Abstract

For humans and robots to collaborate more in the real world, robots need to understand human intentions from the different manner of their behaviors. In our study, we focus on the meaning of adverbs which describe human motions. We propose a topic model, Hierarchical Dirichlet Process-Spectral Mixture Latent Dirichlet Allocation, which concurrently learns the relationship between those human motions and those adverbs by capturing the frequency kernels that represent motion characteristics and the shared topics of adverbs that depict such motions. We trained the model on datasets we made from movies about “walking” and “dancing”, and found that our model outperforms representative neural network models in terms of perplexity score. We also demonstrate our model’s ability to determine the adverbs for a given motion and confirmed that the model predicts more appropriate adverbs.

1 Introduction

With technological innovations in artificial intelligence, the widespread use of household robots that collaborate with humans to assist them in their daily lives is becoming a reality. In order to collaborate with humans, it is important for robots to share and understand their experiences through language, because language is the most convenient communication tool capable of conveying human experience and knowledge. With this background, research on language use by robots in the real world has been actively studied (Taniguchi et al., 2019; Tellex et al., 2020; Kalinowska et al., 2023; Karamcheti et al., 2023). Significantly, within this domain, large-scale language models (LLMs) such as OpenAI’s ChatGPT1 and Google’s PaLM (Chowdhery et al., 2022) are also used to control robots. ChatGPT is used to execute various types of robotics tasks (Vemprala et al., 2023), and PaLM-SayCan (Ahn et al., 2022) and PALM-E (Driess et al., 2023) have been developed based on PaLM (Chowdhery et al., 2022). Singh et al. (2023) and Huang et al. (2022) have proposed methodologies for generating task plans for robots that employ LLM. Their approach conveys robot’s motion plans through a chain-of-thought framework (Wei et al., 2022). Though it is good at describing in language the general plan of action of a robot in accomplishing a specific task, the language description does not capture the precise correspondence between nuanced expressions and the actual robot behaviors in the real world. Furthermore, the focus of their studies is not on the verbal representation of the behaviors of the observed object by a robot, but on the robot’s action plan. On the other hand, research is being conducted to elucidate the relationship between motions and the natural language that describes them. Bidirectional conversion models from natural language descriptions to motions, or vice versa, using sequence-to-sequence (Seq2seq) (Sutskever et al., 2014) learning have been proposed by Yamada et al. (2018); Plappert et al. (2018); Ito et al. (2022). Though these models can achieve bidirectional conversion between language and motion sequences, the relation between motions and language is learned as sequence patterns and lacks in learning the correspondence between the manner of motions and the language that represent them. Furthermore, in the conventional research the focus has predominantly revolved around finite motions, such as “take” and “put”, which were preconceived by humans, thereby neglecting the pursuit of methodologies that facilitate the adaptable modulation of multiple motions contingent upon contextual cues. For the advancement of robotics, it becomes imperative to comprehensively and statistically grasp the repertoire of “motions” that humans genuinely exhibit, as well as discern the variations in individual characteristics and contextual nuances associated with those “motions”. These insights should be

aptly assimilated within the robotic systems. Building upon the aforementioned, we shall address this challenge by casting our focus on adverbs, while establishing correspondence between motions and adverbs that represent them.

Limited research has been conducted thus far to delve into the semantic comprehension of adverbs. Notable approaches within this domain include the Three-Stream Hybrid Model (Pang et al., 2018), which employs Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and inceptionV3 (Szegedy et al., 2016) to acquire knowledge related to adverbs. Additionally, Action Modifiers (Doughty et al., 2020), which employ an I3D network (Carreira and Zisserman, 2017) and scaled dot-product attention (Vaswani et al., 2017) to discern the impact of adverbs on motion sequences. These models employ image features derived from videos, such as RGB and optical flow (Simonyan and Zisserman, 2014), as representations of motions. However, these representations fail to capture the intrinsic essence of the motions themselves; these models models are capable of classify videos annotated adverbs by learning RGB or optical flow, but they are unable to discern the component of motions denoted by the adverb. Therefore, unlike conventional research approaches, in this study, we focus on the frequency components that make up human motion and attempt to express the motion by those components. By doing so, we aim to enable the robot to understand the meaning of adverbs related to motions such as “cut roughly”, etc.

