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ABSTRACT

Graph Transformers are popular neural networks that extend the well-known
Transformer architecture to the graph domain. These architectures operate by
applying self-attention on graph nodes and incorporating graph structure through
the use of positional encodings (e.g., Laplacian positional encoding) or structural
encodings (e.g., random-walk structural encoding). The quality of such encodings
is critical, since they provide the necessary graph inductive biases to condition
the model on graph structure. In this work, we propose motif structural encoding
(MoSE) as a flexible and powerful structural encoding framework based on counting
graph homomorphisms. Theoretically, we compare the expressive power of MoSE
to random-walk structural encoding and relate both encodings to the expressive
power of standard message passing neural networks. Empirically, we observe that
MoSE outperforms other well-known positional and structural encodings across
a range of architectures, and it achieves state-of-the-art performance on widely
studied molecular property prediction datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been the prominent approach for graph machine learning in
the last decade. Most conventional GNNs fall under the framework of Message Passing Neural
Networks (MPNNs) and incorporate graph structure – the so-called graph inductive bias – in the
learning and inference process by iteratively computing node-level representations using “messages”
that are passed from neighboring nodes (Gilmer et al., 2017). More recently, Transformer architec-
tures (Vaswani et al., 2017) have been applied to the graph domain and achieved impressive empirical
performance (Rampásek et al., 2022; Ma et al., 2023; Ying et al., 2021), especially in molecular
property prediction.

While MPNNs operate via exchanging messages between adjacent nodes in a graph, Transformers
can be seen as a special type of GNN that operates on complete graphs. On the one hand, this allows
for direct communication between all node pairs in a graph, regardless of whether there exists an
edge between two nodes in the original input graph. On the other hand, since the node adjacency
information is dropped, the Transformer lacks any “built-in” graph inductive bias. Instead, the
underlying graph structure is usually provided by combining Transformer layers with message-passing
layers (Yun et al., 2019; Rampásek et al., 2022; Bar-Shalom et al., 2024) or by incorporating additional
pre-computed features that encode the topological context of each node. These additional features are
referred to as positional or structural encodings. Common encodings include the Laplacian positional
encoding (LapPE) (Dwivedi et al., 2023) and the random-walk structural encoding (RWSE) (Dwivedi
et al., 2022). The quality of structural or positional encodings are reported as the key ingredients in
the success of Transformers on graphs (Dwivedi et al., 2022; Rampásek et al., 2022).

Motivation. While empirical studies have observed the impact of structural or positional en-
codings on model performance (Dwivedi et al., 2022; Rampásek et al., 2022), our theoreti-
cal understanding of the expressive power of different positional encodings remains rather lim-
ited. This represents an important gap in the literature, especially since the expressive power
of Transformer-based architectures heavily rely on the specific choice of the structural or po-
sitional encodings (Rosenbluth et al., 2024). Let us consider RWSE, which has been empir-
ically reported as the most successful encoding on molecular benchmarks (Rampásek et al.,
2022). We now illustrate a serious limitation of RWSE in its power of distinguishing nodes.
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(a) The nodes u1 and u2 (resp., v1 and v2) can
be distinguished by 1-WL, but not by RWSE.

(b) A molecule from the ZINC dataset, with Car-
bon, Nitrogen, and Oxygen atoms. The nodes u1
and u2 are indistinguishable by RWSE and so
are v1 and v2.

Figure 1: RWSE is weaker than 1-WL in distin-
guishing nodes (a), which holds for all choices
of the length of the random walk. This limitation
surfaces in real-world molecular graphs (b).

How expressive is RWPE? The expressive power
of MPNNs is upper bounded by the 1-dimensional
Weisfeiler Leman graph isomorphism test (1-
WL) (Xu et al., 2019; Morris et al., 2019). This
means that the node invariants computed by
MPNNs are at most as powerful as the node in-
variants computed by 1-WL, and as a result, an
MPNN can distinguish two nodes only if 1-WL
can distinguish them. Some MPNN architectures
such as Graph Isomorphism Networks (Xu et al.,
2019) can also match this expressiveness bound
and distinguish any pair of nodes that can be dis-
tinguished by 1-WL. Can we relate the expressive
power of RWPE to that of 1-WL in a similar fash-
ion? We show that the node invariants given by
RWSE are strictly weaker than the node invari-
ants computed by 2-WL1(Proposition 4) and even
incomparable to node invariants computed by 1-
WL (Proposition 6). In fact, there are simple node
pairs which can be distinguished by 1-WL but not
by RWSE (and vice versa).
Example 1. Consider the nodes from the graphsG
and H from Figure 1 (a). Observe that the nodes
u1 and u2 can be distinguished by 1-WL. Inter-
estingly, however, they are indistinguishable by
RWSE for all lengths ℓ of the considered random
walk. This observation also applies to the nodes v1 and v2. Moreover, this limitation is not merely of
theoretical interest, as it readily applies to real-world molecules, where the use of RWSE is prominent.
Figure 1 (b) depicts a molecule from the ZINC dataset, where the nodes u1 and u2 (resp., v1 and v2)
cannot be distinguished by RWSE although they can be distinguished by MPNNs. In practical terms,
this implies that RWSE cannot distinguish a Dinitrile group from a Morpholine group. △

Motif structural encodings as a flexible and powerful approach. In this paper, we propose motif
structural encodings (MoSE) as structural encodings that leverage homomorphism count vectors to
capture the graph structure. Homomorphism counts have been investigated in the context of MPNNs
to overcome well-known theoretical limitations in their expressivity (Barceló et al., 2021; Jin et al.,
2024) with promising theoretical and empirical findings (see Section 2). Building on the existing
literature, we show that MoSE is a parameterizable, flexible, and powerful alternative to existing
positional and structural encoding schemes in the context of Transformers. In fact, we show that –
unlike RWSE – MoSE cannot be located within the WL hierarchy (Proposition 3) and can provide
non-trivial expressiveness gains as MoSE is more expressive than RWSE (Theorem 3).
Example 2. Consider the graphs G and H from our running example, and observe that H has a cycle
of length six, while G has no cycles. The node-level homomorphism counts Hom( , G, v1) ̸=
Hom( , H, v2) (introduced formally in Section 4.2) are not equal, which provides sufficient infor-
mation to distinguish these nodes. Analogous statements can be made also for u1 and u2. △

Contributions. Our key contributions can be summarized as follows:

• We introduce MoSE and detail the expressiveness guarantees that can be achieved by using
homomorphism counts as a graph inductive bias (Section 4.1).

• We compare MoSE to RWSE in terms of expressivity and related them to the expressive power of
MPNNs through the well-known WL hierarchy (Section 4.2).

• We empirically validate the theoretical findings and demonstrate efficacy of MoSE on a wide
variety of benchmarks (Section 5). We report state-of-the-art performance on the widely studied
ZINC-12k dataset by simply replacing a random-walk based encoding with MoSE in an existing
Transformer model. We also achieve state-of-the-art results on the QM9 molecular dataset for
almost all properties. Finally, we experiment on a new synthetic dataset that further highlights the
wide-ranging applicability of homomorphism counts as a graph inductive bias.

1Throughout the paper, we refer to the folklore version of the WL hierarchy (Grohe & Otto, 2015).
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2 RELATED WORK

(Graph) Transformers and Encodings. Vaswani et al. (2017) first highlighted the power of self-
attention when they introduced their Transformer architecture. Dwivedi & Bresson (2020) generalized
the concepts presented in Vaswani et al. (2017) to the graph domain. In recent years, several different
graph transformer architectures have arisen. Yun et al. (2019) first combined message-passing layers
with transformer layers, and other models have followed this approach (Rampásek et al., 2022;
Bar-Shalom et al., 2024; Shirzad et al., 2023). Relatedly, Transformer architectures dedicated for
knowledge graphs have also been developed (Zhang et al., 2023c; Liu et al., 2022). Shehzad et al.
presents a survey of existing Graph Transformer models and how they compare to each other.

