estimated as same as the mean of existing topic.314

Estimation of scaling parameter α315

To better estimate the number of topics that best316

fit the data, we adopt a gamma distribution as the317

prior distribution for the scaling parameter α:318

p(α|π, s, Z, c1, c2)319

= Ga(α|c1 +K+ − s, c2 − log π).
(12)

320

π and s are sampled as follows:321

p(π|α, s, Z, c1, c2)322

= Beta(π|α+ 1, N +M), (13)323

324

p(s|α, π, Z, c1, c2)325

= Bernoulli

(
s

∣∣∣∣ N +M

N +M + α

)
. (14)326

3 Experiments327

We begin by providing a description of the datasets328

utilized in our experiments. We then proceed to329

conduct an experiment involving HDP-SMLDA,330

where we examine the adverbs and frequency com-331

ponents, and generate adverbs based on the fre-332

quency components within the trained model.333

3.1 Experimental settings334

Data set335

We conducted an experiment utilizing a dataset336

containing walking motions called 100 Walks2and337

2https://www.youtube.com/watch?v=
HEoUhlesN9E

another dataset comprising dancing motions called 338

AIST++3. 339

100 Walks 100 Walks, the video available on 340

YouTube, is in a two-dimensional format. However, 341

for our experiment, we required three-dimensional 342

pose information as input data. To overcome this 343

limitation, we divided the video into 100 segments 344

at the motion breaks and applied four different 345

methods for three-dimensional pose estimation. 346

1. Estimate 2D skeletal coordinates from video 347

data using Openpose (Cao et al., 2021) (Figure 348

4(a)) 349

2. Estimate the depth of the video per frame 350

using FCRN-depth prediction (Laina et al., 351

2016) (Figure4(b)) 352

3. Estimate 3D skeletal coordinates from video 353

data using results of 1 and 2 ,and 3d-pose 354

baseline (Martinez et al., 2017) (Figure 4(c)) 355

4. Normalize human body orientation using a 356

rotation matrix (Figure 4(d)) 357

AIST++ The AIST Dance DB (Tsuchida et al., 358

2019) is a curated dataset consisting of original 359

dance videos. These videos have been carefully 360

selected and include dance performances accom- 361

panied by copyright-cleared music. The dataset is 362

created and maintained by the National Institute 363

of Advanced Industrial Science and Technology 364

(AIST). Li et al. (2021) conducted annotations on 365

the AIST Dance DB dataset, specifically focusing 366

on three-dimensional human keypoints and devel- 367

oped a dance generation model. These annotations 368

provide valuable information for each dance video 369

in the dataset. Additionally, they released the an- 370

notated dataset called AIST++, which consists of 371

1,199 simple Basic Dance motions annotated with 372

three-dimensional pose information for 16 joint 373

3https://google.github.io/
aistplusplus_dataset/
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points in the COCO format. The dataset consists374

of 10 different choreographies, each representing a375

specific genre of dance. For each choreography,376

there are 20 different dancers who perform the377

dance in the corresponding video. The dancers378

follow the specified choreography while dancing379

to genre-specific music. The music tempo varies380

across the dataset and is set at six different levels.381

Annotation of adverbs382

We employed a crowdsourcing system called383

Lancers4 to gather annotations from multiple an-384

notators for the Japanese adverbs associated with385

the human motions in the videos. We requested386

each annotator to provide as many Japanese ad-387

verbs as possible for human motions of each video.388

To ensure the quality of the annotations, we consid-389

ered only those adverbs that appeared at least three390

times across all the videos and discarded the rest391

as noise. For the 100 Walks dataset, we assigned392

20 annotators to annotate every 100 videos. In the393

case of the AIST++ dataset, we assigned 5 anno-394

tators to annotate every 50 videos. This approach395

allowed us to collect a diverse range of adverbs396

associated with the motions while maintaining the397

quality of the annotations. The details of the ad-398

verb dataset are presented in Table 1, where the399

100 Walks dataset is referred to as “walk” and the400

AIST++ dataset is referred to as “dance”. The met-401

ric “average adverbs” represents the mean number402

of adverbs annotated per video. In comparison to403

data set used in prior research (Pang et al., 2018;404

Malmaud et al., 2015), we have amassed a more405

extensive corpus of adverbs in both datasets.406

Calculation of direction vectors407

We utilize the direction vectors connecting each408

joint as input data to reconstruct the original pose409

information. To account for individual differences410

such as arm length, we compute unit vectors. For411

the 100 Walks dataset, we compute 16 direction412

vectors, while for the AIST++ dataset, we com-413

pute 14 direction vectors. The resulting vectors414

are then combined, with their three-dimensional415

coordinates arranged in the column direction for416

4https://www.lancers.jp/

Videos Adverbs average adverbs
walk 100 264 12.93
dance 1199 1767 16.18

Table 1: Details of the data.