2 Joint Topic Model of Motions and Adverbs

We propose a new topic model, Hierarchical Dirichlet Process-Spectral Mixture Latent Dirichlet Allocation (HDP-SMLDA) to capture the relationship between the frequency components of human motions and the adverbs that describe motions.

The model makes it statistically possible to establish a correspondence between adverbs and nuances associated with motions.

This enables the control of robot actions through verbal instructions, such as “handle with more caution” or “cut roughly”, and it is also possible to make the robot understand human intentions due to slightly different manner of movement. On the contrary, from the perspective of natural language processing, it has been impossible to express the actual meaning behind words like “freely” or “flexi-

bly”. However, the integration with robotics makes it possible for the first time to represent their meaning, allowing not only the description of actions through language but also the generation of actions from language cues.

2.1 Human Motion Representation

Since human motion is represented as a smooth trajectory, we use a Gaussian process (GP) (Rasmussen and Williams, 2006), which is defined as a distribution over functions, to describe the motions. In a GP, the kernel function \(k(x, x') \), which determines the similarity between two data points \((x, x') \), is applied to the data set to compute the covariance matrix and estimate the predictive distribution. The choice of kernel function is an important factor that affects the behavior and performance of the GP model. GP models are primarily used for regression and classification, fundamental techniques that are also widely used by the natural language processing community (Cohn et al., 2014).

2.2 Frequency components in a motion

Wilson et al. (Wilson and Adams, 2013) introduced a technique known as the Spectral Mixture kernel (SM kernel), which enables automatic learning of a mixed kernel from data by considering a combined Gaussian distribution in the Fourier domain. This approach surpasses the limitation of utilizing pre-existing bases or their combinations in Gaussian processes. As a fundamental component of the Gaussian process, we consider a radial basis function \(k(\tau) \) that solely depends on \(\tau = x - x' \).

According to Bochner’s theorem (Bochner et al., 1959; Stein, 1999), any \(k(\tau) \) can be expressed in the following equation:

\[
k(x, x') = k(\tau) = \int_{\mathbb{R}} e^{2\pi i s^T \tau} \psi ds. \tag{1}
\]

As \(k(\tau) \) is considered equivalent to probability density \(\psi(s) \) in the frequency domain, we consider a mixture of Gaussian distributions for \(\psi(s) \). Each component of the Gaussian distributions is equivalent to considering the following basis function in the original domain:

\[
k(\tau | \sigma, \mu) = \exp(-2\pi^2 \sigma^2 \tau^2) \cos(2\pi \tau \mu). \tag{2}
\]

Thus, we are considering a mixture of \(M \) basis functions as the basis. Here, \(\mu_i^q \) and \(\sigma_i^q \) represent the mean and variance, respectively, of the \(q \)-th dimension of the input \(X \) in the \(m \)-th basis:
The weights parameter \(w \), mean \(\mu \), and variance \(\nu \) can be learned through hyperparameter optimization of Gaussian processes. We employ this method to extract \(M \) frequency components (represented by the mean \(\mu \)) that are expected to be relevant to adverbs from the three-dimensional latent variable \(X \) obtained through GPLVM for each motion. These components are then used as observed values that capture the characteristics of the motions. It is worth noting that while the trajectory in \(X \) can be directly Fourier transformed, doing so would not allow us to distinguish between the function passing through particular points (the phase of the function) and the features of the function itself.

2.3 Hierarchical Dirichlet Process-Spectral Mixture LDA

The extracted frequency components from the motions are assumed to be associated with the adverbs assigned to those motions. By employing Gaussian-Multinomial LDA (GM-LDA) (Blei and Jordan, 2003), we can cluster the frequency components and adverbs simultaneously into topics, thereby identifying frequency components that are likely to co-occur with a given adverb. It is important to note that GM-LDA requires the number of topics \(K \) to be known in advance. However, the number of topics is typically unknown, and assuming prior knowledge of this parameter is a significant limitation. To address this issue, we propose the Hierarchical Dirichlet Process Spectral Mixture LDA (HDP-SMLDA), which automatically estimates the number of topics from the data by incorporating a hierarchical Dirichlet process into GM-LDA. The graphical model, as depicted in Figure 3, considers \(Q \) as the number of dimensions of the frequency components. In our study, we set \(Q = 3 \) because the data processed by GPLVM is three-dimensional. The number of kernel mixtures \(M \) in the Spectral Mixture (SM) kernel discussed in the previous section is denoted as \(M_d \) in this model. Adverbs are sampled from a categorical distribution, while the frequency component is treated as continuous data, assuming a Gaussian distribution as the prior distribution. Let us assume the existence of a potential topic distribution \(\theta_d \) for each motion \(d \). The dimensionality of the topics, denoted as \(K \), is variable, allowing for flexibility. The generation process of the adverb \(w_{dn} (n = 1, \ldots, N_d) \) and the frequency component \(x_{dn} (d = 1, \ldots, D; m = 1, \ldots, M_d) \) associated with the motions is outlined as follows:

1. Draw \(G_0 \sim DP(\gamma, H) \).
2. For \(d = 1 \ldots D \),
 - Draw \(\theta_d \sim DP(\alpha, G_0) \).
3. For \(n = 1 \ldots N_d \),
 - Draw \(z_{dn} \sim \Delta(\theta_d) \)
 - Draw \(w_{dn} \sim \phi_{z_{dn}} \).
4. For \(m = 1 \ldots M_d \),
 - Draw \(y_{dn} \sim \theta_d \)
 - Draw \(x_{dn} \sim \mathcal{N}(\mu_{y_{dn}}, \sigma_{y_{dn}}^2) \).
In the generative process, \(\phi_k \) represents the categorical distribution of the adverb corresponding to the \(k \)-th topic, while \(N(\mu_k, \sigma_k^2) \) denotes the Gaussian distribution of the frequency component associated with the same topic. The topic distribution \(\theta \) is calculated based on the information from both the adverbs and frequency components. This topic distribution is then utilized to assign topics to each adverb and frequency component iteratively for each motion \(d \).

Sampling Topics of Adverbs and Frequencies

We employ collapsed Gibbs sampling (Griffiths and Steyvers, 2004) as the learning algorithm for estimating the topic distribution of adverbs and frequencies in the HDP-SMLDA.

Sampling topics of adverbs Let \(T \) represents the set of table assignments and \(\ell \) denotes the table number. According to the Chinese restaurant process (Teh et al., 2006), the topic \(z_{dn} \) assigned to the adverb \(w_{dn} \) is determined by sampling the occupied table \(T_{dn} \) using the following formula. Here, \(\ell_{used} \) and \(\ell_{new} \) correspond to existing and new tables, \(L_k \) and \(L \) represent the number of tables assigned to topic \(k \) and the total number of tables, respectively, and \(V \) signifies the number of vocabularies:

\[
p(t_{dn} = \ell | W, T_{dn}, Z, Y, \alpha, \gamma, \eta) \\
\propto \left\{ \begin{array}{ll}
p(t_{dn} = \ell_{used} | W, T_{dn}, Z, Y, \alpha, \gamma, \eta) \\
p(t_{dn} = \ell_{new} | W, T_{dn}, Z, Y, \alpha, \gamma, \eta)
\end{array} \right.
\]

\[= \left\{ \begin{array}{ll}
p(t_{dn} = \ell_{used} | W, T_{dn}, Z, Y, \alpha, \gamma, \eta) \\
\left(N(\mu_k, \sigma_k^2) \right)^{\ell_{used}} + \frac{\alpha L_k}{L + \gamma} \\
\sum_{k=1}^{K} \frac{N_{in}}{1 + \gamma} \left(N_{in} + \eta V \right)
\end{array} \right.
\]

The following formula is employed to sample the topics assigned to the new table. Here, \(k_{used} \) refers to existing topics, while \(k_{new} \) represents new topics:

\[
p(z_{dl} = k | W_{dl}, T, Z_{dl}, \alpha, \gamma, \beta) \\
\propto \left\{ \begin{array}{ll}
p(z_{dl} = k_{used} | W_{dl}, T, Z_{dl}, \alpha, \gamma, \beta) \\
p(z_{dl} = k_{new} | W_{dl}, T, Z_{dl}, \alpha, \gamma, \beta)
\end{array} \right.
\]

\[= \left\{ \begin{array}{ll}
L_k \left(N_{in} + \eta V \right) \\
\gamma \left(N_{in} + \eta V \right) + \frac{1}{\alpha \gamma}
\end{array} \right.
\]