A key component to the success of graph transformer models is the use of effective graph inductive
biases (Dwivedi et al., 2022). Laplacian positional encodings (LapPE), which were introduced by
Dwivedi & Bresson (2020), are a popular choice, but they break invariance2, as they are not invariant
to the changes of signs and basis of eigenvectors (Lim et al., 2023b;a). Rampásek et al. (2022)
presented a framework to build general and scalable Graph Transformer models, and performed
ablations with a suite of different encoding types, including random-walk structural encodings
(RWSE). Ying et al. (2021) introduced Graphormer, which uses an attention mechanism that is based
on shortest-path (and related) distances in a graph. Ma et al. (2023) presented GRIT as a novel
framework that relies solely on Relative Random Walk Probabilities (RRWPs) for inductive bias.

Expressive power of MPNNs. MPNNs capture the vast majority of GNNs (Gilmer et al., 2017)
and their expressive power is upper bounded by 1-WL (Xu et al., 2019; Morris et al., 2019). This
limitation has motivated a large body of work, including higher-order GNN architectures (Morris
et al., 2019; Maron et al., 2019a;b; Keriven & Peyré, 2019), GNNs with unique node features (Loukas,
2020), or GNNs with random features (Sato et al., 2021; Abboud et al., 2021) to achieve higher
expressive power. Expressive power of GNNs has also been evaluated in terms of their ability to
detect graph components, such as biconnected components (Zhang et al., 2023b), and fully expressive
architectures designed for special graph classes, e.g., for planar graphs (Dimitrov et al., 2023).

Our work is most closely related to approaches that design more expressive architectures by injecting
the counts of certain substructures, widely referred to as motifs. Bouritsas et al. (2023) present an early
work that enhances node feature encodings for GNNs by counting adjacent subgraph isomorphism
of different patterns. Barceló et al. (2021) follow up on this work by proposing to instead count the
number of homomorphism into a set of adjacent substructures. Several other works have identified
homomorphism counts as a key tool for understanding the expressive power of MPNNs (Neuen, 2023;
Lanzinger & Barceló, 2024; Wang & Zhang, 2024). Zhang et al. (2024) also recently proposed a new
framework that characterizes the expressiveness of GNNs in terms of homomorphism counts. The
method for obtaining these counts is outlined in (Curticapean et al., 2017) and (Bressan et al., 2023),
who show when exactly homomorphisms can be counted efficiently in undirected and directed graphs,
respectively. As such, Jin et al. (2024) built upon these theoretical observations to establish a general
framework for using homomorphism counts in MPNNs. In particular, they show that homomorphism
counts that capture certain “bases” of graph mappings provide a theoretically well-founded approach
to enhance the expressivity of GNNs.

3 PRELIMINARIES

Graphs and Homomorphism Counts. An undirected graph is a set of nodes V (G) and a set of edges
E(G) ⊆ V (G)×V (G) which satisfy symmetry: (u, v) ∈ E(G) if and only if (v, u) ∈ E(G). Unless
otherwise stated, we take all graphs to be finite, and we take all graphs to be simple: (v, v) /∈ E(G)
for all v ∈ V (G) and there exists at most one edge (up to edge symmetry) between any pair of
nodes. We describe nodes u, v ∈ V (G) as adjacent if (u, v) ∈ E(G). The set of all nodes adjacent
to v ∈ V (G) is the neighborhood of v, notated N (v). The number of nodes |N (v)| is the degree of
v, notated d(v).

2By sacrificing invariance, it becomes much easier to design very expressive architectures. In fact, Graph
Transformer architectures with LapPE are universal (Kreuzer et al., 2021), but so is a 2-layer MLP, or a
single-layer GNN under LapPE (see Proposition 3.1 of Rosenbluth et al. (2024)).
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A homomorphism from graphG to graphH is a function f : V (G) → V (H) such that (u, v) ∈ E(G)
implies (f(u), f(v)) ∈ E(H). We say a homomorphism is an isomorphism if the function f is
bijective, and if it additionally satisfies (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). In this
case, we describe the graphs G and H as being isomorphic, denoted G ∼= H . We write Hom(G,H)
for the number of homomorphisms from G to H . If we restrict to counting only homomorphisms
which maps a particular node g ∈ V (G) to the node h ∈ V (H), we denote this rooted homomorphism
count as Homg�h(G,H). Sometimes the choice of g is unimportant, so we use Hom�h(G,H) to
notate the rooted homomorphism count Homg�h(G,H) where g can be fixed as any arbitrary node in
V (G). We use Hom(G, ·) to denote the function which maps any graph H to the integer Hom(G,H),
and we define rooted homomorphism count mappings analogously. If G is a collection of graphs,
then we treat Hom(G, ·) as a function that maps any input graph H to the ordered3 tuple (or integer
vector) defined as Hom(G, H) = (Hom(G,H))G∈G , and analogously for rooted counts.

Curticapean et al. (2017) describe graph motif parameters as functions Γ(·) that map graphs into Q,
such that there exists a basis of graphs Supp(Γ) = {Fi}ℓi=1 and corresponding coefficients {αi}ℓi=1 ⊆
Q\{0} which decompose Γ as a finite linear combination Γ(·) =

∑ℓ
i=1 αi · Hom(Fi, ·). Given G,

the function which maps any H to the number of times that G appears as a subgraph4 of H is a graph
motif parameter (Lovász, 2012) whose basis is known as the Spasm. Many mappings of interest can
be described as graph motif parameters, so the theory of such bases bolsters homomorphism counts
as broadly informative and powerful; we refer readers to Jin et al. (2024) for details.

Nguyen & Maehara (2020) present a generalization of homomorphism counts that allow for “vertex
weighting”. For graph G, let ω : V (G) → R≥0 describe node weights. The weighted homomorphism
count from a graph F into G is given as:

ω-Hom(F,G) =
∑
f∈H

 ∏
v∈V (F )

ω(f(v))


where H is the set of all homomorphisms from F to G. We define the node-rooted version
ω-Homu�v(F,G) by restricting H to only those homomorphisms which map u ∈ V (F ) to v ∈ V (G).
The mapping ω-Hom�(·)(F, ·) is defined analogously to the un-weighted case: the graph-node pair
(G, v) gets mapped to ω-Homu�v(F,G) where u ∈ V (F ) is fixed arbitrarily. Setting ω(v) = 1
for all v ∈ V (G) recovers the un-weighted count ω-Hom(F,G) = Hom(F,G), and similarly for
the node-rooted version. Weighted homomorphism counts are well-studied in the context of their
connection to graph isomorphism (Freedman et al., 2004; Cai & Govorov, 2021), and in the context
of universal approximation capabilities as well as empirical performance of graph classifiers which
use ω-Hom(F, ·) counts as a graph embedding (Nguyen & Maehara, 2020).

