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ABSTRACT

Reward models (RMs) are essential for aligning large language models with hu-
man preferences, making their rigorous and comprehensive evaluation a critical
task. However, traditional evaluation methods rely heavily on closed datasets
with pre-annotated preference pairs, which often fail to assess the generaliza-
tion ability of RMs across unseen prompts in open-world scenarios. To overcome
these limitations, we introduce the Pairwise Maximum Discrepancy Competition
(PMDC) framework, a dynamic and annotation-efficient evaluation approach that
adaptively selects informative test cases from a large, unlabeled, open-domain
prompt pool. Specifically, the PMDC framework operates by first identifying in-
put pairs that elicit significantly divergent preference scores from two RMs. These
discriminative pairs are subsequently evaluated by an advanced large language
model (LLM) acting as an oracle, determining which RM produces judgments
more closely aligned with human preferences. The resulting pairwise comparisons
are aggregated via the Bradley-Terry model, yielding an overall ordinal evaluation
of the assessed RMs. We apply PMDC to re-evaluate 10 representative RMs from
the RewardBench collection. The results reveal noticeable inconsistencies in RM
rankings compared to those derived from conventional benchmarks. Further anal-
ysis uncovers the strengths and weaknesses of each model, providing valuable
insights for future improvements in reward modeling.

1 INTRODUCTION

Reward models (RMs) are a cornerstone of modern alignment pipelines, enabling large language
models (LLMs) to internalize complex human preferences through reinforcement learning from
human feedback (RLHF) (Christiano et al., 2023; Stiennon et al., 2022). By learning to predict
human preferences between pairs of model responses, RMs provide scalable training signals that
guide LLMs toward desirable behaviors across various domains, including instruction following,
reasoning, and safety (Bai et al., 2022; Ouyang et al., 2022; Feng et al., 2025). With the growing
reliance on RMs for alignment, reliable, insightful, and scalable evaluation of RMs has become
increasingly critical.

However, prevailing evaluation benchmarks (Lambert et al., 2024) for RMs predominantly rely on
static, pre-annotated datasets that offer only a limited and often outdated representation of model
capability. These conventional evaluation resources suffer from several critical limitations. First,
their restricted coverage of the potential prompt and behavioral space impedes the assessment of
model generalization to novel domains or edge-case scenarios. Second, the human annotations un-
derpinning these datasets are typically sourced from specific demographic groups or constrained
task contexts, potentially introducing biases that do not accurately reflect broader human judgment.
Third, the fixed and publicly accessible nature of these test sets introduces inherent risks of overfit-
ting, both explicit and implicit, where models may be optimized for benchmark performance with-
out achieving meaningful improvements in alignment quality or robustness (Gao et al., 2022; Zhong
et al., 2025; Kim et al., 2025).

To address these challenges, we propose the Pairwise Maximum Discrepancy Competition (PMDC),
a dynamic and cost-efficient framework for evaluating RMs in open-world settings. Inspired by
discrepancy-driven evaluation paradigms in computer vision (Saito et al., 2018), PMDC actively
identifies prompt-response pairs that elicit highly divergent scores from pairs of reward models, so-
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called maximum discrepancy samples. Such contentious instances are subsequently evaluated by
a powerful LLM acting as an adjudicator, serving as a scalable proxy for human judgment. By
aggregating these pairwise comparisons across a diverse pool of models and prompts, PMDC con-
structs a global ranking of RMs using the Bradley-Terry (BT) model (BRADLEY & TERRY, 1952),
yielding both a holistic performance ranking and fine-grained insights into the relative strengths and
weaknesses of each model.

Crucially, PMDC shifts the evaluation paradigm from static benchmarking to active and adaptive
probing. Rather than assessing model performance on a fixed test set, it systematically identifies
the most informative points of disagreement among RMs. This approach offers two key advantages.
First, it enables dynamic evaluation by adaptively sampling test cases from an open-domain prompt
pool and utilizing responses generated by a diverse set of LLMs, thereby facilitating the detection of
out-of-distribution failures and enhancing generalization assessment. Second, it ensures annotation
efficiency by submitting only the most discriminative sample pairs to the oracle for judgment, which
significantly reduces annotation costs.

The main contributions of this work are threefold:

• The first dynamic evaluation framework for reward models: We introduce the PMDC
framework, a novel evaluation paradigm that moves beyond static benchmarks by adap-
tively identifying high-discrepancy instances from an open-domain prompt pool.

• A dynamically generated and actively probed evaluation dataset: We construct a high-
quality RM evaluation dataset via active probing to identify highly divergent reward model
responses. Experiments demonstrate that it not only enables discrimination-rich evaluation
of reward models but also enhances downstream alignment performance.

• Empirical re-evaluation of state-of-the-art RMs with revealing insights: We apply
PMDC to 10 prominent reward models from the RewardBench collection (Malik et al.,
2025), uncovering significant inconsistencies in their rankings compared to conventional
benchmarks.

2 RELATED WORKS

2.1 REWARD MODEL BENCHMARKS

Early efforts in RMs evaluation, such as RewardBench (Lambert et al., 2024), primarily focused on
measuring preference prediction accuracy within closed datasets. However, subsequent research has
raised concerns about whether such narrow accuracy metrics reliably predict downstream alignment
performance (Wen et al., 2025; LeVine et al., 2024). In response, more comprehensive bench-
marks emerged, including RM-Bench (Liu et al., 2024b) and RewardBench 2 (Malik et al., 2025),
which assess RMs on nuanced capabilities like discerning subtlety and resisting stylistic bias. This
paradigm has further extended into specialized domains, reflecting the growing application scope
of reward modeling. Recent benchmarks now assess multilingual (Gureja et al., 2025), vision-
language (Yasunaga et al., 2025; Li et al., 2025), and embodied agent (Men et al., 2025) RMs.
Concurrently, the adoption of powerful LLMs as reward models or preference judges has gained
significant traction (Zheng et al., 2023; Dong et al., 2024). To formalize and standardize the assess-
ment of these LLM-based evaluators, several dedicated benchmarks have been proposed (Thakur
et al., 2025; Murugadoss et al., 2024; Tan et al., 2025; Zhou et al., 2025). These frameworks evalu-
ate critical dimensions such as alignment with human preferences, robustness to varying instruction
complexities, and consistency across diverse evaluation scenarios, establishing much-needed rigor
in judge-style model assessment.

2.2 MAXIMUM DISCREPANCY COMPETITION

Beyond static benchmarks, it is crucial to actively and efficiently probe for model weaknesses. The
Maximum Discrepancy (MAD) competition framework provides a powerful methodology for this
task (Ma et al., 2020). Instead of relying on a fixed test set, MAD adaptively samples data points
that cause the largest disagreement between two or more competing models. This principle has been
successfully applied to expose failures and compare models in diverse domains, including objective
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image quality (Ma et al., 2016) and semantic segmentation (Yan et al., 2021). More recently, this
sample-efficient approach has been adapted for the human evaluation of large language models,
demonstrating its effectiveness in identifying the most informative examples to distinguish between
high-performing models (Feng et al., 2025). Our work is inspired by this adversarial, comparative
approach to develop a more robust and efficient evaluation protocol for reward models.

