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Abstract
Recurrent events are common in clinical studies and are often subject to terminal events. In pragmatic trials, 
participants are often nested in clinics and can be susceptible or structurally unsusceptible to the recurrent 
events. We develop a Bayesian shared random effects model to accommodate this complex data structure. 
To achieve robustness, we consider the Dirichlet processes to model the residual of the accelerated failure 
time model for the survival process as well as the cluster-specific shared frailty distribution, along with an 
efficient sampling algorithm for posterior inference. Our method is applied to a recent cluster randomized 
trial on fall injury prevention.
Keywords: accelerated failure time model, Bayesian survival analysis, Dirichlet process, pragmatic clinical trials, semi- 
competing risks, zero inflation
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1 Introduction
Recurrent event data are common in clinical studies when participants are followed up longitudin
ally. Typically, each event occurrence can be subject to right censoring as well as a competing ter
minal event, such as death. In large pragmatic clinical trials, the event processes are often observed 
across a heterogeneous population, along with an informative competing event process subject to 
between-participant clustering. These features bring new challenges for the analysis of clustered 
recurrent events, due to the need for simultaneously characterizing the recurrent event process, 
non-terminal as well as terminal event survival processes as a function of covariates.

Falls are the leading cause of injury-related death among older Americans, and approximately 
one in four older adults experiences fall each year, resulting in numerous deaths and injury-related 
hospitalization and healthcare utilization annually (Choi et al., 2019; Verma et al., 2016). There 
has been a rising interest in implementing effective fall prevention strategies at a healthcare system 
level or provider level, to improve patient outcomes and reduce fall injury-related mortality 
(Hopewell et al., 2018). In 2014, the Patient-Centered Outcomes Research Institute and the 
National Institute on Aging in the United States funded a pragmatic trial, the Strategies to 
Reduce Injuries and Develop Confidence in Elders (STRIDE; Bhasin et al., 2020) study, to assess 
the effectiveness of a patient-centred intervention on fall injury prevention for older adults; our 
work is directly motivated by the STRIDE study. In STRIDE, more than 6,000 
community-dwelling adults from 86 primary care practices were recruited, with 43 practices 
randomized to intervention and the remaining to usual care. Participants were followed up every 
4 months via tele-interview (this is a relatively large number of clusters, as the upper quartile of 
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number of clusters in a past systematic review by Ivers et al., 2011 was only 52). All reported fall 
injuries were recorded, and a blinded adjudication committee confirmed serious fall injures via 
medical and claim records from the participating healthcare systems and Centers for Medicare 
and Medicaid Services data (Ganz et al., 2019). During the study, 89% of participants did not ex
perience an adjudicated serious fall injury. As a simple illustration, we randomly select 50 patients 
from one random intervention practice and one random usual care practice, and present in 
Figure 1 the time trajectories for recurrent adjudicated serious fall injuries and an observed death 
event or censoring for each participant. Irrespective of the intervention, the recurrent event rate 
was relatively low, and there was an excessive number of participants without events, which sig
nals potential zero inflation for the recurrent event process. In addition, online supplementary 
Figure 1 presents the descriptive Kaplan–Meier survival curves for the terminal event.

There is a growing body of literature on the analysis of recurrent events in the presence of a ter
minal event. For example, Lancaster and Intrator (1998) represented the first effort to develop a 
recurrent event model with patient-level frailty subject to non-informative terminal events. Sinha 
et al. (2008) provided a comprehensive review of methods for recurrent event analysis with de
pendent termination and developed the first Bayesian approach to analyse such data. More recent 
developments for recurrent event analysis with dependent termination include estimating equa
tions approaches under a frequentist paradigm (Kalbfleisch et al., 2013) and parametric or semi- 
parametric models under a Bayesian paradigm (Li et al., 2019, 2020; Lin et al., 2017). A key 
feature of these methods is to characterize the dependence between non-terminal and terminal 
events under a semi-competing risk perspective (Fine et al., 2001), as ignoring this dependence 
can lead to a biased inference. To do so, one common strategy is to formulate a joint model 
with a shared participant-level frailty in the recurrent event and terminal event sub-models, where 
the sub-models can either be based on the intensity functions of the event processes (Lee et al., 2019; 
Liu et al., 2004) or the hazard rate of the gap time between two events (Paulon et al., 2020; Yu & 
Liu, 2011). Alternatively, Xu et al. (2021) developed a joint latent-class models to allow for class- 
specific risks for recurrence and termination. Their approach bypasses the distributional assump
tion of the shared random effect and can potentially lead to more interpretable covariate effects 
within and across latent classes. Despite this growing literature, few existing methods have simul
taneously addressed the complications of cluster correlated data featured in the STRIDE study, 
whereas failure to account for clustering can result in an invalid inference (Lee et al., 2016). 
Jung et al. (2019) developed an approach that accounted for between-participant clustering in 
the presence of recurrent and terminal events. A similar joint model was also formulated in 
Rondeau et al. (2015) and implemented in the R package frailtypack. However, these existing 
approaches require strong parametric assumptions on the between-participant clustering effect and 
have not addressed population heterogeneity with respect to event susceptibility.

The contributions of our work are several-fold. First, we propose a new joint model to analyse 
recurrent event and survival processes in the presence of between-participant clustering and a com
peting terminal event. We introduce random effects at the participant level and the practice level, 
both of which contribute to connecting the recurrent event and survival processes. Second, we ad
dress potential zero inflation within our modelling framework by including a point mass at zero 
for the recurrent event intensity function. Using a latent indicator to define the status of unsuscep
tibility for each participant, we are able to directly inform population heterogeneity by separating 
the unobserved unsusceptible sub-population from the whole study population (Kim, 2021; Liu 
et al., 2016). Third, we consider separate non-parametric Dirichlet process priors (Ferguson, 
1973) for the residual in the survival process as well as for the cluster-specific random effect, 
which, compared with conventional parametric formulations, alleviates potential bias due to 
model mis-specification. Finally, we apply the proposed Bayesian semi-parametric approach to 
analyse participant-level data from the STRIDE trial and generate new insights.

The rest of the article is organized as follows. In Sections 2 and 3, we introduce our Bayesian 
semi-parametric model including specifications of all sub-models, choice of priors, and posterior 
inference. We evaluate the model performance by comparing with other competing approaches 
using simulations in Section 4. We provide a comprehensive analysis of the STRIDE study in 
Section 5 using the proposed model and several other existing modelling techniques. We conclude 
with a discussion in Section 6.
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Figure 1. An illustration of (right-continuous) time trajectories for serious fall injury occurrence and terminal death 
event among randomly selected participants from both the intervention and control practices, where ‘∘’ represents 
censoring, ‘†’ represents occurrence of death, and ‘×’ represents an occurrence of fall injury.
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2 Modelling clustered recurrent events in the presence of a terminal event
We consider a clustered data structure with recurrent events that are subject to a terminal event, such 
as death. We assume J clusters (primary care practices) are recruited, with Nj participants in cluster j 

and N =
􏽐J

j=1 Nj participants in total. Define Qij(t) as the number of recurrent events prior to or at 
time t for participant i (i = 1, . . . , Nj) within cluster j (j = 1, . . . , J). In our motivating STRIDE 
study, adjudicated serious fall injuries for patients are considered as recurrent events, subject to 
the risk of death as a terminal event. After a terminal event, recurrent events are no longer observ
able. In this case, we define time to the terminal event for each participant as Rij and the usual right 

censoring time (such as administrative censoring) as Cij. The observed follow-up time is 􏽥Rij = Rij ∧ 
Cij with a censoring indicator Δij = 1 if the terminal event is observed and 0 if censored. Throughout, 
we assume that the censoring time can at most depend on the observed baseline covariates, and 
therefore do not consider dependent-censoring based on the unmeasured or time-varying informa
tion. Equivalently, we observe a total of Qij(􏽥Rij) recurrent events for participant i in cluster j. We also 

write Tijk ≤ 􏽥Rij as the time when the kth (1 ≤ k ≤ Qij(􏽥Rij)) recurrent event is observed. For notation 
purposes, we define the collection of recurrent event times for each participant with at least one event 
as Tij = {Tij1, . . . , Tij,Qij(R̃ij)}, and for those with zero events as Tij = ∅.