Expressive Power. A graph invariant is a function ξ(·) which acts on graphs, satisfying ξ(G) = ξ(H)
whenever G ∼= H for all graphs G and H . For indexed families of graph invariants Ai and Bj (where
i ∈ I and j ∈ J respectively), we define the expressivity relation A ⪯ B to denote: for any choice of
i ∈ I , there exists a choice of j ∈ J such that Bj(G) = Bj(H) implies that Ai(G) = Ai(H) for
all G and H . If A ⪯ B and B ⪯ A, then we say that A ≃ B. We write A ≺ B when B has strictly
greater expressive power, A ⪯ B but A ̸≃ B. When we reference ⪯ for some fixed graph invariant
ξ(·), we interpret ξ as a family which contains only one graph invariant (hence the indexing is trivial).
Noting that a GNN architecture can be treated as a family of graph invariants indexed by the model
weights, the relation ⪯ generalises common notions the graph-distinguishability expressive power
for GNNs (Zhang et al., 2023a). As we will see in Section 4, the ⪯ relation naturally extends to
expressivity comparisons between structural/positional encoding schemes as well.

MPNNs and Weisfeiler-Lehman Tests. Given graph G, the 1-WL test induces the node coloring
c(t) : V (G) → Σ for all t up until some termination step T , at which point the graph-level 1-WL label
is defined as the multiset of final node colors 1-WL(G) = {{c(T )(v) : v ∈ V (G)}}. Graphs G and
H are considered 1-WL indistinguishable they have identical graph labels 1-WL(G) = 1-WL(H).
Crucially, it holds that MPNN ⪯ 1-WL where we treat “MPNN” as a family of graph invariants

3If the graphs in G are not ordered initially, we arbitrarily fix some indexing of the elements in G so that they
become ordered.

4We count the number of times one can find a graph H ′ with V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H) s.t.
G ∼= H ′.
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indexed by both the choice of message-passing architecture and the model parameters, and we treat
1-WL as a singleton family containing only the graph invariant G 7→ 1-WL(G) (Xu et al., 2019).

We extend the Weisfeiler-Lehman test to “higher dimensions” by coloring k-tuples of nodes. The
k-WL test induces node tuple coloring c(t) : V (G)k → Σ for t = 1, ..., T iterations, and then it
aggregates a final graph-level k-WL label analogously to 1-WL (Huang & Villar, 2021). In this
work, we refer to the folklore k-WL test, which is provably equivalent to the alternative olibious k-WL
formulation up to a re-indexing of k (Grohe & Otto, 2015). It has been shown that the k-WL tests
form a well-ordered hierarchy of expressive power, where k-WL ≺ (k + 1)-WL (Cai et al., 1989).
Here, we are treating k-WL as a singleton family (trivial indexing) for any particular choice of k.

Self-Attention and Positional/Structural Encoding. Central to any Transformer architecture is
the self-attention mechanism. When applied to graphs, a single “head” of self-attention learns a
tth-layer hidden representation h

(t)
v ∈ Rd of every node v ∈ V (G) by taking the weighted sum

h
(t)
v = ϕ(t)(

∑
u∈V (G) α

(t)
v,uh

(t−1)
u ) where the attention coefficients are α(t)

v,u = ψ(t)(h
(t−1)
v ,h

(t−1)
u ).

Here, ϕ(t) and ψ(t) are learnably-parameterized functions. The most common implementation of
ϕ(t) and ψ(t) is scaled dot product attention, as defined by Vaswani et al. (2017); although some
Transformers such as GRIT (Ma et al., 2023) deviate from this. In most Transformers, we utilize
multiple attention heads in parallel (whose outputs are concatenated at each layer), and we interweave
self-attention layers with fully-connected feed-forward layers.

Since basic self-attention does not receive the adjacency matrix as an input, many graph Trans-
former choose to inject a graph’s structural information into the model inputs by way of node
positional/structural encoding. For example, the widely used k-length random walk structural en-
coding (RWSEk) assigns to each node its corresponding diagonal entry of the degree normalized
adjacency matrix5 (D−1A)i for all powers i = 1, ..., k (Rampásek et al., 2022; Dwivedi et al., 2022;
Ma et al., 2023). Each node’s RWSEk vector is then concatenated or added to the node’s initial feature
vector, and the resulting node embedding is passed into the Transformer as an input. More broadly,
we can define node positional or structural encoding to refer to any isomorphism-invariant mapping
pe which takes in a node-graph pair (v,G) and outputs a vector label pe(v,G) ∈ Rd. Then, the
graph-level PE label is defined as the multiset of node-level labels PE(G) = {{pe(v,G) : v ∈ V (G)}}.
In this way, we can treat RWSEk as a family of graph invariants (mapping into multisets with elements
in Rd) indexed by k. Hence, we can compare the graph-level expressivity of RWSEk and any other
general positional/structural encoding scheme PE under ⪯.

4 HOMOMORPHISM COUNTS AS A GRAPH INDUCTIVE BIAS

In this section we formally define motif structural encodings (MoSE). Just as with other vertex level
structural or positional encodings, our encoding provides a way to encode the structural characteristics
of each graph vertex in terms of a numerical vector. Such encodings can then provide graph inductive
bias to machine learning architectures, such as Transformers, that cannot (or only in a limited fashion)
take graph structure into account. Additional proof details are provided in Appendix A.

4.1 MOTIF STRUCTURAL ENCODING (MOSE)

The motif structural encoding (MoSE) scheme is parameterized by a choice of finite6 pattern graph
family G = {G1, . . . , Gd}, as well as a choice of node weighting scheme ω which sends any (v,H)
to a non-negative weight ω(v,H) ∈ R≥0. For each node v of graph H , the node-level MoSEG,ω
label of v is:

MoSEG,ω(v,H) =

[
ω-Hom�v(Gi, H)

]d
i=1

∈ Rd (1)

We will notate eGv := MoSEG,ω(v,H) for shorthand when ω and H are either clear from context, or
any arbitrary choice can be made. Unless otherwise specified, we use the constant ω weighting which
sends all nodes in all graphs to 1, aligning MoSEG,ω with the un-weighted homomorphism counts
used in previous works of Jin et al. (2024); Barceló et al. (2021). In this case, we omit ω from our

5Here, D notates the diagonal degree matrix, and A the adjacency matrix.
6We require that G be a finite set, and that each graph within G have finite size.
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notation, using MoSEG to denote our encoding. When we reference MoSEG,ω at the graph-level, we
mean the multiset of node-labels MoSEG,ω(H) = {{eGv : v ∈ V (H)}}. It holds that MoSEG,ω(·) is a
graph invariant because for any two graphs H and F with isomorphism ι : V (H) → V (F ), we have
eGv = eGι(v) for every vertex v ∈ V (H) (Nguyen & Maehara, 2020).

We stated above that MoSE offers a very flexible solution to structural encodings. This flexibility
comes from the two key parameters, the graphs G, and the vertex weight function. Both of these
parameters can be adapted to fit the problem domain and architecture as desired. The choice of G can
be informed in precise terms by desired levels of expressiveness as shown below in Proposition 3.
Furthermore, the choice of G can build on a range of empirical studies on structural information
in MPNNs (see e.g.,Barceló et al. (2021); Jin et al. (2024); Wang & Zhang (2024); Bouritsas et al.
(2023)). Additional choice of a non-trivial weight function ω adds further power and flexibility. In
particular we show that even with the simple weight function that maps nodes to the reciprocal of
their degree is enough to exactly express RWSE in terms of MoSE (Proposition 5).

In the following we will provide insight into the expressivity of MoSE by leveraging connections to
the established relations between homomorphism counts and MPNNs. For transformer architectures,
similar frameworks of expressivity are not yet established. Recent work by Rosenbluth et al. (2024)
shows that transformer architectures do not inherently contribute to expressivity, but that positional
and structural encodings are the key ingredient to the expressivity of these architectures. We therefore
study the expressivity of the positional encodings themselves, which in turn also translate to models
that combine an architecture with MoSE. In particular, any typical Graph Transformer architecture
with MoSE will naturally be at least as expressive as MoSE, and thus inherit all lower bounds from
our analysis.