3 PROPOSED PMDC

In this section, we introduce the PMDC framework to evaluate RMs. As illustrated in Figure 1,
our method dynamically samples prompts from diverse datasets, generates responses using multiple
LLMs, identifies maximum discrepancy pairs, obtains oracle judgments for contentious cases, and
finally produces global rankings.

3.1 DATA GENERATION AND SCORING

The data generation begins with the construction of a diverse evaluation corpus through systematic
sampling from multiple data sources. We first sample M prompts from a comprehensive prompt
pool comprising prompts aggregated from established benchmarks to ensure broad topical coverage.
Concurrently, we sample L LLM from a diverse model pool.

For each sampled prompt, we generate candidate responses using the selected LLMs, resulting in
M prompts each with L potential responses. This process yields a dataset of prompt-response pairs
that captures diverse response strategies and styles. The resulting collection forms our evaluation
dataset X = {(qj , {a(m)

j }Lm=1)}Mj=1.

Each prompt-response pair (q, a) is then evaluated by N distinct reward models, denoted R =
{Ri}Ni=1. Each reward model Ri assigns a real-valued score si(q, a) reflecting its assessment of the
response’s quality. To enable a fair comparison across reward models that may operate on different
numerical scales, we apply min-max normalization to the raw scores for each model Ri across the
entire dataset:

s′i(q, a) =
si(q, a)−mini
maxi−mini

, (1)

where mini and maxi represent the minimum and maximum scores produced by Ri over the dataset,
respectively. These normalized scores are converted into discrete preferences:

Preference(Ri, a1, a2) =

{
1 if s′i(a1) > s′i(a2)

2 if s′i(a1) < s′i(a2).
(2)

3.2 SAMPLE SELECTION

The objective is to efficiently evaluate and rank N RMs on the dataset X . Conventional evalua-
tion methods heavily rely on static and pre-annotated datasets, which frequently fail to measure the
generalization ability of RMs when confronted with unseen prompts in open-world settings. The
standard process for evaluating RMs on new datasets consists of three stages. First, a small dataset
S must be pre-selected. Second, predictions are generated by processing S through the RMs. Third,
human evaluation is performed on these outputs to compare relative model performance. The RM
that achieves the highest average subjective rating across S is considered superior. However, this
evaluation paradigm is labor-intensive, expensive, and challenging to scale, posing significant prac-
tical limitations for efficient assessment of reward models.

Following the Maximum Discrepancy Competition (MAD) principle (Wang & Simoncelli, 2008),
we aim to evaluate the RM by adaptively selecting a minimal yet highly informative subset of
prompt-response pairs. We begin by considering the simplest scenario, where two RMs RA and
RB are being compared under an oracle budget that permits the judgment of only one prompt and
its corresponding response pair (q, {a1, a2}) ∈ X . The core challenge thus reduces to: How can
we automatically select the most informative sample from a large pool of candidates such that the
relative performance between RA and RB can be most effectively discerned?

3
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c. Comparison & Ranking

b. Sample Selection a. Data Generation and Scoring

Oracle Annotation

LLM PoolQuestion Pool
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Sampling Sampling

Prompt - Response with Scores Top-k Maximum Discrepancy Pairs

Reward Model

RMs
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Win Rate Matrix  RMs
Global Ranking

… … …

       Bradley-Terry Model

…

Normalize &

… …

…

…

…

Reward Model

… …
LLM JudgePrompt + VS.

Figure 1: Overview of the proposed PMDC framework. (a) Data generation and scoring: Sample
prompts and LLMs to build prompt-response pairs, which are then scored by reward models (RMs).
(b) Sample selection: Based on the Maximum Discrepancy Competition principle, select top-k pairs
(with maximum RM preference discrepancy) to form an evaluation subset. (c) Comparison & rank-
ing: Annotate the selected QA pairs with an Oracle (i.e., LLM-based Judge) to rank responses,
compare Oracle results with RMs to build a win-rate matrix, and convert the pairwise comparisons
into RMs’ global ranking using the Bradley-Terry model.

According to the MAD competition methodology, PMDC selects the prompt-response pair
(q̂, {â1, â2}) ∈ X that best differentiates between RMs RA and RB :

(q̂, {â1, â2}) = argmax
(q,{a1,a2})∈X

∣∣[sA(q, a1)− sA(q, a2)]− [sB(q, a1)− sB(q, a2)]
∣∣, (3)

where sA(q, a1)−sA(q, a2) represents the preference score difference assigned by model RA to the
response pair {a1, a2}, with a larger positive value indicating a stronger preference for a1 over a2.
The same applies to sB(q, a1)− sB(q, a2) for RB .

Then, we extend this idea to compare RA and RB over a small subset S ⊂ X comprising K
prompt–response pairs with the highest discrepancy values, as computed by Eq. 3. The k-th pair is
selected iteratively using:

(q̂, {â1, â2})(k) = argmax
(q,{a1,a2})∈X\S

∣∣[sA(q, a1)− sA(q, a2)]− [sB(q, a1)− sB(q, a2)]
∣∣, (4)

where S = {(q̂, {â1, â2})}k−1
i=1 contains the previously chosen k− 1 pairs. Each newly selected pair

is incorporated into S for subsequent iterations.

3.3 COMPARISON & RANKING

The oracle assessment of the preferences from RA and RB for a given pair (q, {a1, a2}) leads two
plausible results:

• The oracle’s judgment is consistent with that of RA (or RB). In this case, PMDC success-
fully identifies the most informative prompt–response pair for discriminating between the
two models, thereby enabling a conclusive performance ranking.
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• The oracle cannot determine a superior response, which is possible in open-world sce-
narios. Although the selected prompt-response pair (q̂, {â1, â2}) may reveal divergent
strengths (or weaknesses) of RA and RB , but contributes less to their relative performance
ranking.

Given N RMs, PMDC chooses top-k prompt-response pairs for each of the
(
N
2

)
model pairs, result-

ing in a final evaluation setD of size N(N−1)K. Notably, the size ofD is independent of the size of
the input domain X , allowing PMDC to benefit from an expanded X with broader prompt–response
coverage.