each frame. Consequently, the data dimensions are 417

48 and 42 for the respective datasets. 418

Extraction of frequency components from 419

human motions 420

Frequency components were extracted from the 421

preprocessed video data utilizing the following two 422

steps. Experiments were conducted by varying the 423

number of kernel mixtures, denoted as Md, within 424

the range of 4 to 12. 425

1. Reduce high-dimensional pose data to low- 426

dimensional latent variables using GPLVM. 427

Figure 1 shows the case of reducing pose data 428

into three-dimensional latent variables. 429

2. Extract frequency components for each dimen- 430

sion from the three-dimensional latent vari- 431

ables using SM kernel. Figure 2 shows the 432

case of using four bases of Gaussian distribu- 433

tion. 434

Three motions from the training data of the 100 435

Walks dataset, processed through Gaussian Process 436

Latent Variable Model (GPLVM), are visualized 437

in the three-dimensional latent space, as depicted 438

in Figure 1. In our approach, we employ the ra- 439

dial basis function (RBF) as the kernel function of 440

GPLVM. To optimize the values of X and the hy- 441

perparameters of the kernel, we utilize the L-BFGS 442

method (Liu and Nocedal, 1989). Due to the repeti- 443

tive nature of walking motions, the latent variables 444

exhibit circular patterns, as observed in the figure. 445

For Md = 4, the Gaussian distribution is depicted 446

in Figure 2 with optimized mean µ and variance 447

σ parameters for the first dimension of each mo- 448

tion, using the SM kernel. The estimated variance 449

is exceptionally small, resulting in the Gaussian 450

distribution being represented as a delta function 451

in the figure. From Equation (3), we observe that a 452

larger mean µ value corresponds to a shorter period. 453

Therefore, it can be inferred that the spectral com- 454

ponents representing the basis are more likely to be 455

found on the left side of the spectrum for motion 456

data with slower fluctuations. Thus, (a) contains 457

more fast motion components, (c) contains more 458

slow motion components, and (b) lies in between 459

as an intermediate case. The SM kernel is opti- 460

mized with weights as parameters, representing the 461

significance of each frequency component. At each 462

iteration, the frequency components used as mo- 463

tion features in each video are sampled using the 464

weights. 465
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
wildly happily regularly gracefully strongly dancing practiced rhythmically
strongly rhythmically rhythmically smoothly wildly stepping settled stylishly
clearly lightly dynamically seemly confidently happily waving comfortable
passionately bouncily cheerfully lightly quickly dynamically quickly flowing
classy cheerfully boldly spinning boldly disappointed dynamically cool
Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
spacisouly dynamically bouncily cool sharply finely checking lightly
smoothly wildly spreading sharply machinelike spinning comically shaking
slowly waving totteringly spacisouly comically suffering carefully waving
machinelike big steadily happily firmly avoiding cautiously finely
quietly sharply settled machinelike strangely rhythmically seemly robotlike

Table 2: AIST++ dataset(Md = 4): Top 5 adverbs in each topic estimated by HDP-SMLDA. Each topic corresponds
to each topic in Figure 5. Compared to LDA, HDP-SMLDA takes into account not only co-occurrence of adverbs
but also similarity of motions when classifying adverbs.

Figure 5: The relationship between topics and motion
features can be visualized by plotting 100 samples ex-
tracted from the Gaussian distribution associated with
each topic learned through HDP-SMLDA.

3.2 Result466

For the AIST++ dataset with Md = 4, Table 2 dis-467

plays the top five words for each adverb, along with468

their corresponding Normalized Pointwise Mutual469

Information (NPMI) values (Bouma, 2009) cal-470

culated from the learned topic-word distribution.471

Figure 5 visually represents the 100 samples in a472

three-dimensional space, obtained from the Gaus-473

sian distribution associated with the mean µk of474

each learned topic. Each sample represents a fre-475

quency component that symbolizes a specific topic,476

and the proximity of the samples indicates similar-477

ity in their frequency components. It is important478

to note that since the scales are not estimated, the479

Unigram LDA HDP-SMLDA
(Md = 4/10)

walk 156 99 52 / 57
dance 558 331 218 / 249

Table 3: Perplexity at training in each topic model.

dispersion of the points in the figure remains con- 480

stant. To evaluate the performance of this model, 481

perplexity is used as a metric. Table 3 presents 482

the perplexity of each topic model during training. 483

Additionally, the perplexity for the Unigram model 484

is calculated using the word distribution prior to 485

training. 486

Generation of adverbs from frequency To ver- 487

ify the accurate association between frequencies 488

and adverbs, we performed an experiment where 489

we generated adverbs based on the frequency com- 490

ponents extracted from an evaluation video (Figure 491

6), utilizing the learned word distribution. Table 492

4 presents both the ground truth adverbs and the 493

top seven adverbs with the highest probabilities, 494

calculated through HDP-SMLDA. Through the es- 495

timation of Md from 4 to 12, we observed that, for 496

the majority of evaluation videos, the estimation 497

withMd = 10 yielded more suitable adverbs as the 498

top choices. 499

3.3 Discussions 500

In Figure 5, the arrangement of the 16 Gaussian 501

distributions evenly spans the width of the data. 502

Notably, Topic 5 and Topic 14 exhibit proximity to 503

each other, indicating a similarity in the content of 504

the motions, as supported by Table 4 showcasing 505

the top adverbs associated with each topic. Top- 506

ics 1, 8, and 10 appear more distanced from the 507

other topics. Notably, these three topics demon- 508

strate pronounced adverb features in terms of fre- 509

quency. While there may be an apparent overlap 510

between the content of Topics 1 and 10, a closer 511

examination of the top 20 words reveals that Topic 512

1 encompasses emotionally driven dances such as 513

“bravely” and “heavily”, while Topic 10 represents 514

adverbs associated with more vigorous movements 515

7



Figure 6: A video for evaluation. In the video, the
dancer is dancing jazz ballet.