Our first two observations establish that MoSE is in a sense incomparable to the WL-hierarchy. For
every fixed set of graphs G that induces an encoding, we can provide an upper bound in terms of k-WL
for some k dependent on G. However, at the same time, the expressiveness of even MoSE encodings
induced by a single graph cannot be confined within a level of the WL hierarchy (Proposition 2).
Proposition 1. Let G be a finite set of graphs and let k be the maximum treewidth of a graph in G.
Then MoSEG is at most as distinguishing as k-WL. That is, MoSEG ⪯ k-WL7.

Although we cannot distinguish all graphs distinguished by k-WL using MoSEG with a finite G, we
can distinguish any particular pair of graphs distinguished by k-WL. In fact, we only need a single
graph in G in order to do this.
Proposition 2. For k ≥ 1, let G and H be two graphs that are equivalent under k-WL. Then there
exists a graph F such that MoSE{F} distinguishes G and H .

Lanzinger & Barceló (2024) and Jin et al. (2024) studied the expressivity of MPNNs with respect to
functions that map graphs to numbers. For a large class of these, so-called graph motif parameters
(we ask the reader to refer to Jin et al. (2024) for details), the distinguishing power of such a function
relates closely to homomorphism counts from its homomorphism basis. Building on these results we
establish a very broad lower bounds for Transformer architectures with MoSE that provide a practical
basis for choice of G.
Proposition 3. Let f be a graph motif parameter with basis Gf ⊆ G. Then MoSEG is at least as
distinguishing as f . That is, for any choice of graph motif parameter f , we have f ⪯ MoSE.

4.2 COMPARING THE EXPRESSIVITY OF MOSE TO RWSE

From above we see MoSE, is on the one hand closely aligned to the k-WL hierarchy, and we can
use this alignment to inform the choice of G. But on the other hand, it is not possible to contain
MoSE within the hierarchy. In the following we show that this is not the case for RWSE. In fact, the
expressiveness of RWSE (regardless of length parameter) is fully contained within 2-WL.
Proposition 4. For every ℓ ≥ 2, any graph which can be distinguished by RWSEℓ can be distinguished
by 2-WL.

This in itself already has wide-ranging consequences, e.g., it is known that 2-WL cannot distinguish
strongly regular graphs (see e.g., Fuhlbrück et al. (2021)), and therefore neither can RWSE . For

7With respect to the definition of ⪯, both sides in this case represent singleton families of graph invariants.
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Figure 2: The 4×4 Rook’s Graph (left) and the Shrikhande Graph (right) are non-isomorphic strongly
regular graphs that have the same parameters. RWSE produces the same vector on every vertex of
both graphs whereas a simple construction of MoSE using Spasm(C7 ∪ C8) homomorphism counts
easily distinguishes the two graphs.

MoSE there exist no such limitations (cf. Figure 2), beyond those dependent on choice of G stated in
Proposition 1.

While MoSE cannot fully capture 2-WL, it is in fact possible to express RWSEℓ for every ℓ ≥ 2 as
a special case of MoSE. In contrast to previous results, our result here requires a vertex-weighting
scheme that is not constant. However, even straightforward vertex-weighting by degrees – which
comes at no cost in practice – is enough for our proof. We note that G consisting of only ℓ graphs is
sufficient to do so (see Appendix A for details).
Proposition 5. For any ℓ ∈ N, there exists a finite family of graphs G and a vertex-weighting
scheme ω such that the node-level RWSEℓ(v,H) label is uniquely determined by MoSEG,ω(v,H)
for any node v in any graph H . In particular, this holds already for the vertex-weighting scheme
ω : v 7→ 1/degree(v).

Combining Proposition 4 and Proposition 5 immediately shows RWSE ⪯ MoSE. The example from
Figure 2 demonstrates that this inclusion is in fact strict.
Theorem 3. Motif structural encoding is strictly more expressive than random walk structural
encoding: RWSE ≺ MoSE.

Finally, we note that on node-level there are even cases where RWSE is weaker than 1-WL. Specif-
ically, there are nodes that for which 1-WL assigns different labels, but RWSEℓ assigns the same
vectors to both nodes for every ℓ ≥ 1 (cf., Figure 1).
Proposition 6. RWSE is incomparable to 1-WL in terms of node-level expressiveness.

5 EXPERIMENTS

We empirically show the efficacy of using MoSE as a graph inductive bias on several real-world
datasets across a range of models. First, we provide an in-depth comparison of MoSE with other
positional and structural encoding methods on the ZINC molecular dataset (Irwin et al., 2012; Dwivedi
et al., 2023) in Section 5.1. Next, we specifically contrast the performance of MoSE and RWSE
on the QM9 dataset (Wu et al., 2018) in Section 5.2. Finally, we conduct a synthetic experiment to
highlight the flexibility of MoSE across different domains in Section 5.3. In an attempt to establish
the viability of MoSE in the most general sense we avoid the use of non-trivial vertex-weighting
schemes in our experiments (that is, ω always maps every vertex to 1). Full experimental details,
including code instructions for reproduction are provided in Appendix B.

5.1 GRAPH REGRESSION ON ZINC

ZINC (Irwin et al., 2012; Dwivedi et al., 2023) is a molecular dataset, where the goal is to predict the
constrained solubility of a given molecule. Each graph in the dataset represents an individual molecule,
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Table 1: We report the mean absolute error
(MAE) for GPS with various different encod-
ing methods on the ZINC-12k dataset (with edge
features). MoSE outperforms several popular
positional encoding methods.

Encoding Type MAE ↓ Rel. Change

none 0.113±0.007 ± 0 %
PEGLapEig 0 161±0.006 + 29.81 %
LapPE 0.116±0.009 + 2.59 %
SignNetMLP 0.090±0.007 - 25.56 %
SignNetDeepSets 0.079±0.006 -43.04%
RWSE 0.070±0.002 -61.43%
MoSE (ours) 0.062±0.002 -82.26%

Table 2: We achieve state-of-the-art results on
ZINC-12k when swapping out the random walk
encoding from GRIT to MoSE. The MP column
denotes whether or not the architecture contains
a message passing component.

Model MAE ↓ MP

GSN 0.101±0.010 ✓
CIN (small) 0.094±0.004 ✓
GPS 0.070±0.002 ✓
Subgraphormer+PE 0.063±0.001 ✓
GT 0.226±0.014 ✗
GRIT+RRWP 0.059±0.002 ✗
GRIT+MoSE (ours) 0.056±0.001 ✗

Table 3: We report mean absolute error (MAE) for graph regression on ZINC-12K (with edge features)
across several models. MoSE yields substantial improvements over RWSE for every architecture.
The best feature encoding is highlighted in bold.

Model Encoding Type

none RWSE MoSE

MLP-E 0.606±0.002 0.361±0.010 0.347±0.003

GIN-E 0.243±0.006 0.122±0.003 0.118±0.007

GIN-E+VN 0.151±0.006 0.085±0.003 0.068±0.004

GT-E 0.195±0.025 0.104±0.025 0.089±0.018

GPS 0.119±0.011 0.070±0.002 0.062±0.002

where the node features denote atom type, and edge features denote bond type. In accordance with
Dwivedi et al., we use a subset of the ZINC dataset with edge features that contains 12,000 molecules
and constrain all our models to roughly 500k parameters.