For the Oracle assessment, PMDC employs a two-alternative forced choice (2AFC) paradigm. Each
prompt–response pair (q, {a1, a2}) ∈ S is presented to the oracle alongside the outputs of two
competing RMs, RA and RB . The oracle is required to select the preferred response. The collected
judgments are compiled into an N × N win-count matrix W , where Wi,j records the number of
votes for Ri and against Rj . The symmetrized win rate matrix is computed as:

Pi,j =
Wi,j

Wi,j +Wj,i + ε
, Pi,i = 0.5, (5)

where ε is a small smoothing constant, ensuring Pi,j + Pj,i ≈ 1 off-diagonal and neutral diagonal.

We employ the BT model to infer the global ranking of R. Specifically, we let ξ be the vector of
global ranking scores [ξ1, . . . , ξn], and define the probability of Ri being preferred over Rj as

Pi,j =
1

1 + exp(ξj − ξi)
. (6)

We estimate the global scores by maximizing regularized log-likelihood with Broyden-Fletcher-
Goldfarb-Shanno (BFGS) (Hunter, 2004), and applying L2 penalty (λ = 10−6) for numerical sta-
bility and fixing ξ1 = 0 for identifiability:

logL(ξ) =
∑

(i,j)∈C

[wij logPi,j + wji logPi,j ]− λ

n∑
k=2

ξ2k. (7)

We summarize the proposed PMDC in Algorithm 1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of PMDC through comprehensive experiments
on 10 prominent reward models. Section 4.1 details our setup, including datasets, reward models,
and evaluation metrics. Section 4.2 presents PMDC’s global rankings and compares them with
established benchmarks. Section 4.3 analyzes PMDC’s sensitivity to key design choices, such as
top-k selection, oracle judge, and sampling randomness. Finally, Section 4.4 demonstrates how
PMDC-identified samples can improve reward models via targeted fine-tuning.

4.1 EXPERIMENTAL SETUP

Dataset We compile a large, unlabeled prompt pool by aggregating prompts from six established
benchmarks to ensure broad topical coverage: 1) MMLU (Massive Multitask Language Under-
standing) (Hendrycks et al., 2021), 2) GSM8K (Grade School Math) (Cobbe et al., 2021), 3) Hu-
manEval (Chen et al., 2021), 4) AlpacaEval (Li et al., 2023), 5) TruthfulQA (Lin et al., 2022), 6)
HellaSwag (Zellers et al., 2019).

Reward Models We evaluate 10 representative RMs, covering different architectures, training
paradigms, and parameter scales: 1) Skywork-Reward-Gemma-2-27B (Liu et al., 2024a), 2) QRM-
Gemma-2-27B (Dorka, 2024), 3) Reward-Model-Mistral-7B-instruct-unified (Yang et al., 2024),
4) URM-LLaMa-3.1-8B (Lou et al., 2025), 5) ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024),
6) Skywork-Reward-Llama-3.1-8B (Liu et al., 2024a), 7) Skywork-Reward-V2-Qwen3-8B (Liu
et al., 2025), 8) Reward-Model-Deberta-v3-large-v2 (OpenAssistant, 2023), 9) Skywork-Reward-
V2-Llama-3.2-3B (Liu et al., 2025), 10) Skywork-Reward-V2-Llama-3.1-8B (Liu et al., 2025).
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Algorithm 1 Pairwise Maximum Discrepancy Competition (PMDC)

1: Input: A Prompt pool, An LLM pool, Reward models R = {R1, . . . , Rn}, Oracle O, Top-k
parameter k.

2: Initialize: Pairwise win counts Wij = 0 for all i, j ∈ {1, . . . , n}.
3: Sample a batch of prompts Q from the Prompt pool
4: Sample a batch of response generators G from the LLM pool
5: for each prompt q in Q do
6: Generate response set {a1, . . . , am} using generators G.
7: Compute all reward scores si(q, aj) for all Ri ∈ R and all aj .
8: Normalize scores: s′i(q, aj) = Min-Max(si(q, aj)) for each model Ri.
9: Find Maximum Discrepancy samples:

10: Initialize discrepancy set MDsamples = ∅.
11: for each model pair (RA, RB) ∈

(R
2

)
do

12: Compute discrepancies DA,B(q, ai, aj) for all response pairs (ai, aj) using Eq. 3.
13: MDpair ← top-k{(DA,B , q, ai, aj , RA, RB) : ∀i < j}.
14: MDsamples ← MDsamples ∪MDpair.
15: end for
16: Total samples: |MDsamples| =

(
n
2

)
× k.

17: Oracle Adjudication:
18: for each sample (D, q, ai, aj , RA, RB) in MDsamples do
19: Get oracle preference PO = O(q, ai, aj).
20: Get model preferences PA = (s′A(ai) > s′A(aj)) and PB = (s′B(ai) > s′B(aj)).
21: if PA = PO and PB ̸= PO then
22: WAB ←WAB + 1.
23: else if PB = PO and PA ̸= PO then
24: WBA ←WBA + 1.
25: end if
26: end for
27: end for
28: Global Ranking:
29: Compute win-rate matrix P from W using Eq. 5.
30: Estimate BT ranking score ξ by maximizing Eq. 7 using W .
31: Output: Global ranking based on ξ.

Among them, models 1) and 2) are large-scale 27B parameter models that demonstrate superior
performance, while models 3)-6) represent mid-scale instruction-tuned variants, and models 7)-10)
are recent Skywork-V2 series models with various base architectures.

Oracle We employ Claude-Sonnet-4 as our oracle judge via the API endpoint. The oracle uses a
systematic prompt design with structured instructions to ensure consistent and reliable judgments.
The full prompt can be found in Appendix A1.

Evaluation Metrics In addition to the global ranking, we also employ the oracle agreement rate as
an evaluation metric. The oracle agreement rate measures the proportion of Maximum Discrepancy
samples where an RM’s preference aligns with the oracle’s judgment:

Agreement(Ri) =
1

|Si|
∑
s∈Si

I
[
Preference(Ri, s) = Oracle(s)

]
, (8)

where Si is the set of maximum discrepancy samples involving RM Ri. A higher value indicates
that the RM is more reliable when evaluating challenging samples characterized by high inter-model
disagreement.

Implementation Details For each experiment, we randomly select 1, 000 prompts from the com-
piled prompt pool. For each selected prompt, we generate 5 candidate responses by randomly sam-
pling five LLMs from a diverse pool of twenty state-of-the-art models. For each reward model pair,
we systematically select the top-k QA pairs with the highest reward score discrepancy across all

6
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Table 1: Global ranking results. Higher agreement indicates better oracle consistency on contentious
Maximum Discrepancy samples.