As shown in Figure 1, a substantial proportion of participants in our motivating study have not 
experienced recurrent events, suggesting that some patients may be structurally unsusceptible to 
fall injuries during the study period, and could have distinctive characteristics from the remaining 
population. This requires us to separately consider this sub-group for plausibly uncovering the ac
tual event mechanisms. To model zero inflation, we introduce a latent indicator Dij with Dij = 1 if 
participant i in cluster j belongs to the sub-group that is unsusceptible to recurrent event during the 
study period and 0 otherwise. We consider a point mass mixture of non-homogeneous Poisson 
process (NHPP) to model the recurrent event hazard (or intensity) function for each participant as

λij(t) =
γijλ0(t)exp βTXij + μj

􏼐 􏼑
if Dij = 0;

0 if Dij = 1.

􏼨

(1) 

In the hazard function (1), Xij represents the set of covariates including the treatment arm and add
itional baseline characteristics potentially related to the recurrent process, β are the coefficients 
representing the relationship between Xij and recurrent event process among the susceptible sub- 
group with Dij = 0, and λ0(t) is the associated baseline hazard. By definition, a participant belongs 

to the susceptible sub-group if Qij(􏽥Rij) > 0; otherwise, the participant can belong to either the sus
ceptible or unsusceptible sub-group. In addition, γij is the subject-specific frailty accounting for the 
correlation between recurrent events for the same participant, and μj is the cluster-specific random 
effect that captures between-participant correlation within the same practice.

There are different options to specify λ0(t) under a Bayesian paradigm. For instance, we could 
assume a power-law model (Lee et al., 2019) with λ0(t) = ψtψ−1, which corresponds to a Weibull 
baseline hazard with scale parameter 1 and shape parameter ψ controlling the rate of event occur
rences. Alternatively, we could also consider a non-parametric specification for λ0(t) with a piece- 
wise constant function (Jung et al., 2019; McKeague & Tighiouart, 2000)

λ0(t) =
􏽘G

g=1

I sg−1 < t ≤ sg
􏼂 􏼃

· λ0g, (2) 

where I[ · ] is the indicator function, s0 = 0, sG represents the largest recurrent event time, and 
{s1, . . . , sG−1} are G − 1 grid points that partition the time interval such that baseline hazard is 
a constant λ0g over (sg−1, sg]. While the power-law model assumes a monotone baseline hazard, 
the piece-wise constant model can be more flexible and more robust to model assumptions. In 
what follows, we will primarily focus on the piece-wise constant model (2); additional details 
and numerical results under the power-law baseline hazard are provided in the online 
supplementary Appendix S2.
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For the survival process of the terminal event, we consider an accelerated failure time (AFT) 
model incorporating the hierarchical random effects shared with the recurrent event model

log (Rij) = α0 + αTZij + ξ1 log (γij) + ξ2μj + κ−1
ij ϵij, (3) 

where κ−1
ij is the participant-specific shape parameter and ϵij is the independent and identically dis

tributed residual error for the log survival time. In equation (3), α0 is the intercept that captures the 
common factor across subjects, Zij is the set of covariates associated with the terminal event time 
with coefficients α and can differ from Xij in the recurrent event model (1), and coefficients ξ1 and 
ξ2 control the degree of unobserved associations between the recurrent and terminal event proc
esses at the participant level and cluster level, respectively. This above model representation indi
cates that the participant-level frailty γij and the cluster-level random effect μj jointly affect the 
relative change in survival time for the terminal event to account for the variation beyond that cap
tured by the observed covariates. Meanwhile, model (3) and the recurrent event intensity model (1) 
share the hierarchical random effects to induce an informative terminal event process. To interpret 
this in the STRIDE study, an elderly participant who is more susceptible to repeated occurrences of 
falls may be either more likely or unlikely to survive until the end of the study, as captured by the 
participant-level frailty γij and its coefficient ξ1. Similar interpretation also applies to the practice- 
level frailty μj and its coefficient ξ2 in the terminal process sub-model. Several prior studies 
(Mitchell et al., 2013; Rietdyk et al., 2022) have shown that individuals who are more likely to 
falls might also face a heightened risk of severe injuries, which may impact on their survival until 
the end of a study. Consequently, employing shared random effects provides a mechanism to 
capture the potential interconnections among different outcomes at both the participant and prac
tice levels. However, we acknowledge that while the shared random effects are justified in our ap
plication, they might not be suitable for other studies. We refer to a discussion on this point in 
Section 6.

For AFT model (3), a canonical parametric specification is to assume that residual error ϵij 

follows a standard extreme value distribution and κij = κ, ∀i, j. Under this parameterization, 
the AFT model implies a Weibull hazard function for the terminal event time with 
hij(t ∣ κij = κ) = γ−κξ1

ij tκ−1κexp{ − κ(α0 + αTZij + ξ2μj)}. Accordingly, the survival function becomes 
Hij(t ∣ κij = κ) = exp[ − γ−κξ1

ij tκexp{ − κ(α0 + αTZij + ξ2μj)}]. Such an AFT model with a homoge
neous error distribution, although easy to implement, may be less robust to between-participant 
heterogeneity in their baseline risk to the terminal event. To enhance model robustness, we con
sider a non-parametric Dirichlet process (DP) to model the error distribution. Specifically, we as
sume the participant-specific shape parameter

κij ∣ F ∼i.i.d F, j = 1, . . . , J; i = 1, . . . , Nj; F ∼ DP(ϕ0, F0). (4) 

Here, F0 is called a base measure that defines the expectation of the random probability F ∈ R 

from which κij is sampled, and ϕ0 is the scale parameter describing the overall sampling concentra
tion or the variance of the random probability measure. We specify F0 as a Gamma distribution 
G(aκ, bκ), and assign a weakly informative Gamma distribution for scale parameter ϕ0 ∼ G(1, 1) 
to ensure adequate flexibility. Essentially, model (4) induces a non-parametric realization for 
the shape parameters, which then corresponds to a more flexible form of the hazard and survival 
functions. To elaborate on this point, we can represent the DPmodel in equation (4) by an infinite 
mixture of point masses (Sethuraman, 1994)

F =
􏽘∞

k=1

πkμθk
, with πk = π ′k

􏽙k−1

h=1

(1 − π ′h), (5) 

where μθ is a probability measure concentrated at θ, and the two sets of independent and identi
cally distributed random variables {π ′k}∞

k=1 and {θk}∞
k=1 follow
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π ′k ∣ F0, ϕ ∼ Beta(1, ϕ0); θk ∣ F0, ϕ ∼ F0; k = 1, . . . , ∞. (6) 

Here, {θk}∞
k=1 is a sequence of independent draws from the base measure F0, and {πk}∞

k=1 are the 
weight parameters constructed via a stick-breaking representation. With probability one, F is a 
discrete distribution as a combination of infinite number of point masses. Under weights 
{πk}∞

k=1, realization of each κij will be obtained directly from F consisting of components {θk}∞
k=1. 