Experimental Setup. We begin by selecting the GPS (Rampásek et al., 2022) as our reference
model and compare how MoSE performs against other popular encoding methods, such as RWSE,
LapPE, etc. Then, we combine MoSE with GRIT (Ma et al., 2023), a recent graph transformer model
that incorporates graph inductive biases without using message passing. GRIT utilizes relative random
walk (RRWP) positional encodings at both the node representation level as well as the node-pair
representation level. In our formulation, GRIT+MoSE, we remove all RRWP encodings for both
the node and node-pair representations. For ZINC, we construct MoSE using the Spasm(C7 ∪ C8)
homomorphism counts in accordance with Jin et al. (2024). All other experimental details can be
found in Appendix B.1.

Results. We compare MoSE to other prominent positional and structural encoding methods. Our
results are presented in Table 1 with baseline results for all cases except MoSE taken from Rampásek
et al. (2022). We see that MoSE significantly outperforms the other encoding types, especially
the spectral methods, such as PEGLapEig (Wang et al., 2022) and LapPE (Dwivedi & Bresson,
2020). When compared to RWSE, the most prominent structural-based encoding method, MoSE still
achieves over 10% relative improvement.

Furthermore, using MoSE in conjunction with the GRIT architecture (Ma et al., 2023) yields state of
the art results on ZINC, as detailed in Table 2. Recall that when we substituted MoSE in place of the
RRWP encoding for GRIT, we only did so at the node level. This suggests that even without explicit
node-pair encodings, MoSE still captures a meaningful structural information about the graph. Not
only does MoSE surpass the expressivity of RWSE (Section 4.2), but the information encoded in
MoSE can aid the model in recovering specific substructure information (Jin et al., 2024).

Comparing MoSE to RWSE across Multiple Architectures. Because Rampásek et al. find that
RWSE performs better for molecular datasets, we provide a detailed comparison of how MoSE

8
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Table 4: We report MAE results for GPS with various feature enhancements on the QM9 dataset. The
best model is highlighted in red, the second best is blue, and the third best is olive.

Property R-GIN R-GIN+FA R-SPN E-BasePlanE GPS

RWSE MoSE (ours)

mu 2.64±0.11 2.54±0.09 2.21±0.21 1.97±0.03 1.47±0.02 1.43±0.02

alpha 4.67±0.52 2.28±0.04 1.66±0.06 1.63±0.01 1.52±0.27 1.48±0.16

HOMO 1.42±0.01 1.26±0.02 1.20±0.08 1.15±0.01 0.91±0.01 0.91±0.01

LUMO 1.50±0.09 1.34±0.04 1.20±0.06 1.06±0.02 0.90±0.06 0.86±0.01

gap 2.27±0.09 1.96±0.04 1.77±0.06 1.73±0.02 1.47±0.02 1.45±0.02

R2 15.63±1.40 12.61±0.37 10.63±1.01 10.53±0.55 6.11±0.16 6.22±0.19

ZPVE 12.93±1.81 5.03±0.36 2.58±0.13 2.81±0.16 2.63±0.44 2.43±0.27

U0 5.88±1.01 2.21±0.12 0.89±0.05 0.95±0.04 0.83±0.17 0.85±0.08

U 18.71±23.36 2.32±0.18 0.93±0.03 0.94±0.04 0.83±0.15 0.75±0.03

H 5.62±0.81 2.26±0.19 0.92±0.03 0.92±0.04 0.86±0.15 0.83±0.09

G 5.38±0.75 2.04±0.24 0.83±0.05 0.88±0.04 0.83±0.12 0.80±0.14

Cv 3.53±0.37 1.86±0.03 1.23±0.06 1.20±0.06 1.25±0.05 1.02±0.04

Omega 1.05±0.11 0.80±0.04 0.52±0.02 0.45±0.01 0.39±0.02 0.38±0.01

performs against RWSE across a range of architectures. We select a simple 4-layer multi-layer
perceptron (MLP-E), the self-attention Graph Transformer (GT-E) from (Dwivedi & Bresson, 2020),
and GPS (Rampásek et al., 2022) as our models. All models are adapted to account for edge features.
GRIT is omitted since its node-pair encoding mechanism does not make it directly comparable to the
other models. For reference GNN models, we report results for GIN-E and its extention GIN-E+VN
including a virtual node (Hu et al., 2020). As before, MoSE uses the set of homomorphism counts for
Spasm(C7 ∪ C8). For RWSE, we follow the protocol from Rampásek et al. and set the random-walk
length to 20.

Results. We see from Table 3 that MoSE performs better than RWSE across all models. Even though
the graphs in ZINC are relatively small and a random-walk length of 20 already traverses most of the
graph, our experiments show that the structural information provided by MoSE empirically performs
better. We also note that GIN-E+VN becomes competitive with the state-of-the-art when using MoSE.
This is consistent with our theoretical findings and also align well with recent empirical findings that
suggest the use of virtual nodes can substantially improve model performance of MPNNs (Tönshoff
et al., 2024).

5.2 GRAPH REGRESSION ON QM9

QM9 is a real-world molecular dataset that contains over 130,000 graphs (Wu et al., 2018;
Brockschmidt, 2020). The node features include the atom’s type and other descriptive features.
Unlike ZINC, where there is only one regression target, QM9 presents 13 different quantum chemical
properties to regress over, making it a much more robust benchmark.

Experimental Setup. We select GPS (Rampásek et al., 2022) as our base model due to its
modularity. Again, we compare the performance of GPS+RWSE to the performance of GPS+MoSE.
We follow the protocol from Jin et al. and construct MoSE using the set of homomorphism counts on
connected graphs with at most 5 vertices and the 6-cycle. This is because there are several regression
targets for QM9, so GPS will benefit from a graph inductive bias that can account for a more diverse
set of motifs (Proposition 3). We keep a random-walk length of 20 for RWSE to align with the
hyperparameter setting for molecular datasets outlined by Rampásek et al.. Finally, we provide
several leading GNN models on the QM9 dataset for comparison (Brockschmidt, 2020; Alon &
Yahav, 2021; Abboud et al., 2022; Dimitrov et al., 2023).

Results. From Table 4, it is clear that MoSE outperforms RWSE consistently across multiple
different regression targets. Specifically, GPS+MoSE achieves the same or a lower MAE on 11 of
the 13 molecular properties. It also comfortably outperforms the leading GNN models, including
R-SPN (Abboud et al., 2022) and E-BasePlane (Dimitrov et al., 2023). In contrast, GPS+RWSE
is occasionally outperformed by these GNN architectures, despite being computationally more
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Figure 3: Plot of the distribution of the fractional
domination numbers in our synthetic dataset.

Figure 4: We report the MAE performance of
different encodings with a 4-layer MLP and a
GT on our synthetic dataset.

demanding than the GNN baselines. These findings further support our theoretical results and show
that MoSE is a very promising alternative structural encoding scheme.

5.3 SYNTHETIC DATASET: PREDICTING FRACTIONAL DOMINATION NUMBER

To supplement our real-world dataset examples, we also generate a new synthetic dataset where the
task is to predict the fractional dominance number of a graph. The dataset is comprised of 10,000
randomly-generated Erdős-Rényi graphs of various densities (Erdős & Rényi, 1959). The exact range
of the number of vertices and density is provided in Appendix B.3.