The hyperparameter \(\eta \) is iteratively updated using the Fixed-Point Iteration method (Minka, 2003) based on the following equation:

\[\eta' = \eta - \frac{\sum_{k=1}^{K} \sum_{d=1}^{D} \Psi(N_{kd} + \eta) - K V \Psi(\eta)}{V \sum_{k=1}^{K} (N_{kd} + \eta V) - K V \Psi(\eta V)}.
\]

Sampling frequencies The topic \(y_{dm} \) assigned to the frequency component \(x_{dm} \) is sampled using the following equation:

\[
p(t_{dm} = \ell | W, T_{dm}, Z, Y, \alpha, \gamma, \eta) \\
\propto \left\{ \begin{array}{ll}
p(t_{dm} = \ell_{used} | W, T_{dm}, Z, Y, \alpha, \gamma, \eta) \\
p(t_{dm} = \ell_{new} | W, T_{dm}, Z, Y, \alpha, \gamma, \eta)
\end{array} \right.
\]

\[= \left\{ \begin{array}{ll}
p(t_{dm} = \ell_{used} | W, T_{dm}, Z, Y, \alpha, \gamma, \eta) \\
\left(\frac{N_{df} + \sum_{Q=1}^{Q} M_{df}^2 \Psi(x_{dm} | \mu_k, \sigma_k^2) + \frac{\alpha L_k}{L + \gamma} \Psi(x_{dm} | \mu_{k_{new}}, \sigma_{k_{new}}^2)}{L + \gamma} \right)
\end{array} \right.
\]

The variance parameter \(\sigma^2 \) of the Gaussian distribution is learned as a fixed value. To ensure that the Gaussian distribution is evenly distributed over the data range, we calculate \(\sigma \) using the following equation. This is done because the data typically fall within the range of approximately \(-3\sigma \) to \(3\sigma\) when the mean is set to 0. Here, \(K^+ \) represents the number of topics at the current iteration:

\[\sigma^2 = \frac{\text{max}(X) - \text{min}(X)}{6K^+}.
\]

The mean parameter \(\mu \) of the Gaussian distribution is sampled from the posterior distribution given by the following equation. Here, \(\lambda \) is defined as \(\lambda = 1/\sigma^2 \), where \(\sigma^2 \) represents the variance of the Gaussian distribution:

\[p(\mu | Y) = N(\mu | m, (\lambda \beta)^{-1}).
\]

Let us assume that \(\beta_0 \) and \(m_0 \) are the parameters of the prior distribution, and they are defined as follows:

\[\beta = M + \beta_0, \ m = \frac{1}{\beta} \left(\sum_{m=1}^{M} x_m + \beta_0 m_0 \right).
\]
To estimate the mean μ_{new} for the Gaussian distribution associated with the new topic directly is not possible since there is no data belonging to the cluster. To address this, the mean is sampled from a Gaussian distribution using suitable parameters, allowing it to be learned to some extent, and then estimated as same as the mean of existing topic.

Estimation of scaling parameter α

To better estimate the number of topics that best fit the data, we adopt a gamma distribution as the prior distribution for the scaling parameter α:

$$
p(\alpha | \pi, s, Z, c_1, c_2) = \text{Ga}(\alpha | c_1 + K^+ - s, c_2 - \log \pi).
$$

(12)

π and s are sampled as follows:

$$
p(\pi | \alpha, s, Z, c_1, c_2) = \text{Beta}(\pi | \alpha + 1, N + M),
$$

(13)

$$
p(s | \alpha, \pi, Z, c_1, c_2) = \text{Bernoulli}\left(s | \frac{N + M}{N + M + \alpha}\right).
$$

(14)

3 Experiments

We begin by providing a description of the datasets utilized in our experiments. We then proceed to conduct an experiment involving HDP-SMLDA, where we examine the adverbs and frequency components, and generate adverbs based on the frequency components within the trained model.

3.1 Experimental settings

Data set

We conducted an experiment utilizing a dataset containing walking motions called 100 Walks and another dataset comprising dancing motions called AIST++

100 Walks 100 Walks, the video available on YouTube, is in a two-dimensional format. However, for our experiment, we required three-dimensional pose information as input data. To overcome this limitation, we divided the video into 100 segments at the motion breaks and applied four different methods for three-dimensional pose estimation.