The induced survival function for participant i in cluster j then becomes an infinite mixture of 
Weibull survival functions given by

􏽘∞

k=1

πkHij(t ∣ κij = θk) =
􏽘∞

k=1

πkexp −γ−θkξ1
ij tθk exp

􏼈
− θk α0 + αTZij + ξ2μj

􏼐 􏼑􏼉􏽨 􏽩
, 

and the associated hazard function corresponds to a similar infinite mixture of Weibull hazards

􏽘∞

k=1

πkHij(t ∣ κij = θk)
􏽐∞

l=1 πlHij(t ∣ κij = θl)

􏼚 􏼛

γ−θkξ1
ij tθk−1θkexp −θk α0 + αTZij + ξ2μj

􏼐 􏼑􏽮 􏽯
, 

both of which are arguably much more flexible than their canonical, fully parametric counterparts. 
Meanwhile, as shown in equation (5), with k increased, πk decreases exponentially and concen
trates the sampling on a number of initial components. This allows the residual error distributions 
to group based on their identical shape parameter values, and in turn, induces a clustering effect to 
dissect sub-group of individuals sharing a similar shape of the survival function. Finally, the ca
nonical AFT specification can be considered as a special case of equation (5) with a degenerate 
Dirac measure.

3 Bayesian inference
3.1 Prior specification
To jointly characterize the zero-inflated recurrent events and terminal event process, the proposed 
joint modelling framework involves the following unknown parameters: regression coefficients β, 
α, ξ1, and ξ2, participant-level and cluster-level random effects γ = {γij} and μ = {μj}, latent indicator 
D = {Dij}, shape parameter κ = {κij} for the terminal event sub-model, grid points s, and piece-wise 
constants λ = (λ01, . . . , λ0G) for the recurrent event sub-model.

The hierarchical random effects play an important role in connecting the recurrent and survival 
processes, since they represent shared unmeasured factors in addition to those captured by the 
baseline covariates. The frailty γ is directly grouped by different practices the participants belong 
to and provides quantification of between-participant heterogeneity, while the practice-specific 
random effects μ account for between-practice heterogeneity. We assume independence between 
elements of γ and assign γij ∼ LN (0, τ2

j ), where LN represents a Log-Normal distribution and τ2
j 

represents a participant-specific variance parameter; and we adopt an Inverse Gamma (IG) 
hyper-prior such that τ2

j ∼ IG(a0, b0). For μ, instead of using parametric conjugate priors, we con
sider a non-parametric DP prior by assuming

μj ∣ G ∼i.i.d G, j = 1, . . . , J; G ∼ DP(ϕ, G0). (7) 

We specify base measure G0 as a Normal distribution, N (0, σ2), and assign ϕ ∼ G(1, 1) to ensure 
adequate flexibility. Prior (7) induces a non-parametric representation for the random effects over 
practices. Since the inference of model parameters may be sensitive to parametric assumptions of 
the practice-level random effects (Gasparini et al., 2019), this non-parametric prior can induce 
more robust characterization of the quality of care in each practice. To facilitate posterior infer
ence under equation (7), following equations (5) and (6), we also resort to an infinite mixtures 
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of point masses representation under the point mass random set {ηl}
∞
l=1, where each μj sampled 

from under the weights {π̃l}
∞
l=1 [η and π̃ are analogues to those introduced in model (5)]. This 

also groups realizations of each element within μ together by their identical values, indicating, 
for example, similar quality of care across the included practices. In STRIDE, the primary care 
practices are nested within different healthcare systems, which could induce inter-practice similar
ity. Although we do not directly account for heterogeneity across health systems beyond that 
across practices, the implicit clustering effect due to the DP prior automatically identifies more 
similar practices according to values of μj, either within or across different health systems, and pro
vides additional flexibility beyond a single random effect at the health system level. Alternatively, 
in the absence of a clear grouping pattern between practices in terms of quality of care, we can still 
rely on equation (7) to potentially reduce the number of unknown practice-level random effects. 
Of note, in the analysis of the STRIDE trial, we have specified the above Log-Normal parametric 
prior for the patient-level frailty because the recurrent event rate was relatively low; however, a 
relatively large number of practices in STRIDE supports a non-parametric DP prior for the 
practice-level random effects. In addition, we have considered a DP shape-mixture of errors in 
the AFT terminal event model as well as a DP prior for the practice-level random effects in the 
same terminal event model. This double non-parametric prior specification does not lead to non- 
identifiability because the practice-level random effects are shared between the recurrent event and 
terminal event models and posterior inference for the practice-level random effects will be based 
on additional information beyond the terminal event process.

We further assume the latent indicator Dij follows Dij ∼ Bern(pij), i = 1, . . . , Nj, j = 1, . . . , J, 
with pij being the participant-specific probability to be classified into the unsusceptible sub-group. 
When there is prior knowledge on potential risk factors that are associated with an individual’s 
susceptibility status for recurrent events, we can adopt a logistic model

logit(pij) = ζTUij, (8) 

where Uij includes an intercept as well as risk factors for susceptibility and ζ represents the regres
sion coefficients (Cooner et al., 2007; Joseph & Robert, 1952). In other cases without strong prior 
information on such covariates, we could instead assume that pij takes a constant value, say 0.5, 
which leads to a non-informative prior for the latent indicator Dij, and can be regarded as a special 
case of equation (8). For generality, we will discuss posterior inference under a general logistic for
mulation (8). In terms of the baseline hazard in the recurrent event process, following Jung et al. 
(2019), we pre-specify s as quantiles based on the minimum to the maximum recurrent event time, 
and adopt a uniform prior (0, ∞) for each element within λ, i.e. p(λ0g) ∝ 1. This improper uniform 
prior is a convenient choice and still leads to well-defined posterior distribution that integrates to 
1, and results under a proper uniform prior over (0, 100) are no different for the analysis of 
STRIDE (omitted for brevity). To complete prior specification, we assign priors for the remaining 
model parameters such that β ∼ N (0, σ2

βI), α ∼ N (0, σ2
αI), ζ ∼ N (0, σ2

ζ I), ξ1 ∼ N (0, σ2
ξ1

), 

ξ2 ∼ N (0, σ2
ξ2

); and further assign conjugate IG hyper-priors for σ2
β and σ2

α and pre-specify the re
maining hyper-parameters with reasonable values without strong prior impact on the posterior 
inference; as our model includes a substantial amount of parameters, sensitivity analyses to choice 
of hyper-parameters are also recommended. For an overview of our method, Figure 2 provides a 
graphical illustration of the data structure along with key modelling assumptions.