We select the fractional dominance number of a graph as our target of interest for two reasons: first,
the property is inherently global and relies on complex long-range interactions. This is unlike other
popularly used metrics for synthetic experiments, e.g., clustering coefficients, which are aggregations
of local properties. Second, the distribution of this parameter over our set of random graphs is
complex (Figure 3), making the task more challenging. Furthermore, (fractional) dominating sets are
important for a range of applications, such as optimising network coverage (Kutten & Peleg, 1995).

Experimental Setup. We focus on measuring the practical performance of MoSE compared
to other positional and structural encoding methods. For this we select a 4-layer MLP and a self-
attention Graph Transformer (Dwivedi & Bresson, 2020) as our reference models. Since neither
model contains a message passing component, they both are considered architectures without inherent
graph inductive biases. We use the homomorphism counts for Spasm(C7 ∪ C8) for MoSE, use a
random walk length of 20 for RWSE, and set the dimension of LapPE to 8. Further experimental
details are in Appendix B.3.

Results. Figure 4 shows that across both models, MoSE performs the best compared to the other
graph inductive biases. This suggests that MoSE is able to capture more complex graph information
in the broader context. We also note that MLP+LapPE performs significantly worse than all other
configurations. This indicates that the self-attention mechanism in GT is a key component to allowing
the model to leverage the spectral graph information provided by LapPE.

6 DISCUSSION AND FUTURE WORK

In this work, we propose motif structural encodings as a flexible new graph inductive bias that
is based on counting graph homomorphisms. MoSE is supported by expressiveness guarantees,
which transfer to architectures that use MoSE as their graph inductive bias. In particular, we show
that MoSE is a more expressive encoding than RWSE and relate these encoding schemes to the
expressive power of MPNNs and more generally to the WL hierarchy. We empirically validate that
the theoretical advantages of MoSE also translate to performance gains across a set of real-world
and synthetic datasets. Although our work takes a closer look at the expressivity of different graph
inductive biases, there remain several open questions in this area of characterizing different encoding
methods. Furthermore, we have yet to explore the full potential of the vertex-weighting parameter of
our encoding scheme.
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Emily Jin, Michael M. Bronstein, İsmail İlkan Ceylan, and Matthias Lanzinger. Homomorphism
counts for graph neural networks: All about that basis. In ICML, 2024.
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A PROOFS FOR SECTION 4.2

Proof for Proposition 1. Dvorák (2010) showed that if G and H are equivalent under k-WL, then
every graph F with treewidth at most k has hom(F,G) = hom(F,H). This extends also to the
vertex level. Let v ∈ V (G) and v′ ∈ V (H) such that v and v′ have equivalent k-WL labels. Then
also Hom(F,G, v) = Hom(F,H, v′) (see Lanzinger & Barceló (2024), Lemma 12). Hence, if the
maximum treewidth in G is k, then equivalence under k-WL implies also that they are equivalent
under MoSEG .

Proof Sketch of Proposition 6. One direction is shown in ??, which shows two graphsG andH , with
highlighted red and blue nodes each. For every step length ℓ RWSE produces the same node features
for both red vertices and both blue vertices, respectively. At the same time, it is straightforward to see
that the 1-WL labeling of the red/blue nodes is different in the two graphs.

For the other direction, the classic example comparing the graph G consisting of two triangles and the
graph H containing the 6-vertex cycle as drawn below. It is well known that all nodes in both graphs
have the same 1-WL label, in contrast RWSE3 labels the nodes in G differently from the nodes in H ,
the respective vectors are given below.

(
0
0.5
0

) (
0
0.5
0.25

)

Figure 5: The 6 vertex cycle (left) and the disjoint sum of 2 triangles are indistinguishable by 1-WL,
but distinguishable by RWSE already after 3 steps. The RWSE vectors in the respective graphs are
all the same and are given next to the graphs.

A.1 THEOREM 3

Proof of Proposition 5. Take any graph H and notate V (H) = {1, 2, ..., n}. For v, v′ ∈ V (H),
define P (v i−→ v′) to be the probability of starting a length i random walk at node v and ending it at
node v′. Here, “length i” refers to the number of edges in the random walk where we allow repeat
edges, and “random walk” refers to a walk where each step (say we are currently at node v) assigns a
uniform probability 1/d(v) to moving to any of the neighbors in N (v).

As shorthand, define M = D−1A where D and A are the diagonal degree matrix and adjacency
matrix of H respectively. Let us first prove that (M i)v,v′ = P (v

i−→ v′) for any nodes v, v′ ∈ V and
for all powers i ∈ N by performing induction on i. The base case i = 1 holds trivially because we
assume that random steps are taken uniformly over neighbors. Assume as the inductive hypothesis
that our claim holds for some i ≥ 1, and note that:

(M i+1)v,v′ = (M1M i)v,v′ =

n∑
x=1

Mv,x ·M i
x,v′

but our base case and inductive hypothesis tell us that
n∑

x=1

Mv,x ·M i
x,v′ =

n∑
x=1

P (v
1−→ x) · P (x i−→ v′)
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By the law of total probability:
n∑

x=1

P (v
1−→ x) · P (x i−→ v′) = P (v

i+1−−→ v′)

This completes the induction. Hence, for any node v in any graph H , the node-level RWSEk vector
is equivalent to:

RWSEk(v,H) =

[
(M i)v,v

]k
i=1

=

[
P (v

i−→ v)

]k
i=1

∈ Rk

Now, let us show that we can recover this random-walk vector using MoSE. Consider the family of
all cycles with up to k nodes G = {Ci}ki=1, and let ω be the vertex weighting which maps any node
to the reciprocal of its degree. For each Ci ∈ G, enumerate the nodes V (Ci) = {u0, u1, ..., ui−1}
such that (uℓ, uℓ+1) ∈ E(Ci) for all ℓ = 0, ..., i− 2 and (ui−1, u0) ∈ E(Ci).

Take any node v in any graph H , and define Hi to be the set of all homomorphisms from Ci to
G which map node u0 ∈ Ci to node v ∈ G. Each homomorphism in f ∈ Hi can be constructed
by making i − 1 choices of node image f(uℓ) ∈ N (f(uℓ−1)) for ℓ = 1, ..., i − 1 such that
f(u(i−1)) ∈ N (f(u0)) where we have fixed f(u0) = v. In other words, each homomorphism
f ∈ Hi corresponds to a i-edge walk (allowing edge repeats) starting and ending at node v, which
we will call Wf . This correspondence is described by taking the induced subgraph Wf = G[f(Ci)]
where f(Ci) is the image of Ci under homomorphism f . In the reverse direction, any i-edge walk

Wf : v = v(0), v(1), ...., v(i−1), v(i) = v in H

that starts and ends at node v corresponds to a homomorphism f ∈ Hi which maps f(uℓ) = v(ℓ).
Hence, we have established a bijective correspondence between Hi and i-edge walk starting/ending
at v.

For any f ∈ Hi, we have: ∏
v∈V (Ci)

ω(f(v)) =
∏

v∈Wf

1/d(v) =

i−1∏
ℓ=0

1/d(v(ℓ))

Since the probability of stepping from node v(ℓ−1) ∈ V (Wf ) to node v(ℓ) ∈ V (Wf ) in a random
walk is simply 1/d(v(ℓ−1)), it holds that:

i−1∏
ℓ=0

1/d(v(ℓ)) = P (Wf )

where P (Wf ) is the probability of a random walk starting in v(0) and ending in v(i) being exactly
the walk Wf . Thus,

ω-Homu0�v(Ci, G) =
∑
f∈Hi

P (Wf ) = P (v
i−→ v)

giving us:

MoSEG,ω(v,H) =

[
ω-Hom�v(Ci, H)

]d
i=1

=

[
P (v

i−→ v)

]k
i=1

= RWSEk(v,H)

Proof of Proposition 4. We first recall the walk refinement procedure from Lichter et al. (2019) such
that we can relate it directly to RWSE.