Model Rank BT ranking score Agreement (%)
Skywork-Reward-Gemma-2-27B 1 2.488 91.6
QRM-Gemma-2-27B 2 1.271 74.8
Reward-Model-Mistral-7B-instruct-unified 3 0.753 65.3
URM-LLaMa-3.1-8B 4 0.065 49.9
ArmoRM-Llama3-8B-v0.1 5 0.000 48.3
Skywork-Reward-Llama-3.1-8B 6 -0.185 44.1
Skywork-Reward-V2-Qwen3-8B 7 -0.455 37.6
Reward-Model-Deberta-v3-large-v2 8 -0.507 36.7
Skywork-Reward-V2-Llama-3.2-3B 9 -1.007 26.0
Skywork-Reward-V2-Llama-3.1-8B 10 -1.059 24.9

1, 000 × 5 = 5, 000 QA pairs using our normalized score difference metric (Eq. 3), where k is a
configurable hyperparameter (default k = 10). With 10 RMs, this yields

(
10
2

)
× k = 45× 10 = 450

Maximum Discrepancy samples in total.

4.2 MAIN RESULTS
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Figure 2: Pairwise win-rate heatmap across
RMs on Maximum Discrepancy samples.

Global Ranking Results Table 1 presents the
global ranking of the evaluated models, reporting
both their BT ranking score and oracle agreement
rates. As expected, higher BT scores correspond
to greater consistency with the oracle’s judg-
ments, confirming the reliability of the estimated
preferences. The pairwise win-rate landscape in
Figure 2 provides a more detailed view of model
performance. The results reveal a clear perfor-
mance hierarchy with Skywork-Reward-Gemma-
2-27B emerging as the top performer, achieving
an oracle agreement rate of 91.6% and the high-
est BT ranking score of 2.488. This indicates
consistently strong alignment with human-like
judgments across contentious evaluation scenar-
ios. QRM-Gemma-2-27B and Reward-Model-
Mistral-7B-instruct-unified follow in second and
third place, with agreement rates of 74.8% and
65.3%, respectively. The dominance of Gemma-
2-27B-based models in the top rankings suggests that scale and architecture significantly influence
reward modeling capability. Oracle agreement rates complement the BT ranking by measuring abso-
lute reliability on contentious samples, with the strong positive correlation confirming the robustness
of our evaluation framework.

Comparison Against Established Benchmarks To validate the reliability of PMDC, we com-
pare our rankings against RewardBench2, a challenging held-out evaluation track. As illustrated in
Figure 3, while 6 out of 10 models exhibit rank differences of 3 or fewer, indicating general consis-
tency, notable discrepancies also arise. For instance, Skywork-Reward-V2-Llama-3.1-8B performs
substantially worse under PMDC than in the benchmark evaluation, suggesting that conventional
metrics may overestimate its robustness in contentious, open-ended scenarios (see Appendix A2).
These differences stem from PMDC’s methodological distinction, where its discrepancy-driven sam-
pling acts as a targeted probe, focusing on contentious cases with high inter-model disagreement.
This approach emphasizes challenging edge cases and reduces sensitivity to potential train–test con-
tamination, thereby offering a novel, complementary perspective relative to conventional bench-
marks.
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RewardBench2 PMDC
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Figure 3: Rank comparison between PMDC and
RewardBench2. Horizontal lines connect each
reward model’s ranking under RewardBench2
(blue) and PMDC (red).

Run 1 Run 2 Run 3 Run 4 Run 5
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PMDC

Figure 4: PMDC’s rank across 5 independent
runs. The heatmap shows the rank of each RM
in each run, with rank values annotated in indi-
vidual cells.

4.3 MODEL AND RESULT ANALYSIS

Sensitivity of Top-k To evaluate ranking stability, we vary the number of selected high-
discrepancy pairs (top-k) from 2 to 100, using the ranking at k = 100 as the reference to compute
Spearman correlation for each k. The results show that even with k = 5, the obtained rankings
are highly consistent with those using k = 100, as reflected by Spearman correlation 0.988 (see
Figure 5). We also observe that very small k values increase variance but help uncover edge-case
disagreements, and rankings and metrics stabilize at k ≥ 5. These findings support the use of a
moderate k to balance efficiency and robustness in practice.

Annotation Efficiency Analysis The PMDC framework achieves remarkable annotation reduc-
tion compared to exhaustive evaluation. In our experiments, each of the 1, 000 questions contains 5
candidate responses, requiring

(
5
2

)
= 10 pairwise comparisons per question under traditional eval-

uation, resulting in 1, 000 × 10 = 10, 000 total annotations. In contrast, PMDC with k = 10 only
requires

(
10
2

)
× 10 = 450 comparisons, a 95.5% reduction in annotation cost. This dramatic ef-

ficiency gain demonstrates PMDC’s practical utility for large-scale reward model evaluation while
preserving ranking fidelity.

Sensitivity of LLM Judge To assess the robustness of PMDC against potential biases introduced
by the choice of oracle, we evaluated the same set of Maximum Discrepancy samples using three
distinct LLM judges: Claude-Sonnet-4, Gemini-2.5-Pro, and GLM-4-Plus. The resulting reward
model rankings show remarkable consistency across all judge pairs: Claude vs. Gemini (ρ = 0.964),
Claude vs. GLM (ρ = 0.976), and Gemini vs. GLM (ρ = 0.976). As visualized in Figure 6,
the Top-3 models remain perfectly identical across all judges, with 5 out of 10 models showing
complete ranking consensus, demonstrating that PMDC is insensitive to judge selection and captures
consistent quality assessments across different oracle models.

Result Consistency Analysis To assess the robustness of PMDC, we conducted five independent
evaluation runs using different random seeds for prompt and LLM sampling. As illustrated in Fig-
ure 4, the global rankings remain highly stable across all runs, with most models maintaining iden-
tical or adjacent positions. In contrast, when using random sampling, i.e., selecting k = 10 pairs per
model pair randomly from the same pool, the resulting rankings exhibit significantly higher variance
across runs, as shown in Figure A1. This instability arises because random samples often fail to cap-
ture meaningful points of disagreement between reward models, leading to noisy and inconsistent
comparisons. Instead, our PMDC approach produces reliable and reproducible evaluations.
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Figure 5: Spearman correlation of PMDC’s
ranks across top-k values. The plot shows co-
efficients with a dashed red line at 0.95, high-
lighting all values above this threshold.

Figure 6: RM rankings across three Ora-
cle judges (Claude-Sonnet-4, Gemini-2.5-Pro,
GLM-4-Plus). The parallel coordinates plot
shows each RM’s rank across different judges.

4.4 IMPROVING REWARD MODELS VIA MAXIMUM DISCREPANCY PAIRS

Beyond evaluation, PMDC also can improve RMs through targeted fine-tuning. The maximum dis-
crepancy samples identified by PMDC represent precisely those ambiguous or challenging cases
where reward models exhibit substantial disagreement, making them ideal candidates for high-
leverage fine-tuning. To validate this hypothesis, we train a reward model (baseline) based on
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024) with the same implementation strategy, and fine-
tune it using the 4500 oracle-annotated preference pairs selected by PMDC.