3.2 Likelihood and posterior inference
Given the observed data Oij = {􏽥Rij, Δij, Tij, Qij(􏽥Rij), Xij, Zij, Uij} for each subject i(i = 1, . . . , Nj) 
within practice j(j = 1, . . . , J), we need to carefully distinguish between different events and sur
vival states, as well as the sub-group each subject belongs to, in order to carry out inference for 
all model parameters. For example, while each participant may be or may not be susceptible to 
recurrent events, all participants are susceptible to the terminal events in the STRIDE application. 
With the unknown parameters Θ = {β, α, ζ, γ, μ, D, ξ1, ξ2, κ; ϕ or λ}, the observed data likelihood 
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involves a combination of probabilities for structural zeros among the unsusceptible sub-group, 
recurrent events, and terminal events, and is given by

L({Oij} ∣ Θ) =
􏽙J

j=1

􏽙Nj

i=1

Dij + (1 − Dij)(1 − Δij)Sij(􏽥Rij)Hij(􏽥Rij) + (1 − Dij)ΔijSij(􏽥Rij)
􏽮

× fij(􏽥Rij)
􏽯I Qij(R̃ij)=0[ ]

× Δij

􏽙Qij(R̃ij)

k=1

λij(Tijk)Sij(􏽥Rij)fij(􏽥Rij)

⎧
⎨

⎩

+ (1 − Δij)
􏽙Qij(R̃ij)

k=1

λij(Tijk)Sij(􏽥Rij)Hij(􏽥Rij)

⎫
⎬

⎭

I Qij(R̃ij)>0[ ]

, 

where fij(􏽥Rij) = hij(􏽥Rij)Hij(􏽥Rij) is the density function for the terminal event process of participant i 

in practice j evaluated at the observed survival time 􏽥Rij, and the indicator function I[ · ] separating 
the likelihood for those with and without recurrent events. By combining the observed data like
lihood with our prior specification, we obtain the joint posterior distribution of Θ, from which we 
perform estimation and inference for each of the unknown parameters.

To achieve posterior inference, we develop a Markov chain Monte Carlo (MCMC) algorithm 
based on a combination of Gibbs sampler and Metropolis–Hastings (MH) updates. The full com
putational details of our MCMC are provided in the online supplementary material. In brief, 
under random initials, the algorithm cycles through the following steps: 

• Sample each element of D from its posterior Bernoulli distribution.
• For the recurrent event sub-model, update each element of β via its MH step; and update each 

element of λ in the baseline hazard from its MH step.
• For the terminal event sub-model, update α0 and each element of α via the corresponding MH 

steps. For the individual shape parameter κ, we implement an approximate sampling proced
ure under the truncated stick-breaking process (Ishwaran & James, 2001; Li et al., 2015), 
where a conservative upper bound K larger than the possible number of latent groups for 
the mixture of κij’s is assigned. By introducing a mapping indicator set v = (v11, . . . , vNJ,J) 

Figure 2. A graphical demonstration of the multi-level data structure and our proposed Bayesian joint model for the 
zero-inflated recurrent events and semi-competing survival process.
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with vij ∈ {1, . . . , K} following a Multinomial distribution with probabilities {π1, . . . , πK}, we 
align each κij to its latent membership label vij. Within the same group membership label, the 
κij’s are considered identical. Therefore, we update each vij from the posterior Multinomial 
distribution, sample κij within each of the K clusters via an MH step, and update πk = 
π ′k
􏽑

h<k (1 − π ′h) with π ′h sampled from the Beta distribution.

• For the participant-specific frailty, update each γij via the MH step and sample the frailty vari
ance τ2

j from its posterior IG distribution for i = 1, . . . , Nj, j = 1, . . . , J.
• For the practice-specific random effect μ, we implement a similar sampling procedure as that 

for κ by assigning a conservative upper bound L and introducing a mapping indicator set m = 
(m1, . . . , mJ) with each element following a Multinomial distribution with probabilities 
{π̃1, . . . , π̃L}. The update for each μj, mj, and π̃l follow a similar procedure to that used in up
dating the shape parameter of the terminal event sub-model.

• For the shared random effects in the terminal event sub-model, update ξ1 and ξ2 via the cor
responding MH steps.

• For the logistic model, update each element of ζ via the corresponding MH step.

In practice, we can assess the posterior convergence by both trace plots and the Gelman-Rubin 
method (Gelman & Rubin, 1992). Based on the posterior samples (after burn-in), we can directly 
obtain the point and credible interval estimators for each parameter using the posterior mean and 
associated quantiles.

4 Simulation studies
We carry out simulation studies to assess the finite-sample performance of the proposed Bayesian 
semi-parametric joint model and compare with alternative modelling approaches. Although our 
motivating STRIDE study recruited 86 practices, we simulate 60, 40, 20 practices, representing 
more challenging scenarios with fewer clusters. We assume equal numbers of participants per 
practice and consider N = 1,800, N = 1,200, and N = 600 as three levels of total sample sizes. 
For each participant, we specify the covariates Zij for the terminal event as a three-dimensional 
vector with each element generated from N (0, 0.12) and set α = (0.2, 0.3, 0.4)T. We then generate 
the frailty γij ∼ LN (0, 0.25) with a common variance component across all practices. In 
reality, there may be unobserved heterogeneity at the practice level and the participant level. 
Relaxing the typical single-component Normal assumption for the practice-level random effect, 
we draw the practice-level random effect from a five-component mixture of Normals, given by,

μ j
ind
∼ 0.2N (−0.4, 0.12)+0.2N (−0.2, 0.12)+0.2N (0, 0.12)+0.2N (0.2, 0.12)+0.2N (0.4, 0.12).

This is equivalent to assuming that the practices can be roughly divided into five equal-sized strata, 
within which the practice-level random effect follows a single-component Normal distribution. 
Similarly, we accommodate unobserved participant-level heterogeneity by simulating the terminal 
event time Rij from a mixture of Weibull distributions with the shape parameter κij randomly 
sampled from the set {0.7, 2.2, 5.2, 8.2} with replacement. Intuitively, this assumes that participants 
with the same covariate values may be additionally stratified into four equal-sized sub-groups, de
pending on the shape of their underlying terminal event distributions. These data-generating as
sumptions are designed to reflect unobserved heterogeneity at different levels and to assess the 
robustness of our models in relatively challenging scenarios. We also fix α0 = 0.15, ξ1 = 0.1, ξ2 = 
−0.5 for illustration. We then generate the censoring indicator independently from Δij∼Bern(0.5); 
that is, roughly 50% of participants exhibiting censored status for the terminal event process. 
When Δij = 0, we generate the observed survival time 􏽥Rij from a Uniform distribution under 

(0, Rij); otherwise, we directly set 􏽥Rij = Rij. For the recurrent event process, we first specify the co
variates Xij for the recurrent events including the first two elements of Zij and a third element gen
erated from N (0, 0.12), then we set β = (0.4, 0.3, 0.2)T . We generate the latent indicator Dij from a 
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Bernoulli distribution with participant-specific probability (pij) to be classified into the unsusceptible 
sub-group. We specify pij based on the logistic model logit(pij) = ζTUij, where Uij includes an inter
cept as well as all elements of Zij, and set ζ = (1, 0.8, 1, 1.2)T . Under this specification, approxi
mately 70% of participants belong to unsusceptible sub-group. As a sensitivity check, we also 
generate Dij from a Bernoulli distribution with pij = 0.5 to be classified into the unsusceptible sub- 
group, and the results are similar (online supplementary Table 7). To generate the recurrent event 
process Qij(t), we consider a piece-wise constant baseline hazard specified by quintile grids and 

(λ01, λ02, λ03, λ04, λ05)T = (2, 2.3, 2.1, 2.4, 1.7)T and censor the recurrent events at time 􏽥Rij. For 

the unsusceptible sub-group, we set Qij(􏽥Rij) = 0 but without affecting the terminal event time.
Besides the above data-generating process (referred to as DGP1), we also consider additional 

scenarios to assess the robustness of our method. We first repeat the above data generation process 
except that we simulate the practice-level random effects from a single-component Normal distri
bution N (0, 0.12) (DGP2), which represents a simpler case. Second, we consider a scenario where 
stronger participant-level heterogeneity exists for the terminal event process such that the shape 
parameter κij in the AFT model is randomly generated from a Gamma distribution G(1, 1) 
(DGP3). To further assess the model comparison results under a covariate-dependent censoring 
scheme, we generate the censoring time Cij ∼ Exp(rate = ηTZij), where η = (0.5, 0.2, 0.4)T; we 
then set 􏽥Rij = Rij ∧ Cij, and Δij = I[Tij < Cij]. Under this specification, approximately 30% of the 
participants exhibit censoring status for the terminal event process (DGP4). In addition, we 
vary the value of the variance components within the set {0.5, 0.75, 1}, for both the 
participant-level and practice-level random effects to determine the sensitivity of inference to dif
ferent degrees of unobserved heterogeneity (DGP5). For each setting, the results are based on 250 
simulated data replicates.