The scheme at its basis assumes a directed complete colored graph G = (V,H, χ) where the
coloring χ always assigns different colors to self-loops than to other edges. For tuples of m vertices
(v1, v2, . . . , vm) ∈ V m define

χ̄ = (v1, v2, . . . , vm) = ((χ(v1, v2), χ(v2, v3), . . . , χ(vm−1, vm)).
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Ultimately, we want to use the scheme on undirected uncolored graphs. An undirected (and uncolored)
graphG, is converted into the setting above by adding the coloring χ : V (G) → {−1, 0, 1} as follows:
for all self-loops χ assigns −1, i.e., χ(v, v) = −1. For all distinct pairs v, u, we set χ(v, u) = 1 if
(v, u) ∈ E(G) and χ(v, u) = 0 if (v, u) ̸∈ E(G). For the directed edges recall that we consider
complete directed graphs and hence E = V 2.

With this in hand we can define the walk refinement procedure of Lichter et al. (2019). Formally, for
k ≥ 2, the k-walk refinement of a colored complete directed graph G = (V,E, χ) as the function
that gives the new coloring χW [k] to every edge as follows

χW [k](v, u) = {{χ̄(v, w1, . . . , wk−1, u) | wi ∈ V }}
Intuitively, the refinement takes into account all walks of length k in the graph. Note that walks of
length shorter than k are also captured via self-loops (because of their different weights we are also
always aware that a self-loop is taken and that a specific tuple in the multi-set represents a shorter
walk.

As with the Weisfeiler-Leman color refinement procedure, k-walk refinement can be iterated until it
reaches a stable refinement (after finitely many steps). Importantly, Lichter et al. (2019) (Lemma 4)
show that the stable refinements of the k-walk refinement procedure and 2-WL produce the same
partitioning of vertices. Intuitively, pairs of vertices that look the same to W [k] iff they look the same
to 2-WL.

All that is then left is to show that the stable W [k] refinement uniquely determines the RWSEk feature
vector for every vertex v. For this it is enough to observe, that at the first step of W [k], which we
will denote as χ1

W [k], both the degree of V , as well as all the number of k′-walks that start and end
in v are determined by χ1

W [k](v, v) for every v ∈ V and k′ ≤ k ≥ 2. Furthermore, the number
of k′-walks from v to v is directly obtainable from every level of the refinement, as every level of
refinement of (v, u) preserves information about the color of the initial edge coloring χ(v, u) (recall,
the initial edge coloring provides information about which edges exist in the original undirected G,
and hence from every walk tuple we see whether the walk exists in G). Hence, in χ2

W [k] from every
tuple in the multiset for (v, v), we can see whether the multiset is a k′-walk for every k′ ≤ k (in the
original undirected graph), with the labels in the tuple determining the degree of each vertex in the
walk. From the definition of RWSEk it is clear that this is enough information (see also the proof of
Proposition 5) to determine all dimensions of the RWSEk feature vectors from this information.

B ADDITIONAL EXPERIMENTAL DETAILS

We provide additional experimental details and hyperparameters relating to the results that were
presented in Section 5. All code and instructions on how to reproduce our results are available at the
following link: https://github.com/a82641806/MoSE.

Compute Resources. All experiments for ZINC, QM9, and the synthetic dataset were conducted
on a cluster with 12 NVIDIA A10 GPUs (24 GB) and 4 NVIDIA H100s. Each node had 64 cores of
Intel(R) Xeon(R) Gold 6326 CPU at 2.90GHz and 500GB of RAM. All experiments used at most 1
GPU at a time.

B.1 ZINC EXPERIMENTAL DETAILS

We use a subset of the ZINC molecular dataset that contains 12,000 graphs (Dwivedi et al., 2023).
The dataset is split into 10,000 graphs for training, 1,000 graphs for validation, and 1,000 graphs for
testing. Each graph in the dataset represents a molecule, where the node features indicate the atom
type, and the edge features indicate the bond type between two nodes.

B.1.1 ZINC WITH EDGE FEATURES

In Table 5, we provide additional results on ZINC-12k with edge features. Observe that the trend for
MoSE performing better than RWSE remains consistent. For completeness sake, we also perform a
series of experiments where we combine RWSE+MoSE encodings. The combination does not have
any significant effect on the results. All results are reported as the average of 4 runs at different seeds.
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Table 5: We report mean absolute error (MAE) for graph regression on ZINC-12K (with edge features)
across several models. MoSE yields substantial improvements over RWSE for every architecture.

Model Encoding Type

none RWSE MoSE RWSE+MoSE

MLP-E 0.606±0.002 0.361±0.010 0.347±0.003 0.349±0.003

R-GCN 0.413±0.005 0.207±0.007 0.197±0.004 0.188±0.005

GIN-E 0.243±0.006 0.122±0.003 0.118±0.007 0.117±0.005

GIN-E+VN 0.151±0.006 0.085±0.003 0.068±0.004 0.064±0.003

GT-E 0.195±0.025 0.104±0.025 0.089±0.018 0.090±0.005

GPS 0.119±0.011 0.070±0.002 0.062±0.002 0.065±0.002

B.1.2 ZINC WITHOUT EDGE FEATURES

Dwivedi et al. (2023) also present a set of experiments that uses the ZINC-12k dataset without edge
features. This is becaue there are a number of models that do not take edge features into account.
Therefore, we also perform a set of experiments on ZINC that do not include edge features and report
the results in Table 6.

Table 6: We report additional MAE results for various models on ZINC-12k without edge features.

Model none RWSE MoSE +RWSE+MoSE

MLP 0.663±0.002 0.263±0.006 0.218±0.005 0.202±0.001

GIN 0.294±0.012 0.190±0.004 0.158±0.004 0.168±0.005

GT 0.674±0.001 0.217±0.007 0.209±0.020 0.184±0.001

GPS 0.178±0.016 0.116±0.001 0.102±0.001 0.105±0.006

B.1.3 HYPERPARAMETERS

We detail a rough summary of the hyperparameters that we use for the ZINC experiments in Table 7.
These correspond to the results that are shown in Table 5. Note that all models are restricted to a
parameter budget of roughly 500k.

For all models, we perform the same grid-search on each feature enhancement (none, RWSE, MoSE)
independently. For MLPe, we grid search depth × width:

{2, 4, 8} × {156, 220, 284, 348}

and each of these models is searched with StepLR scheduler and Cosine Annealing scheduler. For
GT and GPS, we search depth × width × number of heads:

{(8, 74, 4), (10, 64, 4), (10, 92, 4), (4, 104, 8)}

We use configurations from Jin et al. (2024) for GINE.

B.2 QM9 EXPERIMENTAL DETAILS

The QM9 dataset is another molecular dataset that consists of 130,831 graphs Wu et al. (2018). There
are split into 110,831 graphs for training, 10,000 for validation, and 10,000 for testing. Node features
indicate the atom type and other additional atom features, such as its atomicnumber and the number
of Hydrogens connected to it, etc. The edge features indicate bond type between two nodes. The
task in this dataset is to predict 13 different quantum chemical properties, ranging from a molecule’s
dipole moment (µ) to its free energy (G). Note that for this dataset, we use the edge features provided
for all of our experiments.
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Table 7: Hyperparameters for ZINC experiments reported in Table 5.