Table 2: Reward model performance before and
after fine-tuning on PMDC-identified samples.

Dimension Baseline Fine-tuned Gain

Factuality 0.534 0.545 +1.1%
Focus 0.642 0.588 -5.4%
Math 0.516 0.561 +4.5%
Precise IF 0.366 0.381 +1.5%
Safety 0.780 0.764 -1.6%
Ties 0.570 0.641 +7.1%

Overall 0.568 0.599 +3.1%

As shown in Table 2, fine-tuning on PMDC-
selected samples yields an overall performance
gain of 3.1% over the baseline on RewardBench2.
The improvement is particularly notable in areas
requiring nuanced judgment, such as Math and
handling of Ties. Minor reductions are observed
in Focus and Safety, likely due to the limited size
and domain coverage of the fine-tuning set. Nev-
ertheless, the overall improvement demonstrates
that discrepancy-driven data selection can effec-
tively boost reward model robustness and align-
ment fidelity. This result further validates the util-
ity of PMDC not only as an evaluator but also as
a data curation engine for reward modeling.

5 CONCLUSION AND FUTURE WORK

This work introduces the PMDC, a dynamic and efficient framework for evaluating RMs that over-
comes limitations of conventional static benchmarks. By adaptively selecting high-discrepancy re-
sponse pairs from a diverse and open-domain prompt pool and employing an LLM-based oracle
for scalable preference judgment, PMDC enables robust, discrimination-rich evaluation of RMs.
Empirical evaluation of 10 RMs not only reveals significant ranking inconsistencies compared to
traditional benchmarks but also uncovers nuanced model-specific strengths and weaknesses. These
results affirm PMDC’s capacity to provide more generalizable, cost-effective, and behaviorally in-
sightful assessments of reward model performance.

Future research could focus on enhancing oracle reliability through multi-judge ensembles, improv-
ing sample representativeness via adaptive sampling, and extending PMDC to multi-dimensional
evaluation frameworks to better capture capability trade-offs. Scaling the framework to larger model
sets and prompt pools would further enhance its robustness and applicability.
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ETHICS STATEMENT

This work focuses on evaluating reward models for aligning language models with human prefer-
ences. It does not involve the collection or analysis of personally identifiable, sensitive, or harmful
data. All datasets used are publicly available benchmarks or synthetically generated using licensed
models, with no private user content included. Human-like judgments were simulated via LLM-
based oracles under carefully designed prompts to minimize bias and ensure consistency; no real
human annotators were involved in this study. The proposed PMDC framework is intended solely
for academic research and responsible model evaluation, with no foreseeable misuse toward gener-
ating, promoting, or optimizing harmful, deceptive, or unethical content.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. Upon publication, we will publicly
release the complete source code, and detailed configuration files for all experiments. Additionally,
we provide the prompt template for the LLM-based oracle in the appendix. These resources will
enable the research community to reproduce our results, validate our findings, and extend the PMDC
framework for future reward model evaluation and development.
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APPENDIX

A1 ORACLE PROMPT

Prompt for Oracle Judge Evaluation

System Message: You are a professional text quality assessment expert. Please carefully compare the
quality of two answers, focusing on: 1) Accuracy – whether the information is correct; 2) Relevance –
whether it addresses the question; 3) Clarity – whether the expression is clear and understandable; 4)
Conciseness – whether it is concise and avoids redundancy; 5) Depth – whether it has insights; 6) Logic
– whether it is well-organized; 7) Practicality – whether it is helpful to the questioner. Find the best
balance between information content and readability. Only return the result in JSON format, without any
explanation.
User Prompt: Please judge which of the following two responses is better. Only return the result in JSON
format without any explanation.
Question: {question}
Response 1: {response1}
Response 2: {response2}
Please answer strictly in the following JSON format: {”preference”: 1} or {”preference”: 2}
Where 1 means Response 1 is better, and 2 means Response 2 is better.

A2 CASE STUDIES

Run 1 Run 2 Run 3 Run 4 Run 5

SK-V2-Qwen3-8B
QRM-G-2-27B

SK-L-3.1-8B
SK-G-2-27B

Mistral-7B
SK-V2-L-3.2-3B

AromoRM-L3-8B
DeBerta-v3-L

SK-V2-L-3.1-8B
URM-L-3.1-8B

1 6 5 5 3
2 2 2 9 4
3 4 3 2 1
4 1 1 1 2
5 3 6 4 5
6 9 7 3 6
7 10 8 8 8
8 5 10 10 9
9 8 4 7 10
10 7 9 6 7

Random

Figure A1: Random sampling’s rank across
5 independent runs. The heatmap shows the
rank of each RM in each run, with rank val-
ues annotated in individual cells.

The samples identified by PMDC naturally expose
systematic evaluation divergences and contrasting
assessment patterns across reward models. We
present five representative cases from our empiri-
cal evaluation data that reveal how different reward
models exhibit distinct preferences and evaluation
criteria. These cases expose critical divergences in
how models judge quality across scientific, creative,
educational, and technical domains:

Length Bias: Some models prefer short answers
over detailed ones, even when a deeper explanation
is needed. (Cases 1, 4, 5);

Inability to Recognize Nuanced Quality: Some
models fail to discern high quality in literary ex-
pression, complex reasoning, or specialized techni-
cal material (Cases 1, 2, 5);

Context Insensitivity: Some models use the same
standard to judge all responses, even for different
kinds of tasks that might need detailed analysis, cre-
ative expression, or technical expertise (Cases 1, 2,
3, 5);

These systematic evaluation patterns reveal fundamental differences in how reward models assess
content quality, highlighting the importance of careful model selection for domain-specific appli-
cations and the need for more nuanced evaluation frameworks that can recognize diverse forms of
excellence across diverse domains.

A3 USE OF LARGE LANGUAGE MODELS

Large language models were used as assistive tools during the preparation of this manuscript. Specif-
ically, they helped refine language, improve phrasing, and enhance overall readability. All LLM-
generated suggestions were carefully reviewed, verified, and edited by the authors. No unverified
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content was included, and all scientific reasoning, experimental design, analysis, and conclusions
were solely the work of the authors.

Case 1: Skywork-V2-Llama-3.1-8B vs. ArmoRM-Llama3-8B-v0.1 comparison on scientific myth-
busting. The former exhibits bias favoring brevity over comprehensive scientific analysis.

Prompt:
What will happen if one lemming jumps off a cliff?