To implement our method, we set σ2
ζ = σ2

ξ1
= σ2

ξ2
= 10 to set weakly informative Normal priors, 

aκ = bκ = 1 for the Gamma base measure, σ2 = 1 for the Normal base measure, and IG(1/2, 1/2) 
for the conjugate priors of σ2

β and σ2
α. We also consider G = 5 to specify the quantile grids in s. In 

each implementation, multiple chains with randomly generated initial values are run for 10,000 
iterations with the first 5,000 as burn-in. It takes roughly 8 hr to complete 10,000 iterations on 
the high-performance computing cluster where we implemented our suggested model. Our results 
show that the posterior inference is insensitive to the initial values with a proper mixing for each 
parameter. In addition to implementing our proposed model (abbreviated as BMZ-DP for the 
Bayesian multi-level zero-inflated DP model), we also consider three variations of BMZ-DP by 
simplifying certain model components: (a) BM-DP, which ignores the structural zeros by model
ling recurrent event hazard with a single mode Poisson process; (b) BZ-DP, which ignores the 
multi-level data structure by omitting the practice-level random effects; (c) BMZ, which replaces 
the non-parametric DP prior for μj with a fully parametric Normal prior and the non-parametric 
DP prior for κij with a fully parametric Gamma prior, as well as (d) the joint frailty model under a 
frequentist paradigm implemented in the R package frailtypack (Rondeau et al., 2012, 2015), 
which accounts for the multi-level data structure but ignores structural zeros. Of note, BZ-DP is a 
variation of the approach developed in Lee et al. (2019) with the addition of the susceptible sub- 
group, and BMZ is a pure Bayesian parametric implementation. The priors and hyper-parameters 
for the three Bayesian model variations largely follow those for BMZ-DP; for the frequentist joint 
frailty model (denoted as frailty), we use the frailtypack function which is designed to fit a 
joint frailty model for clustered data and closest to our setting (with Gamma-distributed 
participant-level frailty and practice-level frailty). For each method, we summarize the mean or 
posterior mean, percentage bias (%) relative to the true value, and the 95% confidence or credible 
intervals (CIs) for the primary parameters of interest, β = (β1, β2, β3)T and α = (α1, α2, α3)T in 
Table 1 under the primary data-generating process (DGP1). The results under DGP2-DGP5 are 
summarized in online supplementary Tables 2–5, respectively.

Based on the results in Table 1, the proposed BMZ-DPmodel achieves the overall best perform
ance under all levels of sample size, with the smallest or among the smallest percentage bias and 
highest coverage for all parameters. Under the proposed BMZ-DP model, the coverage probabil
ities for the survival process parameters are generally at the 95% level, whereas the coverage prob
abilities for the recurrent event process parameters are slightly lower than 95% (though still the 
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Table 1. Simulation results under sample sizes 600, 1,200, 1,800 for all the methods summarized by mean or 
posterior mean (mean), percentage bias [bias (%)] and coverage probability of the 95% credible interval [coverage (%)]

Recurrent process Survival process

N Method β1 β2 β3 α1 α2 α3

BMZ-DP 0.41 0.31 0.25 0.20 0.32 0.40

BM- DP −0.04 −0.15 −0.22 0.21 0.31 0.41

Mean BZ-DP 0.52 0.45 0.37 0.21 0.32 0.40

BMZ 0.43 0.35 0.29 0.22 0.33 0.42

Frailty −0.08 −0.16 −0.28 0.02 0.06 −0.05

BMZ-DP 2.20 2.93 26.22 2.21 6.25 0.67

BM-DP −111.15 −148.38 −210.02 4.63 2.85 2.57

600 Bias (%) BZ-DP 29.03 48.87 84.75 6.92 8.15 0.58

BMZ 9.40 17.41 44.09 10.72 9.69 3.83

Frailty −118.88 −153.00 −237.96 −90.21 −80.77 −113.39

BMZ-DP 88.80 84.80 78.80 96.00 92.80 96.80

BM-DP 1.60 1.60 1.60 93.60 90.80 75.20

Coverage (%) BZ-DP 66.80 54.40 51.60 93.60 89.20 95.80

BMZ 82.40 79.20 71.00 91.20 85.60 89.60

Frailty 1.60 1.60 0.00 79.60 74.80 63.20

BMZ-DP 0.38 0.31 0.23 0.20 0.31 0.40

BM-DP −0.05 −0.13 −0.24 0.21 0.31 0.43

Mean BZ-DP 0.50 0.44 0.37 0.21 0.32 0.41

BMZ 0.42 0.35 0.27 0.21 0.33 0.41

Frailty −0.08 −0.17 −0.28 0.05 −0.03 −0.05

BMZ-DP −4.66 2.93 16.37 0.27 3.52 0.96

BM-DP −111.81 −144.49 −220.16 4.59 3.43 6.38

1,200 Bias (%) BZ-DP 25.30 46.01 84.45 4.03 6.89 1.77

BMZ −121.00 16.70 36.13 2.64 8.34 3.57

Frailty 6.18 −158.67 −238.52 −77.35 −108.81 −113.37

BMZ-DP 84.80 84.80 83.60 94.80 90.40 95.20

BM-DP 1.20 1.20 0.00 84.40 90.80 52.40

Coverage (%) BZ-DP 58.80 40.80 25.20 87.00 85.20 95.60

BMZ 80.80 72.40 71.60 82.40 85.60 85.60

Frailty 1.20 1.20 1.20 71.20 62.80 56.00

BMZ-DP 0.37 0.31 0.22 0.20 0.30 0.40

BM-DP −0.05 −0.13 −0.24 0.21 0.31 0.42

Mean BZ-DP 0.51 0.44 0.35 0.22 0.32 0.40

BMZ 0.43 0.37 0.27 0.21 0.32 0.42

Frailty −0.07 −0.16 −0.27 0.05 −0.01 −0.04

BMZ-DP −7.87 4.98 13.44 1.35 1.60 1.38

BM-DP −114.50 −142.90 −220.50 4.04 2.47 6.03

1,800 Bias (%) BZ-DP 26.98 46.85 76.99 9.16 5.54 1.15

BMZ 6.14 21.86 34.30 3.56 7.52 4.66

Frailty −117.34 −154.61 −237.30 −77.21 −101.53 −110.87

BMZ-DP 79.20 85.60 81.40 94.80 93.20 96.80

(continued) 
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closest to 95% among all competing methods). With this level of sample size, the under-coverage 
for recurrent event model parameters is not unexpected, due to the complicated event structure in 
the recurrent process including zero inflation as well as nested random effects. When we remove 
the structural zeros in the data-generating process and fit the BM-DPmodel without zero inflation, 
we observe that the coverage probabilities for the recurrent event process parameters were ele
vated to be closer to 95% (online supplementary Table 6). In the presence of structural zeros, 
BMZ-DP outperforms BM-DP particularly in uncovering the recurrent process by tracking 
zero inflation among the population. Meanwhile, we observe substantial estimation bias from 
both BZ-DP and BMZ, as they either ignore the between-participant clustering or assume a fully 
parametric specification of the practice-level random effect. The performance of the frequentist 
joint frailty model is unsatisfactory in estimating both recurrent and survival model parameters, 
likely due to its omission for structural zeros and mis-specification of the distributions of the 
practice-level random effect and residual error of the survival process. For completeness, we 
have also included results for the association parameters, ξ1 and ξ2, as well as the variance com
ponent τ2, under the BMZ-DP model in online supplementary Table 8. While the percent bias ap
pears reasonably small, the frequentist coverage for these parameters is below 95% given the 
sample sizes we considered. Finally, the model comparison results for the proposed BMZ-DP
and its variations under alternative data-generating processes (online supplementary Tables 2–5) 
are qualitatively similar to those in Table 1, suggesting that the proposed model remains to have 
the best performance even under covariate-dependent censoring schemes or with larger variance 
components. Notably, the coverage probabilities for recurrent event model parameters under 
BMZ-DP increase with a lower censoring rate, a lower zero-inflation rate, or smaller values of 
the variance components.