1. Estimate 2D skeletal coordinates from video data using Openpose (Cao et al., 2021) (Figure 4(a))
2. Estimate the depth of the video per frame using FCRN-depth prediction (Laina et al., 2016) (Figure 4(b))
3. Estimate 3D skeletal coordinates from video data using results of 1 and 2, and 3d-pose baseline (Martinez et al., 2017) (Figure 4(c))
4. Normalize human body orientation using a rotation matrix (Figure 4(d))

AIST++ The AIST Dance DB (Tsuchida et al., 2019) is a curated dataset consisting of original dance videos. These videos have been carefully selected and include dance performances accompanied by copyright-cleared music. The dataset is created and maintained by the National Institute of Advanced Industrial Science and Technology (AIST). Li et al. (2021) conducted annotations on the AIST Dance DB dataset, specifically focusing on three-dimensional human keypoints and developed a dance generation model. These annotations provide valuable information for each dance video in the dataset. Additionally, they released the annotated dataset called AIST++, which consists of 1,199 simple Basic Dance motions annotated with three-dimensional pose information for 16 joint poses.
points in the COCO format. The dataset consists of 10 different choreographies, each representing a specific genre of dance. For each choreography, there are 20 different dancers who perform the dance in the corresponding video. The dancers follow the specified choreography while dancing to genre-specific music. The music tempo varies across the dataset and is set at six different levels.

Annotation of adverbs

We employed a crowdsourcing system called Lancers\(^4\) to gather annotations from multiple annotators for the Japanese adverbs associated with the human motions in the videos. We requested each annotator to provide as many Japanese adverbs as possible for human motions of each video. To ensure the quality of the annotations, we considered only those adverbs that appeared at least three times across all the videos and discarded the rest as noise. For the 100 Walks dataset, we assigned 20 annotators to annotate every 100 videos. In the case of the AIST++ dataset, we assigned 5 annotators to annotate every 50 videos. This approach allowed us to collect a diverse range of adverbs associated with the motions while maintaining the quality of the annotations. The details of the adverb dataset are presented in Table 1, where the 100 Walks dataset is referred to as “walk” and the AIST++ dataset is referred to as “dance”. The metric “average adverbs” represents the mean number of adverbs annotated per video. In comparison to data set used in prior research (Pang et al., 2018; Malmaud et al., 2015), we have amassed a more extensive corpus of adverbs in both datasets.

Calculation of direction vectors

We utilize the direction vectors connecting each joint as input data to reconstruct the original pose information. To account for individual differences such as arm length, we compute unit vectors. For the 100 Walks dataset, we compute 16 direction vectors, while for the AIST++ dataset, we compute 14 direction vectors. The resulting vectors are then combined, with their three-dimensional coordinates arranged in the column direction for each frame. Consequently, the data dimensions are 48 and 42 for the respective datasets.

Extraction of frequency components from human motions

Frequency components were extracted from the preprocessed video data utilizing the following two steps. Experiments were conducted by varying the number of kernel mixtures, denoted as \(M_d\), within the range of 4 to 12.

1. Reduce high-dimensional pose data to low-dimensional latent variables using GPLVM. Figure 1 shows the case of reducing pose data into three-dimensional latent variables.

2. Extract frequency components for each dimension from the three-dimensional latent variables using SM kernel. Figure 2 shows the case of using four bases of Gaussian distribution.

Three motions from the training data of the 100 Walks dataset, processed through Gaussian Process Latent Variable Model (GPLVM), are visualized in the three-dimensional latent space, as depicted in Figure 1. In our approach, we employ the radial basis function (RBF) as the kernel function of GPLVM. To optimize the values of \(X\) and the hyperparameters of the kernel, we utilize the L-BFGS method (Liu and Nocedal, 1989). Due to the repetitive nature of walking motions, the latent variables exhibit circular patterns, as observed in the figure.

For \(M_d = 4\), the Gaussian distribution is depicted in Figure 2 with optimized mean \(\mu\) and variance \(\sigma\) parameters for the first dimension of each motion, using the SM kernel. The estimated variance is exceptionally small, resulting in the Gaussian distribution being represented as a delta function in the figure. From Equation (3), we observe that a larger mean \(\mu\) value corresponds to a shorter period. Therefore, it can be inferred that the spectral components representing the basis are more likely to be found on the left side of the spectrum for motion data with slower fluctuations. Thus, (a) contains more fast motion components, (c) contains more slow motion components, and (b) lies in between as an intermediate case. The SM kernel is optimized with weights as parameters, representing the significance of each frequency component. At each iteration, the frequency components used as motion features in each video are sampled using the weights.