Response A (Skywork Preference - Shorter):
If one lemming jumps off a cliff, the outcome would
depend on the specific circumstances, but here’s
what typically happens:
1. In Reality: Contrary to the popular myth, lem-
mings do not commit mass suicide by jumping
off cliffs. This misconception was popularized by
the 1958 Disney documentary *White Wilderness*,
which staged the scene for dramatic effect.
Migration & Accidents: Lemmings may occasion-
ally fall off cliffs or drown while migrating in large
groups, especially when crossing unfamiliar terrain
or bodies of water. However, this is accidental, not
intentional.
2. If a Single Lemming Falls: A lemming might
survive a short drop if the cliff isn’t too high and it
lands safely (e.g., in snow or vegetation). However,
a significant fall could injure or kill it.
No Group Effect: Unlike the myth suggests, one
lemming jumping would not trigger others to fol-
low. Lemmings are not blindly obedient creatures.
3. Ecological Impact: A single lemming’s death
would have minimal impact on the population, as
they reproduce quickly. However, predators (like
owls or foxes) might scavenge the carcass.
Key Takeaway: The idea of lemmings mindlessly
plunging to their deaths is a myth. In reality, they’re
simply small rodents that sometimes face hazards
during migration—just like other animals.

Response B (Oracle Preference - Comprehen-
sive):
This is a fantastic question because it touches on one
of the most persistent myths in the animal kingdom.
The answer has two parts: the literal, physical real-
ity and the debunking of the famous myth.
The Literal, Physical Answer: If one lemming
jumps off a cliff, it will fall. What happens next
depends entirely on physics: If it’s a short drop onto
soft ground or into deep water, the lemming might
survive. They are decent swimmers. If it’s a high
drop onto rocks or hard ground, the lemming will
almost certainly be injured or killed by the impact.
Crucially, nothing else will happen. The other
lemmings will not mindlessly follow it over the
edge.
The Myth vs. The Reality: The popular image of
lemmings lining up to commit mass suicide by leap-
ing off cliffs is completely false. This idea was cre-
ated and popularized by a very specific source.
Where Did the Myth Come From?: The myth was
cemented in the public consciousness by the 1958
Disney nature film, “White Wilderness.” The film-
makers brought lemmings to a cliff, used a spinning
turntable to herd and force the frantic animals over
the edge, and used clever editing to make it look like
a willful, suicidal stampede. The scene was entirely
staged.
What Really Happens in Nature?: Lemmings
have dramatic population cycles. Every 3-4 years,
their numbers explode, leading to mass migration
to find new food and territory. During these migra-
tions, accidental deaths occur when they try to cross
obstacles like rivers and cliffs. These are accidental
deaths, not intentional suicide.

Oracle Judgment: Response B (comprehensive myth-busting with detailed scientific explanation)
Model Discrepancy: Skywork-V2-Llama-3.1-8B (0.907 vs 0.319) strongly favored the shorter response,
while ArmoRM (0.596 vs 0.745) and Oracle preferred the detailed scientific analysis.

Response A’s Limitations: While factually correct, it provides only surface-level debunking without ex-
plaining the myth’s origins or providing comprehensive scientific context. The explanation lacks depth in
describing the actual biological behaviors of lemmings.
Response B’s Advantages: Offers a structured, educational approach with clear separation between physi-
cal reality and myth debunking. Provides detailed historical context about the Disney film’s staged footage,
explains the actual population cycle mechanisms, and distinguishes between accidental deaths and inten-
tional behavior. The response demonstrates superior scientific rigor and educational value.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Case 2: Skywork-Reward-Llama-3.1-8B vs. Skywork-Reward-V2-Llama-3.1-8B comparison on
creative poetry evaluation. The latter exhibits bias in aesthetic preferences affecting creative content
evaluation.

Prompt:
Write a funny, interesting, inspiring poem for Women’s Day.

Response A (Oracle Preference - Modern &
Bold):
“Ode to the Glorious Glitch in the System”
Oh, Woman! You magnificent force of nature,
With your multitasking, your grace, and your *atti-
tude*.
You’ve changed the world with a laptop, a spatula,
and a laser,
While raising kids, running nations, and inventing
the *attitude*.
You were told to sit, so you stood.
Told to whisper, so you *roared*.
Told to stay in the kitchen—
So you turned it into a startup *and* baked a cake
*and* ignored.
You’ve coded rockets, cured diseases,
Led revolutions in heels (and sometimes barefoot).
You’ve balanced budgets, babies, and boardroom
decisions,
All while being told, “Smile more, don’t be so *ruth-
less*—wait, no, be *shrewd*?”
You are not “just” a mother, a wife, or a “lady.”
You are *also* a storm, a sonnet, a spark, and a
scheme.
You are Beyoncé on stage, Malala in class,
And Aunt Linda who *still* won the neighborhood
pickleball team.
So here’s to the women who *do*, who *dare*, who
*demand*,
Keep being weird, wise, wild, and wonderful.
The world doesn’t stand a chance.
*(And honestly? It never did.)*

Response B (V2 Preference - Traditional &
Rhyming):
Here’s to the woman, a creature of myth,
Whose handbag contains what the universe smiths.
A charger, a lip balm, a singular sock,
A half-eaten biscuit as hard as a rock,
A receipt from two-thousand-and-three,
And the keys to a car that she sold. Who is she?
She’s a master of multitasking arts,
Juggling deadlines and feelings and hearts.
Her brain is a browser with sixty-four tabs,
(Including the one tracking neighborhood cats).
She carries the echo of those who once fought,
The suffragette’s spirit that couldn’t be bought.
She can be a soft dawn or a hurricane’s might,
A comforting whisper or blaze burning bright.
She builds up an empire and builds up a friend,
On her wisdom and strength, you can always de-
pend.
So here’s to her laughter, her power, her soul,
The one who makes broken things perfectly whole.
Happy Women’s Day! Now go find your crown.
(It’s probably under a cushion somewhere in the
lounge.)

Oracle Judgment: Response A (modern, bold voice with contemporary feminist themes)
Model Discrepancy: Skywork-Reward-Llama-3.1-8B (0.288 vs 0.096) favored Response A, while
Skywork-Reward-V2-Llama-3.1-8B (0.275 vs 0.703) favored Response B, and Oracle preferred the bold
creative approach.

Response A’s Advantages: Feels more inspiring and empowering while maintaining humor. It takes more
creative risks with its structure and language, creating a piece that’s both entertaining and genuinely moving.
The range of references (from Beyoncé to Malala to “Aunt Linda”) makes it more inclusive and celebratory
of all types of women. Demonstrates bold creativity and emotional impact.
Response B’s Limitations: Beautifully crafted but plays it safer. While charming with traditional rhyme
schemes and consistent meter, it doesn’t reach the same emotional heights or creative boldness as Response
A. The divergent model preferences reveal fundamentally different aesthetic philosophies in creative content
evaluation.
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Case 3: QRM-Gemma-2-27B vs. Skywork-Reward-V2-Llama-3.1-8B comparison on educational
guidance assessment. The latter exhibits bias against comprehensive analytical responses.