Overall, the difference in the performance of our method and the competing approaches across 
different scenarios we have investigated helps reinforce the necessity of the key components of our 
proposed model. In the presence of zero inflation, BM-DP and the frequentist joint frailty model 
carry the largest estimation bias and lowest coverage for the recurrent process parameters, indicat
ing that accurate inference for recurrent event processes depends critically on adjusting for popu
lation heterogeneity regarding the structural zeros. Similarly, BZ-DP also suffers with large bias 
and low coverage, suggesting the necessity for explicitly accounting for the multi-level data struc
ture with our complex survival outcomes. Finally, the performance of BMZ demonstrates that it 
may be critical to consider a flexible non-parametric prior for the practice-level random effect, as 
the estimation of model parameters can otherwise biased. We have also conducted a similar set of 
simulations when the baseline hazard for the recurrent process is generated from a Weibull distri
bution and the conclusions are essentially no different. The details of the simulation setting, model 
implementation and results are provided in online supplementary Appendix S2.

5 Application to the STRIDE cluster randomized trial
5.1 Strategies to reduce injuries and develop confidence in elders (STRIDE) trial
As stated in Section 1, STRIDE was a pragmatic, parallel-arm CRT aimed at reducing serious falls 
among community-dwelling older adults. A total of 5,419 participants aged 70 years and older 
from 86 primary care practices are included in our final analysis. Primary care practices range 

Table 1. Continued  

Recurrent process Survival process

N Method β1 β2 β3 α1 α2 α3

BM-DP 1.60 1.20 1.20 85.20 79.60 28.80

Coverage (%) BZ-DP 49.60 30.80 21.60 82.40 86.80 94.80

BMZ 76.40 68.00 60.80 79.20 86.40 84.60

Frailty 1.60 1.60 1.60 84.40 72.80 40.40

Note. BMZ-DP refers to the proposed Bayesian multi-level zero-inflated Dirichlet process model.
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in size from 10 to 158 participants, with a mean cluster size 63 and coefficient of variation 0.52. 
The participants were followed for a maximum of 44 months, at which point the survival out
comes were right censored due to study termination. During the follow-up, each occurrence of 
fall injury and its severity level, along with adverse events including hospitalization and death, 
were recorded periodically. The descriptive statistics summarizing the number of recurrent adju
dicated serious fall injuries, observed death events, and key baseline covariates are presented in 
online supplementary Table 9 by arm. In the intervention and control primary care practices, 
the event rate (first serious fall-related injury) was 5.2 and 4.9 per 100 person-years of follow-up, 
respectively, while in both treatment arms the death rate was lower, at 3.4 per 100 person-years of 
follow-up. Under cluster randomization, the baseline characteristics were generally balanced be
tween arms, although slightly more white elderly patients appeared in the intervention practices, 
and patients from the intervention practices tended to have slightly more chronic disease condi
tions at baseline.

5.2 Model specification and implementation
We implement our Bayesian semi-parametric joint model and the competing approaches described 
in Section 4 to analyse the STRIDE cluster randomized trial, investigating how the intervention 
and covariates are associated with serious fall injuries and death among the elderly participants 
who are 70 years of age or older. We are interested in the recurrent adjudicated serious fall injuries 
(falls resulting in a fracture, joint dislocation, cut requiring closure, or overnight hospitalization, 
reported by participants and confirmed by medical records or claims data) and deaths. Besides the 
intervention, we adjust for several risk factors, including age, sex, race, and number of chronic co
existing conditions (NCD), to study their effect on fall prevention and survival. We implement the 
proposed BMZ-DP model and the competing approaches, i.e. BZ-DP, BM-DP, BMZ as well as 
the joint latent-class model developed by Xu et al. (2021), assuming all the risk factors can poten
tially impact the recurrent events and survival. In particular, the joint latent-class model does not 
account for zero inflation nor clustering by practice; however, it allows for latent-class-specific effect 
on recurrent event and survival. To implement the first four approaches, we set σ2

ζ = σ2
ξ1

= σ2
ξ2

= 10 as 
prior variances for the regression parameters. For the DP prior of the practice-specific random ef
fects, we set σ2 = 1 for the Normal base measure. We further set aκ = bκ = 1 for the Gamma base 
measure for DP prior of the participant-specific shape parameter κij. We assign IG(1/2, 1/2) as con
jugate hyper-priors for the prior variances σ2

β , σ2
α and τj. For the recurrent event baseline hazard func

tion, we consider G = 5 quantile grids s and an improper prior for each element of λ as indicated in 
Section 3.1. Other hyper-parameter specifications closely follow those in Section 4. We consider a 
logistic model to represent pij to allow for dependence on treatment, sex and race, which accommo
dates the potential effect of intervention and baseline risk factors on the individual susceptibility sta
tus. For the joint latent class model, we consider the default implementation and mixture of finite 
mixtures hierarchical prior for latent-class probability explained in Xu et al. (2021). For each model, 
under random initials, we run MCMC for 20,000 iterations with the first 10,000 as burn-in; it takes 
approximately 24 hr to complete 20,000 iterations for the proposed BMZ-DP model. The trace 
plots for several key parameters are provided in the online supplementary Figure 2. Finally, the pos
terior results for each method are summarized in Table 2. The joint frailty model under a frequentist 
paradigm (based on the frailtypack) is not discussed further because the model did not converge 
after running for 48 hr.

5.3 Results from the proposed model
We first investigate the impact of the intervention and risk factors on recurrent fall injuries. Under 
the proposed BMZ-DPmodel, NCD and age appear to be associated with fall injury intensity, and 
their corresponding 95% credible intervals exclude zero. Exponentiating the posterior means 
of the model parameters, we find that one additional chronic condition multiplies the serious 
fall rate by 1.15 and a 1-year increase in age reduces injury intensity by around 5%. The latter re
sult provides seemingly counter-intuitive evidence since it was originally believed that older age 
increases the risk for fall injury. However, because the population recruited in our study are 70 
years of age or older, it is also likely that a further increase in age could start to prevent them 
from potential triggers for serious fall such as exercise or intensive movement. In addition, female 
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and white patients are more likely to experience falls than other sub-groups. On the hazard scale, 
the intervention appears to have a small effect on reducing the risks for recurrent fall injuries. For 
the terminal event—death, NCD, age, and sex remain significant predictors, with their 95% cred
ible intervals excluding zero. An increase in NCD or age leads to shorter survival times, as ex
pected, but female and white patients appear to have longer survival. Consistent with the 
previous analysis focusing on the first occurrence of fall injury (Bhasin et al., 2020; Chen & Li, 
2022; Li et al., 2022), the intervention reduces the rate of recurrent falls as well as benefits survival 
experiences, but 95% credible intervals of the intervention effect parameter in both processes in
clude zero.