\(^4\)https://www.lancers.jp/

<table>
<thead>
<tr>
<th>Videos</th>
<th>Adverbs</th>
<th>average adverbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>walk</td>
<td>100</td>
<td>264</td>
</tr>
<tr>
<td>dance</td>
<td>1199</td>
<td>1767</td>
</tr>
</tbody>
</table>

Table 1: Details of the data.
Table 2: AIST++ dataset ($M_d = 4$): Top 5 adverbs in each topic estimated by HDP-SMLDA. Each topic corresponds to each topic in Figure 5. Compared to LDA, HDP-SMLDA takes into account not only co-occurrence of adverbs but also similarity of motions when classifying adverbs.

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
<th>Topic 5</th>
<th>Topic 6</th>
<th>Topic 7</th>
<th>Topic 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>wildly</td>
<td>happily</td>
<td>regularly</td>
<td>gracefully</td>
<td>strongly</td>
<td>dancing</td>
<td>practiced</td>
<td>rhythmically</td>
</tr>
<tr>
<td>strongly</td>
<td>rhythmically</td>
<td>smoothly</td>
<td>smoothly</td>
<td>wildly</td>
<td>stepping</td>
<td>settled</td>
<td>stylishly</td>
</tr>
<tr>
<td>clearly</td>
<td>lightly</td>
<td>seemly</td>
<td>lightly</td>
<td>confidently</td>
<td>happily</td>
<td>waving</td>
<td>comfortable</td>
</tr>
<tr>
<td>passionately</td>
<td>bouncily</td>
<td>boldly</td>
<td>spinning</td>
<td>quickly</td>
<td>dynamically</td>
<td>quickly</td>
<td>flowing</td>
</tr>
<tr>
<td>classy</td>
<td>cheerfully</td>
<td>boldly</td>
<td>boldly</td>
<td>disappointed</td>
<td>dynamically</td>
<td>dynamically</td>
<td>cool</td>
</tr>
</tbody>
</table>

Table 3: Perplexity at training in each topic model.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>spaciously</td>
<td>dynamically</td>
<td>bouncily</td>
<td>cool</td>
<td>sharply</td>
<td>finely</td>
<td>checking</td>
<td>lightly</td>
</tr>
<tr>
<td>smoothly</td>
<td>wildly</td>
<td>spreading</td>
<td>sharply</td>
<td>machinelike</td>
<td>spinning</td>
<td>comically</td>
<td>shaking</td>
</tr>
<tr>
<td>slowly</td>
<td>waving</td>
<td>totteringly</td>
<td>spaciously</td>
<td>comically</td>
<td>suffering</td>
<td>carefully</td>
<td>waving</td>
</tr>
<tr>
<td>machinelike</td>
<td>big</td>
<td>steadily</td>
<td>happily</td>
<td>firmly</td>
<td>avoiding</td>
<td>cautiously</td>
<td>finely</td>
</tr>
<tr>
<td>quietly</td>
<td>sharply</td>
<td>settled</td>
<td>machinelike</td>
<td>strangely</td>
<td>rhythmically</td>
<td>seemly</td>
<td>robotlike</td>
</tr>
</tbody>
</table>

Figure 5: The relationship between topics and motion features can be visualized by plotting 100 samples extracted from the Gaussian distribution associated with each topic learned through HDP-SMLDA.

3.2 Result

For the AIST++ dataset with $M_d = 4$, Table 2 displays the top five words for each adverb, along with their corresponding Normalized Pointwise Mutual Information (NPMI) values (Bouma, 2009) calculated from the learned topic-word distribution. Figure 5 visually represents the 100 samples in a three-dimensional space, obtained from the Gaussian distribution associated with the mean μ_k of each learned topic. Each sample represents a frequency component that symbolizes a specific topic, and the proximity of the samples indicates similarity in their frequency components. It is important to note that since the scales are not estimated, the dispersion of the points in the figure remains constant. To evaluate the performance of this model, perplexity is used as a metric. Table 3 presents the perplexity of each topic model during training. Additionally, the perplexity for the Unigram model is calculated using the word distribution prior to training.