Prompt:
Context: [header] How to stop an aggressive cat [title] Make a loud noise to distract the cat. [step] A noise
can distract the cat and help redirect it away from its aggressive behavior. You could try clapping your
hands, banging two objects, or ringing a bell.

Which ending makes the most sense?
A. [substeps] Making loud sounds to try to distract the cat can also distract it from other, more encouraging
behavior. If the cat becomes aggressive, it may become defensive.
B. Direct the cat towards the noise to stop it and help it calm down. [substeps] Common loud noises to
attract attention include a roaring vehicle or engine.
C. You could also use your voice, which might get the cat to come near you so that it more easily hears
you. [substeps] Give the cat a low-pitched ” ha-ha ” sound.
D. [substeps] Cats can also be fearful of noises, so only use a loud noise if the cat is acting aggressively
and you’re afraid it could hurt someone, including another animal. If you use a loud noise to distract the
cat, make sure it has a clear escape route in case it wants to flee.

Response A (QRM-Gemma Preference - Com-
prehensive Analysis):
The most logical and complete ending is **D**.
Here’s why:
- D provides important context about when and
how to use loud noises to stop an aggressive cat. It
warns that cats can be fearful of loud sounds and em-
phasizes that this method should only be used when
necessary (if the cat is a danger to others). It also
advises ensuring the cat has an escape route, which
is crucial for preventing further stress or aggression.
- A is contradictory — it suggests loud noises
might distract from “encouraging behavior” but
doesn’t clarify what that means, and it implies the
cat may become defensive, which isn’t helpful ad-
vice for stopping aggression.
- B is illogical — directing a cat *toward* a loud
noise would likely increase stress, not calm it down.
The example of a “roaring vehicle or engine” is also
impractical and overly extreme.
- C shifts focus to using the owner’s voice, which
doesn’t align with the original step (using loud
noises to distract). The suggested “ha-ha” sound is
unclear and not a standard cat behavior modification
technique.
Thus, D is the best choice because it offers prac-
tical, safety-conscious advice while staying relevant
to the original step.

Response B (Skywork Preference - Similar but
with Style Elements):
The most logical and contextually appropriate end-
ing is:
D. [substeps] Cats can also be fearful of noises...
Reasoning:
- The original step recommends using a loud noise
(like clapping or ringing a bell) to **distract** an
aggressive cat.
- Option D provides a thoughtful, responsible
follow-up: it acknowledges the potential fear re-
sponse in cats, advises caution, and emphasizes
safety for both people and the cat.
- It aligns well with humane behavior management
by suggesting the noise be used only when neces-
sary and ensuring the cat can retreat, reducing fur-
ther stress or escalation.
The other options are less appropriate:
- **A** is confusing and contradictory — distract-
ing from “encouraging behavior” doesn’t fit the con-
text.
- **B** suggests directing the cat *toward* the
noise, which is counterintuitive and potentially dan-
gerous; also, a roaring engine is impractical and
overly intense.
- **C** introduces a strange “ha-ha” sound that
doesn’t align with standard cat behavior advice and
shifts focus oddly to attracting the cat.
Thus, **D** is the best choice.

Oracle Judgment: Response B (clearer structure, better formatting, concise analysis)
Model Discrepancy: QRM-Gemma-2-27B (0.817 vs 0.883) favored Response A, while Skywork-Reward-
V2-Llama-3.1-8B (0.760 vs 0.227) strongly favored Response A.

Response A’s Limitations: While providing accurate systematic analysis and good breakdown of each op-
tion, it lacks the organizational clarity and precise language of Response B. The presentation is more dense
and harder to scan, despite containing solid analytical content. The divergent model preferences reveal
Skywork’s systematic bias against well-formatted educational content, failing to recognize how superior
presentation enhances learning effectiveness.
Response B’s Advantages: Demonstrates superior organization with clear formatting, bold headers, and
structured presentation that enhances readability. Uses more precise language (“contextually appropri-
ate”, “thoughtful, responsible follow-up”) and explicitly mentions “humane behavior management” show-
ing deeper understanding. The checkmark emoji and clean separation of reasoning sections make it easier
to follow while maintaining analytical thoroughness.
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Case 4: Skywork-Reward-Gemma-2-27B vs. Skywork-Reward-V2-Qwen3-8B comparison on
healthcare AI applications. The latter exhibits bias against comprehensive technical content and
practical implementation considerations.

Prompt:
Describe a scenario where artificial intelligence could be used to improve the quality and efficiency of
healthcare delivery.

Response A (Gemma Preference - Focused Nar-
rative):
Certainly! Here’s a detailed scenario illustrating
how artificial intelligence (AI) can enhance health-
care quality and efficiency:
Scenario: AI-Powered Personalized Patient
Management in a Hospital Setting
Context: A large urban hospital aims to improve
patient outcomes and optimize resource allocation
in its cardiology department, which handles a high
volume of patients with varying degrees of heart dis-
ease severity.
How AI is Used:
1. Early Risk Detection and Diagnosis: Upon
patient admission, AI algorithms analyze electronic
health records (EHR), including medical history, lab
results, imaging scans (like echocardiograms), and
even wearable device data. The AI model identi-
fies patients at high risk of adverse cardiac events
by spotting subtle patterns that might be missed by
clinicians.
2. Personalized Treatment Planning: Based on
the risk assessment, the system suggests personal-
ized treatment plans. For instance, it recommends
medication adjustments, lifestyle interventions, or
scheduling for specific diagnostic tests tailored to
the patient’s unique profile.
3. Real-Time Monitoring and Alerts: Wearable
devices monitor patients’ vital signs continuously.
AI detects anomalies such as arrhythmias or sudden
changes in blood pressure and immediately alerts
healthcare providers.
Outcomes: Improved Patient Outcomes, Increased
Efficiency, Cost Savings, Enhanced Patient Experi-
ence.

Response B (Oracle & V2-Qwen Preference -
Comprehensive Structure):
Artificial intelligence (AI) has the potential to sig-
nificantly enhance healthcare delivery by improving
quality, efficiency, and accessibility. Here’s a de-
tailed scenario illustrating how AI could be applied:
Scenario: AI-Powered Early Disease Detection
and Personalized Treatment in Primary Care
1. Patient Data Integration and Analysis - A pa-
tient visits their primary care physician with vague
symptoms like fatigue, weight loss, and occasional
dizziness. The clinic uses an **AI-driven electronic
health record (EHR) system** that aggregates data
from past visits, lab results, wearable devices, and
genetic information.
2. Early Diagnosis and Risk Prediction - The
AI detects subtle irregularities and flags a **high
risk for Type 2 diabetes and cardiovascular dis-
ease**, even though traditional diagnostic thresh-
olds haven’t yet been crossed.
3. Personalized Treatment Planning - The AI sug-
gests **personalized lifestyle modifications** and
**precision medicine interventions** based on the
patient’s genetic profile.
4. Continuous Monitoring and Adaptive Care -
Real-time data feeds enable **automatic schedul-
ing** and **prediction of potential complica-
tions**.
5. Streamlining Administrative Tasks - AI au-
tomates **appointment scheduling, insurance pre-
authorizations, and billing**.
Benefits: Early Detection, Reduced Costs, Person-
alized Care, Efficiency, Scalability.
Challenges: Data privacy, algorithmic bias, human
oversight requirements.