To further interpret the treatment effect on the risk of fall injury, we borrow the counterfactual 
outcome framework to investigate the participant-average treatment effect (Kahan et al., 2023). 
Specifically, suppose an individual remains alive at time t, the recurrence rate for that individual 
at time t is given by μij(t) = E[Nij(t)] = pij ∫

t
0 λij(u)Hij(u)du, where we recall pij is the participant- 

specific probability to be classified into the unsusceptible sub-group (therefore not a structural 
zero), λij(t) is the participant-specific hazard function for the recurrent event, and Hij(t) is the sur
vival function for the terminal event; similar definition has also been discussed in Xu et al. (2021) in 
the absence of zero inflation. Then the counterfactual recurrence rate had an individual received the 
intervention (possibly contrary to fact) can be expressed by μij(1, t) = pij(do(Treat = 1)) 
∫t0 λij(u | do(Treat = 1))Hij(u |do(Treat = 1))du, where we use the do-calculus notation to indicate 
the critical step of setting the treatment variable to be 1 when computing the probability to be in 
the unsusceptible sub-group, recurrent event hazard, and terminal event survival functions 
(Pearl, 2000). Analogously we define μij(0, t) = pij(do(Treat = 0)) ∫t0 λij(u |do(Treat = 0)) 
Hij(u |do(Treat = 0))du. Therefore, the participant-average treatment effect for fall injury at 
time t, on the rate difference scale and rate ratio scale, can be expressed as

rate difference(t) =
􏽐J

j=1

􏽐Nj

i=1 {μij(1, t) − μij(0, t)}
􏽐J

j=1 Nj

rate ratio(t) =
􏽐J

j=1

􏽐Nj

i=1 μij(1, t)
􏽐J

j=1

􏽐Nj

i=1 μij(0, t)
.

Figure 3 plots the posterior mean and 95% credible intervals on the counterfactual recurrent rates, 
rate difference, and rate ratio as a function of follow-up time in years. Panel (a) suggests a very mild 
treatment effect since intervention leads to a slightly lower counterfactual recurrence rate. Indeed, 
from panels (b) and (c) the recurrence rate difference at year 3 is around −0.029, suggesting around 
29 falls prevented per 1,000 patients; the recurrence rate ratio at year 3 is around 0.80. 
Interestingly, the 95% point-wise credible bands just exclude null for both the rate difference 
and rate ratio effect measures since the start of follow-up until approximately year 2, but include 
the null from that time onward. It is important to note that these counterfactual treatment effect 
quantities are not identical to the treatment effect parameter due to non-collapsibility, and may 
be more interpretable when the interest lies in measuring the population impact of intervention 
due to switching from usual care to the fall injury prevention programme.

Finally, we examine the structural zero probabilities and cluster-specific random effects. We 
summarize the marginal posterior inclusion probability for Dij = 1 over subjects who may be 
considered naturally unsusceptible for the recurrent fall events in panel (a) of Figure 4. With a 
0.5 cut-off (Barbieri & Berger, 2004), there could be a substantial fraction of participants who 
may not be susceptible to serious fall injuries during the study period. We present the distribution 
of those inclusion probabilities within different practices in panel (b) of Figure 4. Almost all prac
tices include a large amount of patients from the unsusceptible sub-group, and the inclusion prob
ability varies both within and between practices. This visualization can help identify practices with 
substantially more unsusceptible patients for falls, although the exact scientific mechanism for un
susceptibility remains to be further studied. We also provide the posterior mean along with the 
95% credible intervals obtained from the inference of each μj in panel (c) of Figure 4, where the 
practices are ordered by their point estimates. Clearly, the cluster-level frailties show substantial 
heterogeneity across practices, are all negative, and are all significantly different from zero. 
Online supplementary Figure 3a additionally presents the posterior mean of the density estimates 
of μj, overlaid by a Normal density with matching moments. This comparison indicates that the 
density of μj may deviate from a Normal density and there can be some benefits in leveraging 
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the non-parametric prior to capture the potential non-normality. In addition, online 
supplementary Figure 3b presents the posterior mean of the variance components τ2

j , grouped 
by each practice. It is evident that there exists substantial variability within and across practices 
on participant-level frailty variance. Such information on between-practice heterogeneity and 
between-participant heterogeneity, however, would not be available if the analysis model ignores 
the multi-level feature of the STRIDE data.

5.4 Model comparison and sensitivity to priors
Table 2 additionally summarizes results from the competing models. Although results from the 
models without zero inflation (BM-DP), multi-level data structure (BZ-DP), or both DP priors 
(BMZ) are generally consistent with those from BMZ-DP, we notice differences in the effect esti
mates and credible intervals. For example, the main conclusions based on BM-DP align with those 
from BMZ-DP, but failure to account for the structural zeros tends to exaggerate the intervention 
effects for the serious fall intensity and the survival. The results from BZ-DP did not identify age as 
an important predictor for recurrent fall injury, and the BMZ model results also reveal larger inter
vention effect estimates than the proposed model. Finally, the joint latent-class model ignores both 
the zero inflation and clustering, and tends to overestimate the covariate and intervention effects 
for both recurrence and survival processes.

To evaluate model fit, we consider model validation diagnostics for recurrent events data using 
the conditional predictive ordinate (CPO); the CPO refers to the conditional predictive ordinate 
used for detecting surprising observations over subjects (Pettit, 1990) and has similarly been op
erationalized in Sinha et al. (2008) for non-clustered recurrent event data. By plotting CPOij 

against the observed follow-up time 􏽥Rij, we can visually assess whether the posterior analysis 
has any unusually low prediction capabilities for certain values of the observed survival time. 
Online supplementary Figure 4 indicates lack of systematic association between CPOij and 􏽥Rij 

under the proposed model, therefore suggesting no strong evidence against the model adequacy. 
In addition, we compare the proposed model with the competing models by calculating the log 
pseudo-marginal likelihood (LPML) based on leave-one-out-cross-validation as LPML= 
􏽐J

j=1

􏽐Nj

i=1 log (CPOij). This is a commonly used metric in Bayesian survival analyses to compare 
model performance, with a larger value suggesting a better fit to the data. As shown in Table 2, our 
proposed model has the largest LPML and therefore demonstrates the best fit to the analysis of 
STRIDE data among the competing models.
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Figure 3. (a) Posterior mean and 95% point-wise credible bands for counterfactual recurrence rates over time. 
(b) Posterior mean and 95% point-wise credible bands for the counterfactual recurrence rate difference over time. 
(c) Posterior mean and 95% point-wise credible bands for the counterfactual recurrence rate ratio over time.
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Finally, we perform a series of sensitivity analyses to evaluate how much the posterior inference 
results would change according to alternative prior specifications. We independently check the es
timation results under the following scenarios. (a) The hyper-prior for the marginal inclusion in
dicator is uniformly set to pij = 0.5 without dependence on covariates. (b) The hyper-priors for the 
prior variances associated with the regression coefficients are set to be σ2

β ∼ IG(0.01, 0.01) and 
σ2

α ∼ IG(0.01, 0.01) instead of IG(1/2, 1/2), so they are further less informative. (c) The number 
of quantile grids s associated with the baseline hazard in the recurrent event process is expanded to 
G = 8 (rather than G = 5 in our original implementation), and we specify a proper uniform prior 
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Figure 4. Analysis results on structural zero probabilities and cluster-specific random effects for STRIDE. 
(a) Marginal posterior inclusion probability of Dij = 1 ordered from smallest to largest. (b) Distribution of marginal 
posterior inclusion probability of Dij = 1 within different practices. (c) Posterior inference of μj ordered by posterior 
mean.
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(0, 100) for each element within λ (rather than the improper prior in our original implementation). 
(d) We set σ2

ζ = σ2
ξ1

= σ2
ξ2

= 3 to give slightly more informative priors for the frailty association pa
rameters and the logistic structural-zero regression parameters. (e) We set the hyper-prior for the 
practice-specific variance parameter to be τj ∼ IG(0.01, 0.01) to make it less informative. The pos
terior inference results for each specification are summarized in Table 3, and we observe that the re
sults are generally stable across different specifications. We further obtain the LPML for each 
analysis and found that only specification (e) produces slightly larger LPML than (but very close 
to) our primary implementation in Section 5.2. The posterior inference results for the regression co
efficients are not substantially different between these two specifications.