Generation of adverbs from frequency

To verify the accurate association between frequencies and adverbs, we performed an experiment where we generated adverbs based on the frequency components extracted from an evaluation video (Figure 6), utilizing the learned word distribution. Table 4 presents both the ground truth adverbs and the top seven adverbs with the highest probabilities, calculated through HDP-SMLDA. Through the estimation of M_d from 4 to 12, we observed that, for the majority of evaluation videos, the estimation with $M_d = 10$ yielded more suitable adverbs as the top choices.

3.3 Discussions

In Figure 5, the arrangement of the 16 Gaussian distributions evenly spans the width of the data. Notably, Topic 5 and Topic 14 exhibit proximity to each other, indicating a similarity in the content of the motions, as supported by Table 4 showcasing the top adverbs associated with each topic. Topics 1, 8, and 10 appear more distanced from the other topics. Notably, these three topics demonstrate pronounced adverb features in terms of frequency. While there may be an apparent overlap between the content of Topics 1 and 10, a closer examination of the top 20 words reveals that Topic 1 encompasses emotionally driven dances such as “bravely” and “heavily”, while Topic 10 represents adverbs associated with more vigorous movements.
Table 4: Ground truth adverbs of the dance video (Figure 6) and Top 7 adverbs estimated by HDP-SMLDA.

<table>
<thead>
<tr>
<th>Ground truth</th>
<th>HDP-SMLDA ($M_d = 4$)</th>
<th>HDP-SMLDA ($M_d = 10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>passionately</td>
<td>strongly</td>
<td>rhythmically</td>
</tr>
<tr>
<td>cheerfully</td>
<td>wildly</td>
<td>smoothly</td>
</tr>
<tr>
<td>rhythmically</td>
<td>clearly</td>
<td>stylishly</td>
</tr>
<tr>
<td>smoothly</td>
<td>boldly</td>
<td>flowing</td>
</tr>
<tr>
<td>flowing</td>
<td>confidently</td>
<td>cheerfully</td>
</tr>
<tr>
<td>strongly</td>
<td>sharply</td>
<td>sadly</td>
</tr>
<tr>
<td>boldly</td>
<td>dynamic</td>
<td>happily</td>
</tr>
</tbody>
</table>

Table 5: Perplexity at evaluating in each model.

<table>
<thead>
<tr>
<th></th>
<th>LSTM (3D/Original)</th>
<th>MLP ($M_d = 4/10$)</th>
<th>HDP-SMLDA ($M_d = 4/10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>walk</td>
<td>2107 / 402</td>
<td>253 / 284</td>
<td>897 / 117</td>
</tr>
<tr>
<td>dance</td>
<td>1068 / 1794</td>
<td>994 / 1027</td>
<td>320 / 382</td>
</tr>
</tbody>
</table>

Table 5 displays the perplexity scores for each model during evaluation. Comparing the data processed by GPLVM with the original data, it is evident that the processed data yielded lower perplexity, indicating the effectiveness of data dimensionality reduction in class classification. All neural network models received high scores, which does not necessarily indicate effective learning of adverbs.

4 Conclusions

We have proposed a joint topic model named HDP-SMLDA, which aims to comprehend the semantic nuances of sensory adverbs pertaining to human motions by learning co-occurrence relationships between motion features and adverbs. Within our framework, adverbs are modeled as a composite distribution within the frequency space of their kernels in a Gaussian process that represents the latent trajectory of motions. Consequently, it becomes feasible to estimate the constituents of sensory adverbal motions. When compared to the simple Neural Net model, our model exhibits superior performance on classification of adverbs. Our approach considers motions as a mixture of diverse frequency components, leading to the successful generation of appropriate adverbs from motion features in our empirical investigations.

5 Limitations

The primary limitation to the generalization of these results lies in the scarcity of datasets containing adverbially annotated human motions. There
is no other way to annotate adverbs by ourselves to capture the meaning of adverbs which describe human motions, and it is difficult to make comparisons with other models because there are few studies working on the same research topic. Another limitation is that even if the adverbs output by the model are correct, such as synonyms, the model may judge that it has output the wrong one unless it is an exact match. We think this can be resolved by representing the adverbs in embedding vectors to evaluate output.

6 Ethical considerations

All datasets used in the experiments are either publicly available or have been licensed for use by the authors. In addition, all copyrights to the data generated using crowdsourcing were transferred to the authors.

References