Oracle Judgment: Response B (comprehensive structure, broader scope, practical considerations)
Model Discrepancy: Skywork-Reward-Gemma-2-27B (0.622 vs 0.912) strongly favored Response B,
while Skywork-Reward-V2-Qwen3-8B (0.923 vs 0.383) strongly favored Response A with massive prefer-
ence score discrepancy (0.830).

Response A’s Limitations: While providing coherent cardiology-focused content, it demonstrates signif-
icant shortcomings in scope and depth. Offers generic references to “subtle patterns” and “anomalies”
without concrete specificity. Lacks consideration of implementation challenges, administrative complexi-
ties, or ethical considerations. The narrow departmental focus misses broader healthcare system realities
and presents an overly idealistic view without acknowledging practical barriers.
Response B’s Advantages: Demonstrates superior content depth with comprehensive 5-stage coverage
from data integration to administrative efficiency. Provides concrete specificity (actual symptoms, biomark-
ers, technologies) and excellent hierarchical organization with clear headers. Shows sophisticated under-
standing of healthcare complexities including privacy concerns, algorithmic bias, and human oversight
requirements. Offers balanced perspective addressing both benefits and implementation challenges, mak-
ing it more valuable for practical healthcare AI deployment.
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Case 5: ArmoRM-Llama3-8B-v0.1 vs. Skywork-Reward-V2-Llama-3.2-3B comparison on physics
education content. The latter exhibits bias against comprehensive educational formatting and visual
learning aids.

Prompt:
What are the wavelengths of light emitted by metals depending on their temperature?

Response A (Skywork Preference - Traditional
Academic):
The wavelengths (or spectrum) of light emitted by
metals depending on their temperature are primarily
described by **blackbody radiation** principles.
When a metal is heated, it emits electromagnetic ra-
diation across a range of wavelengths, and the dis-
tribution of this emitted radiation depends mainly on
its temperature.
Key Concepts:
1. Blackbody Radiation - Metals, when heated
enough, approximate a *blackbody radiator*—an
idealized physical body that absorbs all incident
electromagnetic radiation and re-radiates energy
characteristic of its temperature.
2. Planck’s Law - The spectral radiance B(λ,T) of
a blackbody at temperature T (in kelvins) as a func-
tion of wavelength λ is given by Planck’s radiation
law: [Complex mathematical formula with h, c, k B
constants]
3. Wien’s Displacement Law - The wavelength
λ max at which the radiation is most intense (peak
wavelength) is inversely proportional to the temper-
ature: λ max = b/T where b ≈ 2.898 × 10−3 m·K
is Wien’s displacement constant.
Typical Wavelengths at Different Temperatures:
At ∼500 K (227◦C): Peak emission in infrared
(around 5.8 µm), invisible to human eye. Around
1000 K (∼727◦C): Peak shifts to near-infrared
(∼2.9 µm), some thermal glow begins. At 1500
K (∼1227◦C): Peak near 1.9 µm, metal starts to
glow dull red. At 2000 K (∼1727◦C): Peak around
1.45 µm, glowing brighter red-orange. At 3000 K
(∼2727◦C): Peak shifts near 1 µm, metal glows
bright orange-white. At 5000 K (∼4727◦C): Peak
near 0.58 µm (yellow-green), very bright white
light.
Practical Notes: Real metals do not emit as per-
fect blackbodies. Their emissivity (how efficiently
they emit radiation) varies with wavelength and ma-
terial. Thermal radiation spectrum is continuous,
unlike atomic emission lines.

Response B (Oracle & ArmoRM Preference -
Interactive Educational):
Of course! This is an excellent question that gets to
the heart of a fundamental concept in physics called
**black-body radiation**.
The short answer is: the light emitted by a metal is
a **continuous spectrum of wavelengths**, and the
**peak wavelength** depends almost entirely on
its **temperature**, not the specific type of metal.
The Key Principles - Any object with a tempera-
ture above absolute zero emits thermal radiation...
1. Wien’s Displacement Law: The Color of the
Glow - **The Formula:** λ peak = b/T. **What
it means:** As temperature **increases**, the
peak wavelength becomes **shorter**. This ex-
plains the color change: **Shorter Wavelengths**
= Blue/Violet/UV, **Longer Wavelengths** =
Red/Infrared.
2. Stefan-Boltzmann Law: The Brightness of
the Glow - **The Formula:** P = ε · σ · A · T4.
**What it means:** As temperature increases,
brightness increases dramatically.
Step-by-Step: Wavelength and Color vs. Tem-
perature - Let’s walk through what happens as you
heat a piece of iron:
Comprehensive Temperature Table:
**∼25◦C**: **No visible light.** **∼530◦C**:
**Faint, Dull Red Glow.** **∼1000◦C**:
**Bright Cherry Red to Orange.** ...
**∼2500◦C**: **”White Hot”** (tungsten
filament temperature). **∼5500◦C**: **Bluish-
White** (like the Sun).
Visualizing the Spectrum - [Includes blackbody
radiation curve image] The **peak** shifts to
shorter wavelengths as temperature rises, and
**total brightness** increases massively.
Important Distinction - This continuous thermal
radiation is **different** from atomic emission
spectra. Metal incandescence produces a smooth,
continuous spectrum determined by temperature.

Oracle Judgment: Response B (interactive educational approach, comprehensive table, visual aids)
Model Discrepancy: ArmoRM-Llama3-8B-v0.1 (0.021 vs 0.694) strongly favored Response B, while
Skywork-Reward-V2-Llama-3.2-3B (0.389 vs 0.292) favored Response A with massive preference score
discrepancy (0.770).

Response A’s Limitations: Adopts overly theoretical approach starting with complex mathematical formu-
las that intimidate non-specialists. Information organization is scattered with practical applications buried
in theoretical discussions. Temperature examples lack systematic progression and memorable associations.
Response B’s Advantages: Demonstrates superior pedagogical design with clear “short answer” to detailed
exploration progression. Features comprehensive temperature-color table with vivid descriptions (“Faint,
Dull Red Glow,” “White Hot”) and practical anchors (tungsten filament, solar surface). Uses “What it
means” explanations that bridge theory to intuitive understanding. Includes visual learning aids and distin-
guishes thermal from atomic spectra. Skywork’s preference for Response A reveals systematic failure to
recognize that effective science education requires both mathematical rigor and pedagogical accessibility.
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