Model Layers Hidden Dim Batch Size Learning Rate Epochs PE dim #Heads

MLP-E 4 128 128 0.001 1000 64 N/A
GIN-E 4 128 128 0.001 1000 64 N/A
GIN-E+VN 4 128 128 0.001 1000 64 N/A
GT-E 4 92 64 0.005 2000 64 4
GPS 4 92 64 0.005 2000 64 4

Table 8: We report MAE results for GPS with various feature enhancements on the QM9 dataset.

Property GPS +RWSE +MoSE +RWSE+MoSE

mu 1.52±0.02 2.64±0.11 1.47±0.02 1.43±0.02

alpha 2.62±0.38 1.52±0.27 1.48±0.16 1.72±0.11

HOMO 1.17±0.41 0.91±0.01 0.91±0.01 0.92±0.01

LUMO 0.92±0.01 0.90±0.06 0.86±0.01 0.88±0.16

gap 1.46±0.02 1.47±0.02 1.45±0.02 1.48±0.01

R2 6.82±0.31 6.11±0.16 6.22±0.19 6.01±0.03

ZPVE 2.25±0.18 2.63±0.44 2.43±0.27 2.23±0.25

U0 0.96±0.34 0.83±0.17 0.85±0.08 0.80±0.05

U 0.81±0.05 0.83±0.15 0.75±0.03 0.78±0.03

H 0.81±0.26 0.86±0.15 0.83±0.09 0.87±0.16

G 0.77±0.04 0.83±0.12 0.80±0.14 0.72±0.03

Cv 2.56±0.72 1.25±0.05 1.02±0.04 1.03±0.08

Omega 0.40±0.01 0.39±0.02 0.38±0.01 0.39±0.01

B.2.1 ADDITIONAL RESULTS ON QM9

We provide additional results on the QM9 dataset for GPS in Table 8. All reported results are the
average of 5 different runs at different seeds. Additionally, we provide the same analysis with a
4-layer MLP-E and the GT (Dwivedi & Bresson, 2020) model. These results are presented in Table 9
and Table 10 respectively. We consistantly see that across all models, MoSE outperforms RWSE. The
division between using MoSE alone and a combination of RWSE+MoSE is less trivial than in the
case of ZINC though. This is because in the QM9 dataset, due to the large number of tasks to regress
over, some tasks may not be influenced by topological structure as much. Therefore, the benefit of
using MoSE is less significant.

Table 9: We report MAE results for MLP-E with different structural encodings on the QM9 dataset.

Property MLP-E +RWSE +MoSE +RWSE+MoSE

mu 5.31±0.03 4.91±0.06 4.88±0.05 4.84±0.03

alpha 6.76±0.04 5.08±0.18 5.11±0.11 4.83±0.09

HOMO 2.96±0.03 2.46±0.03 2.36±0.04 2.34±0.02

LUMO 3.17±0.04 2.76±0.3 2.65±0.03 2.57±0.03

gap 4.34±0.02 3.58±0.02 3.45±0.05 3.35±0.04

R2 43.69±1.08 26.69±0.31 26.50±0.43 24.97±0.45

ZPVE 14.36±0.60 10.42±1.24 8.94±0.83 10.28±0.35

U0 8.06±0.78 5.39±0.58 5.30±0.41 4.74±0.28

U 8.33±0.56 5.34±0.59 5.19±0.39 5.10±0.62

H 8.19±0.33 5.17±0.28 4.77±0.16 5.08±0.33

G 7.58±0.14 5.83±0.46 5.28±0.54 5.03±0.36

Cv 6.06±0.14 3.80±0.15 3.73±0.25 3.72±0.44

Omega 1.61±0.04 1.29±0.02 1.17±0.02 1.24±0.05
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Table 10: We report MAE results for GT-E with different structural encodings on the QM9 dataset.

Property GT +RWSE +MoSE +RWSE+MoSE

mu 4.12±0.05 2.53±0.06 2.43±0.01 2.31±0.06

alpha 8.80±4.65 1.43±0.03 2.00±0.08 1.32±0.01

HOMO 1.72±0.01 1.15±0.01 1.11±0.01 1.08±0.01

LUMO 1.63±0.01 1.05±0.02 1.02±0.01 0.99±0.01

gap 2.38±0.03 1.67±0.01 1.62±0.01 1.57±0.02

R2 26.73±8.59 8.30±0.32 10.69±1.56 7.80±0.17

ZPVE 10.39±1.35 2.46±0.04 4.66±2.09 2.37±0.03

U0 6.27±1.95 0.94±0.10 2.56±1.66 0.98±0.57

U 5.38±0.17 0.92±0.03 3.10±2.75 1.40±0.72

H 5.30±0.17 0.92±0.06 3.49±2.02 0.96±0.51

G 5.44±0.51 0.88±0.08 2.72±1.21 0.63±0.03

Cv 4.32±0.07 1.25±0.01 1.43±0.04 1.15±0.01

Omega 1.25±0.01 0.50±0.01 0.47±0.02 0.46±0.01

Table 11: Hyperparameters for QM9 experiments.

Model Layers Hidden Dim Batch Size Learning Rate Epochs PE Dim #Heads

MLP-E 4 220 128 0.001 800 64 N/A
GT 8, 10, 12 64, 128, 256 128 0.0001, 0.0001 1200 64 4, 8
GPS 8, 10, 12 64, 128, 256 128 0.0001, 0.0001 1200 64 4, 8

B.2.2 HYPERPARAMETERS

We detail a rough summary of the hyperparameters that we use for the QM9 experiments in Table 11.
Different tasks use different hyperparameters. The precise setup can be found in the public github
repository.

For MLP-E, we do not perform any grid searching, and simply use the same hyperparameters for
every task and every feature enhancement. For GPS and GT we grid-search each feature enhancement
independently (on a reduced number of epochs: 700). We first search the tasks R2, ZPVE, U0, and
GAP on the following MPNN-type × depth × width × head × learning rate values:

{RGCN,GINE} × {(8, 128, 8), (10, 64, 4), (12, 256, 8)} × {0.0001, 0.00001}
Then, the best two models from each results is searched on the corresponding tasks for each injection:

Initial Search Corresponding tasks
R2 MU, ALPHA

ZPVE OMEGA, Cv
U0 U, H, G

GAP HOMO, LUMO

B.3 SYNTHETIC DATASET DETAILS

We generate a new synthetic dataset where the goal is to predict the fractional domination number of
a graph. The dataset contains 10,000 randomly-generated Erdős-Rényi graphs. The density range for
the graph generation is between [0.25,0.75], and the number of nodes varies from [16,32].

A fractional dominating set of a graph G is a weight assignment α : V (G) → [0, 1], s.t., for
every vertex v, the weight assigned to it and its neighbours is at least 1. The weight of a fractional
dominating set α is

∑
v∈V (G) α(v). The fractional domination number of G is the least weight of a

fractional dominating set of G (Scheinerman & Ullman, 2013).

For the MLP, we again use a 4-layer MLP, and in order to focus soley on the power of the graph
inductive biases, we select a standard self-attention GraphTransformer (Dwivedi & Bresson, 2020).
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The percentage mean absolute error results for each model and configuration are reported in Table 12.
For each model, we do not perform any hyperparameter tuning and use the defaults outlined above.
Please refer to our code for the specific configuration files.

Table 12: Percentage MAE results for prediction the fractional dominantion number on our synthetic
dataset. MoSE outperforms LapPE and RWSE in both an MLP and GT model.

LapPE RWSE MoSE

MLP 48.22%±.31 7.53%±.07 5.79%±.09

GT 8.35%±.06 6.05%±.08 5.46%±.10
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