6 Discussion
In this paper, we propose a new Bayesian semi-parametric joint model framework to simultaneously 
characterize the recurrent event process and survival in the presence of clustering and potential zero 
inflations. To accommodate the between-participant clustering commonly seen in pragmatic clinical 
trials, we introduce hierarchical random effects at the participant and practice levels, both of which 
bridge the recurrent and survival processes. To further relax the parametric assumptions, we specify 
separate non-parametric realizations for the baseline hazard, practice-level random effect and ter
minal event survival function, to enhance the model robustness compared with the existing alterna
tive modelling strategies. We also demonstrate the necessity of each component within our joint 
modelling framework and develop MCMC algorithms to enable posterior inference for all model 
parameters. Through simulations and our empirical application to a recent pragmatic cluster 
randomized trial, we demonstrate the advantage of our proposed method.

To account for zero inflation, we define the structural zeros as those contributed by participants 
who are unsusceptible to the recurrent event during the study period, and we impose a two- 
component mixture to represent the recurrent event hazard. This definition is similar to the 
existing cure model literature (Rondeau et al., 2013; Yu et al., 2004) with straightforward inter
pretation of unsusceptibility. When recurrent events are subject to a terminal event, alternative 
definitions of unsusceptibility exist. For example, one can either define the unsusceptibility status 
based on the unsusceptibility status of recurrent events or further differentiate the structural zero 
from the random zero based on the terminal event. The former definition has been adopted in Xu 
et al. (2018) and Han et al. (2020) as well as our current model specification, given study partic
ipants should always be susceptible to typical terminal events such as death, particularly in studies 
with an elderly population and a longer follow-up. Liu et al. (2016) provided a brief explanation 
on the difference of these two definitions of unsusceptibility driven by a specific application. In cer
tain applications, our modelling framework can be adapted under an alternative definition of 
unsusceptibility incorporating the terminal event.

A notable feature of the proposed Bayesian joint model is that the random effects are shared 
between the recurrent event and terminal event sub-models, through some latent association pa
rameters. This type of specification has also been considered in the context of joint longitudinal 
and survival modelling for multi-level data (Brilleman et al., 2019) and is expected to provide 
more efficient inference for the model parameters when, in reality, the random effects between sub- 
models do overlap. However, when the sources of additional variation are distinct for the recur
rent event and terminal event processes, the validity of the proposed model requires additional 
investigation, and it is possible that ignoring distinct random-effect structures in different sub- 
models will lead to bias and hence compromise the validity of the model estimates. As a potential 
improvement, one may expand the joint model to additionally incorporate independent random 
slopes at the practice level and the participant level, thus accounting for sources of variation 
that may be unique to each sub-model. However, given the complexity of this more elaborate mod
el structure, it is yet to be studied whether the proposed MCMC procedure can return numerically 
stable estimates in finite samples within a reasonable computation time. Alternatively, a promising 
approach to alleviate the computational intensity is by employing variational inference algorithm 
(Attias, 1999). Rather than sampling from the posterior distribution, this approach utilizes a vari
ational distribution to approximate the full posterior and is often computationally much faster. 
However, the variational inference provides only an approximation to the true posterior and 
can introduce bias depending on the chosen variational family. A comparison between variational 
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inference and MCMC inference for complex joint survival models with multi-level data will be left 
for future work.

One potential limitation of our modelling strategy is that we have not distinguished the survival 
hazard between subjects who experience recurrent event(s) and those who directly move to the ter
minal event. The impact upon the survival function from the previous recurrent event occurrence is 
primarily controlled by the shared frailty terms, γij and μj. An alternative modelling strategy can be 
based on the multi-state model (Lee et al., 2016; Li et al., 2022), where one can more explicitly split 
the event occurrence paths into (a) recurrent events only, (b) recurrent events followed by the ter
minal event, and (c) terminal event only, and characterize state-specific hazard functions for each 
of them in conjunction with different random effects. Under multi-state modelling, we may be able 
to capture the influence from both fixed and random effects on different hazard functions, poten
tially allowing for richer information extraction. However, a practical issue of multi-state model
ling in our case comes from the growing number of unknown parameters, since we would need an 
additional set of coefficients as well as more random effects. This could induce computational and 
inferential challenges, especially with a small sample size, and merits additional investigation. 
Another potential limitation is that we have not distinguished the terminal event survival processes 
for the susceptible and unsusceptible patient sub-populations. In STRIDE, It is possible that pa
tients who are unsusceptible to recurrent fall injuries are more likely to survive until the end of 
the study that those who are susceptible. Generally, this assumption is challenging to test empir
ically from data because in our model formulation these two sub-populations are not fully ob
served from the study sample alone. A possible improvement of the proposed model is to 
modify the likelihood in Section 3.2 to allow the terminal event survival function and density func
tion to further depend on Dij. However, the associated posterior inference can become substantial
ly more challenging with our non-parametric prior specifications at multiple levels. Similarly, a 
primary care practice including more than usual unsusceptible patients may be expected to have 
lower risk of death, and it would be interesting to further control for N−1

j

􏽐Nj

i=1 Dij in the terminal 
event model. Lastly, we have defined the latent indicator Dij based on the initial recurrence without 
accounting for the potential switch in susceptibility status after this initial occurrence. As a result, 
after a participant experiences their first fall injury, he or she will continue to be categorized as 
susceptible, regardless of their subsequent health status or the length of follow-up. In the context 
of fall injury for the elderly, participants who have experienced an initial fall generally have a high
er risk for subsequent falls in comparison to others (O’Loughlin et al., 1993; Tinetti et al., 1988), 
and fall prevention programmes are generally not considered as a cure for fall injury (although it 
holds promises to reduce the rates of fall injury); therefore, it is unlikely for participants to switch 
susceptibility status after the first fall injury in our context. However, in other applications, one 
may expect the susceptibility status to vary over time, which was not addressed in the proposed 
model. Alternatively, the multi-state model allows for changes in susceptibility status over time, 
reflecting the natural progression of recurrent fall injuries and cumulative intervention effects 
that can eventually prevent recurrences. By accounting for the transitions between susceptibility 
status over time, one may enhance our understanding of the dynamics of recurrences and gain in
sights into the optimal timing of future interventions. On the other hand, modelling time-varying 
transition between susceptibility status for each participant can come with a substantial compu
tational demand. Although these relevant extensions are promising for understanding the complex 
event processes in STRIDE, the identifiability and efficient posterior inference based on these ex
tensions are beyond the scope of this article and will be pursued in future research.
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