Ground truth HDP-SMLDA HDP-SMLDA
(Md = 4) (Md = 10)

passionately strongly rhythmically
cheerfully wildly smoothly
rhythmically clearly stylishly
smoothly boldly flowing
flowing confidently cheerfully
strongly sharply sadly
boldly dynamic happily

Table 4: Ground truth adverbs of the dance video (Fig-
ure 6) and Top 7 adverbs estimated by HDP-SMLDA.

like “sharply” and “refreshed”. This distinction516

suggests that the model successfully clusters ad-517

verbs based on both semantic and motion-related518

features derived from frequency components. The519

perplexity values from Table 3 indicate signifi-520

cantly lower values compared to those obtained521

from LDA training data, signifying the valuable522

contribution of frequency components in adverb523

topic classification. Although increasing the num-524

ber of mixtures in the kernel was expected to reduce525

perplexity, the experiment yielded unfavorable re-526

sults. On the other hand,regarding the generation527

of adverbs from frequency components, it was ob-528

served that when Md = 10, the model was able to529

estimate more suitable adverbs compared to when530

Md = 4. This observation raises the possibility531

that the annotators may have encountered difficulty532

in identifying the precise vocabulary during the an-533

notation process or that the model could generate534

correct synonyms that did not align perfectly with535

the ground truth.536

Comparison with neural network models We537

conducted additional experiments to compare the538

representative neural network model’s performance.539

Given that our study involves annotations of mul-540

tiple adverbs per video, multi-label learning be-541

comes necessary. In typical class classification542

learning, the model calculates the error by back-543

propagating the difference between the output prob-544

ability and the input label. However, in our case,545

training is performed by back-propagating the aver-546

LSTM MLP HDP-SMLDA
(3D/Original) (Md = 4/10) (Md = 4/10)

walk 210 / 402 253 / 284 89 / 117
dance 1068 / 1794 994 / 1027 320 / 382

Table 5: Perplexity at evaluating in each model.

age of errors for all adverb labels annotated to the 547

video. We conducted experiments using two dif- 548

ferent models, Long Short-Term Memory (LSTM) 549

and Multi-Layer Perceptron (MLP)(Rumelhart and 550

McClelland, 1987), with four different data inputs: 551

1. Input data processed by GPLVM to LSTM 552

2. Input original data to LSTM 553

3. Input frequency (Md = 4) to MLP 554

4. Input frequency (Md = 10) to MLP 555

Table 5 displays the perplexity scores for each 556

model during evaluation. Comparing the data pro- 557

cessed by GPLVM with the original data, it is evi- 558

dent that the processed data yielded lower perplex- 559

ity, indicating the effectiveness of data dimensional- 560

ity reduction in class classification. All neural net- 561

work models received high scores, which does not 562

necessarily indicate effective learning of adverbs. 563

Nonetheless, our proposed method demonstrated 564

the highest scores on both datasets, highlighting its 565

superior performance. Thus,our model showcases 566

the ability to accurately estimate adverbs even with 567

limited data. 568

4 Conclusions 569

We have proposed a joint topic model named HDP- 570

SMLDA, which aims to comprehend the semantic 571

nuances of sensory adverbs pertaining to human 572

motions by learning co-occurrence relationships 573

between motion features and adverbs. Within our 574

framework, adverbs are modeled as a composite 575

distribution within the frequency space of their ker- 576

nels in a Gaussian process that represents the latent 577

trajectory of motions. Consequently, it becomes 578

feasible to estimate the constituents of sensory ad- 579

verbial motions. When compared to the simple 580

Neural Net model, our model exhibits superior 581

performance on classification of adverbs. Our ap- 582

proach considers motions as a mixture of diverse 583

frequency components, leading to the successful 584

generation of appropriate adverbs from motion fea- 585

tures in our empirical investigations. 586

5 Limitations 587

The primary limitation to the generalization of 588

these results lies in the scarcity of datasets contain- 589

ing adverbially annotated human motions. There 590

8



is no other way to annotate adverbs by ourselves591

to capture the meaning of adverbs which describe592

human motions, and it is difficult to make com-593

parisons with other models because there are few594

studies working on the same research topic. An-595

other limitation is that even if the adverbs output596

by the model are correct, such as synonyms, the597

model may judge that it has output the wrong one598

unless it is an exact match. We think this can be599

resolved by representing the adverbs in embedding600

vectors to evaluate output.601

6 Ethical considerations602

All datasets used in the experiments are either pub-603

licly available or have been licensed for use by the604

authors. In addition, all copyrights to the data gen-605

erated using crowdsourcing were transferred to the606

authors.607
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